
Language Modeling with Learned Meta-Tokens

Alok N. Shah * 1 Khush Gupta * 2 Keshav Ramji * 3 Pratik Chaudhari 1

Abstract
While modern Transformer-based language mod-
els (LMs) have achieved major success in multi-
task generalization, they often struggle to captures
long-range dependencies within their context win-
dow. This work introduces a novel approach using
meta-tokens, special tokens injected during pre-
training, along with a dedicated meta-attention
mechanism to guide LMs to use these tokens.
We pre-train a language model with a modified
GPT-2 architecture equipped with meta-attention
over less than 100B tokens, achieving strong per-
formance on a suite of synthetic tasks. We sug-
gest that these gains arise due to the meta-tokens
sharpening the positional encoding, operating as
content-based landmarks, implicitly compressing
preceding context and ”caching” it in the meta-
token. At inference-time, the meta-token points
to relevant context, facilitating length generaliza-
tion. Our findings suggest that pre-training LMs
with meta-tokens offers a simple, data-efficient
method to enhance long-context language model-
ing performance, while introducing new insights
into their behavior towards length generalization.

1. Introduction
Transformer-based language models (LMs) have show-
cased remarkable capabilities across diverse language tasks
(Brown et al., 2020b; Chowdhery et al., 2022; OpenAI,
2023). Nevertheless, such models suffer from an inability
to capture dependencies spanning over their entire context
window. With growing adoption and ever-expanding de-
mands on the context over which the model can process
and reason, it is vital to develop methods that facilitate
long-context adaptation and length generalization. In this

*Equal contribution 1Department of Electrical and Systems
Engineering, University of Pennsylvania 2Department of Com-
puter and Information Science, University of Pennsylvania
3IBM Research AI. Correspondence to: Alok N. Shah <alok-
shah@upenn.edu>, Khush Gupta <khushg@upenn.edu>.

Proceedings of the 2nd Workshop on Long-Context Foundation
Models, Vancouver, Canada. 2025. Copyright 2025 by the au-
thor(s).

work, we propose a simple solution, by way of meta-tokens,
learned tokens periodically injected into the input sequence
during pretraining, and cleverly placed during fine-tuning.
Unlike conventional dummy tokens (Goyal et al., 2024),
meta-tokens are explicitly trained via a dedicated sparse
attention layer, guiding the model to condense and ”cache”
contextual information as an in-line storage mechanism.
As a result, these tokens act as adaptive landmarks (Mo-
htashami & Jaggi, 2023), summarizing preceding context
segments into compact representations. At inference time,
meta-tokens provide implicit pathways to distant informa-
tion, enabling models to generalize effectively across se-
quences longer than those encountered during training.

We demonstrate the empirical efficacy of this approach by
pre-training a 152M parameter modified GPT-2 model with
meta-tokens. Specifically, we show that our method dras-
tically improves performance on synthetic tasks explicitly
designed to test fundamental abilities over tasks such as
recall and copying. We trace these gains to a subtle mecha-
nism: meta-tokens provably induce a sharpening effect on
positional encoding, enabling the meta-token to locate its po-
sition based on the content it stores and reducing the entropy
of the attention distribution. We present evidence that this
sharpening is responsible for an anchoring effect on relevant
distant tokens, facilitating robust length generalization.

2. Training Language Models with
Meta-Attention

We introduce a set of M meta-tokens (denoted as m); given
a context length or block size of the model, n, we take
M = kn for some constant fraction k ∈ [0, 1]1. The aim
of introducing these meta-tokens is to capture or store con-
textual information to enhance the model’s retrieval and
reasoning capabilities; attending to a meta-token should en-
able implicit retrieval of the context that it stores, guiding
shortcut paths over the context window. In practice, these
may be treated akin to adding a filler token to the model’s
vocabulary.

The M tokens are injected into the input sequences dur-

1We take k = 0.1 in practice; balancing next-token prediction
over the standard vocabulary while injecting a non-trivial number
of meta-tokens.

1

Language Modeling with Learned Meta-Tokens

ing pre-training uniformly at random, which was informed
by two key premises. While we desire interpretability and
control in applying these tokens, and as a result, prefer
distinguishability at the task level, this is challenging to do
without explicitly fixing a downstream task, impeding gener-
ality. The second consideration was in how they specifically
they should be injected. While (Zelikman et al., 2024) intro-
duced < |startofthought| > and < |endofthought| > tokens
interleaved between reasoning steps near punctuation (serv-
ing as natural break), the introduction of a rough periodicity
between tokens during pre-training could result in being
trapped into local minima in the optimization landscape.
We instead chose to follow the random injection scheme,
supported by the meta-token pre-training approach outlined
in (Goyal et al., 2024).

We ensure that the trained model incurs no loss for predict-
ing meta-tokens, unlike a standard token in the vocabulary
– the meta-tokens’ indices are simply shifted and removed
when computing the binary cross-entropy (BCE) loss.

Meta-Attention Mechanism. We augment our trans-
former H to take P which contains the positions of the
meta-tokens. We introduce a sparse attention mechanism,
called meta-attention, which selectively modifies attention
scores for the specially marked ”meta-tokens” within a se-
quence. This allows the model to simulate selective atten-
tion, influencing the final behavior by focusing on these
meta-tokens.

Let the indices of special ”meta-tokens” be denoted by
positions ∈ RB×T ′

, where T ′ is the number of meta tokens
in a batch. We construct a meta mask P ∈ RB×T×T to
influence the attention mechanism. For each batch element
b and token positions i, j:

P [b, i, j] =

{
0 if both i and j are meta tokens
−∞ otherwise

The meta-attention operation is defined as:

MetaAttn(Q,K, V) = softmax
((

QK⊤
√
dk

+M

)
+ P

)
V

Where M is the same causal mask as before. Here, the meta
mask P allows attention to flow only among the meta tokens
in the sequence, introducing a distinct interaction compared
to regular attention. This meta-attention layer selectively
modifies the attention by influencing the flow of information
to and from these meta tokens, distinguishing itself from the
standard causal attention.

To assemble the architecture used for our model, we insert
the meta-attention mechanism after the causal masked self-
attention computation, to specifically attend to the injected

meta tokens, as defined above. We provide a complete
breakdown of the architecture in Appendix B.

3. Meta-Tokens Sharpen Positional Encoding
Model Training and Architecture. All experiments were
performed with 4 NVIDIA A100 GPUs, training the meta at-
tention transformer for 200,000 iterations or 98B tokens us-
ing Distributed Data Parallel (DDP) on the Colossal Cleaned
Crawl Corpus (C4) (Raffel et al., 2020). The configuration
and hyperparameters used in our pre-training are included in
Appendix B and C. As a baseline, we also pre-train GPT-2
(124M) on C4, with identical hyperparameters. The primary
change from a standard GPT-2 architecture is the addition
of RoPE to enable better generalization to longer contexts
and improve stability in next-token prediction tasks.

Long Context Extension We extend our transformer
model’s context window from 1024 tokens to longer se-
quences by training two distinct models with context lengths
of 4096 and 8192 tokens, respectively. This extension is
implemented using the YaRN method (Peng et al., 2023),
which dynamically scales Rotary Positional Embeddings
(RoPE) to effectively process significantly longer sequences
without compromising performance or computational effi-
ciency. The key parameters are detailed in Appendix D

Experimental Setup and Tasks. We design four synthetic
tasks to evaluate the recall capabilities of models trained
with meta-tokens. The tasks are List Recall, Segment Count-
ing, Parity, and Copying. For each task, we define three
difficulty levels by varying the maximum sequence length.
In all tasks, we insert a designated PAUSE meta-token at
task-specific positions to indicate where the model should
focus its meta-attention. We fine-tune on synthetic data that
we generate for each task (binned by instance length) and
report the validation score on a held-out test set. Detailed
examples for each task are provided in Appendix K.

• List Recall: Given N named lists of length k, the model
is prompted to recall a specific item from a specified list.
We insert a PAUSE meta-token immediately following
the list containing the queried item, as well as before the
final question. The expected answer is the corresponding
item. Task difficulty is scaled by varying the list length k
and number of lists N .

• Segment Counting: The model is presented with several
named lists, with a segment in these lists wrapped by by
PAUSE meta-tokens. The prompt then asks how many

times a specified item appears between the two meta-
tokens. The task difficulty changes based on the number
and size of the named lists.

The descriptions for parity and copying are in Appendix
F.2.3 and F.2.4 respectively. Within these tasks, we inves-

2

Language Modeling with Learned Meta-Tokens

tigate length generalization by fine-tuning our model in
multiple phases. At each phase, we assess the model’s per-
formance on sequence lengths exceeding those seen during
that phase’s training, enabling us to evaluate its generaliza-
tion to longer contexts. In addition, Appendix F reports
the performance of our models on a context length of 2048
tokens, which is twice the length seen during pretraining
(1024 tokens).

Baselines. For a controlled comparison, we also pre-train
a GPT-2 model (NanoGPT, 124M; (Karpathy, 2023)) on C4,
with identical hyperparameters as the meta-tokens model.
Additionally, we use Eleuther AI’s GPT-Neo-125M (Black
et al., 2021) as another baseline.

Figure 1. We study the performance of the pre-trained GPT-2 w/
APE, and Meta-attention {w/ APE, w/RoPE}, all fine-tuned on
synthetic data for their respective tasks at the maximum train
lengths indicated in the legends. All experiments are performed
on a test set of prompt lengths up to 512 tokens.

Meta-Tokens Improve Recall and Length Generalization.
As shown in Figure 1, models utilizing meta-tokens consis-
tently outperform baseline GPT-2 and GPT-Neo-125M mod-
els across both tasks and training lengths. Notably, GPT-2
trained with absolute positional embeddings (APE) gener-
ally performs poorly except in segment counting and parity
tasks, suggesting potential improvements with additional
training data and highlighting the data efficiency of meta-
tokens models. Importantly, our meta-token models im-
prove more rapidly with increased training length compared
to GPT-2 models and significantly surpass GPT-Neo-125M
performance despite GPT-Neo being pre-trained on nearly

triple the data volume. We further explore the effect of
positional information by ablating positional encoding and
text embeddings specifically at meta-token indices (Tables
10-13). Surprisingly, removing positional encoding alone
generally matches or improves model accuracy compared to
the original setup, with the segment counting task being the
notable exception. Conversely, eliminating token embed-
dings substantially decreases performance on tasks like List
Recall, Segment Counting, and Copying, indicating their
critical role. Specifically, performance on Segment Count-
ing tasks significantly increases at longer training lengths,
e.g., by +28.6% with APE and +10.7% with rotary posi-
tional embeddings (RoPE), compared to only +3.5% im-
provement in GPT-2. On extended test lengths (up to 1024
tokens), zeroing out positional encodings at meta-token in-
dices further improves generalization, notably boosting List
Recall task performance by up to +38.9%. Table 2 exhibits
a similar trend for the YaRN models, achieving strong per-
formance across its respective context windows, and even
achieves non-trivial accuracy beyond the window. Fine-
tuning the 8k YaRN model on examples of up to a length
of 4k can generalize very well up to 8k. These findings
underscore the substantial advantages of training with meta-
tokens and the nuanced role positional encoding plays in
task-specific and length-generalization contexts.

Model (Split, Train Len) Full No Pos ∆(pp)

Meta + APE (medium, 128) 77.8% 88.9% +11.1
Meta + APE (hard, 128) 11.1% 22.2% +11.1
Meta + APE (extra-hard, 512) 11.1% 50.0% +38.9

Meta + RoPE (medium, 128) 44.4% 55.6% +11.1
Meta + RoPE (hard, 256) 33.3% 66.7% +33.3
Meta + RoPE (extra-hard, 256) 0.0% 22.2% +22.2
Meta + RoPE (extra-hard, 512) 44.4% 55.6% +11.1

Table 1. Configurations where zeroing the positional encoding at
inference improves List Pointer accuracy (∆(pp): % points)

3.1. Examination of the PE Sharpening Effect

As discussed above, the results in Tables 10-13 suggest that
the positional encoding of the meta-token can potentially
be holding back the downstream performance of the meta-
attention models. We posit that the model is instead relying
on its content – cached context stored within the meta-token
– to sharpen its sense of its position in the sequence.

Next, we aim to formally define this notion of sharpness in
the context of positional encoding, and its relationship to the
model’s logits. Let αi→k = softmaxk(QiK

T
j +bi−j) be the

attention distribution for query i over keys j, with relative
bias term bi−j . We define the sharpness of the positional
encoding by the entropy: H(αi) = −

∑
j αi→j logαi→j .

Intuitively, when a meta-token is present at position t, the

3

Language Modeling with Learned Meta-Tokens

Table 2. Token Accuracy (%) on List Recall and Count Segment tasks across evaluation context lengths.

Task (Train, Finetune) 2k 3k 4k 5k 6k 7k 8k 10k 12k 14k 16k

List Recall

(4k, 2k) 19.5 16.0 13.7 0.9 0.0 0.0 0.9 1.1 0.0 2.1 1.1
(4k, 4k) 85.0 88.2 90.2 20.5 1.8 1.0 3.5 4.4 1.1 2.1 2.1
(8k, 4k) 85.0 95.8 91.2 97.4 98.2 96.2 93.9 31.9 0.0 2.1 2.1
(8k, 8k) 92.9 98.3 97.1 100.0 98.2 100.0 100.0 89.0 26.1 10.4 9.6

Count Segment

(4k, 2k) 19.1 23.8 19.2 14.6 25.2 14.1 14.0 12.0 16.0 8.0 6.0
(4k, 4k) 17.5 23.8 31.8 20.3 30.4 19.3 19.1 14.0 26.0 12.0 16.0
(8k, 4k) 19.1 23.8 14.3 11.1 20.6 12.7 12.7 14.0 16.0 14.0 12.0
(8k, 8k) 27.0 33.3 15.9 19.1 27.0 19.1 23.8 22.0 18.0 18.0 18.0

model’s attention becomes peaked around a small set of
keys; this ”honing in” behavior reduces H(α) compared to
APE or RoPE without meta-tokens. In this manner, meta-
tokens behave as content-driven landmarks, serving as a
low-entropy channel that points to relevant context.

The full proof of Theorem 3.1 is included in Appendix J.

Theorem 3.1. Consider a Transformer head at query po-
sition i over keys 1, . . . , N . Let αabs

i (j) ∝ exp(QiK
T
j) be

the attention under absolute positional encoding and let
αmeta
i ∝ exp(QiK

T
j + δj,j∗∆) when a meta-token at posi-

tion j∗ introduces an additive logit boost of ∆ > 0. Then,
for some function κ(∆) > 0, H(αmeta

i) ≤ H(αabs
i)− κ(∆).

Figure 2. (Top) We analyze the change in logits at the meta-token
position after zeroing TE (left) and show that boosted logits corre-
spond with reduced entropy over the softmax of the logits (right).
(Bottom) We study the cosine similarity over the token embed-
dings, and observe spikes, diminishing as we move further away,
confirming our claims of implicit compression via ”caching”.

We note that this theorem also applies to RoPE, using
αRoPE
i (j) ∝ expQi(RoPE(Kj))

T . A natural consequence

of Theorem 3.1 is that the meta-token operates as an ”an-
chor” over the logits by creating a margin ∆ that concen-
trates the softmax. Thus, any learned meta-token embedding
– provided that it boosts the logits at j∗ – guarantees sharper
attention by reducing that attention head’s entropy.

In Figure 2, we analyze the logits, comparing two settings:
(1.) the current meta-token and (2.) the meta-token with its
token embedding zeroed out. We find that the former gains a
sizable amount over the latter, reinforcing the additive logit
boost assumption made in Theorem 4.1. Empirically, we
show that the entropy over the softmax distribution of the
logits decreases, thus corroborating Theorem 3.1.

4. Discussion and Conclusion
Our findings suggest that decoder-only language mod-
els trained with meta-tokens and meta-attention achieve
strong performance on recall tasks. Furthermore, they ex-
hibit length generalization, with performance improvements
when ablating positional encoding at the meta-tokens. We
suggest that hybrid attention methods such as RNoPE (Yang
et al., 2025) could be suitable for facilitating long-context
modeling with meta-tokens. With meta-tokens operating
like anchors within the context, it would be valuable to ex-
plore the impact of our proposed mechanism in pre-training
larger models over longer context windows, under greater
computational resources. Our synthetic tasks are designed
to test length generalization for recall, as an indication of
long-context modeling capabilities; training larger models
would validate its potential for real-world deployment.

We introduce meta-tokens in language model pre-training,
with dedicated meta-attention mechanism which learns the
relationship between standard and meta-tokens. This im-
proves performance and length generalization on synthetic
recall tasks, even without positional encoding. We provide
evidence to suggest that the meta-tokens sharpen the posi-
tional encoding, operating as contextual landmarks by im-
plicitly compressing preceding context. These phenomena
demonstrate the promise of long-context language modeling
enabled via data-efficient pre-training using meta-tokens.

4

Language Modeling with Learned Meta-Tokens

5. Acknowledgments
The authors would like to thank Surbhi Goel for valuable
discussions which have formed the basis of our study and
support with computational resources. We would also like
to thank Ben Keigwin for helpful conversations and sug-
gestions towards designing our analysis. This work was
supported in part by a research compute grant from Lambda
Labs.

References
Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy,

K. Deep variational information bottleneck. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=HyxQzBceg.

Black, S., Leo, G., Wang, P., Leahy, C., and Biderman, S.
GPT-Neo: Large Scale Autoregressive Language Model-
ing with Mesh-Tensorflow, March 2021. URL https:
//doi.org/10.5281/zenodo.5297715. If you
use this software, please cite it using these metadata.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.
pdf.

Brown, T. B., Mann, B., Ryder, N., et al. Language models
are few-shot learners. NeurIPS, 2020b.

Burtsev, M. S., Kuratov, Y., Peganov, A., and Sapunov, G. V.
Memory transformer, 2021. URL https://arxiv.
org/abs/2006.11527.

Chowdhery, A., Narang, S., Devlin, J., et al. Palm: Scal-
ing language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

Cover, T. M. and Thomas, J. A. Elements of Information
Theory (Wiley Series in Telecommunications and Signal
Processing). Wiley-Interscience, USA, 2006. ISBN
0471241954.

Darcet, T., Oquab, M., Mairal, J., and Bojanowski, P. Vi-
sion transformers need registers. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=2dnO3LLiJ1.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar,
S., and Nagarajan, V. Think before you speak: Train-
ing language models with pause tokens. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=ph04CRkPdC.

5

https://openreview.net/forum?id=HyxQzBceg
https://openreview.net/forum?id=HyxQzBceg
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2006.11527
https://arxiv.org/abs/2006.11527
https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC

Language Modeling with Learned Meta-Tokens

Grattafiori, A. et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Haviv, A., Ram, O., Press, O., Izsak, P., and Levy, O.
Transformer language models without positional encod-
ings still learn positional information. In Goldberg,
Y., Kozareva, Z., and Zhang, Y. (eds.), Findings of
the Association for Computational Linguistics: EMNLP
2022, pp. 1382–1390, Abu Dhabi, United Arab Emi-
rates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.findings-emnlp.
99. URL https://aclanthology.org/2022.
findings-emnlp.99/.

Jiang, W., Zhang, J., Wang, D., Zhang, Q., Wang, Z., and
Du, B. Lemevit: Efficient vision transformer with learn-
able meta tokens for remote sensing image interpreta-
tion. In Larson, K. (ed.), Proceedings of the Thirty-
Third International Joint Conference on Artificial In-
telligence, IJCAI-24, pp. 929–937. International Joint
Conferences on Artificial Intelligence Organization, 8
2024. doi: 10.24963/ijcai.2024/103. URL https:
//doi.org/10.24963/ijcai.2024/103. Main
Track.

Karpathy, A. nanoGPT. https://github.com/
karpathy/nanoGPT, 2023. Accessed: 2025-05-16.

Kazemnejad, A., Padhi, I., Natesan, K., Das, P., and
Reddy, S. The impact of positional encoding on
length generalization in transformers. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=Drrl2gcjzl.

Marshall, A. W., Olkin, I., and Arnold, B. C. Inequalities:
Theory of Majorization and Its Applications. Springer
Series in Statistics. Springer New York, New York, NY, 2
edition, 2011. ISBN 978-0-387-68276-1. doi: 10.1007/
978-0-387-68276-1.

Mohtashami, A. and Jaggi, M. Random-access infi-
nite context length for transformers. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=7eHn64wOVy.

OpenAI. Gpt-4 technical report. https://openai.
com/research/gpt-4, 2023.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn: Ef-
ficient context window extension of large language mod-
els, 2023. URL https://arxiv.org/abs/2309.
00071.

Pfau, J., Merrill, W., and Bowman, S. R. Let’s think dot
by dot: Hidden computation in transformer language

models. In First Conference on Language Modeling,
2024. URL https://openreview.net/forum?
id=NikbrdtYvG.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length ex-
trapolation, 2022. URL https://arxiv.org/abs/
2108.12409.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are un-
supervised multitask learners. OpenAI Technical
Report, 2019. URL https://cdn.openai.
com/better-language-models/language_
models_are_unsupervised_multitask_
learners.pdf. Accessed: 2025-05-15.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), January 2020.
ISSN 1532-4435.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention with
relative position representations. In Walker, M., Ji, H.,
and Stent, A. (eds.), Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pp. 464–468, New
Orleans, Louisiana, June 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N18-2074. URL
https://aclanthology.org/N18-2074/.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu,
Y. Roformer: Enhanced transformer with rotary position
embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Yang, B., Venkitesh, B., Talupuru, D., Lin, H., Cairuz,
D., Blunsom, P., and Locatelli, A. Rope to nope and
back again: A new hybrid attention strategy, 2025. URL
https://arxiv.org/abs/2501.18795.

Zelikman, E., Harik, G. R., Shao, Y., Jayasiri, V., Haber,
N., and Goodman, N. Quiet-STar: Language models
can teach themselves to think before speaking. In First

6

https://arxiv.org/abs/2407.21783
https://aclanthology.org/2022.findings-emnlp.99/
https://aclanthology.org/2022.findings-emnlp.99/
https://doi.org/10.24963/ijcai.2024/103
https://doi.org/10.24963/ijcai.2024/103
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=7eHn64wOVy
https://openreview.net/forum?id=7eHn64wOVy
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://arxiv.org/abs/2309.00071
https://arxiv.org/abs/2309.00071
https://openreview.net/forum?id=NikbrdtYvG
https://openreview.net/forum?id=NikbrdtYvG
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/N18-2074/
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2501.18795

Language Modeling with Learned Meta-Tokens

Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=oRXPiSOGH9.

7

https://openreview.net/forum?id=oRXPiSOGH9
https://openreview.net/forum?id=oRXPiSOGH9

Language Modeling with Learned Meta-Tokens

A. Preliminaries
Causal Multi-Head Attention. Let x = {x1, x2, . . . , xT } denote an input sequence of tokens of length T , V denote the
vocabulary size of V, and E : V → Rd represent the the token embedding function mapping each token to a d-dimensional
vector. Each xt is embedded into some continuous representation where et = E(xt) + pt, such that pt is the positional
encoding for t.

In decoder-only architecture, we utilize causal self-attention to ensure that predictions for a given token are only based on
preceding tokens. The causal self-attention mechanism modifies the attention computation by masking future positions in
the attention weights. Formally:

Causal Attention(Q,K, V) = softmax
(
QK⊤
√
dk

+M

)
where M masks future tokens, ensuring that the model can only attend to current and past tokens. If A is the matrix of
attentions scores, then

Aij =

{
softmax(Aij) if i ≥ j

0 if i < j

This masking zeros attention scores for future tokens, allowing only the relevant past tokens to influence the current token’s
representation.

Positional Encoding. Positional encoding was introduced in Transformer pre-training to provide models with information
about the ordering of tokens. With absolute positional embeddings (APE; (Vaswani et al., 2017)), each position t in the
sequence receives a vector pt, independent of its content, so tokens are distinguished in an index-by-index manner. Given
learned token-embedding lookup table E : V → Rd for vocabulary V and hidden dimension d, and positional embedding
pt = Embpos(t) for t ∈ [0, T − 1] and Embpos ∈ RT×d. Each token embedding is then defined as et = E(xt) + pt; this
method was used in GPT-2 and GPT-3 (Radford et al., 2019; Brown et al., 2020a).

By contrast, Rotary Position Embedding (RoPE; (Su et al., 2023)) rotates each pair of embedding dimensions by an angle
proportional to position, rather than adding a separate vector per position. This makes the difference in attention scores
directly encode relative distance between embeddings. The hidden vector h is split into d

2 contiguous 2-D slices, and

the angle for a position t is defined as θt,i =
t

100002i/d
. The 2-D rotation matrix is taken as R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Then, RoPE(h)(2i:2i+1)
t = R(θt,i)h

(2i:2i+1). This has proven successful in the Llama models (Grattafiori et al., 2024). It
can be observed that RoPE reflects the relative offset i − j, with the dot product ⟨Qi,Kj⟩ introducing a new factor of
cos (i−j

100002i/d
). This is reflected in works using relative bias (Shaw et al., 2018), which introduces a bias term as a learned

function over the i− j distance. T5 (Raffel et al., 2020) then adds this bias to ⟨Qi,Kj⟩.

B. Full Architecture Details
We provide a full outline of the architecture design out method uses. Our architecture is equivalent to the NanoGPT (GPT-2)
architecture, while introducing the meta-attention block after the initial causal masked attention and layer normalization
computation.

1. Input Layer: Given an input sequence of tokens x = {x1, x2, . . . , xT }, we first embed each token into a continuous
representation. Instead of absolute positional encodings, we apply Rotary Position Embeddings (RoPE) (Su et al.,
2023) to inject positional information. For each token, the embedded representation is:

et = RoPE(E(xt), t),

where RoPE(·, t) denotes the rotary positional embedding applied to the tth position, with a base θ = 10000.0.

2. Causal Masked Self-Attention: The first layer consists of the causal masked self-attention mechanism. For each head
h, the attention operation is computed as:

CausalAttentionh(Q,K, V) = softmax
(
QK⊤

h√
dk

+M

)
Vh,

8

Language Modeling with Learned Meta-Tokens

where Q,K, V are the query, key, and value matrices derived from the input embeddings E, and M is the mask matrix.

3. Meta Attention Layer: After the causal masked self-attention, we integrate the meta-attention mechanism to
specifically attend to the injected meta tokens. This operation is defined as:

MetaAttention(Q,K, V, P) = softmax
(
QK⊤
√
dk

+Mcausal + P

)
V,

where P is the meta mask constructed from the indices of the meta tokens.

4. Feedforward Layer: Following the attention layers, we pass the output through a feedforward neural network defined
by:

FFN(x) = ReLU(xW1 + b1)W2 + b2,

where W1,W2 are weight matrices, and b1, b2 are bias vectors.

5. Layer Normalization: After both the causal self-attention and meta-attention operations, we apply layer normalization:

LayerNorm(x) =
x− µ

σ + ϵ
,

where µ and σ are the mean and standard deviation of the features, and ϵ is a small constant for numerical stability.

6. Final Output Layer: The final layer projects the output of the last feedforward layer back to the vocabulary size to
produce the s for the next token prediction:

s = softmax(xWout + bout),

where Wout and bout are the output weight matrix and bias vector, respectively.

C. Pre-training Hyperparameters and Model Details
Our decoder-only modified GPT-2 model was pre-trained on the C4 dataset with the following configuration and hyperpa-
rameters:

Table 3. Pretraining Configuration Parameters
Parameter Value
Batch Size 12
Gradient Accumulation Steps 40
Block Size 1024
Number of Layers 12
Number of Heads 12
Embedding Size 768
Learning Rate 6e-4
Weight Decay 1e-1
Max Iterations 600,000
Warmup Iterations 2,000
Minimum Learning Rate 6e-5
Dropout Rate 0.0
RoPE Theta 10000.0
Initial Model Resume
Optimizer AdamW
AdamW Beta1 0.90
AdamW Beta2 0.95
Gradient Clipping 1.0
Tokenizer tiktoken

9

Language Modeling with Learned Meta-Tokens

D. YaRN Hyperparameters

Parameter 4096-token model 8192-token model

yarn scale 4.0 8.0
yarn original max seq len 1024
yarn extrapolation factor 1.0
yarn attn factor 1.0
yarn beta fast 32.0
yarn beta slow 1.0

Table 4. YaRN parameter configurations for extended context models.

E. Related Work
Pause and Memory Tokens As detailed in our work, recent studies on Transformer-based models have explored the
introduction of special tokens, beyond ordinary vocabulary symbols. Pause or dummy tokens as introduced in (Goyal
et al., 2024) enhance computational width, allowing models to perform additional internal computation by effectively
delaying their outputs. This yields empirical gains on question answering and reasoning-intensive tasks. Similarly, (Pfau
et al., 2024) explore using filler tokens – sequences of seemingly meaningless symbols – as a stand-in for chain-of-thought.
These special tokens may also delineate phases of reasoning, as in Quiet-STaR (Zelikman et al., 2024). Quiet-STaR uses a
begin-of-thought token and an end-of-thought token, generating a silent rationale sequence for each step before emitting the
next word, showing that this helps zero-shot reasoning.

Works such as Memory Transformer (Burtsev et al., 2021) and Landmark Attention (Mohtashami & Jaggi, 2023) introduce
memory tokens; the former prepends them, while the latter uses them as learnable keys for retrieval over blocks of context.
Our work is most closely related to the latter, while performing this retrieval in a purely implicit manner via the observed
”pointer” mechanism. For vision transformers (ViTs), LeMeVit (Jiang et al., 2024) introduces a similar meta-tokens notion
as our work by adding learnable sparse tokens and an attention mechanism between standard tokens and their meta tokens,
improving performance and reducing spatial redundancy. (Darcet et al., 2024) uses specialized ”register” tokens applies to
patches to denoise images by extracting the high-norm, outlier tokens, smoothening the feature and attention maps. These
works suggest that special tokens, even devoid of semantic content, can influence a model’s internal reasoning and memory
mechanisms.

Positional Encoding We have already described absolute positional embeddings (APE), rotary positional embeddings
(RoPE) and relative bias in Section A. In addition to these methods, ALiBi (Press et al., 2022) adds a fixed linear penalty
to attention scores based on the distance between query and key positions, favoring nearer tokens and generalizing to
longer contexts with minimal loss in perplexity. Recent work has suggested that Transformers without any added position
embeddings can still learn order information and, in some cases, generalize to longer sequences better than models with
standard positional encoding. NoPE (Kazemnejad et al., 2023) showed that models trained without positional embeddings
can achieve strong length extrapolation in comparison to models trained with positional encoding. They can internally
represent both absolute and relative PEs without any explicit positional signal, suggesting these may emerge implicitly via
training dynamics or over the data distribution. NoPos (Haviv et al., 2022) also found a similar result, suggesting that models
trained without PE can infer their absolute position due to causal attention masks. These findings are highly relevant to our
work, given our evidence on length generalization behavior whiling zeroing the positional encoding at the meta-tokens.

10

Language Modeling with Learned Meta-Tokens

F. Additional Experimental Details
F.1. Figures on Parity and Copying

F.2. Synthetic Data Generation

We generate 90,000 train examples and held-out test set of 10,000 examples for each task.

F.2.1. LIST RECALL

We generate a suite of “list-pointer” examples by sampling random categories and list items, inserting a special meta token
as a marker, and asking the model to recover the item immediately following the meta-token. Each example consists of:

1. m categories drawn without replacement from a fixed set of 20.

2. n items per category, sampled with replacement from the category’s 10–item inventory

3. One “target” category in which we inject a single meta token after the jth item (j ∈ [n]) and then append the remaining
items

4. A question line “Q: What is item j of ¡target¿? META ”

This pipeline yields curriculum-structured data that systematically probes the model’s ability to attend to and copy items in
long, multi-list contexts.

Phase m (Num. categories) n (List length) Approx. prompt-token range
1 Uniform 3–8 Uniform 3–10 Short (≈ 100–200 tokens)
2 Uniform 8–12 Uniform 3–16 (bimodal) Mid-range (≈ 200–300 tokens)
3 Uniform 12–19 Mixture {3–8, 9–16, 17–25} Full-range (≈ 500–700 tokens)
4 Uniform 15–20 Uniform 40–60 “Extra-hard” ≤ 1024 tokens
5 Uniform 15–20 Uniform 90–110 “Long” ≤ 2048 tokens

Table 5. Curriculum schedule for synthetic data.

F.2.2. SEGMENT COUNTING

Similar to List-pointer, except the model must count occurrences of a target token within a meta-token bracketed list segment.
Uses the schedule dictated by Table F.2.1. Asks the question: ”Q: How many times does ¡token¿ appear between the pauses
around ¡Category¿? META ”.

11

Language Modeling with Learned Meta-Tokens

F.2.3. PARITY

Generates examples where the model computes the XOR (parity) of a bit-string segment up to the first L characters where L
is drawn phase-dependently. the same scheduling dictated by Table F.2.1. Asks the question: ”Q: What is the XOR of all
bits before this pause? META ”

F.2.4. COPYING

Generates examples where the model must copy a bracketed span from a text. Uses schedule dictated by Table F.2.1 and
samples an additional copy length C and distance length D depending on the phase

G. Licenses
nanoGPT

Our implementation of the vanilla GPT-2 is based on the nanoGPT repository (https://github.com/karpathy/
nanoGPT), which is licensed under the MIT License.

EleutherAI GPT-Neo-125M

We directly use the EleutherAI GPT-Neo 125M model checkpoint and weights, available via the Hugging Face Model Hub
at https://huggingface.co/EleutherAI/gpt-neo-125m. This model is released under the MIT License.

C4 Dataset

Our model was trained on the C4 dataset (https://huggingface.co/datasets/allenai/c4), which is pro-
vided under the Open Data Commons Attribution License (ODC-BY).

tiktoken

We use the tiktoken library from OpenAI for tokenization (https://github.com/openai/tiktoken), which
is released under the MIT License.

H. Complete Experimental Results
H.1. Synthetic Task Accuracies Across Test Lengths

We stress test RoPE models at a sequence length of 2048—twice the pretraining block size of 1024—as relative position
embeddings naturally support extrapolation beyond the training context window. In contrast, absolute positional encodings
(APE) cannot generalize to sequences longer than those seen during pretraining.

Table 6. Accuracy (%) across evaluation lengths for each model train on List Recall

Model (Train Length) 128 256 512 1024 2048

GPT-2 APE (128) 4.2 1.2 0.0 0.0 —
GPT-2 APE (256) 6.8 2.4 0.0 0.0 —
GPT-2 APE (512) 19.8 9.5 3.6 0.0 —
Meta + APE (128) 100.0 86.4 12.0 4.1 —
Meta + APE (256) 100.0 98.6 42.6 3.9 —
Meta + APE (512) 100.0 100.0 98.7 11.1 —
Meta + RoPE (128) 100.0 60.7 5.9 0.0 0.0
Meta + RoPE (256) 100.0 100.0 48.6 23.5 0.0
Meta + RoPE (512) 100.0 100.0 99.3 58.9 5.6
GPT-Neo-125M 85.6 86.0 81.2 — —

12

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
https://huggingface.co/EleutherAI/gpt-neo-125m
https://huggingface.co/datasets/allenai/c4
https://github.com/openai/tiktoken

Language Modeling with Learned Meta-Tokens

Table 7. Accuracy (%) across evaluation lengths for each model trained on Segment Counting. Each model is evaluated on longer contexts
than seen during training.

Model (Train Length) 128 256 512 1024 2048

GPT-2 APE (128) 32.1 27.4 20.2 0.0 —
GPT-2 APE (256) 40.3 56.2 23.7 0.0 —
GPT-2 APE (512) 30.1 32.1 25.0 0.0 —
Meta + APE (128) 77.4 55.9 25.0 11.1 —
Meta + APE (256) 83.3 77.4 53.6 22.4 —
Meta + APE (512) 91.7 79.8 80.9 33.3 —
Meta + RoPE (128) 77.4 64.3 25.0 22.7 0.0
Meta + RoPE (256) 64.3 64.3 35.7 33.3 0.0
Meta + RoPE (512) 90.9 91.4 95.3 66.7 11.1
GPT-Neo-125M 31.4 25.9 24.9 — —

Table 8. Accuracy (%) across evaluation lengths for each model train on Parity

Model (Train Length) 128 256 512 1024 2048

GPT-2 APE (128) 75.0 56.0 53.4 45.2 —
GPT-2 APE (256) 75.0 67.0 60.7 46.2 —
GPT-2 APE (512) 75.0 54.8 60.0 40.5 —
Meta + APE (128) 100.0 75.0 67.9 52.4 —
Meta + APE (256) 100.0 97.6 96.4 69.1 —
Meta + APE (512) 100.0 100.0 100.0 86.7 —
Meta + RoPE (128) 100.0 66.7 76.2 59.5 44.1
Meta + RoPE (256) 97.6 100.0 96.4 61.9 52.4
Meta + RoPE (512) 100.0 100.0 100.0 69.1 63.1
GPT-Neo-125M 80.4 59.1 54.8 — —

H.2. Ablations on Positional Encoding and Token Embedding

Table 10. Accuracy (%) on the List-Recall task under different ablations: zeroing the positional encoding (No Pos), zeroing the text
embeddings (No Embed), or zeroing both of the meta-tokens.

Model (PE) Full No Pos No Embed Neither

Meta + APE (128) 100.0 99.3 17.4 59.7
Meta + RoPE (128) 100.0 100.0 32.4 24.0
Meta + APE (256) 86.4 86.9 12.2 16.2
Meta + RoPE (256) 100.0 100.0 4.0 6.6
Meta + APE (512) 100.0 100.0 52.1 84.3
Meta + RoPE (512) 100.0 100.0 59.6 25.2

13

Language Modeling with Learned Meta-Tokens

Table 9. Accuracy (%) across evaluation lengths for each model trained on Copying

Model (Train Length) 128 256 512 1024 2048

GPT-2 APE (128) 6.0 5.3 3.0 0.0 —
GPT-2 APE (256) 6.8 6.0 5.7 0.0 —
GPT-2 APE (512) 3.8 4.8 7.8 0.0 —
Meta + APE (128) 100.0 66.7 76.2 2.6 —
Meta + APE (256) 100.0 100.0 96.4 7.9 —
Meta + APE (512) 100.0 100.0 98.5 87.4 —
Meta + RoPE (128) 96.6 73.0 5.2 0.0 0.0
Meta + RoPE (256) 98.2 100.0 23.6 9.3 3.2
Meta + RoPE (512) 99.0 98.9 98.9 89.4 11.8
GPT-Neo-125M 31.5 22.7 16.9 — —

Table 11. Accuracy (%) on the Segment Counting task under different ablations: zeroing the positional encoding (No Pos), text embeddings
(No Embed), or both, only on the meta-token.

Model (Train Length) Full No Pos No Embed Neither

Meta + APE (128) 77.4 63.1 31.0 47.6
Meta + APE (256) 83.3 88.1 32.1 40.5
Meta + APE (512) 91.7 82.1 34.5 51.2
Meta + RoPE (128) 77.4 70.2 59.5 36.9
Meta + RoPE (256) 64.3 53.6 30.9 30.9
Meta + RoPE (512) 80.9 72.6 36.9 25.0

H.3. Positional Encoding Robustness Ablations

Table 14. Accuracy (%) on the List Pointer task with Gaussian noise added to positional encoding.

Model (Train Length) Noise 0.0 Noise 0.1 Noise 0.5 Noise 1.0 Noise 2.0

GPT-2 + APE (128) 4.8 1.2 2.4 2.6 3.5
GPT-2 + APE (256) 17.4 11.9 4.6 3.6 3.2
GPT-2 + APE (512) 14.0 16.3 16.7 17.9 14.3
Meta + APE (128) 98.7 98.6 67.5 55.6 42.8
Meta + APE (256) 81.8 79.7 48.9 43.1 37.9
Meta + APE (512) 100.0 100.0 79.5 65.5 57.1
Meta + RoPE (128) 98.1 100.0 100.0 96.0 88.9
Meta + RoPE (256) 100.0 100.0 100.0 97.9 82.6
Meta + RoPE (512) 100.0 100.0 100.0 98.8 81.0

14

Language Modeling with Learned Meta-Tokens

Table 12. Accuracy (%) on the Parity task under different ablations: zeroing the positional encoding (No Pos), text embeddings (No
Embed), or both, only on the meta-token.

Model (Train Length) Full No Pos No Embed Neither

Meta + APE (128) 100.0 100.0 100.0 100.0
Meta + APE (256) 75.0 77.4 77.4 79.8
Meta + APE (512) 67.9 71.4 72.6 66.7
Meta + RoPE (128) 100.0 97.6 100.0 100.0
Meta + RoPE (256) 66.7 66.7 73.8 66.7
Meta + RoPE (512) 76.2 75.0 75.0 64.3

Table 13. Accuracy (%) on the Copying task under different ablations: zeroing the positional encoding (No Pos), text embeddings (No
Embed), or both, only on the meta-token.

Model (Train Length) Full No Pos No Embed Neither

Meta + APE (128) 96.6 93.2 7.2 4.8
Meta + APE (256) 98.2 99.6 5.0 3.6
Meta + APE (512) 99.0 96.6 5.7 5.4
Meta + RoPE (128) 100.0 99.6 6.9 4.9
Meta + RoPE (256) 100.0 100.0 4.5 5.1
Meta + RoPE (512) 100.0 95.6 6.9 4.9

15

Language Modeling with Learned Meta-Tokens

Table 15. Accuracy (%) on the Copying task with Gaussian noise added to positional encoding.

Model (Train Length) Noise 0.0 Noise 0.1 Noise 0.5 Noise 1.0 Noise 2.0

GPT-2 Abs (128) 2.9 1.2 0.0 0.0 0.0
GPT-2 Abs (256) 6.0 7.1 3.6 0.8 0.7
GPT-2 Abs (512) 6.0 5.8 3.6 0.4 0.3
Meta + APE (128) 96.1 98.5 69.8 58.6 54.9
Meta + APE (256) 100.0 100.0 76.3 68.8 57.2
Meta + APE (512) 98.9 98.7 74.4 68.9 50.5
Meta + RoPE (128) 100.0 100.0 75.9 68.6 49.9
Meta + RoPE (256) 100.0 100.0 82.6 65.6 45.1
Meta + RoPE (512) 100.0 100.0 84.4 67.6 46.3

H.4. Length Generalization Ability under No Positional Encoding Ablation

Table 16. List-Recall: “No Pos” vs. Full accuracy for Meta-attention with APE and Meta-attention with RoPE.

Model (Split, Train Len) Full No Pos ∆ (pp)

Meta + APE (128)
small — — —
medium 77.8% 88.9% +11.1
hard 11.1% 22.2% +11.1

Meta + APE (256)
small 100.0% 100.0% 0.0
medium 100.0% 100.0% 0.0
hard 44.4% 22.2% –22.2

Meta + APE (512)
small — — —
medium — — —
hard 100.0% 100.0% 0.0

Meta + RoPE (128)
small — — —
medium 44.4% 55.6% +11.1
hard 11.1% 11.1% 0.0
extra-hard 0.0% 0.0% 0.0
long 0.0% 11.1% +11.1

Meta + RoPE (256)
small 100.0% 100.0% 0.0
medium 100.0% 100.0% 0.0%
hard 33.3% 66.7% +33.3
extra-hard 0.0% 22.2% +22.2
long 0.0 0.0 0.0

Meta + RoPE (512)
small — — —
medium 100.0% 100.0% 0.0
hard 100.0% 100.0% 0.0
extra-hard 44.4% 55.6% +11.1
long 0.0% 0.0% 0.0

16

Language Modeling with Learned Meta-Tokens

I. Examining Context Compression with Rate-Distortion Theory
Given that these results provide evidence that meta-tokens can compress context in their representation, we develop
mathematical formalizations to analyze this behavior. In particular, we turn to information-theoretic tools – specifically, an
information bottleneck view.

For a meta-token at xm succeeding a sequence of tokens X = xi:m−1 from indices i to m− 1, we consider a compression
function ζ(·) which transforms the subsequence X into xm. As such, we define X̂ = ζ(X) = ζ(xi:m−1) to be the
compressed representation stored in xm. This can be generalized to the full set of M meta-tokens:

X̂1:M = [ζ1(X1:m1−1), ζ2(Xm1+1:m2−1), . . . ζM (mM+1 : mn)]

For practicality, we consider the variational information bottleneck (Alemi et al., 2017). This introduces an encoder
qϕ(x̂ | x) and decoder qθ(y | x̂), along with a simple prior r(z) (e.g. N(0, 1)), yielding the following form to solve for
these variational distributions:

min
qϕ,qθ

E
p(x,y)

[E
qϕ(x̂|x)

[− log qθ(y | x̂]] + β · E
p(x)

[KL(qϕ(x̂ | x)||r(x))]

This form admits an equivalent perspective in rate-distortion theory. Specifically, the first term measures the quality in
predicting the downstream target given a lossy compression X̂ (”distortion”). The second term measures the average number
of bits required to encode X̂ , relative to some simple reference code r(z) (”rate”). As such, analyzing rate-distortion
curves – sweeping over values of β – can provide valuable insights into the quality of the ”compression” behavior and its
informativeness when the meta-token is attended to.
Theorem I.1. Let Dabs(R) be the minimum distortion achievable at rate R under the VIB objective only using absolute
positional encoding (no meta-tokens), and let Dmeta(R) be the minimum distortion achievable at rate R with meta-tokens.
Then, for every R ≥ 0,

Dmeta(R) ≤ Dabs(R) (1)

Proof. The meta-tokens are simply a new (latent) channel that may be utilized to search for candidate distributions. However,
this latent can be ignored, yielding the original search space; that is, any encoder qϕ(x̂ | x) that does not use meta-tokens
can be implemented in the meta-token model by zeroing out all meta-token contributions. Therefore, Qabs ⊆ Qmeta, where
q = (qϕ, qθ) over the feasible combinations of encoder and decoder. Naturally, minimizing a function over a larger feasible
set cannot increase its minimum. Thus, for a fixed rate R,

Dmeta(R) = min
q∈Qmeta : I(X;X̂)=R

D(q) ≤ min
q∈Qabs : I(X;X̂)=R

D(q) = Dabs(R).

Note that the same result holds for RoPE in place of APE (i.e. DRoPE in place of Dabs), as well.

Intuitively, meta-tokens expand the feasible set of encoders and decoders, which will either match or lower distortion for a
given rate. Thus, the quality of compression with respect to its informativeness in predicting the target can only improve.

Rate-Distortion Informs the Quality of Context Caching. To obtain empirical rate–distortion curves for our meta-token
bottleneck in Figure 3, we freeze the pre-trained meta-token model and fix a small variational bottleneck head to the last
meta-token hidden state. Concretely, let hm ∈ RD be the output of the final Transformer layer at the last meta-token position.
We introduce

qϕ(z | hm) = N
(
µϕ(hm), diag(σ2

ϕ(hm))
)
, qθ(y | z) = softmax(Wz + b),

with µϕ, σϕ : RD → RL and W ∈ R|V|×L. We then optimize the ELBO:

min
ϕ,θ

Ehm,y

[
− log qθ(y | z)

]
+ β Ehm

[
KL

(
qϕ(z | hm) ∥N (0, I)

)]
.

Training is performed on the small List-Pointer F.2.1 split (50 examples, batch size 1), for 5 epochs at each β ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}. After each run, we record the average cross-entropy loss (“distortion”) and KL
(“rate”) on the same 50 examples. Finally, we plot the resulting rate–distortion curves on a symlog x-axis (linear below 20
nats, logarithmic above) so that both the low-rate “knee” and the long tail are visible (see Figure 3).

17

Language Modeling with Learned Meta-Tokens

Figure 3. (Left) This plot visualizes the residual stream after each layer, to analyze the meta-token within causal attention. The colors
before the meta-token (the colored band across the layers) denote the context which the meta-token attends to and implicitly stores, and the
final, rightmost colored line represents the final meta-token in the sequence, which attends to the previous one at the aforementioned band.
(Right) We analyze the variational information bottleneck (VIB) objective and its decomposition into its rate and distortion components.
Supporting the findings of Theorem 5.1, for a given rate R, the distortion D is strictly lower for the meta-token compared to the last
non-meta-token element in the sequence.

J. Theoretical Analysis
J.1. Proof of Theorem 3.1

Lemma J.1. Let ℓ1, ℓ2, . . . , ℓN be logits and define softmax distribution αj =
exp(ℓj)∑N

k=1 exp(ℓk)
. Suppose that for some ”correct”

index j∗ we have ℓj∗ = L, and for all other indices j ̸= j∗, ℓj ≤ L−∆ for some ∆ > 0. Then, entropy H(α) is strictly
decreasing in ∆.

Proof. First, we can group the other logits (i.e. j ̸= j∗, such that S =
∑

j ̸=j∗
eℓj . Then, since each ℓj carries the property that

eℓj ≤ eL−∆ given ℓj∗ = L, we have that S ≤ (N − 1)eL−∆ since there are N − 1 terms. Revisiting the softmax α, we
have that αj∗ = eL

eL+S
≥ eL

eL+(N−1)eL−∆ = 1
1+(N−1)e−∆ . We will denote this quantity as p henceforth. Next, each other

softmax αj for j ̸= j∗ must have the property that αj =
eℓ

eL+S
≤ eL−∆

eL(1+(N−1)e−∆)
= e−∆

1+(N−1)e−∆ = 1−p
N−1 .

As a result, we have the following entropy maximization problem:

maximize
α1,...,αN

−
N∑
j=1

αj logαj

subject to
N∑
j=1

αj = 1,

αj∗ = p,

αj ≥ 0, j = 1, . . . , N.

Observe that the entropy (objective) function is Schur-concave in α, so it is maximized when αj∗ = p and the remaining

18

Language Modeling with Learned Meta-Tokens

softmax mass is split uniformly over the N − 1 elements, i.e. αj =
1−p
N−1 ∀ j ̸= j∗. Plugging this in for H(α) yields:

H(α) ≤ −p log p− (1− p) log(1− p) + (1− p) log(N − 1) (2)

Next, we aim to study the relationship between H and ∆. By the chain rule, dH
d∆ = dH

dp · dp
d∆ . dH

dp = −(1 + log p) +

log 1−p
N−1 +1 = log 1−p

(N−1)p . Substituting 1−p
p = (N−1)e−∆, we get dH

dp = −∆ and since ∆ > 0, dH
dp < 0. We then turn to

dp
d∆ = (N−1)e−∆

[1+(N−1)e−∆]2 > 0 since both numerator and denominator must be > 0. Therefore, dH
d∆ = −∆ (N−1)e−∆

[1+(N−1)e−∆]2 < 0,
meaning that H(α) is strictly decreasing in the margin ∆.

We will now use Lemma J.1 to prove Theorem 3.1.

Proof of Theorem 3.1. Consider a parametrized path by variable t ∈ [0,∆]; define ℓ(t)j = ℓj + δj,j∗t, and α
(t)
j = e

ℓ
(t)
j

N∑
k=1

eℓ
(t)
k

=

e
(ℓj+δj,j∗ t)

N∑
k=1

e
(ℓk+δk,j∗ t)

. Define ℓ
′(t)
j = d

dtℓ
(t)
j and α

′(t)
j = d

dtα
(t)
j .

Next, we differentiate the entropy H(α) with respect to t:

d

dt
H(α) = −

N∑
j=1

[α′
j lnαj + αj

α′
j

αj
] = −

N∑
j=1

α′
j(1 + lnαj) = −

N∑
j=1

α′
j + α′

j lnαj

Since
∑

α′
j = 0 due to

∑
αj = 1, this simply reduces to d

dtH(α) = −
∑N

j=1 α
′
j lnαj .

From (Cover & Thomas, 2006), we have that α′
j = αj(ℓj − Eα[ℓ

′]), where Eα[ℓ
′] =

N∑
k=1

αkℓ
′
k. Plugging this into the

expression for the derivative of entropy with respect to t:

d

dt
H(α) = −

∑
j

αj(ℓ
′
j − Eα[ℓ

′]) lnαj = −(
∑
j

ajℓ
′
j lnαj − Eα[ℓ

′]
∑
j

αj lnαj)

Observe that
∑

j αj lnαj = Eα[lnα] so this simply reduces as:

d

dt
H(α) = −(Eα[ℓ

′ lnα]− Eα[ℓ
′]Eα[lnα]) = −Covα(ℓ′, lnα) (3)

Revisiting the meta-token setup where only the ”correct” logit at j∗ is boosted, this suggests that ℓ′j = 1(j = j∗). Therefore,
Eα[ℓ

′] = αj∗ and Eα[ℓ
′ lnα] = αj∗ lnαj∗ . This can be substituted into the covariance term above:

d

dt
H(α) = −Covα(ℓ′, lnα) = −(αj∗ lnαj∗ − αj∗ Eα[lnα]) = −αj∗(lnαj∗ − Eα[lnα])

Due to the Schur-concavity of H(α) (Marshall et al., 2011), lnαj∗ = maxj lnαj and lnαj∗ > Eα[lnα]. As such, given
αj∗ > 0 and lnαj∗ − Eα[lnα] > 0, this suggests that Covα(ℓ

′, lnα) > 0 and thus, d
dtH(α) < 0. Therefore, we conclude

that adding a positive logit boost at the meta-token index (”correct” logit) strictly decreases entropy, supporting the proposed
”anchoring” effect notion.

J.2. Expressivity of Representable Biases

Theorem J.2. Consider functions p : {0, . . . , T − 1} → R and b : {−(T − 1), . . . , T − 1} → R for absolute postional
biases and relative biases, respectively. Let Babs to be the set of all fixed absolute positional bias matrices Babs

i,j = p(j) and

19

Language Modeling with Learned Meta-Tokens

Brel to be the set of all fixed relative biases Brel
i,j = b(i − j). Let Bmeta be the set of bias matrices implementable by the

Transformer augmented with meta-token embeddings {mt} which emit a content-dependent logit boost at their respective
indices. Then,

Babs ∪ Brel ⊊ Bmeta (4)

Proof. We break this argument down into two parts → (i.) the forward direction, where we show that all absolute and
relative biases without meta-tokens can be modeled by the meta-token model.

(i) Babs ∪ Brel ⊆ Bmeta. Every B ∈ Bmeta is obtained by choosing meta-token embeddings et ∈ Rd at each position t
and a linear head W , so that the total bias at (i, j) is Bi,j =

∑
t Q⊤

i W et 1j=t.

• Absolute case. Given p(j), set W ∈ R1×d and choose each ej so that Q⊤
i W ej = p(j) ∀ i. All other et̸=j are zero.

Then Bi,j = p(j).

• Relative case. Given b(i − j), place a meta-token at every position j. Choose W and embeddings ej so that
Q⊤

i W ej = b(i− j) ∀ i, j.

For instance, if we let W = Id and arrange that ej encodes the vector
(
b(1 − j), b(2 − j), . . . , b(T − j)

)
, then

Q⊤
i ej = b(i− j) when Qi is the i-th standard basis vector.

Therefore, every absolute or relative bias (in Babs and Brel) lies in Bmeta.

(ii) There exists a bias B∗ ∈ Bmeta such that B∗ /∈ Babs ∪ Brel. Define a content-dependent bias B∗
i,j = f

(
Cj

)
where

Cj is the full token context preceding position j and f is any non-constant function. Such a B∗ arises by setting each
meta-token embedding ej = f(Cj) and W = Id, so B∗ ∈ Bmeta.

However, if there was B∗ ∈ Babs, then there is p(j) with p(j) = f(Cj) for all j and all possible Cj , which is impossible
since Cj varies. Furthermore, if B∗ ∈ Brel, then there is b(i − j) with b(i − j) = f(Cj) independent of i; again, this
condition is impossible to be satisfied. Therefore B∗ /∈ Babs ∪ Brel.

As a result, we conclude that the biases represented by Bmeta contain the set of both absolute and relative biases without
meta-tokens, and represent additional biases that cannot be represented without meta-tokens.

The result of Theorem J.2 is that the introduction of meta-tokens strictly grows the expressivity of biases that may be
represented, while still being entirely inclusive of the fixed realizable absolute and relative encoding biases. As a result, we
do not ”lose” anything representationally by introducing meta-tokens, from a positional biases standpoint. This enhanced
expressive power also plays a role in enabling the model to learn to focus attention on relevant context spans, reinforcing the
aforementioned sharpening effect.

K. Example Prompts for Synthetic Tasks
We provide example prompts and target completions for each synthetic task used in our experiments. Each example
illustrates the input format, the placement of PAUSE meta-tokens, and the expected model output.

List Recall

Prompt:
Fruits: orange peach banana plum Tools: hammer wrench level pliers
Sports: boxing baseball boxing golf Spices: turmeric cardamom cumin
cinnamon Animals: cat tiger wolf fox Professions: teacher nurse lawyer
architect Vegetables: onion cucumber broccoli cucumber Instruments:
piano clarinet violin piano Professions: teacher nurse lawyer PAUSE
architect Q: What is item 3 of Professions? PAUSE

20

Language Modeling with Learned Meta-Tokens

Completion:
lawyer

Segment Counting

Prompt:
Fruits: orange peach banana plum Tools: PAUSE hammer wrench level
pliers PAUSE Sports: boxing baseball boxing golf Spices: turmeric
cardamom cumin cinnamon Q: How many times does wrench appear between the
pauses around Tools? PAUSE

Completion:
1

Parity

Prompt:
Bits: 0 PAUSE 1 0 0 Q: What is the XOR of all bits before this pause?
PAUSE

Completion:
0

Copying

Prompt:
...as ever Mr PAUSE . Darcy had been, was much relieved by discerning
such different feelings.
They had not been long together before Darcy told her that Bingley was
also coming to wait on her; and she had barely time to express her
satisfaction, and prepare for such a visitor, when Bingley’s quick
step was heard on the stairs, and in a moment he entered the room. All
Elizabeth’s anger against him had been long done away; but had she still
felt any, it could hardly have stood its ground against the unaffected
cordiality with which he expressed himself on seeing her again. He
inquired in a friendly, though general, way, after her family, and
looked and spoke with the same PAUSE good-humoured ease that he had
ever done. Q: Copy the bracketed text. PAUSE

Completion:
. Darcy had been, was much relieved by discerning such different
feelings.
They had not been long together before Darcy told her that Bingley was
also coming to wait on her; and she had barely time to express her
satisfaction, and prepare for such a visitor, when Bingley’s quick
step was heard on the stairs, and in a moment he entered the room. All
Elizabeth’s anger against him had been long done away; but had she still
felt any, it could hardly have stood its ground against the unaffected
cordiality with which he expressed himself on seeing her again. He
inquired in a friendly, though general, way, after her family, and
looked and spoke with the same.

21

Language Modeling with Learned Meta-Tokens

L. Broader Impacts Statement
Our work on learned meta-tokens and meta-attention offers a lightweight, data-efficient way to pre-train language models
while demonstrating strong performance when fine-tuned for recall tasks. This suggests a path toward more capable, leaner
language models that could be used to handle contexts such as like long legal or medical documents, extended multi-turn
dialogues, or large codebases without resorting to prohibitively large architectures or expensive fine-tuning runs. Such
models could bring real benefits to areas such as conversational agents for education or healthcare. Building off of prior
literature that performs a more explicit learned retrieval from the context (Mohtashami & Jaggi, 2023), this could induce
improved and efficient in-line retrieval over vast corpora.

Our work relates strongly to the recent debates in the language modeling community on the impact of positional encoding,
particularly around works such as NoPE (Kazemnejad et al., 2023). We provide strong evidence that zeroing the positional
encoding can improve performance, providing motivation for hybrid attention mechanisms such as RNoPE (Yang et al.,
2025), and other, more efficient ways to pre-train language models with long-context modeling settings in mind. We note
that advances in long-context modeling could introduce risks around misuse and unintended harm. More powerful context
understanding over long ranges can fuel phishing text and distracted models, especially in the phase of noisy context.
However, models trained on corpora without data pre-processing a priori may be subject to harmful behavior such as profane
generations. In the context of our work, which uses standard, pre-filtered corpora, this issue is avoided; we encourage users
to audit the data used for pre-training first.

22

