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Abstract

Learning to navigate to an image-specified goal is an important but challenging
task for autonomous systems. The agent is required to reason the goal location
from where a picture is shot. Existing methods try to solve this problem by
learning a navigation policy, which captures semantic features of the goal image and
observation image independently and lastly fuses them for predicting a sequence
of navigation actions. However, these methods suffer from two major limitations.
1) They may miss detailed information in the goal image, and thus fail to reason
the goal location. 2) More critically, it is hard to focus on the goal-relevant regions
in the observation image, because they attempt to understand observation without
goal conditioning. In this paper, we aim to overcome these limitations by designing
a Fine-grained Goal Prompting (FGPrompt) method for image-goal navigation. In
particular, we leverage fine-grained and high-resolution feature maps in the goal
image as prompts to perform conditioned embedding, which preserves detailed
information in the goal image and guides the observation encoder to pay attention
to goal-relevant regions. Compared with existing methods on the image-goal
navigation benchmark, our method brings significant performance improvement on
3 benchmark datasets (i.e., Gibson, MP3D, and HM3D). Especially on Gibson, we
surpass the state-of-the-art success rate by 8% with only 1/50 model size.

1 Introduction

We focus on the image-goal navigation (ImageNav) task [51] that requires an agent to navigate to an
image-specified goal position and face the same orientation as where the photo is taken. In this task,
the agent needs to explore the environment and try to find the objects with their surroundings that
best match the ones specified in the goal image. Though humans prefer to share information using
language, an image is a much clearer and more detailed description to specify a goal location or an
intermediate landmark for some household robots [23] or self-driving vehicles.

Despite its wide applications, this task is still very challenging for the embodied agent due to the
following two aspects. First, compared to object-goal navigation which assigns goal descriptions with
specific semantic categories, it requires the agent to perceive the visual observation as well as the goal
image and make a comprehensive understanding of the scene in order to identify goal-relevant objects.
Second, objects share similar semantic meanings within one environment, making it challenging to
accurately find out the desired object instance.
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(a) Success rate comparison with baseline (ZER [52])
on three different datasets. Our method performs ef-
ficiently and robustly in both seen (i.e., Gibson) and
unseen (i.e., MP3D and HM3D) environments.
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(b) Comparison with SOTA both on success rate and
the number of parameters. the FGPrompt-EF, an early
fusion variant of our method, achieved 90.4% success
rate with only 1/50 model size compared to SOTA.

Figure 1: Main results of our proposed FGPrompt on the image navigation task.

Previous methods [31, 7, 19, 8, 37, 6, 2] seek to solve this task by decomposing the navigation system
into several modules in isolation. In general, they tend to adopt efficient exploration skills to build
a map incrementally as the understanding of the scene, and further predict a waypoint to navigate
to. However, these map-based methods require depth maps or the agent’s GPS position to build the
occupancy map or topological map. The latest methods [15, 29, 52, 28, 47, 46] instead try to learn a
navigation policy in an end-to-end manner using reinforcement learning. These methods set up two
different encoders to obtain semantic embeddings from goal and observation images independently.
Subsequently, a recurrent model takes these embeddings as input to predict a possible action sequence.
However, they suffer from two major limitations: 1) As the details in the goal image are gradually
overlooked as it goes through deeper network layers, it is harder to find useful cues for reasoning and
finding the goal location. 2) Existing methods leave the goal image apart from the observation when
performing encoding, it is hard for the agent to focus on the goal-relevant regions in the observation
since there is no goal prompting to guide the agent to understand the observation.

When people try to find a place captured in an image, they must look for the contextual cues presented
with objects, shapes, colors, and textures in both the goal images and current visual observation.
Spatial reasoning based on this information plays a critical role in understanding the scene, as
people always compare and identify similarities, in order to consider the relative position of various
elements and gain insights into the current position and the target location. Motivated by this fact,
instead of considering only semantic features of goal and observation images, we propose a novel
fine-grained goal prompting (FGPrompt) architecture to learn observation embeddings conditioned
on the fine-grained and high-resolution features of the goal image.

Specifically, we implement the goal prompting scheme as a fusion process between the goal and
observation images and design a mid fusion (FGPrompt-MF) mechanism. This mechanism leverages
fine-grained and high-resolution feature maps in the intermediate goal network layers as the prompts,
which are proven to contain informative object details [20, 50]. Hereafter, conditioned on these
feature maps, we utilize FiLM [32] layers to learn a transform function to adjust the observation
activations to focus on goal-relevant objects. In addition, we also design an early fusion (FGPrompt-
EF) mechanism by concatenating the goal and observation images at the pixel level. We then use
a neural network to perform implicit information exchange. Experimental results show that our
proposed method significantly outperforms state-of-the-art methods, as shown in Figure 1.

To sum up, our contributions are as follows: 1) We propose a fine-grained image goal prompting
(FGPrompt) architecture to explicitly exchange fine-grained information between goal image and
observation image, reaching a new SOTA of the ImageNav task and also showing great potential
in some other embodied tasks including instance image navigation and visual rearrangement tasks.
2) We empower the agent with fine-grained information exchangeability through a simple channel
concatenation technique. This scheme is parameter efficient yet shows an absolute advantage on the
ImageNav task, even compared to some complex memory graph-based methods. 3) We dedicately
design a mid-fusion scheme through a novel fine-grained FiLM mapping module to perform a more
robust information exchange. This scheme shows superior performance in more practical scenarios
where the goal image possesses different camera parameters from the observation.
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2 Related Work

Modular methods. Modular methods leverage strictly defined modules that are handcrafted [37, 23]
or learnable [7, 19, 18, 8, 37, 6, 2, 10] to address the image-goal navigation task step by step. Classical
modular methods typically combine the exploration [48] component, simultaneous localization and
mapping (SLAM [16, 43]) component, and path planning component to achieve the navigation goal.
In order to localize the agent in an unknown environment, some approaches build an explicit metric
map of the environment [7, 19], while others propose to obtain an implicit latent map [18] like a
topological map [8, 37] or simply adopt object detectors without mapping [35]. Chaplot et al. [6]
and Avraham et al. [2] train supervised deep models to tackle the sub-tasks, which require a lot of
annotated data. Although off-the-shelf modules can be used with zero fine-tuning [23], they still
heavily rely on pose and depth sensors, which greatly limits their applicability in the real world.

RL-based navigation. Another pipeline for ImageNav is to directly learn from interactions with
the environment using reinforcement learning (RL). RL-based navigation tends to learn an end-to-end
reward-driven policy that maps observation to action [47, 46, 52, 28, 29, 12] and shows great potential
in this task. However, these methods still face the challenge of the sparse reward mechanism and poor
generalization performance. To address these issues, previous works [15, 52, 28, 26] propose different
methods to encourage the agent to explore more efficiently. Yu et al. [15] combines RL policy and
visual representation learning model in a min-max game way to incentivize the agent to explore
its environment. Al-Halah et al. [52] proposes a zero-shot transfer learning approach with a novel
reward for its semantic search policy. Similarly, Majumdar et al. [28] uses a CLIP model pre-trained
in self-supervised manner [33, 41, 9] to enhance image embedding. To tackle the long-horizon
planning problem, an external memory module has been proposed by [29, 17, 3, 37, 25, 22, 11] that
learns a topological graph [17, 3, 37, 25, 22] or attention map [29] online. Self-supervised learning
paradigm has also been explored by Yadav et al. [47, 46] to endow the navigation model with better
representation ability. Different from existing approaches, we proposed a goal-prompted observation
understanding method that learns to focus on goal-relevant objects through fine-grained goal prompts.

Goal-conditioned learning. Existing RL-based navigation methods can be interpreted as learning a
goal-conditioned policy, since they only perform fusion on the latent goal embedding and observation
embedding. Only semantic-level information can be exchanged during fusing. Some embodied robot
planning methods [4, 40, 21, 49] learn a goal-conditioned observation encoder by injecting the goal
embedding into it. Stone et al. [40] and Brohan et al. [4] only consider the language as the goal
description, while Jang et al. [21] and Yu et al. [49] try to fuse the goal image with the intermediate
feature maps of observation encoder using an affine transformation proposed by FiLM [32]. However,
they still focus on the latent embedding of goal images and neglect the fine-grained information in
high-resolution activation maps. In this paper, we propose to make use of the intermediate activations
in the goal encoder as informative guidance to condition the learning of the observation encoder.

3 Image Goal Navigation using Fine-Grained Goal Prompting

3.1 Task definition

Image-goal navigation (ImageNav) requires an agent to navigate to a goal position that matches
where the goal image vg was shot. Specifically, the agent starts at a random location p0 and only
receives a goal image vg from the environment. At each time step t, the agent receives an egocentric
RGB image vt captured by a RGB sensor fixed on its body, and executes an action at conditioned
on vt and vg. In RL-based methods, the action at is selected based on the learned policy. After
performing the action at, the agent will be assigned a reward rt that encourages the agent to reach the
goal position as soon as possible. A more detailed definition of our setup can be found in Section 4.

Existing RL-based methods tackle the ImageNav problem by learning an observation encoder and a
goal encoder separately, and then fusing their output embeddings together. As shown in Figure 2
(a), this fusion module is commonly equipped on most of the baseline methods. However, those
embeddings preserve little detailed information, e.g., shape, texture, and spatial relationship, to
promote finding and comparing objects relevant to the goal image [50, 20]. To tackle this challenge,
we propose to leverage fine-grained information from lower-level goal image features as prompts to
promote the agent’s ability to focus more on goal-relevant objects.
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Figure 2: Illustration of baseline fusion (a) and our goal prompting (b, c, d) for image-goal
navigation. All these methods take observation and goal images as input and output fused features.

3.2 Fine-grained Goal Prompting

We design and explore three different fine-grained goal prompting methods that vary from fusion
mechanism, namely Early Fusion, Mid Fusion, and Skip Fusion. For the first early fusion mech-
anism, we investigate injecting fine-grained information from the goal encoder through a simple
but effective channel concatenation. After that, we delicately design an explicit information flow
through a novel fine-grained FiLM mapping module. Finally, we replace the learnable modules with
a heuristic one that injects goal-relative features using feature matching.

Early Fusion via Joint Modeling. A naive solution to exchange information in two images is
to directly concatenate them together before input to the encoder. In this way, we are able to fuse
fine-grained image details in the very early stage and jointly model them using the same encoder. In
particular, we concatenate the goal image with the observation image on the RGB channel dimension,
resulting in an input tensor shaped 128× 128× 6. This concatenated tensor is then fed into a ResNet
encoder that takes the 6-channel image as input. In this case, the fusion mechanism can be written as:

zfusion = fo(vo ⊕ vg) (1)

This simple design yields a promising performance on the image navigation benchmark. Detailed
ablation on this early fusion operation can be found in Section 4.2.

Mid Fusion via FiLM Layers. However, as the early fusion mechanism enables spatial reasoning
between two images using an identical convolution kernel, it is difficult to handle the situation
when the orientation of the goal camera is noisy. To alleviate this, we further propose an active
fusion scheme, utilizing the adaptability of a novel fine-grained FiLM mapping module. Previous
literature [21, 49] inputs the goal embedding into the ResNet visual backbone via FiLM [32] layers,
which adapt a learnable affine transformation conditioned on the input embedding to the intermediate
activation maps in each residual blocks. Through these layers, we can easily connect the intermediate
layers in both the goal encoder and the observation encoder to perform mid fusion.

Different from the existing approaches that leverage abstract language embedding as a global condition
for all layers, we propose to use the hierarchical representations from the intermediate goal encoder
layers. This allows us to make good use of the fine-grained information in high-resolution feature
maps. Specifically, we perform FiLM affine transformation on the resnet blocks of the observation
encoder, where the affine factors βi

·,·, γ
i
·,· in block i are conditioned on the shaped activation map zig

from the correspondent block of the goal encoder. This process can be formulated as:

γi
c = fc(zg) βi

c = hc(zg) (2)

ẑio = γi
cz

i
o + βi

c (3)
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where ẑio denotes a transformed activation map in block i and c denotes the cth feature of the feature
map. The functions f and h learn to map the condition variable into the affine factors. In practice, we
implement them as 1× 1 convolutions to maintain the same resolution between the input and target
activation map. Section 4.2 further investigates the choices of the mapping function and the number
of FiLM layers. The output from the conditioned observation encoder fo can then be viewed as the
fused feature zfusion, as shown in Figure 2 (c). The fused feature can be written as:

zfusion = fo(vo|vg) (4)

Our experiments in Section 4.3 reveal that the mid fusion scheme performs more robustly when the
configuration of the goal camera and the observation camera is not perfectly matched.

Skip Fusion via Keypoint Matching. In order to evaluate the importance of the addition of the
fusion modules, We finally replaced the aforementioned learnable modules with a heuristic one. To
achieve this, we follow the idea of Wasserman et al. [44] that attach an additional low-level fusion
module using handcrafted keypoint matching methods [27, 36], as an improvement of the Late Fusion
baseline. We name this mechanism Skip Fusion as it fuses the goal image and observation image in
the both early and later stages but skip the others, as shown in Figure 2 (b).

Keypoint matching, which aims to discover representative keypoints in an image and then describe
and match them with the most similar ones in another image. As these points are detected based on
the low-level statistic [27, 13] of image pixels, we leverage them to play a role as low-level fusion.
This scheme is handcrafted as it is not learnable during training. To enable batch inference, we
leverage a deep learning-based keypoint detecting [14] and a matching [36] method to obtain matched
keypoint between the goal image and the observation image. Hereafter, we select top-k matched
points according to their matching score to compose a variable zk and concatenate them together
with zg and zo as the fusion result:

zfusion = zg ⊕ zo ⊕ FC(zk) (5)

where zk = (x1, y1, x
′
1, y

′
1, ..., xk, yk, x

′
k, y

′
k) is a flattened vector of k keypoints and FC denotes to a

fully connected layer. The default value of vector zk is set to −1 if the number of matched keypoints
is less than k. In Section 4.2, we show the superiority of our proposed Early Fusion and Mid Fusion
schemes against this heuristic fusion baseline.

3.3 Navigation Policy

Based on the fused embedding zfusion of the goal image and observation image, we train a navigation
policy π using reinforcement learning (RL):

st = π(zfusion ⊕ at−1|ht−1) (6)

where st is the embedding of the agent’s current state. ht−1 denotes hidden state of the recurrent
layers in policy π from previous step. Following previous methods [52, 28], we adopt an actor-critic
network to predict state value ct and action at using st and train it end-to-end using PPO [39]. We
utilize the ZER reward [52] to encourage the agent to not only reach the goal position but also face
the goal orientation. More details can be found in Appendix.

4 Experiments

Datasets. As for image-goal navigation, we use the Habitat simulator [38, 42] and train our agent
on the Gibson dataset with 72 training scenes and 14 testing scenes under the standard setting. We
use the training episodes provided by [29] and train our agent for 500M steps. We report results
under multiple datasets to allow direct comparison to various prior works. On the Gibson dataset, we
validate our agent on split A generated by [29], and split B generated by [19]. On the MP3D and
HM3D, we use the test episodes collected by [52], as well as the instance image navigation dataset
released by [24]. We also extend our method to another embodied task named visual rearrangement,
where we use the iTHOR simulator and ai2thor-rearrangement 2023 dataset with 80 training scenes,
20 validation scenes and 20 test scenes. Following [45], we train our agent for 75M steps and finally
test the best validation checkpoint on the test set.
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Method Backbone Pretrain Sensor(s) Memory Split SPL SR

NTS [8] ResNet9 N/A RGBD+Pose % A 43.0% 63.0%
Act-Neur-SLAM [6] ResNet9 N/A RGB+Pose % A 23.0% 35.0%
SPTM [37] ResNet9 N/A RGB+Pose % A 27.0% 51.0%

ZER [52] ResNet9 N/A RGB % A 21.6% 29.2%
ZSON [28] ResNet50 OSD RGB % A 28.0% 36.9%
OVRL [47] ResNet50 OSD RGB % A 27.0% 54.2%
OVRL-V2 [46] ViT-Base HGSP RGB % A 58.7% 82.0%
FGPrompt-MF (Ours) ResNet9 N/A RGB % A 62.1% 90.7%
FGPrompt-EF (Ours) ResNet9 N/A RGB % A 66.5% 90.4%
FGPrompt-EF (Ours) ResNet50 N/A RGB % A 68.5% 92.3%

Mem-Aug [29] ResNet18 N/A 4 RGB ✓ A 56.0% 69.0%
VGM [25] ResNet18 N/A 4 RGB ✓ A 64.0% 76.0%
OVRL [47] ResNet50 OSD 4 RGB % A 62.5% 79.8%
TSGM [22] ResNet18 N/A 4 RGB ✓ A 67.2% 81.1%
FGPrompt-EF (Ours) ResNet9 N/A 4 RGB % A 75.0% 94.2%

NRNS [19] ResNet18 N/A RGBD % B 12.4% 24.0%
FGPrompt-EF (Ours) ResNet9 N/A RGB % B 70.5% 93.0%

Table 1: Comparison with state-of-the-art methods on Gibson. All methods are trained and
evaluated both on the Gibson dataset.

Methods Backbone MP3D HM3D

SPL SR SPL SR

Mem-Aug [29] Resnet18 3.9% 6.9% 3.5% 1.9%
NRNS [19] Resnet18 5.2% 9.3% 4.3% 6.6%
ZER [52] Resnet9 10.8% 14.6% 6.3% 9.6%
FGPrompt-MF (Ours) Resnet9 50.4% 77.6% 49.6% 76.1%

Table 2: Cross-domain evaluation on MP3D and HM3D. The agent is trained in Gibson environ-
ments and directly transferred to new environments for evaluation.

Agent configuration. We follow the recipe of previous trails [52, 28, 47] to initialize an agent
equipped with only RGB cameras of 128 × 128 resolution and 90◦ FOV. When compared with
methods that use a panoramic input, we initialize four RGB sensors to the front, left, right, and back
directions of the agent, following [29, 47]. The agent’s action space is comprised of four discrete
actions, including MOVE_FORWARD, TURN_LEFT, TURN_RIGHT, STOP. The minimum units
of rotation and forward movement are 30◦ and 0.25m respectively.

Evaluation metrics. We report the success rate (SR) and Success weighted by Path Length
(SPL) [1], which takes into account path efficiency of the navigation process. An episode is con-
sidered successful if the agent stops within 1.0m Euclidean distance from the goal location and the
maximum number of steps in an episode is set to 500 as the default setting.

4.1 Comparison with State-of-the-art Methods

Evaluation on Gibson. In Table 1, we report the ImageNav results on Gibson averaged over
three random seeds (the variances of all random seed results are less than 1e-4.). We compare our
methods with state-of-the-art methods in two different settings, one takes only one RGB sensor as
input following [52, 28, 47] and another one takes 4 RGB sensors to assemble a panoramic view
following [29, 47]. For the SLAM-based methods in the first three rows, we report the number
reproduced by Mezghani et al. [29]. We found that our proposed FGPrompt-MF and FGPrompt-
EF methods take an absolute advantage compared with all previous methods. Even compared to
OVRL-V2 [46], a method that utilizes a much larger visual backbone (ViT-B) pre-trained on an
in-domain image dataset, we still achieved large performance gains on both SR (92.3% vs. 82.0%)
and SPL (68.5% vs. 58.7%) in the absence of additional pose sensor input. This finding reveals the
effectiveness and efficiency of our proposed method.
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Setting SPL SR

Later Fusion (baseline) 11.2% 13.0%

Skip Fusion via keypoint matching (FGPrompt-SF) 24.7% 41.6%
Mid Fusion via FiLM layers (FGPrompt-MF) 50.4% 77.3%
Early Fusion via joint modeling (FGPrompt-EF) 54.7% 78.9%

Table 3: Comparison of different goal prompting methods on Gibson ImageNav task. Fusing
the fine-grained goal prompts with the observation instead of directly concatenating their semantic
embeddings yield significant improvement.

Mapping Method SPL SR

N/A 11.2% 13.0%
Semantic Mapping 24.0% 32.0%
FG/HR Mapping 50.4% 77.3%

Table 4: How to map activation into affine
factors? Using Fine-grained High-resolution
(FG/HR) mapping performs significantly better.

Depth SPL SR

1 50.4% 77.3%
2 49.3% 77.6%
4 50.2% 71.4%

Table 5: How deep should the Mid Fusion
perform? Performing Mid Fusion on the early
layers works better than on all layers.

We extend our FGPrompt-EF to the panoramic view setting (4 RGB) for direct comparison with some
memory-based methods [29, 25, 22] and pre-trained method [47]. We found that our FGPrompt-EF
outperforms these memory-based methods by at least 13.1% in success rate and 7.8% in SPL, even
without additional external memory module and pre-training phase. Besides, we also provide a
comparison result on the non-mainstream testing episodes (split B) following [19]. Compared with
the self-supervised method NRNS [19] that pretrained on passive videos, our FGPrompt-EF brings
58.1% improvement in success rate and 69.0% in SPL, which shows a great advantage by learning to
understand the scene based on goal prompting through interacting with the environment.

Cross-domain evaluation on out-of-domain datasets. In Table 2, we report the cross-domain
evaluation results on the unseen scenes in the Matterport3D (MP3D) [5] and HM3D [34] to verify the
generalization ability. Following [52], we directly transfer our model trained on Gibson to these two
new datasets, without any tuning. Since there exists a very large domain gap between these datasets
(e.g.more complex and larger scenes in MP3D and diverse scene types in HM3D), this setting is
extremely challenging. We leverage the testing episodes released by ZER [52]. Compared with
the baseline method ZER, our fine-grained goal prompting method brings 7× improvements in the
success rate, which shows the generalization ability of our method.

4.2 Ablation Study

In this section, we first compare the effectiveness of different variants of our method on the ImageNav
task. Then we present the detailed ablation of each method to empirically discover their best
implementation. For convenience and fairness, all variants in the ablation study are trained for 50M
steps on the Gibson dataset.

Comparing different goal prompting methods. We first compare the proposed goal prompting
variants on the image-goal navigation task. As shown in Table 3, the Skip Fusion (FGPrompt-SF)
variant, integrated fine-grained information by simply adding a keypoint matching-based fusion
module to the baseline, performs significantly better (from 14.0% to 41.4%). This reveals that
fine-grained goal prompting is important. However, this heuristic method does not work when there
is no matched area in the observation. The other two variants further tackle this problem by learning
a joint-modeling framework. In detail, the Mid Fusion (FGPrompt-MF) mechanism leverages the
intermediate activation maps with varied resolutions to perform goal prompting. As a result, this
variant further increases the navigation success rate by 27.2%. Besides, as a simplified version of our
proposed Mid Fusion mechanism, the Early Fusion mechanism enables an implicit fusion process
through jointly modeling the goal and observation images. In Table 3, this simple but ingenious
design brings a further improvement (4.3% in SPL) compared to the Mid Fusion mechanism which is
well-designed and ablated. We attribute this to its adaptive and learnable fusion fashion.
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Setting SPL SR

3D stack 17.3% 20.5%
Edge concat 37.2% 54.8%
Channel concat 54.7% 78.9%

Table 6: How to perform early fusion? A naive
concatenation at the channel dimension works
the best.

Setting SPL SR

Separate modeling 11.2% 13.0%
Tied modeling 12.3% 14.6%
Joint modeling 54.7% 78.9%

Table 7: Does joint modeling works? Yes, it
greatly boosts navigation performance compared
to the baseline and another similar approach.

Method SPL SR

Baseline (no fusion) 10.5% 12.1%
FGPrompt-EF (Ours) 38.5% 64.6%
FGPrompt-MF (Ours) 42.5% 70.2%

Table 8: Evaluation on the augmented image
navigation episodes. Our mid-fusion mecha-
nism is more robust under the dynamic camera
parameter setting.

Method SPL SR

Baseline (no fusion) 0.2% 0.6%
FGPrompt-EF (Ours) 0.8% 3.4%
FGPrompt-MF (Ours) 2.8% 9.9%

Table 9: Evaluation on the instance image nav-
igation dataset. Our mid-fusion mechanism per-
forms better than the baseline image navigation
method and the early-fusion variant.

Ablation on the Mid Fusion mechanism. We further investigate the detailed setting of our
proposed Mid Fusion mechanism. We conduct ablation studies on the design of FiLM layers in
Table 4. We design two different mapping methods to map the activation map into the affine factors in
Equation 2, namely Semantic Mapping and Fine-grained High-resolution Mapping. Specifically, for
the former, we average pool the activation map in each layer to remove the fine-grained information.
For the second method, we keep the spatial resolution of the original activation maps, hence preserving
the fine-grained information. We initialize two convolution layers with 1×1 stride to learn a mapping
function. Not surprisingly, only taking the coarse-grained input from the goal encoder as a condition
leg a lot behind, as it lose lots of details that might serve as possible cues during the pooling.

Another important question is how deep the network layers should be considered to perform fusion.
Since the perception field grows as the feature map resolution reduces in deeper layers, the information
about objects and scenes in these layers could be more and more coarse-grained. We design an
ablation study that integrates a different number of network layers to perform fusion. As shown
in Table 5, we found that fusing the first two network layers (each layer indicates an entire Resnet
block) performs well, indicating that fine-grained information in the early layers is important for
goal prompting. When the fusion depth increases to 4 layers, the navigation performance slightly
degrades, as considering more prompting layers increases the learning difficulty.

Ablation on the Early Fusion mechanism. Finally, we conduct an ablation study to find out how
to perform early fusion on the goal image and observation image. There exists a naive approach to
merging them at the pixel level. In particular, we try to concatenate these two images on different
dimensions, as shown in Table 6, where concatenation on the channel dimension performs better
than on edges (e.g.H and W). We conjecture that aligning and modeling the goal and observation
images enables better spatial reasoning. We also investigate stacking images at an additional axis and
performing 3D convolution to embed them together. Interestingly, results show that this variant failed
to learn an effective fusion process, although it aligns both images in the spatial dimension.

We then compare the early fusion scheme with a similar approach that shares the same parameters
between the goal encoder and observation encoder following [29], namely Tied Modeling. In Table 7
we directly compare them with a baseline that learns a goal encoder and an observation encoder
separately. We observe that the Tied Modeling variant performs worse similar to the Separate
Modeling baseline. Though using shared parameters to encode both goal and observation images,
this architecture does not enable goal-prompted learning to focus on the goal-relevant regions and
thus failed to effectively reason the goal position.

4.3 Analysis and Qualitative Visualizations

Robustness under dynamic camera parameter setting. We first test the agent trained on imagenav
dataset under the dynamic camera parameter setting. We randomly augment the camera height, pitch
angle, and HFOV of the goal image in Gibson ImageNav eval episodes. Specifically, we follow the
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Method Success↑ FixedStrict↑ E↓

ResNet18+IL Basline [45] 1.89 4.92 1.32
Ours 10.2 (+439%) 24.9 (+406%) 0.81

Table 10: Results on AI2THOR 1-Phase Rearrangement Challenge. We apply our proposed
FGPrompt method on an imitation learning baseline with a ResNet18 backbone. Surprisingly, we
found that our inserted module significantly improved the agent’s performance on the 1-Phase track
of the visual rearrangement task.

(a) goal 
image

(b) observation
image

(c) goal
activation

(d) observation act. 
(before fusion)

(e) observation act. 
(after fusion)

Figure 3: EigenCAM visualization of the activation map in the fusion layer of FGPrompt-MF.
Images in different rows illustrate results in different testing episodes in Gibson. The Mid Fusion
mechanism learns to focus on the objects that are relevant to the goal image.

distribution of these parameters in the instance imagenav paper [24], sampling goal camera height
h ∼ U(0.8m, 1.5m), pitch delta from U(−5◦, 5◦), and HFOV from U(60◦, 120◦). In Table 8, we
find that the mid-fusion mechanism performs the best in this scenario.

We further conduct experiments on the instance image navigation (iin) dataset collected by [24],
The episodes in this dataset cover a wide range of object instances in the environment and are much
harder to finish. We train three agents on the HM3D ImageNav dataset and evaluate them on the
test split of the iin dataset. In Table 9, the baseline model performs poorly in this task with a very
low success rate (less than 1%). The agents with our proposed fusion mechanisms both perform
better. We also observed that the mid-fusion variant outperforms early fusion in this scenario, as its
delicately designed activation deformation module yields explicit and adaptive guidance from the
goal image. All these results reveal the robustness of mid-fusion in harder tasks.

From Table 9, the performance of our methods on the instance imagenav task is relatively low
compared to the ImageNav task. We speculate that the extremely different perspective of goal images
that haven’t been seen during training and a longer episode length undermine the performance of our
method. This result hints that our method could make a further improvement when combined with
memory-based methods [25, 22] to achieve more efficient large-scope exploration.
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From the experimental results above, we observed a trade-off between two different fusion schemes.
The early-fusion scheme is somehow an interesting finding in that it performs competitively and has a
simpler architecture. However, though performs well on the default setting, it does not generalize well
to other scenarios where the goal camera parameters don’t match with the agent’s one. In contrast,
our delicately designed mid-fusion mechanism performs better in this case. These results indicate
that a carefully designed mid-fusion scheme with more inductive bias is necessary.

Transfer to the visual rearrangement task. To see whether our FGPrompt have wide application
scenarios, we extend our method to visual rearrangement, another embodied challenge, which aims to
move the objects to a correct position in the environment according to unshuffled images. We conduct
experiments on the 1-Phase track of the ai2thor-rearrangement challenge and find our method useful
in this task. We start from a ResNet18+IL baseline that separately encodes the unshuffled image
and agent’s current observation without a fusion mechanism and learn from expert actions. Then we
introduce our proposed FGPrompt-EF module into the baseline model by fusing the observation with
the unshuffled image in an early stage, resulting in one jointly modeled ResNet encoder. We train and
test both methods on 2023 dataset and follow [45] to report the testing metrics of the best checkpoints
in Table 10. Our proposed module brings 400% relative improvement compared to the baseline. We
believe it helps the agent to locate correspondent or inconsistent objects in the environment.

How does the fine-grained goal prompting work? We visualize the activation maps using Eigen-
CAM [30] before and after the fusion layers of our mid fusion goal prompting method (FGPrompt-MF)
to find out how it works in the image navigation task. Illustrations are presented in Figure 3. Prompted
with the fine-grained and high-resolution activation map from the goal image, the agent is able to
find out the relevant objects in the current observation and pay more attention to them, as shown in
the activation visualization in the last column. Interestingly, we found that even though the agent
is far away from the goal position, the mid fusion mechanism still guided the observation encoder
to focus on relevant objects or explore some candidate regions that may contain the target objects
(see the kitchen bar in the last row). We also provide visualization and analysis of the other two goal
prompting methods in Appendix.

Performance versus model size. To discuss the feasibility of application on real-world robot
systems with resource-limited devices (e.g., household robots), we investigate and compare the model
size of our models with previous ones. We report the agent’s number of parameters, as well as the
ImageNav success rate on Gibson, and visualize them on the same coordinate system. As shown in
Figure 1b, our FGPrompt-EF model outperforms existing methods by a large margin with a much
smaller model size, indicating its promising ability on applying to real-world robot systems.

5 Discussion

Limitation and future work Although our proposed FGPrompt achieved great improvements
on different ImageNav datasets, we still need a comprehensive study to find out if this method is
applicable to real-world robots. In the future, we will investigate how to deploy this visual navigation
methodology to a real-world robot system, to perform sim-to-real transformation.

Conclusion In this paper, we propose a novel fine-grained goal prompting (FGPrompt) method for
visual navigation. In particular, we design a Mid Fusion architecture via FiLM Layers conditioning
(FGPrompt-MF), which leverages the high-resolution activation maps from the goal encoder to
perform an affine transformation on the observation encoder. Furthermore, we rethink it and condense
it into an Early Fusion mechanism via joint modeling (FGPrompt-EF), with implicit learning of
the fusion process. Experimental results on the Image-goal Navigation task show our method has
excellent performance, concise architecture design, and strong generalization ability to unseen
environments.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant
No. 62072190 & 62376099 & 62072186), the Guangdong Basic and Applied Basic Research
Foundation (Grant No. 2019B1515130001), the Program for Guangdong Introducing Innovative and
Enterpreneurial Teams 2017ZT07X183, the CCF-Tencent Open Fund RAGR20220108.

10



References
[1] P. Anderson, A. X. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik,

R. Mottaghi, M. Savva, and A. R. Zamir. On evaluation of embodied navigation agents. arXiv preprint
arXiv:1807.06757, 2018. 6

[2] G. Avraham, Y. Zuo, T. Dharmasiri, and T. Drummond. Empnet: Neural localisation and mapping using
embedded memory points. In IEEE International Conference on Computer Vision (ICCV), 2019. 2, 3

[3] E. Beeching, J. Dibangoye, O. Simonin, and C. Wolf. Learning to plan with uncertain topological maps. In
The European Conference on Computer Vision (ECCV), pages 473–490, 2020. 3

[4] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Hausman,
A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv preprint
arXiv:2212.06817, 2022. 3

[5] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and Y. Zhang.
Matterport3d: Learning from rgb-d data in indoor environments. arXiv preprint arXiv:1709.06158, 2017. 7

[6] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to explore using active
neural SLAM. In International Conference on Learning Representations (ICLR), 2020. 2, 3, 6

[7] D. S. Chaplot, E. Parisotto, and R. Salakhutdinov. Active neural localization. In International Conference
on Learning Representations (ICLR), 2018. 2, 3

[8] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta. Neural topological SLAM for visual navigation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 2, 3, 6

[9] P. Chen, D. Huang, D. He, X. Long, R. Zeng, S. Wen, M. Tan, and C. Gan. Rspnet: Relative speed
perception for unsupervised video representation learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021. 3

[10] P. Chen, D. Ji, K. Lin, W. Hu, W. Huang, T. Li, M. Tan, and C. Gan. Learning active camera for multi-object
navigation. Advances in Neural Information Processing Systems, 2022. 3

[11] P. Chen, D. Ji, K. Lin, R. Zeng, T. Li, M. Tan, and C. Gan. Weakly-supervised multi-granularity map
learning for vision-and-language navigation. Advances in Neural Information Processing Systems, 2022. 3

[12] P. Chen, X. Sun, H. Zhi, R. Zeng, T. H. Li, G. Liu, M. Tan, and C. Gan. A2 Nav: Action-aware zero-
shot robot navigation by exploiting vision-and-language ability of foundation models. arXiv preprint
arXiv:2308.07997, 2023. 3

[13] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2005. 5

[14] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-supervised interest point detection and
description. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 5

[15] Y. Du, C. Gan, and P. Isola. Curious representation learning for embodied intelligence. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2021. 2, 3

[16] H. F. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: part I. IEEE Robotics and
Automation Magazine (RAM), 2006. 3

[17] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese. Scene memory transformer for embodied agents in
long-horizon tasks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
538–547, 2019. 3

[18] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive mapping and planning for visual
navigation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 3

[19] M. Hahn, D. S. Chaplot, S. Tulsiani, M. Mukadam, J. M. Rehg, and A. Gupta. No rl, no simulation:
Learning to navigate without navigating. In Neural Information Processing Systems (NeurIPS), 2021. 2, 3,
5, 6, 7

[20] M. A. Islam, M. Kowal, P. Esser, S. Jia, B. Ommer, K. G. Derpanis, and N. Bruce. Shape or texture:
Understanding discriminative features in cnns. In ICLR, 2022. 2, 3

[21] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-Z: zero-shot
task generalization with robotic imitation learning. In Conference on Robot Learning (CoRL), 2021. 3, 4

[22] N. Kim, O. Kwon, H. Yoo, Y. Choi, J. Park, and S. Oh. Topological semantic graph memory for image-goal
navigation. In Conference on Robot Learning (CoRL), pages 393–402. PMLR, 2023. 3, 6, 7, 9

[23] J. Krantz, T. Gervet, K. Yadav, A. Wang, C. Paxton, R. Mottaghi, D. Batra, J. Malik, S. Lee, and D. S.
Chaplot. Navigating to objects specified by images. arXiv preprint arXiv:2304.01192, 2023. 1, 3

[24] J. Krantz, S. Lee, J. Malik, D. Batra, and D. S. Chaplot. Instance-specific image goal navigation: Training
embodied agents to find object instances. arXiv preprint arXiv:2211.15876, 2022. 5, 9

11



[25] O. Kwon, N. Kim, Y. Choi, H. Yoo, J. Park, and S. Oh. Visual graph memory with unsupervised
representation for visual navigation. In IEEE International Conference on Computer Vision (ICCV), pages
15890–15899, 2021. 3, 6, 7, 9

[26] K. Lin, P. Chen, D. Huang, T. H. Li, M. Tan, and C. Gan. Learning vision-and-language navigation from
youtube videos. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023. 3

[27] D. G. Lowe. Object recognition from local scale-invariant features. In IEEE International Conference on
Computer Vision (ICCV), 1999. 5

[28] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman, and D. Batra. Zson: Zero-shot object-goal navigation
using multimodal goal embeddings. In Neural Information Processing Systems (NeurIPS), 2022. 2, 3, 5, 6

[29] L. Mezghani, S. Sukhbaatar, T. Lavril, O. Maksymets, D. Batra, P. Bojanowski, and K. Alahari. Memory-
augmented reinforcement learning for image-goal navigation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022. 2, 3, 5, 6, 7, 8

[30] M. B. Muhammad and M. Yeasin. Eigen-cam: Class activation map using principal components. In
International Joint Conference on Neural Networks (IJCNN), 2020. 10

[31] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-SLAM: A versatile and accurate monocular SLAM
system. IEEE Transactions on Robotics (T-RO), 2015. 2

[32] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville. Film: Visual reasoning with a general
conditioning layer. In AAAI Conference on Artificial Intelligence (AAAI), 2018. 2, 3, 4

[33] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, 2021. 3

[34] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets, A. Clegg, J. Turner, E. Undersander,
W. Galuba, A. Westbury, A. X. Chang, et al. Habitat-matterport 3d dataset (hm3d): 1000 large-scale 3d
environments for embodied ai. arXiv preprint arXiv:2109.08238, 2021. 7

[35] R. Ramrakhya, E. Undersander, D. Batra, and A. Das. Habitat-web: Learning embodied object-search
strategies from human demonstrations at scale. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 3

[36] P. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich. Superglue: Learning feature matching with
graph neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 5

[37] N. Savinov, A. Dosovitskiy, and V. Koltun. Semi-parametric topological memory for navigation. In
International Conference on Learning Representations (ICLR), 2018. 2, 3, 6

[38] M. Savva, J. Malik, D. Parikh, D. Batra, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub,
J. Liu, and V. Koltun. Habitat: A platform for embodied AI research. In IEEE International Conference on
Computer Vision (ICCV), 2019. 5

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017. 5

[40] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong, P. Wohlhart, B. Zitkovich, F. Xia,
C. Finn, et al. Open-world object manipulation using pre-trained vision-language models. arXiv preprint
arXiv:2303.00905, 2023. 3

[41] X. Sun, P. Chen, L. Chen, C. Li, T. H. Li, M. Tan, and C. Gan. Masked motion encoding for self-supervised
video representation learning. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 3

[42] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam, D. S.
Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. X. Chang, Z. Kira,
V. Koltun, J. Malik, M. Savva, and D. Batra. Habitat 2.0: Training home assistants to rearrange their
habitat. In Neural Information Processing Systems (NeurIPS), 2021. 5

[43] S. Thrun. Probabilistic robotics. Commun. ACM, 45(3):52–57, 2002. 3

[44] J. Wasserman, K. Yadav, G. Chowdhary, A. Gupta, and U. Jain. Last-mile embodied visual navigation. In
Conference on Robot Learning, 2023. 5

[45] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi. Visual room rearrangement. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. 5, 9, 10

[46] K. Yadav, A. Majumdar, R. Ramrakhya, N. Yokoyama, A. Baevski, Z. Kira, O. Maksymets, and D. Batra.
Ovrl-v2: A simple state-of-art baseline for imagenav and objectnav. arXiv preprint arXiv:2303.07798,
2023. 2, 3, 6

[47] K. Yadav, R. Ramrakhya, A. Majumdar, V.-P. Berges, S. Kuhar, D. Batra, A. Baevski, and O. Maksymets.
Offline visual representation learning for embodied navigation. In International Conference on Learning
Representations (ICLR), 2022. 2, 3, 6, 7

12



[48] B. Yamauchi. A frontier-based approach for autonomous exploration. In IEEE International Symposium
on Computational Intelligence in Robotics and Automation (CIRA), 1997. 3

[49] A. Yu and R. J. Mooney. Using both demonstrations and language instructions to efficiently learn robotic
tasks. arXiv preprint arXiv:2210.04476, 2022. 3, 4

[50] B. Zhou, D. Bau, A. Oliva, and A. Torralba. Interpreting deep visual representations via network dissection.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019. 2, 3

[51] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi. Target-driven visual
navigation in indoor scenes using deep reinforcement learning. In IEEE International Conference on
Robotics and Automation (ICRA), 2017. 1

[52] S. K. R. Ziad Al-Halah and K. Grauman. Zero experience required: Plug & play modular transfer learning
for semantic visual navigation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2022. 2, 3, 5, 6, 7

13



Appendix for
“FGPrompt: Fine-grained Goal Prompting

for Image-goal Navigation”

In the appendix, we provide more implementation details and experimental results of our FGPrompt.
We organize the appendix as follows.

• In Sec. A, we provide more architecture details on three different types of goal-prompting methods.
• In Sec. B, we provide more experimental details, i.e., training and evaluation settings.
• In Sec. C, we provide more ablation results on the skip fusion mechanism.
• In Sec. D, we provide more ablation results on the mid fusion mechanism.
• In Sec. E, we provide a direct comparison with the memory-based methods.
• In Sec. F, we provide additional visualization results.

A Architecture details

Skip fusion mechanism. As discussed in the previous sections, we design a skip fusion mechanism
that utilizes keypoint detection and matching method to provide the agent with low-level prompting.
In order to increase the training speed, we abandon the handcrafted local feature descriptor and
detector, instead of a deep learning-based keypoint matching pipeline [2, 10], as shown in Figure 1.
A convolution-based keypoint detector is adopted to extract keypoints from both the goal image and
observation image. After that, a 9-layer graph neural network with attention modules is applied to
find the paired points that share similar features.

Resnet

Resnet
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𝑧#$%&"'
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CNN

CNN
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𝑥!, 𝑦! , (𝑥!" , 𝑦!")

𝑥#, 𝑦# , (𝑥#" , 𝑦#" )
…

SuperPoint SuperGlue
Keypoints
position

Figure 1: Architecture details of the skip fusion mechanism.

Mid fusion mechanism. We illustrate the detailed architecture of the proposed mid fusion mecha-
nism in Figure 2. For a Resnet9 backbone, we map the intermediate activation maps of each resnet
block (ResBlock) into affine factor β and γ using a 1× 1 convolution and a fully connected layer.
Then the β and γ are injected into the correspondent ResBlock in the observation encoder, guiding
the model to focus on goal-relevant regions in the observation.

Early fusion mechanism. The early fusion mechanism is initialized as a single Resnet9 [12]
encoder. The stem convolution layer takes a 128 × 128 × 6 image as input. The following layers
have no difference from a standard Resnet encoder. We conduct experiments using both Resnet9 and
Resnet50 encoders.

Navigation policy. We initialize the navigation policy network as a 2-layer GRU with an embedding
size of 128.
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Figure 2: Architecture details of the mid fusion mechanism.

B Experimental details

Dataset details. We train our agent on the Gibson dataset and validate the agent on the Gibson,
MP3D, HM3D datasets respectively. For the training dataset, there are 72 scenes in total, each scene
has 9k episodes, resulting in 648k episodes. The 9k episodes in each scene are evenly divided into
three levels according to the distance from the start location to the goal location: easy (1.5 - 3m),
medium (3 - 5m), and hard (5 - 10m). For evalution on Gibson, we use two split, in which split A [8]
has 14 scenes with 1.4k episodes per level and split B [3] has 14 scenes with 1k episodes per level.
For evalution on MP3D and HM3d, we use the same test splits as [12], which has 100 scenes with 1k
episodes per level and 18 scenes with 1k episodes per level respectively.

Training & validation details. We use the Habitat simulator to train our model on the Gibson
dataset using 20 environments running in parallel with 8×3090 GPUs. We set the total training time
steps to 500M. For one episode, we set the maximum time steps to 500 when performing validation.
Other detailed hyperparameters of DD-PPO training follow the recipe of ZER [12].

Reward We use the reward formulation proposed by [12] that consists of three parts, including
dense shaping reward rds, dense slack reward γ, and sparse success reward rss. The dense shaping
reward is defined as:

rds = rd(dt, dt−1) + [dt ≤ ds]rα(αt, αt−1), (1)

where [A] =

{
1, if A is True
0, if A is False

(2)

where rd is the reduced distance to the goal from the current position relative to the previous one, and
rα is the reduced angle in radians to the goal view from the current view relative to the previous one.
This reward function not only encourages the agent to approach the goal as much as possible, but
also encourages the agent to rotate to a view as similar as possible to the goal view when the agent
is close enough to the goal. At each time step t, the agent receives a reward rt composed of shape
reward and slack reward:

rt = rds − γ (3)

where γ = 0.01 is the slack penalty that encourages planning a shorter path to the goal. Once
predicted a STOP action, the agent will receive a sparse success reward rss which is determined by
its distance and angle to the goal:

rss = 5× ([dt ≤ ds] + [dt ≤ ds andαt ≤ αs]). (4)

Following [12], we set success distance ds = 1m and αs = 25◦. As proven by [12, 7, 11], this
reward enables the agent to learn to associate between observation vo and goal image vg. draw the
association between its observation ot and the goal IG. Specifically, The agent will get a sparse reward
rss = 5 if it is within ds=1m from the goal, and 10 points if it is also within αs=25° from the goal
view. Otherwise, it will get a zero reward.
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4 RGB setting. To compare with some methods that take panoramic images as input, we equip our
agent with 4 pairwise orthogonal cameras to obtain a panoramic view. To reduce the computation
cost, we only take the front image of these cameras as the goal image. During training and inference,
each RGB image is combined with the goal image and input to our FGPrompt-EF model, and we
concatenate all outputs as the visual-motor feature.

C More ablation study on skip fusion mechanism

As discussed in previous sections, we introduce an image feature matching module to provide
the agent with fine-grained low-level goal prompts. A straightforward approach is applying the
handcrafted local descriptors [6, 1] to detect and match paired image regions. It first detects the
representative keypoints in the image and then matches the paired keypoints. The matched keypoints
represent similar regions in two images that are scale-invariant, for example, the corner of a table
or a part of a unique texture on a closet. However, computing these handcrafted features is time-
consuming, as it requires computing Gaussian differences on different pyramid scales. In practice,
this operation does not support high concurrency when training in the simulator and results in low
FPS. To tackle this issue, we utilize a deep learning-based keypoint detector and matcher, called
SuperPoint [2] and SuperGlue [10], in order to achieve batch inference on GPU devices. We provide
the speed comparison in Table 1. To comprehensively explore how can we leverage this low-level
information to perform goal prompting, we provide detailed ablation on this module. In Table 2,
we compare different representation methods of the matched keypoints, where position denotes
combining the normed pixel coordinate of each paired keypoint and descriptors means averaging the
256-dimension feature of each paired keypoint. We found that simply providing the agent with the
location of matched points works the best.

Matching method Device FPS

SIFT CPU 20
SuperPoint + SuperGlue GPU 400

Table 1: Comparing the forward speed of dif-
ferent image matching methods. We report the
frame per second (FPS) metric during training in
the simulator.

Method SPL SR

Position 37.1% 52.5%
Descriptors 22.9% 38.1%
Descriptors + Position 24.2% 43.2%

Table 2: Comparing different representa-
tions of the matched keypoints. Directly
combining the position of paired keypoints per-
forms the best.

D More ablation study on mid fusion mechanism

Fusion layer. We have verified the effectiveness of fusing low-level information using low-level
handcrafted descriptors in previous studies. As discussed in previous literature, the intermediate
features in the earlier layer of deep convolution networks contain low-level information (e.g., shape,
texture, color, etc.). In the above ablation studies, we found that fusing these intermediate features
using FiLM layers into observation encoder layers works. We further provide a detailed ablation
study on the choice of the fusion layer. From Table 3, fusing later layers with coarse-grained contents
performs worse than the first layer. These results show the importance of our proposed fine-grained
goal prompting method.

Comparing more mapping schemes. In the previous sections, we have shown the priority of our
proposed fine-grained goal prompting that mapping the intermediate high-resolution activation maps
into the affine factors. To further verify the necessity of fine-grained and high-resolution mapping in
the mid fusion mechanism, we provide detailed ablation on the semantic mapping methods, where we
shift the source of the semantic goal prompt from the average pooled feature of each activation map
to a high-dimension feature in the last layer. The poor performance of these two variants in Table 4
further indicates the importance of fine-grained and high-resolution mapping.

Comparing FiLM with self-attention. We conduct an experiment that replaces the FiLM module
with a self-attention module. Specifically, we project the flattened feature map from the first layer
of the goal encoder into the query and the correspondent sequence from the observation encoder
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Layer SPL SR

1 50.4% 77.3%
2 44.4% 69.2%
3 45.9% 67.3%
4 37.1% 52.5%

Table 3: Choice of fusion layer. Early layers
contain informative clues for prompting the
observation encoder.

Mapping Method SPL SR

FG/HR 50.4% 77.3%
Semantic (each layer) 24.0% 32.0%
Semantic (last layer) 24.4% 32.3%

Table 4: How to perform semantic mapping?
Neither mapping the global mean of each activa-
tion layer or semantic-level feature works.

Methods SPL SR

Self-attention 12.2% 13.9%
Ours 50.4% 77.3%

Table 5: How to perform mid-fusion? Self-
attention performs significantly worse than
FiLM layers.

Setting SPL SR

Ours w/o background 45.2% 64.4%
Ours w/ background 50.4% 77.3%

Table 6: Importance of background context. Re-
moving background context in goal image leads to
a performance decrease.

into key and value. Then, we utilize the self-attention operation to merge the goal and observation
features. Experiment results are shown in Table 5.

Importance of environment context in goal image. We leverage the semantic annotation from
145 scenes in HM3D v2 dataset and set the pixel of background (e.g., uncountable object such as wall
and floor) to zero according to the ground truth segmentation map. Numbers are reported in Table 6.
From the experimental results, our method suffered from a slight degradation when the environmental
context was removed from the goal image. These results indicate that environmental context in the
image background provides useful but limited clues. We believe that objects with their arrangement
in each room play a critical role in our FGPrompt.

E Comparison with memory-based methods

In Table 7, we directly compare our FGPrompt-EF with two different memory-based image navigation
methods on the evaluation split B [3]. The reported results are averaged on both straight and curved
path types. Although we do not use an additional memory module to store past agent states and
model their relationship using the graph neural network, our method still shows priority over the
memory-based methods. In our future work, we will discuss the effectiveness of our goal prompting
module by involving it with the memory-based methods.

Method Backbone Pretrain Sensor(s) Memory Split SPL SR

VGM [5] ResNet18 N/A 4 RGB ✓ B 55.1% 75.3%
TSGM [4] ResNet18 N/A 4 RGB ✓ B 76.9% 85.4%
FGPrompt-EF (Ours) ResNet9 N/A 4 RGB % B 78.3% 96.4%

Table 7: Comparison with memory-based methods on eval split B.

F Additional visualization results

Training curve vs. validation curve. We visualize the training and validation curve in both Success
Rate and SPL metrics. As shown in Figure 3, our agent does not overfit the training scenes and has a
consistent performance on both the training and validation episodes.

Visualizing FGPrompt-SF. In Figure 5, we visualize the matching results of the skip fusion
mechanism of our proposed FGPrompt-SF. The first row shows a successfully matched example
that numerous keypoints are detected and paired. The second and last rows show failure cases that
the keypoint matching module makes incorrect predictions or failed to find corresponding regions,
respectively. In the case of the agent’s observation completely different from the goal image, this
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Figure 3: Training and validation curve in Success Rate and SPL.

(a) goal 
image

(b) observation
image

(c) paired keypoints in goal image and 
observation image  

Figure 4: Visualization of the matching results of FGPrompt-SF. Paired keypoints are connected
with green lines in the last two columns.

matching module does not contribute to the navigation policy, which is particularly significant in the
longer episodes that start far from the goal position.

Visualizing FGPrompt-EF. We show the visualization result of the early fusion mechanism of our
proposed FGPrompt-SF in Figure 5. The last column present EigenCAM [9] visualized activation
maps from the first layer of the joint encoder backbone. Guided by the fine-grained goal prompts in
the early fusion scheme, the visual backbone focuses more on regions related to the goal image.
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(a) goal 
image

(b) observation
image

(c) Joint encoder act. 
(after fusion)

Figure 5: Visualization of the activation map of FGPrompt-EF. We use EigenCAM [9] to reveal
where the model pays more attention.
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