AutoAttention: Automatic Attention Head Selection Through Differentiable
Pruning

Anonymous ACL submission

Abstract

Multi-head attention is considered as a driving
force and key component behind the state-of-
art transformer models. However, recent re-
search reveals that there are many redundant
heads with duplicated patterns in each layer.
In this work, we propose an automatic prun-
ing strategy using differentiable binary gates
to remove redundant heads. We relax the bi-
nary head pruning problem into a differentiable
optimization by employing Straight Through
Estimators (STEs), in which the model weights
and head-sparse model structure can be jointly
learned through back-propagation. In this way,
attention heads can be pruned efficiently and ef-
fectively. Experimental results on the General
Language Understanding Evaluation (GLUE)
benchmark are provided using BERT model.
We could reduce more than 57% heads on av-
erage with zero or minor accuracy drop on
all nine tasks and even achieve better results
than state-of-the-arts (e.g., Random, HISP, L0
Norm, SMP, etc). Furthermore, our proposed
method can prune more than 79% heads with
only 0.82% accuracy degradation on average.
We further illustrate the pruning procedure and
parameters change through the head attention
visualization and show how the trainable gate
parameters determine the head mask and the
final attention map.

1 Introduction

Transformer based language models (Devlin et al.,
2018; Yang et al., 2019; Bao et al., 2020) have been
proven to be highly effective in learning universal
language representations and applicable to down-
stream tasks with slight fine-tuning. Transformer
structure can nicely capture the long-term depen-
dencies in natural language but suffers from high
computational cost and memory usage.

To downsize the transformer models, different
neural network compression techniques have been
proposed, such as parameter sharing (Lan et al.,

2020; Raganato et al., 2020), knowledge distilla-
tion (Sanh et al., 2019; Jiao et al., 2020), weight
pruning (Gordon et al., 2020; Li et al., 2020), neu-
ron pruning (Correia et al., 2019; Prasanna et al.,
2020) etc. Among the compression approaches,
pruning attention heads has been warmly studied
due to its contribution to model interpretability and
direct computational complexity reduction (Michel
et al., 2019; Voita et al., 2019).

The redundancy of the multi-head mechanism
was first discussed in (Michel et al., 2019; Kovaleva
et al., 2019), and they prune duplicated attention
heads manually or in a greedy manner. In order
to automatically locate important attention heads
in each layer, Gumbel softmax (Voita et al., 2019)
and reinforcement learning (Lee et al., 2020) ap-
proaches have been employed. Gumbel softmax
relaxes the binary optimization problem into a dif-
ferentiable problem and enables the head-sparse
model structure learning in one-shot, while the rein-
forcement learning approach uses a deep Q network
to learn a pruning policy which achieves a better
pruning performance with longer search time.

In order to effectively and efficiently slim atten-
tion heads, in this work, we propose an automatic
single-shot head pruning algorithm AutoAttention
by leveraging the differentiable binary gates (which
determine the pruning status of attention heads)
controlled by Straight Through Estimators (STEs).
Comparing with Gumbel softmax sampling, our
approach can provide a more direct objective and
gradients for optimizing the binary gates, which
leads to a better performance in head pruning. Our
contributions are as follows:

* We propose differentiable head pruning algo-
rithm to automatically learn head-sparse trans-
former architectures, while human heuristic
methods rely on manual sparsity distribution and
are sub-optimal and time-consuming due to the
sensitivity of different layers.

* We transform the discrete head pruning prob-
lem into a smooth continuous optimization prob-
lem with STEs and achieve better results than
the state-of-the-arts in both model accuracy and
head sparsity. Specifically, we provides direct
head regularization and functionally avoid test
accuracy drops caused by the train-test discrep-
ancy issue appearing in other differentiable ap-
proaches such as Gumbel softmax.

* As the first attempt, we utilize head attention
visualization to illustrate the pruning procedure
and the parameter change (weight parameter for
model accuracy and gate parameter for head
pruning) before and after pruning.

* Head functionality analysis is novelly conducted
through pruning, in which the head redundancy
and head functional variations across different
layers are examined and discussed. We hope our
work will push forward the explainability of Al

We evaluate our AutoAttention on nine GLUE
benchmark tasks (Wang et al., 2018). Experimen-
tal results show that we achieve high compression
rates with zero or minor accuracy degradation. The
pruned models outperform the original ones with
only 42.75% heads left on average. In extreme
cases, our proposed method can prune 79.74%
heads with only 0.82% accuracy degradation on
average and prune 99.3% (143 of the 144) heads
without accuracy degradation on WNLI dataset.
The method provides an efficient tool to analyze
and reduce the redundancy of multi-heads and is
suitable for other attention-based models.

2 Related Works and Preliminaries

Related Works. The redundancy of the multi-head
mechanism has been discovered and investigated
in many literatures. (Michel et al., 2019; Koval-
eva et al., 2019) first discusses duplicated attention
head patterns. (Raganato et al., 2020) presents that
models with fixed single attention head for each
layer would nicely preserve model accuracy. (Ra-
ganato et al., 2020) proposes to set attention unit
head size to input sequence length, and independent
of the number of heads. (An et al., 2020) analyzes
head redundancy from a Bayesian perspective and
explains the causes of such redundancy.

Different attention head pruning algorithms are
developed. (Michel et al., 2019) prunes attention
head greedily based on predefined sensitivity based

head importance metric but the pruned heads can
never be recovered during training. (Kovaleva
et al., 2019) shows the attention head redundancy
and manually disables attention heads to improve
model performance. (Voita et al., 2019) employs
Gumbel softmax to relax the head pruning prob-
lem to be a differentiable subnetwork searching
problem but more experiments and discussion are
expected to prove its effectiveness. (Lee et al.,
2020) applies deep Q-learning to automatically
prune attention heads but the total search time can
be comparatively long. (Wang et al., 2020) pro-
poses a token-head sparsification co-design algo-
rithm powered by a specially designed fop-k en-
gine where quantization is also applied to achieve
best hardware performance. More recently, a self-
supervised meta-pruning framework (SMP) (Zhang
et al., 2021) is designed by combining head impor-
tance scoring and Gumbel softmax pruning through
representation distance minimization.

Multi-head Attention. Self-attention plays an im-
portant role in Transformer-based language mod-
els. In Transformer layers, multiple attention heads
work in parallel. The self-attention is calculated
based on Query (@), Key (K), and Value (V') ma-
trices as follows

Qx KT
VDk

where D, represents the dimension of matrix K.

The multi-head attention mechanism uses difter-
ent matrics of (Q), K, V') to learn different represen-
tation subspaces. After concatenating the derived
attention heads, a feed-forward layer is utilized to
project the concatenation:

Attention(Q, K, V) = Softmax(

oo

H; = Attention(Q;, K;, Vi)

(2)
= Attention(X WiQ, X« WE X « WZ-V)

MultiHead(Q, K, V) = Concat;(H))W° (3)

where X denotes the input of the ith attention layer,
WZ-Q, WZK ,and WiV are attention matrices, W© is
projection matrix, and H; denotes attention head.

3 Differentiable Head Pruning

In this section, we propose AutoAttention, a differ-
entiable method for head pruning. Unlike pruning
methods with hard constraints (Han et al., 2015;
Boyd et al., 2011; Li et al., 2016; Zhang et al.,
2020), AutoAttention obtains model sparsity by
updating the gate parameters. This leads to two

Model structure after head pruning

Input of Weight Attention Attention heads Weight Output of
the layer matrices matrices & gate parameters matrix the layer
w Q
szt . Q
H, z
4G,
Q
i H, o
w,e . X
:Q12 H

corresponding sparse weight matrices and thus a

simpler model structure.

Pruned heads lead to pruned attention matrices and E

parameter updated by weight optimizer
1 head mask gate with value = 1
0 head mask gate with value = 0

Intermediate results

Figure 1: Differentiable gate pruning to remove redundant heads (illustrated using one attention layer of BERT)

important benefits: first, we do not have to set ex-
pected sparsity for each layer and can obtain model
sparsity automatically; second, since the pruning
process prune the model more "smoothly", the ac-
curacy degradation is not significant. This makes
the retraining process not a necessity and leads to
faster training convergence.

3.1 AutoAttention: Differentiable Gated Head
Pruning

In order to achieve sparse attention heads, we in-
troduce attention head penalization into the loss

function. Let F'(-) be the accuracy loss function of

the transformer model with model weight W. The
head pruning problem can be formulated as:

min F(W) + - || H]l,)

where p is the penalty factor and ||H||y denotes
0-norm of the heads, representing the number of
un-pruned attention heads in the transformer model.
The optimization objective is to remove the re-
dundant heads while maintaining the model per-
formance. As illustrated in Fig. 1, we introduce
attention head masking gates G, in which G is com-
posed of lists of binary variables, representing the
status of their corresponding heads:

0, if corresponding head is pruned;
Gij = . 5)
1, otherwise.

where ¢ and j denote the index of head and attention
layer, respectively, and G;; denotes the pruning
status of the head. By combining Eq. 4 and Eq. 5,
we can reformulate the head pruning problem as:

glv}élF(WyG)-FﬂHH@GHO, (6)

Considering the binary variables in G, the equa-
tion above can be simplified as:

%’igF(VV,G)-FM'ZG @)

However, due to the binary nature of G and
the continuous weights W values, the problem de-
scribed in Eq. 7 is an mixed integer programming
problem, which brings difficulties in optimizing it
directly using back-propagation.

Inspired by the early works on neural network
quantization and pruning (Hubara et al., 2016; Xiao
et al., 2019), we employ learnable discrete func-
tions called straight through estimators (STEs) g to
describe the masking gates G.

o Sy o, ifwW <o
Gij =g(Ws;) = {1, if Wi; > 0. ®

where the binary masking gate G;; is represented

as a step function g with a continuous auxiliary
p . .

parameter W;;. Combining with Eq. 7, the problem

can be re-formulated as:

min £= min FW, W)+ -3 g(W"),)
where W are lists of auxiliary parameters with the
same size of the attention heads which control the
open and close of the binary gates.
The model weight W can be updated through
back-propagation as Wy 1 = Wi —1, % g—g,, where
[, is the learning rate of the weight optimizer.

To update the sparse head structure, coarse gra-
dients (Hubara et al., 2016) are introduced in STEs
to make the binarized function g differentiable.
Coarse gradients provide a good approximation for
updating parameter VW' through back-propagation
and could ensure that the update direction of W/,
gradient reflects the accuracy and sparsity objec-
tives of the model (Xiao et al., 2019).

Different coarse gradients have been practiced
and discussed in literature. Linear STEs have been
applied to neural network weight pruning in (Srini-
vas et al., 2017). ReLU or clipped ReLU STEs
have been proved to be unbiased estimators (Yin
et al., 2019). Softplus STEs are recommended
in (Xiao et al., 2019) due to the smoothness of their
gradients, where the curse of non-recoverability in
network pruning caused by zero gradients is also
discussed. We use Softplus STE and the auxiliary
parameter W' can be updated as:

! ! I 8£
Wk+1 :Wk_lT*W
oL oG
=W, =1 x« == 10
W=l 56 * ow (a0
=Wy —1. % % * Softplus(W')

where [/. is the learning rate of the gate optimizer.

3.2 Differentiable Head Pruning Method
Comparison

Differentiable pruning methods enable one-shot
training in which the weights and model structures
are learned jointly through back-propagation and
approximated related L0 regularization methods
have been designed. Besides using STEs in Au-
toAttention, Gumbel softmax has also been intro-
duced in head pruning (Voita et al., 2019).

In (Voita et al., 2019), the L0 norm is stochasti-
cally relaxed, in which each gate g is represented
by a random variable drawn from Hard Concrete
(aka Gumbel softmax) distributions (Louizos et al.,
2018). The Hard Concrete distribution belongs to a
parameterized family of mixed discrete-continuous
distributions over [0, 1] and the non-zero probabil-
ity mass at O can be described as:

P(g =0[¢) (an

where ¢ is the distribution parameter. The relaxed
L0 norm penalization term is formulated as:

L(¢) =Y (1-P(g=0¢)) (12)

and the entire head pruning objective function is

H%};F(W, ¢) + - Le(9) (13)

where W is the model weights and F'(W, ¢) is the
general accuracy loss function. We can solve this
optimization problem through back-propagation
with re-parameterization trick (Kingma and
Welling, 2013) to calculate the gradients for ¢.

The differentiability of structure search is
through approximated Gumbel softmax parame-
terized by ¢ in (Voita et al., 2019), and through
STEs parameterized by W’. However, (Voita et al.,
2019) also introduces discrepancy between origi-
nal complete network and the pruned sub-network
during the model evaluation procedure, in which
gate values (0 or 1) depend on which of the values
P(g; = 0[¢;), P(g; = 1|¢;) is larger. Thus, there
exist a un-avoided gap between model training and
model testing. Fortunately, similar to (Voita et al.,
2019), our AutoAttention method applies smooth
and differentiable optimization to pruning task, but
the discrepancy is largely avoided by directly opti-
mizing binary gates.

4 Evaluation

Datasets. We test our method on GLUE bench-
mark. It consists of 9 tasks and covers a diverse
range of dataset sizes, text genres, and degrees of
difficulty (Wang et al., 2018). More specifically, we
conduct tests on the Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2018) dataset for
single-sentence tasks, the Stanford Sentiment Tree-
bank (SST-2) (Socher et al., 2013) for movie review
classification, the Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005), the
Semantic Textual Similarity Bench-mark (STS-
B) (Cer et al., 2017), and the Quora Question Pairs
(QQP) (Chen et al., 2018) for paraphrase similarity
matching tasks, and the Multi-Genre Natural Lan-
guage Inference Corpus (MNLI) (Williams et al.,
2018), the Question-answering NLI (QNLI) (Wang
et al., 2018), the Recognizing Textual Entailment
(RTE) (Wang et al., 2018), and the Winograd NLI
(WNLI) (Levesque et al., 2012) for inference tasks.
Pre-trained Model and Evaluation Metrics. Our
pre-trained model is the BERTpasg (Devlin et al.,
2018), which consists of 12 attention layers and
12 heads for each layer. Following (Wang et al.,
2018), we use accuracy for SST-2, QNLI, MNLI,
QQP, RTE and WNLI; Matthews Correlation Co-

Table 1: Comparison of evaluation accuracy using different head pruning methods among the 9 GLUE benchmark

tasks with 50% head sparsity.

Pruning Method MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI
None (Devlin et al., 2018) 83.9 91.2 91.1 92.7 534 85.8 88.9 66.4 56.3
Random (Zhang et al., 2021) 82.43 90.34 - 91.83 52.37 85.33 80.88 65.77 -
HISP (Michel et al., 2019) 81.69 86.88 - 91.85 54.84 85.96 81.12 65.34 -

L0 Norm (Voita et al., 2019) 79.70 85.82 - 91.74 52.10 85.80 77.45 62.45 -

SMP (Zhang et al., 2021) 83.36 90.96 - 92.31 57.26 85.99 85.04 67.87 -
AutoAttention (ours) 83.66 91.07 91.25 92.89 60.39 86.94 88.62 65.7 56.34

Table 2: Comparison of evaluation accuracy using our gate head pruning methods among the 9 GLUE benchmark
tasks. Bold font indicates that the pruned model outperforms the original one.

Models MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Ave.
BERTp ASE 83.9 91.2 91.1 92.7 534 85.8 88.9 66.4 56.3

Head sparsity 45.14% 56.94% 36.81% 72.92% 54.17% 63.19% 41.67% 44.44% 99.3% 57.25%
AutoAttention prune 83.87 91.3 91.38 92.89 60.39 86.94 89.52 67.87 56.34

Table 3: Comparison of evaluation accuracy among the 9 GLUE benchmark tasks in extreme cases (within 1%

accuracy drop).

Models MNLI _ QQP QNLI __ SST2 CoLA _ SIS-B___ MRPC __ RIE WNLI __ Ave.
BERTG AsE 839 1.2 or.1 927 534 858 880 66.4 563
AutoAttention prune | 82.9 90.28 90.15 9177 5246 84.96 87.99 65.5 56.34
A Accuracy -1.00 -0.92 2095 <093 -0.94 -0.84 -0.91 -0.90 +0.04 -0.82
Head sparsity 76.68% 86.42% 59.5% 90.5% 8281% 91.72% 67.64% 63.11% 99.3% 79.74%
----- e e = . Method Random, 50% heads are randomly se-
80) lected to prune. We report the results from (Zhang
S0 et al., 2021). In (Michel et al., 2019), the Head
> Importance Score for Pruning (HISP) is proposed
@© . . .
5 60 by ranking the head importance and removing the
(% . .
g =+ HISP \ heads with lower importance score. In our test,
50 e .
' it"tzAttention we calculate the head importance and prune 50%
40 . heads with lower importance scores. Method L0

0% 20% 40% 60%

Head sparsity

80%

Figure 2: Model performance regarding to different
head sparsity on MNLI-matched dataset

efficient (MCC) for CoLLA, F1 scores for MRPC,
and Spearman for STS-B.
We define the head sparsity as:

#pruned_heads

head_sparsity = #model_heads

(14)
Implementation Details. We follow the default
finetuning steps for 9 tasks according to Hugging-
face (Wolf et al., 2019) and obtain the baseline
models after training for 4 epochs. Then, gate prun-
ing is executed for the whole models. For weight
and gate pruning, we use different optimizers and
select different learning rates to achieve better bal-
ance between accuracy and head sparsity.

Baselines. To validate the effectiveness of our pro-
posed method, we introduce four baselines. In

Norm represents the Gumbel softmax based prun-
ing method proposed in (Voita et al., 2019). And
the Single-Shot Meta-Pruner (SMP) is proposed
by (Zhang et al., 2021) in which head importance
and Gumbel softmax based pruning are combined.
Experimental Results. We show our result com-
parisons in Table 1. For fairness, we compare
our head pruning model accuracy with state-of-
the-art algorithms with fixed global head sparsity
of 50%. Comparing with Random method, our Au-
toAttention enjoys better model accuracy thanks to
the head penalization to find the redundant heads.
HISP (Michel et al., 2019) calculates head impor-
tance for pruning and suffers significant accuracy
drop since the importance is not estimated directly
according to the final model performance. Com-
paring with L0 Norm approach (Voita et al., 2019),
AutoAttention outperforms it with a large margin in
all existing 7 GLUE benchmark tasks, which prac-
tically proves that our proposed STE based head
pruning approach better avoids the discrepancy of
the learned model structure between model train-

ing and model testing. SMP (Zhang et al., 2021)
improves Gumbel softmax based approach (Voita
et al., 2019) by combining head importance scor-
ing and self-supervision, but the discrepancy be-
tween model training and model testing prohibits
its further advances. Comparing with state-of-the-
art head pruning methods, AutoAttention takes the
lead in 7 of the 8 tasks. Fig. 2 shows the perfor-
mance of different pruning methods. While increas-
ing head sparsity, AutoAttention can achieve more
than 80% sparsity with only 1.03% accuracy drop
and outperform all existing head pruning methods.

Additionally, for 8 of the 9 tasks, our pruned
models outperform the original (unpruned) models
as shown in Table 2, which is consistent with (Ko-
valeva et al., 2019)’s study. More specifically, we
could achieve 1.20% accuracy increase while prun-
ing more than 57% heads on average. Surprisingly,
the pruned model on CoLLA dataset achieves 6.99%
accuracy increase after pruning 54.17% heads and
the pruned model on WNLI dataset has the same
accuracy as the original one after pruning 99.3%
heads (only 1 head left). For different tasks, we in-
vestigate the limit of our AutoAttention method and
obtain the head sparsity in extreme cases (within
1% accuracy drop). As shown in Table 3, we could
prune 79.74% heads with 0.82% accuracy drop on
average. For one self-attention module, the mem-
ory is reduced from 9.43 MB to 1.98 MB and the
FLOPs from 100.9 to 21.2 million.

5 Head Distribution Discussion

5.1 Head Pruning Visualization

We use bertviz tool (Vig, 2019) to obtain the head
attention maps. Fig. 3 show the attention map be-
fore and after pruning. In Fig. 4, we show the detail
of a single head of the unpruned and pruned mod-
els corresponding to the 5th head of 12th layer of
Fig. 3(a) and Fig. 3(b), respectively. After prun-
ing redundant heads, the values of attention weight
matrix changes slightly, which leads to the slight
change of the head attention map. This illustrates
that different optimizers (weight and gate optimiz-
ers) work simultaneously by changing different
parameters (weight and gate parameters) in the
training loop towards the improvement of model
accuracy and head sparsity.

5.2 Head Functionality vs. Pruning

The role of the attention heads varies in different
downstreaming tasks. Our results show that BERT

layer

S A 2\ A\ A\
head
(a) Before Pruning

head
(b) After Pruning

Figure 3: Attention heads before and after pruning on
CoLA dataset with BERT model

[CLS] [CLS] [CLS] [CLS]
the the the, the
cat cat cat cat
sat sat sat. sat

on on ony on
the the the the
mat mat mat mat

[SEP] [SEP] [SEP] [SEP]
the the the the
cat cat cat cat

lay lay lay « lay
on on on on

the the the

rug — rug rug—
[SEP] SEP] [SEP] —

(a) Single head before pruning (b) Single head after pruning

Figure 4: Head before (left) and after (right) gate prun-
ing on CoLA dataset with BERT model (correspond-
ing to the detail views of the 5th head of 12th layer in
Fig. 3(a) and Fig. 3(b))

model can be over-parameterized for a specific task
in GLUE and head pruning actually controls model
complexity and regularize the learning process,
where AutoAttention automatically prunes a proper
number of redundant heads by directly penalizing
the head-cardinality and achieves a better fine-tune
performance. In Table 3, for some less complex
tasks such as WNLI, we can achieve over 99% head
sparsity, while for comparatively complex and data
hungry tasks such as RTE and MRPC, our derived
model keeps more heads un-pruned, which further
reflects the consistency between task complexity
and model complexity.

We discover natural head redundancy differences
and potentially head functional differences across
different layers in model fine-tuning. As shown
in Fig. 3(b), more heads in the last several layers
are pruned. In other words, the last several layers
are experiencing greater attention head structural
changes during the pruning incorporated fine-tune
process. This evidence conceptually matches the

° l I °
~- . 08w~ ~0.8
o -
<= I -
II III -0.6 06
o | | | s
~]] 04 04
>3 02 © 0.2
2 . 1 E
1234567469 mnn B N IR I IR I A S
head head
(a) Initial gate parameters (b) Initial head mask
10
o- B IM o-
~- 3 ~- -0.8
m- L, w-
«- - e
o . 2 Lw
S 2
fo o0 Be-
~ ~d 04
-1
® ®
- II 2 ° 0.2
B | o-

012 3 456 7 8 9 1011
head

(d) Head mask during pruning

1110 98 7 6 5 4 3 2 1 0

head
(e) Gate parameters after pruning (f) Head mask after pruning

Figure 5: Head mask change during pruning on CoLA
dataset with BERT model

discovery in (Kovaleva et al., 2019) which com-
pares the cosine similarity of the flattened layer-
wise attention weights between pre-trained and
fine-tuned BERT model. Similarly, the attention
weights of last several layers change the most, in
which further indicates that last several layers en-
code more task-specific information while the ear-
lier layers are mainly providing comparatively gen-
eral low-level representations.

5.3 Heads Distribution During Pruning

Different heads have different functionalities and
thus have different level of importance for the
pruned model. The importance calculation and
ranking of attention heads could benefit: a) the
pruning process by removing the less important
heads, b) the model structure design by arranging
different heads in different layers, and c) the inter-
pretability of the multi-heads mechanism and even
deep neural networks.

Different from the quantified importance scores
of heads (Michel et al., 2019) for pruning, we use
learnable gate parameters to determine the reten-
tion of the heads. If the gate parameter is larger
than 0, the corresponding head will be retained.

Otherwise, the head will be pruned based on Eq. 2.
Comparing with the static head pruning method
through attention head importance ranking (Michel
et al., 2019), AutoAttention enables a larger head
structure search space and a more direct pruning ob-
jective through automatic differentiable head struc-
ture learning. Fig. 5 shows the update process
of the auxiliary parameter W'’ and head masking
gate status g(W’) of the 144 attention heads jointly
trained with the model weights W. We present their
values changes in three different training stages:

* In the initialization stage, the auxiliary parame-
ters are initialized by following truncated normal
distribution with all values greater than O (shown
in Fig. 5(a)) and all the corresponding pruning
gates are open in (shown in Fig. 5(b)). In this
way, our AutoAttention starts with the full num-
ber of unpruned attention heads.

* In the intermediate stage, with continuous penal-
izing the total number of opened gates in the loss
function in Eq. 9, the gate auxiliary parameters
corresponding to less important heads are receiv-
ing negative gradients. After epochs of training,
part of the auxiliary parameter values are drop-
ping below zero (denoted in cold colored boxes
in Fig. 5(c)), which leads to the closure of the
corresponding gates and the pruning of the atten-
tion heads (denoted in dark boxes in Fig. 5(d)).

* In the final stage, in Fig. 5(e), more auxiliary
parameter values drop below zero which leads
to a higher pruning ratio of the attention heads.
The optimization converges when the model ac-
curacy component and sparsity component in
the objective function Eq. 9 are competing with
each other, in which a more head-sparse trans-
former model structure is difficult to be learned
without largely sacrificing the model accuracy.

More importantly, comparing Fig. 5(d) and
Fig. 5(f), not all of the intermediately pruned heads
remain pruned in the final stage, which proves
the recoverability of our differentiable pruning ap-
proach. When some temporally less important at-
tention heads are later discovered to be important
according to the current model states, the closed
gates will be re-opened through automatic promot-
ing their corresponding auxiliary parameter val-
ues through differentiable training. In this way,
the model head structure is updated together with

0.6
o W
O Y\
gos |)
& N
—~
0.4
~ N
qJ '
%0.3 | ¥— gate 1Ir=0.1 —— gate Ir=3.0
B —— gate Ir=0.5 —— gate Ir=5.0
=02 gate Ir=1.0
0 50 100 150 200 250
Number of iteration
(a) Model Performance (mcc for CoLA)
0.9 — —
o8 [PO
5070 |V
» 0.6
g ~
805/ |f) LN o
"04 NV NV A VAV v
R 0.3 /,M ‘gate Ir=0.1 —— gate Ir=3.0
0.2 —— gate _Ir=0.5 —— gate_Ir=5.0
0.1y gate lIr=1.0
0079 50 100 150 200 250
Number of iteration
(b) Head Sparsity

Figure 6: Ablation study: gate pruning optimizer with
different learning rates on CoLA dataset.

the model weights automatically through back-
propagation to potentially locate a better local op-
tima with larger searching space.

6 Ablation Study

In this section, we perform ablation study over
several hyper-parameters when doing automatic
gate pruning with BERT model.

Gate Pruning Learning Rate. To solve the opti-
mization problem in Eq. 7, different optimizers are
utilized to update weight and gate parameters. To
update W, we use the default initial learning rate
(3e-5). For the update of W', larger initial learning
rate leads to faster convergence and higher sparsity.
While increasing the initial learning rate from 0.1
to 5.0, we could increase the sparsity from 53% to
79% with only 0.03 performance (mcc for CoLA
dataset) drop as shown in Fig. 6. We observe the
obvious compete between accuracy and sparsity
increase since weight and gate optimizers tend to
reduce the loss function in different directions.
Penalty Factor. The penalty factor, u, in Eq. 7
can be chosen to change the balance between the
prediction loss and sparsity loss. Larger 1 means
the higher penalty for sparsity and could leads to
the higher model sparsity. As shown in Fig. 7, We

o
o

e
3]

o
N

—— penalty factor=1e-2
—— penalty factor=1e-3
penalty factor=1e-4

Model performance
;) (=)
N w

0.1 \‘ —— penalty factor=1e-5
0.0
0 50 100 150 200 250
Number of iteration
(a) Model Performance (mcc for CoLLA)
1.0
0.9
208 - o
Boqal T T — S
SR
Bos R
Qo050 [nl T penalty factor=1e-2
ﬁ 0.4 —— penalty factor=1e-3
0.3 penalty factor=1e-4
0.2 —— penalty factor=1e-5
0 50 100 150 200 250

Number of iteration
(b) Head Sparsity

Figure 7: Ablation study: gate pruning optimizer with
different penalty factors on CoLA dataset.

test different i from 1e-2 to 1e-5. When p is less
than le-3, larger i leads to larger sparsity. When u
is larger than le-2, we observe the sudden model
performance drop. In our tests, we fix the penalty
factor as le-3 and adjust the gate pruning learning
rate to obtain higher model sparsity. , since the gate
optimizer is much more robust to find a better local
optima than changing the total loss function.

7 Conclusion

In this work, we propose a novel automatic differ-
entiable head pruning method. We reform the prun-
ing loss function with the L0 regularizer applied to
attention heads by utilizing straight through estima-
tors (STEs). Then the differentiable optimization
solution is proposed by designing separate optimiz-
ers to update weight parameter and gate parameter
(which determines the pruning status of attention
heads). We significantly remove the attention head
redundancy and visualize the detail information
(head pruning status, model weight update, and
model attention map) before and after pruning. Our
results outperform the state-of-the-art pruning re-
sults and validate the effectiveness of our method.

References

Bang An, Jie Lyu, Zhenyi Wang, Chunyuan Li, Chang-
wei Hu, Fei Tan, Ruiyi Zhang, Yifan Hu, and
Changyou Chen. 2020. Repulsive attention: Rethink-
ing multi-head attention as bayesian inference. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 236-255.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Song-
hao Piao, Ming Zhou, et al. 2020. Unilmv2: Pseudo-
masked language models for unified language model
pre-training. In International Conference on Ma-
chine Learning, pages 642-652. PMLR.

Stephen Boyd, Neal Parikh, and Eric Chu. 2011. Dis-
tributed optimization and statistical learning via the
alternating direction method of multipliers. Now
Publishers Inc.

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14, Vancouver,
Canada. Association for Computational Linguistics.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs. URL https://www.
kaggle. com/c/quora-question-pairs.

Gongalo M Correia, Vlad Niculae, and André FT Mar-
tins. 2019. Adaptively sparse transformers. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-1JCNLP), pages 2174-2184.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing
(IWP2005). Asia Federation of Natural Language
Processing.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143-155.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. Advances in Neural Infor-
mation Processing Systems, 28.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. 2016. Binarized neu-
ral networks. In Advances in neural information
processing systems, pages 4107—4115.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
Tinybert: Distilling bert for natural language under-
standing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 4163-4174.

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365-4374.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020.

Hyun Dong Lee, Seongmin Lee, and U Kang. 2020.
Auber: Automated bert regularization. arXiv preprint
arXiv:2009.14409.

Hector Levesque et al. 2012. The winograd schema
challenge. In Thirteenth International Conference
on the Principles of Knowledge Representation and
Reasoning.

Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li,
Zhengang Li, Hang Liu, and Caiwen Ding. 2020.
Efficient transformer-based large scale language rep-
resentations using hardware-friendly block structured
pruning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 3187-3199.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. arXiv preprint arXiv:1608.08710.

Christos Louizos, Max Welling, and Diederik P Kingma.
2018. Learning sparse neural networks through
1_0 regularization. In International Conference on
Learning Representations.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Advances
in Neural Information Processing Systems, pages

14014-14024.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When bert plays the lottery, all tickets are winning.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 3208-3229.

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/

Alessandro Raganato, Yves Scherrer, and Jorg Tiede-
mann. 2020. Fixed encoder self-attention patterns in
transformer-based machine translation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, pages
556-568.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Suraj Srinivas, Akshayvarun Subramanya, and
R Venkatesh Babu. 2017. Training sparse neural
networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages

138-145.

Jesse Vig. 2019. A multiscale visualization of attention
in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 37-42,
Florence, Italy. Association for Computational Lin-
guistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5797-5808.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353-355.

Hanrui Wang, Zhekai Zhang, and Song Han. 2020.
Spatten: Efficient sparse attention architecture with
cascade token and head pruning. arXiv preprint
arXiv:2012.09852.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112-1122. Association for
Computational Linguistics.

10

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran.
2019. Autoprune: Automatic network pruning by
regularizing auxiliary parameters. Advances in neu-
ral information processing systems, 32.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. In Advances in neural infor-
mation processing systems, pages 5754-5764.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J.
Osher, Yingyong Qi, and Jack Xin. 2019. Under-
standing straight-through estimator in training activa-
tion quantized neural nets. In International Confer-
ence on Learning Representations.

Tianyun Zhang, Xiaolong Ma, Zheng Zhan, Shanglin
Zhou, Minghai Qin, Fei Sun, Yen-Kuang Chen, Cai-
wen Ding, Makan Fardad, and Yanzhi Wang. 2020.
A unified dnn weight compression framework using
reweighted optimization methods. arXiv preprint
arXiv:2004.05531.

Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Qun Liu,
and Maosong Sun. 2021. Know what you don’t need:
Single-shot meta-pruning for attention heads. Al
Open, 2:36-42.

https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
http://arxiv.org/abs/1805.12471
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://openreview.net/forum?id=Skh4jRcKQ
https://openreview.net/forum?id=Skh4jRcKQ
https://openreview.net/forum?id=Skh4jRcKQ
https://openreview.net/forum?id=Skh4jRcKQ
https://openreview.net/forum?id=Skh4jRcKQ

