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Abstract

Multi-head attention is considered as a driving001
force and key component behind the state-of-002
art transformer models. However, recent re-003
search reveals that there are many redundant004
heads with duplicated patterns in each layer.005
In this work, we propose an automatic prun-006
ing strategy using differentiable binary gates007
to remove redundant heads. We relax the bi-008
nary head pruning problem into a differentiable009
optimization by employing Straight Through010
Estimators (STEs), in which the model weights011
and head-sparse model structure can be jointly012
learned through back-propagation. In this way,013
attention heads can be pruned efficiently and ef-014
fectively. Experimental results on the General015
Language Understanding Evaluation (GLUE)016
benchmark are provided using BERT model.017
We could reduce more than 57% heads on av-018
erage with zero or minor accuracy drop on019
all nine tasks and even achieve better results020
than state-of-the-arts (e.g., Random, HISP, L0021
Norm, SMP, etc). Furthermore, our proposed022
method can prune more than 79% heads with023
only 0.82% accuracy degradation on average.024
We further illustrate the pruning procedure and025
parameters change through the head attention026
visualization and show how the trainable gate027
parameters determine the head mask and the028
final attention map.029

1 Introduction030

Transformer based language models (Devlin et al.,031

2018; Yang et al., 2019; Bao et al., 2020) have been032

proven to be highly effective in learning universal033

language representations and applicable to down-034

stream tasks with slight fine-tuning. Transformer035

structure can nicely capture the long-term depen-036

dencies in natural language but suffers from high037

computational cost and memory usage.038

To downsize the transformer models, different039

neural network compression techniques have been040

proposed, such as parameter sharing (Lan et al.,041

2020; Raganato et al., 2020), knowledge distilla- 042

tion (Sanh et al., 2019; Jiao et al., 2020), weight 043

pruning (Gordon et al., 2020; Li et al., 2020), neu- 044

ron pruning (Correia et al., 2019; Prasanna et al., 045

2020) etc. Among the compression approaches, 046

pruning attention heads has been warmly studied 047

due to its contribution to model interpretability and 048

direct computational complexity reduction (Michel 049

et al., 2019; Voita et al., 2019). 050

The redundancy of the multi-head mechanism 051

was first discussed in (Michel et al., 2019; Kovaleva 052

et al., 2019), and they prune duplicated attention 053

heads manually or in a greedy manner. In order 054

to automatically locate important attention heads 055

in each layer, Gumbel softmax (Voita et al., 2019) 056

and reinforcement learning (Lee et al., 2020) ap- 057

proaches have been employed. Gumbel softmax 058

relaxes the binary optimization problem into a dif- 059

ferentiable problem and enables the head-sparse 060

model structure learning in one-shot, while the rein- 061

forcement learning approach uses a deep Q network 062

to learn a pruning policy which achieves a better 063

pruning performance with longer search time. 064

In order to effectively and efficiently slim atten- 065

tion heads, in this work, we propose an automatic 066

single-shot head pruning algorithm AutoAttention 067

by leveraging the differentiable binary gates (which 068

determine the pruning status of attention heads) 069

controlled by Straight Through Estimators (STEs). 070

Comparing with Gumbel softmax sampling, our 071

approach can provide a more direct objective and 072

gradients for optimizing the binary gates, which 073

leads to a better performance in head pruning. Our 074

contributions are as follows: 075

• We propose differentiable head pruning algo- 076

rithm to automatically learn head-sparse trans- 077

former architectures, while human heuristic 078

methods rely on manual sparsity distribution and 079

are sub-optimal and time-consuming due to the 080

sensitivity of different layers. 081
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• We transform the discrete head pruning prob-082

lem into a smooth continuous optimization prob-083

lem with STEs and achieve better results than084

the state-of-the-arts in both model accuracy and085

head sparsity. Specifically, we provides direct086

head regularization and functionally avoid test087

accuracy drops caused by the train-test discrep-088

ancy issue appearing in other differentiable ap-089

proaches such as Gumbel softmax.090

• As the first attempt, we utilize head attention091

visualization to illustrate the pruning procedure092

and the parameter change (weight parameter for093

model accuracy and gate parameter for head094

pruning) before and after pruning.095

• Head functionality analysis is novelly conducted096

through pruning, in which the head redundancy097

and head functional variations across different098

layers are examined and discussed. We hope our099

work will push forward the explainability of AI.100

We evaluate our AutoAttention on nine GLUE101

benchmark tasks (Wang et al., 2018). Experimen-102

tal results show that we achieve high compression103

rates with zero or minor accuracy degradation. The104

pruned models outperform the original ones with105

only 42.75% heads left on average. In extreme106

cases, our proposed method can prune 79.74%107

heads with only 0.82% accuracy degradation on108

average and prune 99.3% (143 of the 144) heads109

without accuracy degradation on WNLI dataset.110

The method provides an efficient tool to analyze111

and reduce the redundancy of multi-heads and is112

suitable for other attention-based models.113

2 Related Works and Preliminaries114

Related Works. The redundancy of the multi-head115

mechanism has been discovered and investigated116

in many literatures. (Michel et al., 2019; Koval-117

eva et al., 2019) first discusses duplicated attention118

head patterns. (Raganato et al., 2020) presents that119

models with fixed single attention head for each120

layer would nicely preserve model accuracy. (Ra-121

ganato et al., 2020) proposes to set attention unit122

head size to input sequence length, and independent123

of the number of heads. (An et al., 2020) analyzes124

head redundancy from a Bayesian perspective and125

explains the causes of such redundancy.126

Different attention head pruning algorithms are127

developed. (Michel et al., 2019) prunes attention128

head greedily based on predefined sensitivity based129

head importance metric but the pruned heads can 130

never be recovered during training. (Kovaleva 131

et al., 2019) shows the attention head redundancy 132

and manually disables attention heads to improve 133

model performance. (Voita et al., 2019) employs 134

Gumbel softmax to relax the head pruning prob- 135

lem to be a differentiable subnetwork searching 136

problem but more experiments and discussion are 137

expected to prove its effectiveness. (Lee et al., 138

2020) applies deep Q-learning to automatically 139

prune attention heads but the total search time can 140

be comparatively long. (Wang et al., 2020) pro- 141

poses a token-head sparsification co-design algo- 142

rithm powered by a specially designed top-k en- 143

gine where quantization is also applied to achieve 144

best hardware performance. More recently, a self- 145

supervised meta-pruning framework (SMP) (Zhang 146

et al., 2021) is designed by combining head impor- 147

tance scoring and Gumbel softmax pruning through 148

representation distance minimization. 149

Multi-head Attention. Self-attention plays an im- 150

portant role in Transformer-based language mod- 151

els. In Transformer layers, multiple attention heads 152

work in parallel. The self-attention is calculated 153

based on Query (Q), Key (K), and Value (V ) ma- 154

trices as follows 155

Attention(Q,K, V ) = Softmax(
Q×KT

√
Dk

)V (1) 156

where Dk represents the dimension of matrix K. 157

The multi-head attention mechanism uses differ- 158

ent matrics of (Q, K, V ) to learn different represen- 159

tation subspaces. After concatenating the derived 160

attention heads, a feed-forward layer is utilized to 161

project the concatenation: 162

Hi = Attention(Qi,Ki, Vi)

= Attention(X ∗WQ
i , X ∗WK

i , X ∗WV
i )

(2) 163

164MultiHead(Q,K, V ) = Concati(Hi)W
O (3) 165

where X denotes the input of the ith attention layer, 166

WQ
i , WK

i , and W V
i are attention matrices, WO is 167

projection matrix, and Hi denotes attention head. 168

3 Differentiable Head Pruning 169

In this section, we propose AutoAttention, a differ- 170

entiable method for head pruning. Unlike pruning 171

methods with hard constraints (Han et al., 2015; 172

Boyd et al., 2011; Li et al., 2016; Zhang et al., 173

2020), AutoAttention obtains model sparsity by 174

updating the gate parameters. This leads to two 175
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Figure 1: Differentiable gate pruning to remove redundant heads (illustrated using one attention layer of BERT)

important benefits: first, we do not have to set ex-176

pected sparsity for each layer and can obtain model177

sparsity automatically; second, since the pruning178

process prune the model more "smoothly", the ac-179

curacy degradation is not significant. This makes180

the retraining process not a necessity and leads to181

faster training convergence.182

3.1 AutoAttention: Differentiable Gated Head183

Pruning184

In order to achieve sparse attention heads, we in-185
troduce attention head penalization into the loss186
function. Let F (·) be the accuracy loss function of187
the transformer model with model weight W . The188
head pruning problem can be formulated as:189

min
W

F (W ) + µ · ||H||0, (4)190

where µ is the penalty factor and ||H||0 denotes191

0-norm of the heads, representing the number of192

un-pruned attention heads in the transformer model.193

The optimization objective is to remove the re-194

dundant heads while maintaining the model per-195

formance. As illustrated in Fig. 1, we introduce196

attention head masking gates G, in which G is com-197

posed of lists of binary variables, representing the198

status of their corresponding heads:199

Gij =

{
0, if corresponding head is pruned;
1, otherwise.

(5)200

where i and j denote the index of head and attention201

layer, respectively, and Gij denotes the pruning202

status of the head. By combining Eq. 4 and Eq. 5,203

we can reformulate the head pruning problem as:204

min
W,G

F (W,G) + µ||H ⊙G||0, (6) 205

Considering the binary variables in G, the equa- 206

tion above can be simplified as: 207

min
W,G

F (W,G) + µ ·
∑

G (7) 208

However, due to the binary nature of G and 209

the continuous weights W values, the problem de- 210

scribed in Eq. 7 is an mixed integer programming 211

problem, which brings difficulties in optimizing it 212

directly using back-propagation. 213

Inspired by the early works on neural network 214

quantization and pruning (Hubara et al., 2016; Xiao 215

et al., 2019), we employ learnable discrete func- 216

tions called straight through estimators (STEs) g to 217

describe the masking gates G. 218

Gij = g(W ′
ij) =

{
0, if W ′

ij ≤ 0

1, if W ′
ij > 0.

(8) 219

where the binary masking gate Gij is represented 220

as a step function g with a continuous auxiliary 221

parameter W ′
ij . Combining with Eq. 7, the problem 222

can be re-formulated as: 223

min
W,W ′

L = min
W,W ′

F (W,W ′) + µ ·
∑

g(W ′), (9) 224

where W ′ are lists of auxiliary parameters with the 225

same size of the attention heads which control the 226

open and close of the binary gates. 227

The model weight W can be updated through 228

back-propagation as Wk+1 = Wk− lr ∗ ∂F
∂W , where 229

lr is the learning rate of the weight optimizer. 230
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To update the sparse head structure, coarse gra-231

dients (Hubara et al., 2016) are introduced in STEs232

to make the binarized function g differentiable.233

Coarse gradients provide a good approximation for234

updating parameter W ′ through back-propagation235

and could ensure that the update direction of W ′
ij236

gradient reflects the accuracy and sparsity objec-237

tives of the model (Xiao et al., 2019).238

Different coarse gradients have been practiced239

and discussed in literature. Linear STEs have been240

applied to neural network weight pruning in (Srini-241

vas et al., 2017). ReLU or clipped ReLU STEs242

have been proved to be unbiased estimators (Yin243

et al., 2019). Softplus STEs are recommended244

in (Xiao et al., 2019) due to the smoothness of their245

gradients, where the curse of non-recoverability in246

network pruning caused by zero gradients is also247

discussed. We use Softplus STE and the auxiliary248

parameter W ′ can be updated as:249

W ′
k+1 = W ′

k − l′r ∗
∂L
∂W ′

= W ′
k − l′r ∗

∂L
∂G

∗ ∂G

∂W ′

= W ′
k − l′r ∗

∂L
∂G

∗ Softplus(W ′)

(10)250

where l′r is the learning rate of the gate optimizer.251

3.2 Differentiable Head Pruning Method252

Comparison253

Differentiable pruning methods enable one-shot254

training in which the weights and model structures255

are learned jointly through back-propagation and256

approximated related L0 regularization methods257

have been designed. Besides using STEs in Au-258

toAttention, Gumbel softmax has also been intro-259

duced in head pruning (Voita et al., 2019).260

In (Voita et al., 2019), the L0 norm is stochasti-261

cally relaxed, in which each gate g is represented262

by a random variable drawn from Hard Concrete263

(aka Gumbel softmax) distributions (Louizos et al.,264

2018). The Hard Concrete distribution belongs to a265

parameterized family of mixed discrete-continuous266

distributions over [0, 1] and the non-zero probabil-267

ity mass at 0 can be described as:268

P (g = 0|ϕ) (11)269

where ϕ is the distribution parameter. The relaxed270

L0 norm penalization term is formulated as:271

Lc(ϕ) =
∑

(1− P (g = 0|ϕ)) (12)272

and the entire head pruning objective function is 273

min
W,ϕ

F (W,ϕ) + µ · Lc(ϕ) (13) 274

where W is the model weights and F (W,ϕ) is the 275

general accuracy loss function. We can solve this 276

optimization problem through back-propagation 277

with re-parameterization trick (Kingma and 278

Welling, 2013) to calculate the gradients for ϕ. 279

The differentiability of structure search is 280

through approximated Gumbel softmax parame- 281

terized by ϕ in (Voita et al., 2019), and through 282

STEs parameterized by W ′. However, (Voita et al., 283

2019) also introduces discrepancy between origi- 284

nal complete network and the pruned sub-network 285

during the model evaluation procedure, in which 286

gate values (0 or 1) depend on which of the values 287

P (gi = 0|ϕi), P (gi = 1|ϕi) is larger. Thus, there 288

exist a un-avoided gap between model training and 289

model testing. Fortunately, similar to (Voita et al., 290

2019), our AutoAttention method applies smooth 291

and differentiable optimization to pruning task, but 292

the discrepancy is largely avoided by directly opti- 293

mizing binary gates. 294

4 Evaluation 295

Datasets. We test our method on GLUE bench- 296

mark. It consists of 9 tasks and covers a diverse 297

range of dataset sizes, text genres, and degrees of 298

difficulty (Wang et al., 2018). More specifically, we 299

conduct tests on the Corpus of Linguistic Accept- 300

ability (CoLA) (Warstadt et al., 2018) dataset for 301

single-sentence tasks, the Stanford Sentiment Tree- 302

bank (SST-2) (Socher et al., 2013) for movie review 303

classification, the Microsoft Research Paraphrase 304

Corpus (MRPC) (Dolan and Brockett, 2005), the 305

Semantic Textual Similarity Bench-mark (STS- 306

B) (Cer et al., 2017), and the Quora Question Pairs 307

(QQP) (Chen et al., 2018) for paraphrase similarity 308

matching tasks, and the Multi-Genre Natural Lan- 309

guage Inference Corpus (MNLI) (Williams et al., 310

2018), the Question-answering NLI (QNLI) (Wang 311

et al., 2018), the Recognizing Textual Entailment 312

(RTE) (Wang et al., 2018), and the Winograd NLI 313

(WNLI) (Levesque et al., 2012) for inference tasks. 314

Pre-trained Model and Evaluation Metrics. Our 315

pre-trained model is the BERTBASE (Devlin et al., 316

2018), which consists of 12 attention layers and 317

12 heads for each layer. Following (Wang et al., 318

2018), we use accuracy for SST-2, QNLI, MNLI, 319

QQP, RTE and WNLI; Matthews Correlation Co- 320
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Table 1: Comparison of evaluation accuracy using different head pruning methods among the 9 GLUE benchmark
tasks with 50% head sparsity.

Pruning Method MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI
None (Devlin et al., 2018) 83.9 91.2 91.1 92.7 53.4 85.8 88.9 66.4 56.3
Random (Zhang et al., 2021) 82.43 90.34 - 91.83 52.37 85.33 80.88 65.77 -
HISP (Michel et al., 2019) 81.69 86.88 - 91.85 54.84 85.96 81.12 65.34 -
L0 Norm (Voita et al., 2019) 79.70 85.82 - 91.74 52.10 85.80 77.45 62.45 -
SMP (Zhang et al., 2021) 83.36 90.96 - 92.31 57.26 85.99 85.04 67.87 -
AutoAttention (ours) 83.66 91.07 91.25 92.89 60.39 86.94 88.62 65.7 56.34

Table 2: Comparison of evaluation accuracy using our gate head pruning methods among the 9 GLUE benchmark
tasks. Bold font indicates that the pruned model outperforms the original one.

Models MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Ave.
BERTBASE 83.9 91.2 91.1 92.7 53.4 85.8 88.9 66.4 56.3
Head sparsity 45.14% 56.94% 36.81% 72.92% 54.17% 63.19% 41.67% 44.44% 99.3% 57.25%
AutoAttention prune 83.87 91.3 91.38 92.89 60.39 86.94 89.52 67.87 56.34

Table 3: Comparison of evaluation accuracy among the 9 GLUE benchmark tasks in extreme cases (within 1%
accuracy drop).

Models MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Ave.
BERTBASE 83.9 91.2 91.1 92.7 53.4 85.8 88.9 66.4 56.3
AutoAttention prune 82.9 90.28 90.15 91.77 52.46 84.96 87.99 65.5 56.34
∆ Accuracy -1.00 -0.92 -0.95 -0.93 -0.94 -0.84 -0.91 -0.90 +0.04 -0.82
Head sparsity 76.68% 86.42% 59.5% 90.5% 82.81% 91.72% 67.64% 63.11% 99.3% 79.74%
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Figure 2: Model performance regarding to different
head sparsity on MNLI-matched dataset

efficient (MCC) for CoLA, F1 scores for MRPC,321

and Spearman for STS-B.322

We define the head sparsity as:323

head_sparsity =
#pruned_heads
#model_heads

(14)324

Implementation Details. We follow the default325

finetuning steps for 9 tasks according to Hugging-326

face (Wolf et al., 2019) and obtain the baseline327

models after training for 4 epochs. Then, gate prun-328

ing is executed for the whole models. For weight329

and gate pruning, we use different optimizers and330

select different learning rates to achieve better bal-331

ance between accuracy and head sparsity.332

Baselines. To validate the effectiveness of our pro-333

posed method, we introduce four baselines. In334

Method Random, 50% heads are randomly se- 335

lected to prune. We report the results from (Zhang 336

et al., 2021). In (Michel et al., 2019), the Head 337

Importance Score for Pruning (HISP) is proposed 338

by ranking the head importance and removing the 339

heads with lower importance score. In our test, 340

we calculate the head importance and prune 50% 341

heads with lower importance scores. Method L0 342

Norm represents the Gumbel softmax based prun- 343

ing method proposed in (Voita et al., 2019). And 344

the Single-Shot Meta-Pruner (SMP) is proposed 345

by (Zhang et al., 2021) in which head importance 346

and Gumbel softmax based pruning are combined. 347

Experimental Results. We show our result com- 348

parisons in Table 1. For fairness, we compare 349

our head pruning model accuracy with state-of- 350

the-art algorithms with fixed global head sparsity 351

of 50%. Comparing with Random method, our Au- 352

toAttention enjoys better model accuracy thanks to 353

the head penalization to find the redundant heads. 354

HISP (Michel et al., 2019) calculates head impor- 355

tance for pruning and suffers significant accuracy 356

drop since the importance is not estimated directly 357

according to the final model performance. Com- 358

paring with L0 Norm approach (Voita et al., 2019), 359

AutoAttention outperforms it with a large margin in 360

all existing 7 GLUE benchmark tasks, which prac- 361

tically proves that our proposed STE based head 362

pruning approach better avoids the discrepancy of 363

the learned model structure between model train- 364
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ing and model testing. SMP (Zhang et al., 2021)365

improves Gumbel softmax based approach (Voita366

et al., 2019) by combining head importance scor-367

ing and self-supervision, but the discrepancy be-368

tween model training and model testing prohibits369

its further advances. Comparing with state-of-the-370

art head pruning methods, AutoAttention takes the371

lead in 7 of the 8 tasks. Fig. 2 shows the perfor-372

mance of different pruning methods. While increas-373

ing head sparsity, AutoAttention can achieve more374

than 80% sparsity with only 1.03% accuracy drop375

and outperform all existing head pruning methods.376

Additionally, for 8 of the 9 tasks, our pruned377

models outperform the original (unpruned) models378

as shown in Table 2, which is consistent with (Ko-379

valeva et al., 2019)’s study. More specifically, we380

could achieve 1.20% accuracy increase while prun-381

ing more than 57% heads on average. Surprisingly,382

the pruned model on CoLA dataset achieves 6.99%383

accuracy increase after pruning 54.17% heads and384

the pruned model on WNLI dataset has the same385

accuracy as the original one after pruning 99.3%386

heads (only 1 head left). For different tasks, we in-387

vestigate the limit of our AutoAttention method and388

obtain the head sparsity in extreme cases (within389

1% accuracy drop). As shown in Table 3, we could390

prune 79.74% heads with 0.82% accuracy drop on391

average. For one self-attention module, the mem-392

ory is reduced from 9.43 MB to 1.98 MB and the393

FLOPs from 100.9 to 21.2 million.394

5 Head Distribution Discussion395

5.1 Head Pruning Visualization396

We use bertviz tool (Vig, 2019) to obtain the head397

attention maps. Fig. 3 show the attention map be-398

fore and after pruning. In Fig. 4, we show the detail399

of a single head of the unpruned and pruned mod-400

els corresponding to the 5th head of 12th layer of401

Fig. 3(a) and Fig. 3(b), respectively. After prun-402

ing redundant heads, the values of attention weight403

matrix changes slightly, which leads to the slight404

change of the head attention map. This illustrates405

that different optimizers (weight and gate optimiz-406

ers) work simultaneously by changing different407

parameters (weight and gate parameters) in the408

training loop towards the improvement of model409

accuracy and head sparsity.410

5.2 Head Functionality vs. Pruning411

The role of the attention heads varies in different412

downstreaming tasks. Our results show that BERT413

la
ye

r

headhead

la
ye

r

(a) Before Pruning (b) After Pruning

Figure 3: Attention heads before and after pruning on
CoLA dataset with BERT model

(a) Single head before pruning (b) Single head after pruning

Figure 4: Head before (left) and after (right) gate prun-
ing on CoLA dataset with BERT model (correspond-
ing to the detail views of the 5th head of 12th layer in
Fig. 3(a) and Fig. 3(b))

model can be over-parameterized for a specific task 414

in GLUE and head pruning actually controls model 415

complexity and regularize the learning process, 416

where AutoAttention automatically prunes a proper 417

number of redundant heads by directly penalizing 418

the head-cardinality and achieves a better fine-tune 419

performance. In Table 3, for some less complex 420

tasks such as WNLI, we can achieve over 99% head 421

sparsity, while for comparatively complex and data 422

hungry tasks such as RTE and MRPC, our derived 423

model keeps more heads un-pruned, which further 424

reflects the consistency between task complexity 425

and model complexity. 426

We discover natural head redundancy differences 427

and potentially head functional differences across 428

different layers in model fine-tuning. As shown 429

in Fig. 3(b), more heads in the last several layers 430

are pruned. In other words, the last several layers 431

are experiencing greater attention head structural 432

changes during the pruning incorporated fine-tune 433

process. This evidence conceptually matches the 434

6



(a) Initial gate parameters

(c) Gate parameters during pruning

(e) Gate parameters after pruning

(b) Initial head mask

(d) Head mask during pruning

(f) Head mask after pruning

Figure 5: Head mask change during pruning on CoLA
dataset with BERT model

discovery in (Kovaleva et al., 2019) which com-435

pares the cosine similarity of the flattened layer-436

wise attention weights between pre-trained and437

fine-tuned BERT model. Similarly, the attention438

weights of last several layers change the most, in439

which further indicates that last several layers en-440

code more task-specific information while the ear-441

lier layers are mainly providing comparatively gen-442

eral low-level representations.443

5.3 Heads Distribution During Pruning444

Different heads have different functionalities and445

thus have different level of importance for the446

pruned model. The importance calculation and447

ranking of attention heads could benefit: a) the448

pruning process by removing the less important449

heads, b) the model structure design by arranging450

different heads in different layers, and c) the inter-451

pretability of the multi-heads mechanism and even452

deep neural networks.453

Different from the quantified importance scores454

of heads (Michel et al., 2019) for pruning, we use455

learnable gate parameters to determine the reten-456

tion of the heads. If the gate parameter is larger457

than 0, the corresponding head will be retained.458

Otherwise, the head will be pruned based on Eq. 2. 459

Comparing with the static head pruning method 460

through attention head importance ranking (Michel 461

et al., 2019), AutoAttention enables a larger head 462

structure search space and a more direct pruning ob- 463

jective through automatic differentiable head struc- 464

ture learning. Fig. 5 shows the update process 465

of the auxiliary parameter W ′ and head masking 466

gate status g(W ′) of the 144 attention heads jointly 467

trained with the model weights W . We present their 468

values changes in three different training stages: 469

• In the initialization stage, the auxiliary parame- 470

ters are initialized by following truncated normal 471

distribution with all values greater than 0 (shown 472

in Fig. 5(a)) and all the corresponding pruning 473

gates are open in (shown in Fig. 5(b)). In this 474

way, our AutoAttention starts with the full num- 475

ber of unpruned attention heads. 476

• In the intermediate stage, with continuous penal- 477

izing the total number of opened gates in the loss 478

function in Eq. 9, the gate auxiliary parameters 479

corresponding to less important heads are receiv- 480

ing negative gradients. After epochs of training, 481

part of the auxiliary parameter values are drop- 482

ping below zero (denoted in cold colored boxes 483

in Fig. 5(c)), which leads to the closure of the 484

corresponding gates and the pruning of the atten- 485

tion heads (denoted in dark boxes in Fig. 5(d)). 486

• In the final stage, in Fig. 5(e), more auxiliary 487

parameter values drop below zero which leads 488

to a higher pruning ratio of the attention heads. 489

The optimization converges when the model ac- 490

curacy component and sparsity component in 491

the objective function Eq. 9 are competing with 492

each other, in which a more head-sparse trans- 493

former model structure is difficult to be learned 494

without largely sacrificing the model accuracy. 495

More importantly, comparing Fig. 5(d) and 496

Fig. 5(f), not all of the intermediately pruned heads 497

remain pruned in the final stage, which proves 498

the recoverability of our differentiable pruning ap- 499

proach. When some temporally less important at- 500

tention heads are later discovered to be important 501

according to the current model states, the closed 502

gates will be re-opened through automatic promot- 503

ing their corresponding auxiliary parameter val- 504

ues through differentiable training. In this way, 505

the model head structure is updated together with 506
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Figure 6: Ablation study: gate pruning optimizer with
different learning rates on CoLA dataset.

the model weights automatically through back-507

propagation to potentially locate a better local op-508

tima with larger searching space.509

6 Ablation Study510

In this section, we perform ablation study over511

several hyper-parameters when doing automatic512

gate pruning with BERT model.513

Gate Pruning Learning Rate. To solve the opti-514

mization problem in Eq. 7, different optimizers are515

utilized to update weight and gate parameters. To516

update W , we use the default initial learning rate517

(3e-5). For the update of W ′, larger initial learning518

rate leads to faster convergence and higher sparsity.519

While increasing the initial learning rate from 0.1520

to 5.0, we could increase the sparsity from 53% to521

79% with only 0.03 performance (mcc for CoLA522

dataset) drop as shown in Fig. 6. We observe the523

obvious compete between accuracy and sparsity524

increase since weight and gate optimizers tend to525

reduce the loss function in different directions.526

Penalty Factor. The penalty factor, µ, in Eq. 7527

can be chosen to change the balance between the528

prediction loss and sparsity loss. Larger µ means529

the higher penalty for sparsity and could leads to530

the higher model sparsity. As shown in Fig. 7, We531
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Figure 7: Ablation study: gate pruning optimizer with
different penalty factors on CoLA dataset.

test different µ from 1e-2 to 1e-5. When µ is less 532

than 1e-3, larger µ leads to larger sparsity. When µ 533

is larger than 1e-2, we observe the sudden model 534

performance drop. In our tests, we fix the penalty 535

factor as 1e-3 and adjust the gate pruning learning 536

rate to obtain higher model sparsity. , since the gate 537

optimizer is much more robust to find a better local 538

optima than changing the total loss function. 539

7 Conclusion 540

In this work, we propose a novel automatic differ- 541

entiable head pruning method. We reform the prun- 542

ing loss function with the L0 regularizer applied to 543

attention heads by utilizing straight through estima- 544

tors (STEs). Then the differentiable optimization 545

solution is proposed by designing separate optimiz- 546

ers to update weight parameter and gate parameter 547

(which determines the pruning status of attention 548

heads). We significantly remove the attention head 549

redundancy and visualize the detail information 550

(head pruning status, model weight update, and 551

model attention map) before and after pruning. Our 552

results outperform the state-of-the-art pruning re- 553

sults and validate the effectiveness of our method. 554
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