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Abstract

One of the most commonly used methods for forming confidence intervals is the
empirical bootstrap, which is especially expedient when the limiting distribution of
the estimator is unknown. However, despite its ubiquitous role in machine learning,
its theoretical properties are still not well understood. Recent developments in
probability have provided new tools to study the bootstrap method. However,
they have been applied only to specific applications and contexts, and it is unclear
whether these techniques are applicable to the understanding of the consistency
of the bootstrap in machine learning pipelines. In this paper, we derive general
stability conditions under which the empirical bootstrap estimator is consistent
and quantify the speed of convergence. Moreover, we propose alternative ways to
use the bootstrap method to build confidence intervals with coverage guarantees.
Finally, we illustrate the generality and tightness of our results by examples of
interest for machine learning including for two-sample kernel tests after kernel
selection and the empirical risk of stacked estimators.

1 Introduction

Bootstrap resampling [26], has been one of the most popular techniques for measuring the uncertainty
of a statistic, primarily due to its simple algorithmic definition and its conveniency with dealing with
opaque statistical procedures that produce a test statistic. For this reason, uncertainty quantification
based on bootstrap resampling has been a staple in the machine learning community, starting from
the early days of the field [40] and continuing into the deep learning and SVM era [39, 30, 32, 17].
Despite it’s widespread use, general conditions for the consistency of the bootstrap for complex
non-linear statistics is generally not fully explored and hence, it is not clear when the bootstrap
method will accurately capture uncertainty in machine learning pipelines, especially when model
selection procedures are involved.

Our goal is to understand the distribution of a large class of non-linear statistic 0, = gn(X1,. .., Xn),
as the samples X; are drawn from their unknown distribution. Examples of such statistics could
be the out-of-sample risk of a machine learning predictor, or the maximum-mean-discrepancy of a
two-sample kernel test, or the prediction of a machine learning model at a given point. One approach
to approximating this distribution is the empirical bootstrap: sample new observations Z1, ..., Z,
independently and uniformly from { X7, ..., X,,} (with replacement), and define éB"Ot as the value
of the estimator taken at the bootstrap sample é};o“ := gn(Z1,...,Zy,). This procedure can be
repeated many times in order to estimate the conditional distribution of éf{""t. If this distribution
is approximately the same as the distribution of 6,,, as the sample size n grows, we say that the
bootstrap method is consistent. Consistency of the bootstrap can be subsequently utilized to construct
confidence intervals for the quantity of interest.
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Classical consistency proofs for the bootstrap, either require that the limiting distribution of the
statistic be Gaussian, or even more stringently that the statistic is asymptotically linear. Notably,

when 6,, is asymptotically normal those intervals are known to be consistent under general conditions;
see e.g. [33, 5, 18]. Moreover, classical conditions for such statements to hold are that the statistic
is Hadamard differentiable and smooth with respect to the underlying distribution of the random
variables. However, these properties can be violated by test statistics that are implicitly defined via
machine learning data analysis pipelines and especially when the model selection is involved. Thus it
is crucial to provide more generally applicable sufficient conditions for the validity of the bootstrap.

Notably, recent breakthrough results in statstics by Chatterjee [13], have shown that the Lindenberg
technique that has been long used to establish Central Limit Theorems, is more widely applicable
and can be leveraged to show limit distributional consistency of two random variables more broadly.
Notably, this intuition has already been exploited to show that the bootstrap method is consistent in
particular applications in the econometric literature, such as the construction of uniform confidence
bands. However, these proofs are tailored to the particular application of interest and do not provide
general characterizations.

Our main contribution is to provide a set of sufficient stability conditions that imply the consistency
of the bootstrap and which go well beyond the existing general conditions via the use of Chatterjee’s
generalized Lindenberg approach and a smart path interpolation technique. We then apply these gen-
eral results to derive inference in two machine learning applications: i) bootstrapping the test statistic
in two-sample kernel tests, after model selection on the kernel and sample re-use, ii) bootstrapping
the risk of a stacked estimator with sample re-use.

Roughly, our sufficient conditions impose unilateral stability properties on the statistic, reminiscent of
the stability conditions required for classical concentration inequalities, such as McDiarmid’s inequal-
ity. In particular, we assume that the functions (g,,) are approximable by three-times differentiable
functions whose first, second and third order partial derivatives, with respect to a single observation,
taken at (X1,...,X,,), are of respective order o(n~'/3), o(n~'/?) and o(n~"). These conditions
assure that the value of ¢, (X7, ..., X,,) is not oversensitive to the value of a single observation (see
Section 3 for a formal exposition). Exploiting these assumptions, we exactly characterize the limiting

distribution of the bootstrap estimator 2°°¢, compare it to the distribution of the original statistic 6,

and study how fast the distribution of 9300“ converges. Notably, we also discover that when the mean
of the observations X is unknown, then the bootstrap method is in general not consistent and we
propose corrections to bootstrap based intervals with guaranteed minimum coverage.

Related litterature The empirical bootstrap method was first introduced in a breakthrough paper
by Efron [27]. Other bootstraps methods have since been proposed including the multiplier bootstrap
[54], the residual bootstrap [21] or the non-remplacement bootstrap method [47]. A vast literature
studies the theoretical properties of those techniques with some of the main results synthesized
in the following books [33, 21, 36, 3]. Most relevant to us are studies of the asymptotics of the
bootstrap method. The consistency of the bootstrap method for linear statistics, t-statistics, Von-
Mises functionals and quantiles has been established in [5, 46, 48] and for U-statistics in [1, 55].
Those results, among others, have been extended to high-dimensional regression and M-estimation
[6, 45, 10, 2, 24], misspecified models [49], solutions of estimating equations [11] and to robust
estimators [15]. In contrast, other works established the poor performance of the bootstrap method
for non smooth statistics [25, 4, 5], or for non-sparse high-dimensional regressions [28].

Several recent breakthrough papers studied the consistency of the bootstrap method, both empirical
and wild, for the maximum of high-dimensional centered averages with the dimension taken to
be growing exponentially fast with the sample size. Notably [18, 19] established the consistency
of the bootstrap and Gaussian approximation method when respectively log(p,n)"/® = o(n'/®)
and log(p,n)7™/% = o(n'/%) hold. A series of works have strengthen those results: [20, 23, 41]
established the consistency of the multiplier and empirical bootstrap when log(pn)®/4 = o(n'/4),

[43] established a quasi \/ﬁfl rate for the wild bootstrap, [22] built slightly conservative confidence
sets with guaranteed coverage under the conditions that log(p) = o(n) and [16] proved that similar
results hold for high-dimensional U-statistics. Those works use a combination of the Stein method,
Edgeworth expansions, Lindeberg’s method [13] and the Slepian smart interpolation path. We note
that the limiting distributions of those statistics are in general not Gaussian [23]. In contrast, our
results apply more broadly and are not limited to the study of maximums of centered empirical



averages. We notably apply our results to machine learning estimators that are smoothed arg-minima
of an objective function. Other works have studied the accuracy of the bootstrap method for specific
statistics whose distributions are known to be asymptotically not Gaussian such as: the operator
norm in high dimensions [44, 34, 37], sampled eigenvalues of random matrices in high and moderate
dimensions [29] or M-estimators having cube root convergence [9]. The main contrast between this
series of work and ours is that, rather than studying the bootstrap method for one specific statistic or
application, we seek to establish the asymptotics of the bootstrap method under universal conditions
on the estimators (g,, ). Our proof builds on a breakthrough method proposed by Chatterjee [13] that
generalized the Lindeberg method to a general technique for comparing the expectations of f(X71.,,)
and f(Y3.,) of alarge class of functions f.

2 Problem Statement

Let (X]) be a triangular array of independent and identically distributed (i.i.d) processes with
observations X[ taking value in R, Moreover, let X" = (XP,..., X") denote its n-th row.

Consider an estimator én = gn(X™), where g, : X?led" — R is a measurable function, that we
will typically refer to as a statistic, and let (g,,) denote the sequence of measurable functions as n
grows. To evaluate the performance of this estimator and build confidence intervals, we need to
approximate its distribution. In this work, we will analyze the empirical bootstrap method.

Empirical bootstrap Bootstrap samples Z" = (Z7, ..., Z") are sampled with replacement from
the observations { X7, ..., X}. This implies that conditionally on X™ the coordinates of Z™ are
distributed i.i.d, with Z | X™ ~ unif ({X7,..., X]}), forall i € [n].

Consistency metric and bootstrap consistency Throughout the paper we denote with Y =
(Y™, ..., Y.™) an independent copy of X™. The bootstrap method is said to be consistent for (g,,)
if conditionally on X" the distribution of g, (Z™) well-approximates the distribution of g, (Y™),
as n — oo. To make this statement rigorous we introduce a metric on the space of probability
distributions. First, we define the class of three times continuously differentiable measurable functions
with bounded third-order derivatives:

F = {h € C3R) | sup h(i)(aj)‘ <1, v1<i< 3};
zeR
Given this, we define the distance on the space of probability measures, as the maximum mean
discrepancy, where test functions range over the class F:
dr(p,v) :=sup Ex., vy~ [M(X) — h(Y)].
heF
We remark that d £ is a metric on the space of probability measures of real-valued random variables.
Notably for two probability distributions y and v if dz(u, v) = 0 then those distributions are the
same v = u. Moreover, the topology defined by d £ is finer than the weak convergence topology.
Indeed, for a sequence of distributions (v,,) if we have dx(v,,, ) — 0 then (j,,) converges weakly

d . . . . .
to u: v, — . Finally we remark that this metric is related to the classical Levy-Prokhorov distance
on probability spaces [7].

Moreover, we use the shorthand notation:

dr (H,I/ | 5) = }SUE_EXNM,YNV [h’(X) - h‘(Y) | 5]
e

We say that the empirical bootstrap method is consistent for (gy,) if:
dr (9.(Z2"), gu(Y") | X™) & 0.

Centering discrepancy and centered bootstrap consistency Notably, an individual bootstrap
sample Z}' | X™, has a slightly different mean E [Z]' | X"] = X" := 1 3. X" than the one of
X7 As we will see this small difference plays a crucial role in determining the consistency of the
bootstrap and for this reason it will be useful to define artificially centered versions of the random
variables (Z]') and (Y;"). A centered bootstrap sample

Zp =27 - (X" ~E[X]))



is a bootstrap sample that has been re-centered to artificially have the same mean as X7'. Moreover,

denote with Y a corrected version of Y, artificially re-centered to have the same mean as Z7, i.e.:
Y=Y+ X" - E[X]].

We say that the centered bootstrap is consistent for (g, ) if:

dx (9n(2"). 9a(¥") | X) L0,

From metric consistency to confidence intervals with nominal coverage We can compare the
confidence intervals of two random variables X and Y in terms of their mutual distance dx(X,Y)
(proof in Appendix M.1).

Proposition 1 Let X and Y be two real-valued random variables and € any random event. Let
€ > 0 be a constant then for any Borel set A € B(R) the following holds:

P(XGA(;EI«?)ZP(YGAM)—W

where we wrote A, := {x € R | 3y € As.t |x —y| < €}. Moreover, if [a,b] is a confidence interval
atlevel 1 — aforY —E[Y | &], conditional on &, then we have:

| 205(X.Y [ €)

P(X-E[X|€E €la—6eb+6€|E)>1—a > .

For instance, suppose that we care about estimating 6,, := [ [¢g,,(Y™)]. Then the bootstrap method,
if consistent, can be used to build consistent confidence intervals for 0,,. Indeed since we can
estimate the conditional distribution of Lo°tstrar .— ¢ (7™ by drawing sufficiently many bootstrap
sub-samples, we can find C'*"™ such that

j2) (égootstrap o) [égootstrap | Xn:| c own ‘ Xn) -1—q.
Then, if we write 0,, := gn(Y™), using the consistency of the bootstrap method we obtain that:
liminf lim inf P <é,L -0, € C'Eo‘") >1-aq.
el0 n—oo

Therefore, confidence intervals built using the bootstrap method achieve asymptotically nominal
level of confidence. We note that prior works (e.g. [18, 19]), typically provide a slightly stronger

statement that lim inf,, _, . P(0,, — 6,, € C*™) > 1 — «, by proving anti-concentration results on
the limit distribution of én — 6,,. Such anti-concentration, allows one to argue that the mass of the
random variable 0,, — 0,, contained in C>™ converges to the mass contained in C*"™ as € | 0 and
thereby, lim inf, o liminf, P(én — 60, € C¥™) =liminf, P(én — 0, € C*™). Given that
these results typically require stronger conditions on the statistic and many times Gaussian limits, we
omit this step in this work and note that a slightly weaker, albeit still practically useful, statement on
coverage is achievable in a more general setup.

From metric consistency to p-values Alternatively, suppose that we want to test if a specific null
hypothesis (H{') holds against the alternative (H7"). To do so we compute a test statistic T, (X1.,,) and
determine a rejection region R™. A crucial quantity to estimate is the p-value P (T,,(X7,) € R"|Hp).
The bootstrap method, if consistent, allows us to upper-bound the p-value by enlarging the rejection
region with an infinitesimally small quantity. Indeed according to Proposition 1 if the bootstrap
method is consistent then we have

limliminf P (T,,(Z7,) € R2|X™) > limsup P (T, (X7,) € R").

€l0 n—oo n—00

2.1 Notations and definitions
For a scalar random variable X we denote with || X, the L,-norm: || Xz, := E[X?]/P. More-

over, for vector x € R?, we denote with ||z|,, the £, vector norm: ||z||, = (Zle a:f) 1/p. For
simplicity, given a sequence (z;), with z; € R? and a constant ¢ € R?, we shorthand

T1g = (T1,..,Tpn), Tip+cC = (x1+¢...,2,+¢C), CTay = (¢, Ta,...,T,).
We denote the k-th coordinate of z; € R as x; ;.. For a function f : xleRd“ — R and a random
variable X taking values in R%*, we designate f(- + X) the random function: x1.,, — f(z1., + X).



Lindenberg path interpolation Let Z ™ and Z™%* be the following interpolating processes
between Z™ and Y":

Zmi ()?p,...,ﬁ”,zglﬂ,...,Z;;)

Z'rL,z,;c - (Yln""’Y 1’([ Zz,+17""Z':74L)

Higher-order derivatives and bounds If a function f is three-times differentiable then we let:
3¢,kf($1:n) = 8mi,kf($1:n)
O o (@1:0) 1= O,y O,y f210)
0ﬁkl:3f(a:1m) = 8%,“1 @,\2 8&01,@ f(x1m)
Moreover, for a potentially random function f we define the constants:
M = 2| XT | s

D]gl(f) = M’Z;"l 1}1<a5< ai7k1f(sz7i7X7l)‘

L2
fa() = MM, mas |02, (20|
Dy (f) == M} MQ My, max Comax 97 f(Z2M0)
i<n E[X"‘,Yln}u[X”,Z”] s

where for any two vectors a,b € RY, we denote with [a, b] their convex closure, i.e.
[a,b] :={ta+ (1—t)b:t €]0,1]}

3 Main Results

If the statistics (g,,) were linear, i.e. g, (z1.,) = > ,,, ;. then the influence of a single observation

X7', on the estimate 6,,, would depend uniquely on the value of the random variable itself, i.e.
gn(X™) — g(0X%,) = X7 This is not the case for non-linear statistics. For instance, if g,,(z1.,,) =

max (), -, Ti,1, )<, Ti2 ) then the influence of observation x1 depends on the relative size of

> iso i and Y. o x; 2. In this paper, we want to study the asymptotics of the bootstrap method
for such non-linear statistics, with complex influence functions. To control the degree of non-linearity,
we assume that the statistics (g,,) can be approximated by three times differentiable functions.

Assumption 1 (C3-Approximability) There exists a sequence of functions ( f,,) with f, € C3 s.t.:
1. The functions ( f,,) approximate the estimators (g,):

[ fn(Z") — gn(Zn)”Ll + fn(}}n) - gn(}}n) =250, (Ho)

1

2. The first, second and third order derivatives are respectively of size o(n="/3), o(n=1/?),

o(n=h):
Ryq o= n'® 3" Dy (fa) = o(1) =V Y Dy (fa)=0(1)
ki1<dp k1,k2<d,
R,3 :=n Z Dy, (fn) = o(1).
ki ka,ks<dn

(H1)
To motivate Assumption 1, we present in Appendix C two illustrating examples of simple estimators
which fail to satisfy conditions (), (I1;) and for which the bootstrap method is not consistent.

Under Assumption 1 we study the limiting distribution of the bootstrap statistic and establish that it
is asymptotically the same as g,,(Y™) (proof in Appendix L).



Theorem 1 Let (g, : x7 R% — R) be a sequence of measurable functions. Let (XI) be a
triangular array of i.i.d processes such that X7 € L1s. Under Assumption 1, there is a constant K
independent of n such that:

€n =

1
Ly + K <RZ’1 max {m, R'n,l} + Rn’g + Rn’g)

gn(Y") = fu(Y™)

|, +l9a(Z") = ful2")]l,
| (9u(27). 97y | X7) 1

Remark 1 We remark that the theorem also holds under slightly modified stability conditions. See
Theorem 8 in the appendix for more details. Moreover, the hypothesis that (X") is an i.i.d process
can also be relaxed to assuming that the process (X[') is exchangeable. See Theorem 10 for more
details in the appendix. Finally, note that Theorem 1 can also be extended to random estimators
(gn), such as ones obtained by stochastic optimization methods (e.g SGD). See Theorem 10 for more
details in the appendix.

Remark 2 We note that Assumption 1 controls how stable the function g, is to the change of one
random variable for example X,. Many concentration inequalities, such as the Mcdiarmid inequality,
impose conditions on similar quantities. To be able to derive a central limit theorem one would
need to make additional assumptions regulating how much this change g, (X1, Xo, ..., Xpn) —
gn(0, Xo, ..., X)) depends on the other random variables Xs, ..., X, [14]. The function h,, —
max (0, \/Lﬁ Zign X; — E(X1)) is an example of a statistic satisfying Assumption 1 but is not
asymptotically normal.

Remark 3 When the mean of the observations E(X7') is known, we propose in Appendix E an
alternative bootstrap method that exploits this information, the centered-bootstrap method, and prove
that it is consistent for g,,(Y\",). This is useful for example for estimating p-values for hypothesis
testing.

Theorem 1 guarantees that we can use the bootstrap method to estimate the distribution of gn(l}”),

which implies that it can also be used to build confidence intervals for E [gn(f/”) | X "} .

Corollary 1 Let (g, : xR — R) be a sequence of measurable symmetric functions. Let (X[*)
be a triangular array of i.i.d processes such that X} € L1o. Assume that (g,,) and (X[") satisfy all
the conditions of Theorem 1. Then there is a constant K independent of n such that for €,, as defined
in Theorem 1:

|d (9n(2") —Elgn(2") | X", 9a(F™) = E [g(7") | X*] | X7)

’ < 2, = 0.
Ly

The distribution we are interested in is that of g,,(Y") rather than g,,(Y™). Moreover, the shape of
the confidence intervals of gn(f/") can be arbitrary compared to the ones of g, (Y"™), i.e. they are not
systematically larger or smaller. This is illustrated in Appendix D by a series of examples. Therefore
in Appendix F we propose conditions that guarantee that the two distributions are asymptotically
identical and we prove in Appendix G that those conditions are tight.

When those conditions are not met we propose the use of the bootstrap method to build adjusted
confidence intervals that are guaranteed to have at least (but not necessarily equal to) some minimum
asymptotic coverage. In Appendix H we propose an alternative method to do so by exploiting the
bootstrap method for slightly shifted observations. Moreover, in Appendix I we assume that the
mean E(X7") belongs to a certain subset A,, and build robust confidence intervals with a guaranteed
coverage level for all potential values of the mean.

According to Corollary 1 the bootstrap method can be used to build consistent confidence intervals

for E(g,(Y™) | X™). Therefore if we can bound the distance from E(g,,(Y™) | X™) to E(g,(Y™))
we can use the bootstrap method to build confidence intervals on the latter. To do so we exploit the
fact that under mild conditions ﬁ[X n—E(X {‘)] is approximately normal. We assume that the
function x — E [g,, (Y™ 4 z)] is a-Holder and that the moments of X} are bounded. More formally,



suppose that there is a sequence (C,,) and a constant b such that
(E [gn (Y" + i) - gn(Y”)} ' < Cpmax [ax|*, Yz € R (Hs)
n k<d,

\/_
. n log(dn)7/6|| SUPg<d,, |X?k|||%4
Jnglgi ”Xl,j”Lg > b, nl/6 - 0(1)

Theorem 2 Let (g, : x;;le" — R) be a sequence of measurable functions satisfying Assumption
1 and (H3). Denote ¥, the variance-covariance matrix of X1* and (N™) to be a sequence of Gaussian
vectors distributed as N™ ~ N(0,%,,). Let § > 0 be a real; write tg/r?, and tﬁ/nz(X") as quantities
satisfying
n n n 2 n n
P (|gn(27) = E(ga(Z")X")| = 1/2(X") | X) < B/2;

P (mkax NP > (tﬂﬂ)écn—i) < B/2.

g,n

Then the following holds:

hr{slfoup lim sup P (E(gn(Y")) g [gn(Z”) — tg’/j — tg/,f -0, go(Z2™) + tg/nz + 1‘5/712 + 5]) < 8.

See Appendix N.6 for proof of Theorem 2. We present in Appendix H an illustrative example.

4 P-value of a Two-Sample Kernel Test

In this subsection, we show how the bootstrap method can be used to obtain consistent p-values
for kernel two sample tests. Given two independent i.i.d processes (X/;) and (X7, ) taking value
in X, C R, the goal of two-sample tests is to determine if the two set of observations (X7)
and (X7',) are sampled from the same distribution. For ease of notations, we designate by 1, 1

and p,, o respectively the distribution of the first sample (X Lnl) s {n,1 and of the second sample

(X72) ESH n,2; and we want test if the null hypothesis holds

(H(?) S Hn1 = HBn,2

against the alternative
(H{l) * Hn,1 7é Hn,2-
A popular method to do so are non-parametric kernel two samples tests [42, 31, 52, 51].

Let F,, be a class of functions from &, into R. If the two distributions are the same ft,,,1 = fip, 2 then

we have:

sup ‘E(f(X&)) - E(f<XIL2)>| =0.

fEF
Moreover if F,, is dense in the space of bounded continuous functions then the converse also holds.
The main difficulty therefore consists of choosing the set F,, to be big enough to differentiate between
the distributions 4,, 1 and y,, » but structured enough that we can estimate of sup ;¢ }E( f(XT))—

E(f(XT2)) ] To do so, we choose a reproducing kernel space H,, with kernel K, : X, x X, — R
and set the class of functions F,, to be the unit ball of #,,. Different choices of kernels will lead to
various level of power for our test especially for structured or high dimensional data. The goal is to
choose the kernel that is the most likely to maximize the power of the test.

Let (ng (-, )) k<py, be a finite set of potential Kernel candidates. We write for all ¢, j < n and for
all k < p,

HP% = Ko, (X7

7,1

X))+ Ko, (X7

3,27

Xio) = Ko (X1, Xila) = Ko, (XFo, X74);

and for all subsets B C [n] we denote My, (X7) := ﬁ > ijeB H?’; The idea proposed in [42] is

to select the kernel that gives rise to a test with the highest (estimated) power. This is done by selecting



a subset B,, C [n] and maximizing the following quantity 2 := argmax,, {01,....0,, 1 Po(XB,)
where we have set

My (X2
po(XG, ) = o(X5,)

2
_a 0 1o a4 )
Bal? i€ Bn [ZJGBn H P 15,7 {ngm Hi,J} +An

where (A,,) are tuning parameters Once the kernel is chosen the test statistic is computed on [n] \ By,

the remaining data: 2 > JEINI\Bn H . The fact that the kernel is chosen on a different sample
than the test statistlc is computed on, rneans that the conditional limiting distribution of the test
statistic, under Hy, is known to be a chi-square [42]. Hence one can compute a consistent estimate of
the p-value. However under this approach only a portion of the data is used to select the kernel. This
could be problematic when dealing with high-dimensional kernels.

We propose a different method that does not require data splitting and uses the bootstrap method to
estimate the p-value. The test statistic that we propose is a softmax:

n(X77 = Z Z He" w (X1.m), where wg (X1.,) =

R<p, || i ki <py, ©

5np9k(X")
g (X

and where (3,) are hyper-parameters. The bigger 3, is the more weight we give to the kernel
maximizing pg(X™).

We note that the distribution of Tn is unknown and depends in an intricate fashion on the set of
kernels {Ky,, k < p,} as well as on p,,. Therefore to be able to compute the p-value we want to
estimate its distribution under Hy.

For technical reasons it is convenient to apply the statistic to a random vector whose coordinates are
identically distributed. We achieve this by randomly permuting the two samples before passing it
to the kernel test statistic (a transformation also conducted in the prior work of [42]). We remark
that under the null hypothesis the distribution of X", and X[, are the same which implies that
the samples are interchangeable (X7, X7,) 4 (X7'y, X7,). Itis therefore natural to compare
the distribution of (X*) to the corresponding randomly permuted process. This is the idea behind
permutation tests [42]. In general, for an i.i.d random process (X ) taking value in R? we define the
process (X M) obtained by randomly permuting the observations X; .1 and X; 2

M. X with probability 0.5
- (Xz 2, X@ 1) with probability 0.5.

. . . . . . ooM 4o
We note that this permuted process has identically distributed coordinates, i.e. X 1Ml =X % Asa

side fact, we note that dy (f( 1, X f” ) <dw <X’ 1,1 X 1,2), where dyy is the Wassertein distance,
but, more importantly, if the distribution of (Xl) are already in Hj then its distribution is left
invariant by those permutations. We show that the bootstrap gives consistent and asymptotically tight
upper-bounds to the p-value even when p,, grows exponentially fast (proof in Appendix Q.1).
Proposition 2 Ler (X]") := ((XZ17 X{’Q)) be a triangular array of i.i.d processes. Let { Ky, , k <
Dn } be a sequence of positive definite continuous kernels. We suppose that

log(p,) D2
where we shorthanded D,, := max (H supy<,, Ko, (X714, X{\ﬁ)HLm, 1) Let (Y") be an inde-
pendent copy of (X[*) and (Z[*) be bootstrap samples of (X]*). We have:

de (nTn(Zf‘fl),nTn(Yf}fL) | X) 0.

Ly
S Empirical Risk of Smooth Stacked Ensemble Estimator

A ubiquitous and popular approach for model selection and ensembling in machine learning practice
is known as stacking [53, 8, 50]. Given a set of trained base estimators {61, ...,0P}, for example



representing a fitted neural network, a random forest and a nearest-neighbour estimator, we call the
smooth-stacked estimator the linear ensemble of those estimators {ék } weighted by coefficients that
are related to the out-of-sample risk of each estimator. An important question: if we use all the
samples to estimate the weights of the ensemble, then can we construct confidence intervals on the
risk of the ensemble estimator?

The most straightforward version of stacking is to put all the weight on the model with the smallest
out-of-sample risk. Other approaches proposed in practice are to fit a linear regression model using
the outputs of each model as an input co-variate to the linear model and using the learned coefficients
as coefficients on the ensemble [50].

In this subsection, we analyze a smooth version of stacking, proposed and analyzed experimentally,
for instance, in [38], that adds stability to the chosen ensemble, while putting most weight on
the best performing model. This ensemble can be viewed as a regularized instance of the linear
regression stacking approach where an entropic regularizer is added to the square loss objective. This
regularization adds smoothness and stability to the chosen ensemble and allows us to show that the
distribution of the ensemble’s risk can be estimated with the bootstrap, even if the all the data are
used to estimate the weights or fit the base models.

Let (X*) be a triangular array of i.i.d observations taking value in R%; and let (m,,) be an increasing
sequence. Define F,, as the space of measurable functions from xR to R We estimate
pn different estimators ,, := {6%(X7,. ), k < p,} built on the first m,, data-points. Each
estimator 6% is a training algorithm that takes as input m,, samples X Tim,, and returns a model,
which itself is a function from R% to R% . We denote with 6% (X7, ) the returned model and with

l:mgy,

0k (X7, )(xy) € R% the evaluation of the model at a point z,, € R%".

1:mg,

The loss of a model at a sample is measured by a common loss function £,, : R% x R% — R and
the empirical risk of the k-th estimator is computed on all the remaining n — m,, data points as:

1 n
Rk ) i —m—— Ln uaek T1:m w))-.
n (.131‘ ) n—m, u:;Jrl (.I ’n,('l’ll n)(x ))

The smooth-stacked estimator is defined as the following ensemble learner

o e*ﬁnnﬁ,(flm)

@n(xln)() = Z Zk,< e—Ban;'L/(Ilzn)eg(ajl:m")(.).
=Pn

k<pn

The hyperparameter 3,, controls how concentrated the stacked estimator is around the estimator(s) é’;

with the lowest empirical error. We denote the empirical risk of an ensemble model © € (R% — Ré»)

as
n

1
vn—m,

1.
t=mnu+1

Let (Z™) be a bootstrap sample of (X*); >, . We show that the bootstrap method is systematically
consistent if and only if 3, = o(y/n — my,). For simplicity we suppose that the estimators 6% return
models that when evaluated at any point z,, € R% have bounded coordinates; and that the loss

function £,, is smooth, and have bounded partial derivatives in its second argument.
We write the set of all convex combinations of the estimators: Q({6,, p <pn}) =

{Zp<p” wpbp |wp > 0and 3w, = 1} and introduce the following notations:

Ty = sup || sup |02(X7,, )X V1.
£<d;, llp<pn L

L, = | sup ‘zn (X,?,ég(X{im")(X,?))‘ Vv sup sup g |Cn(X2,0(XM))]
P<Pn Lo t=du|l0e({6,(X7,,.), p<pn})

Lo

v,



where by 95 o L,,(2,y) we designate 0y, L,,(z,y) We show that if the following hypothesis (H;taked)
holds then the bootstrap method is asymptotically consistent (proof in Appendix R).

Bnds,

Bn
L, T, ¢ Ly 5 0. (Hftacked)
n—"my

Proposition 3 Choose (my,), (8n) and (p,) be increasing sequences. Let (X") be a triangular
array of i.i.d observations taking value in R . Set (L, : R x R — R) to be a sequence of
smooth loss functions. Let (Z1) and (Y;") be respectively a bootstrap sample and an independent
copy of (X7, .q,...,X]). Suppose that the hypothesis (H stackedy holds then we have:

| dr (Re, (Zin 1) ~ B[R (Zin, c1a)|O0]s Ry (Vi 1) = B[R (Vi 41.0)|60] | X7))|

n

— 0;
Ly

where we have shorthanded ©,, := ©,,(X™). Therefore if we choose t,, o(X™) to be such that:

P (|Ry, (3, c10) ~E[RY (23, 11.0)|64]

n mp+1lin

2 tn,a(Xn) ‘ X’IL) S Y
then the following holds

lim sup P (‘RO (v

ma,+1ln
n—o00

) —E[RY (Y 11.:)|60n]

> 1n,a(X") | 64) <@

If 8,, grows proportionally to 8,, o y/n — m, then the bootstrap method is not a systematically
consistent estimator of the risk of the smooth stacked estimator. We present a simple example
illustrating this in Appendix K and establish the asymptotic distribution of the bootstrap. However,
we show that using Theorem 2 we can still propose a corrected confidence interval with guaranteed
asymptotic coverage.
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