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ABSTRACT

One of the main challenges in solving time-dependent partial differential equations
is to develop computationally efficient solvers that are accurate and stable. Here, we
introduce a graph neural network approach to finding efficient PDE solvers through
learning using message-passing models. We first introduce domain invariant
features for PDE-data inspired by classical PDE solvers for an efficient physical
representation. Next, we use graphs to represent PDE-data on an unstructured mesh
and show that message passing graph neural networks (MPGNN) can parameterize
governing equations, and as a result, efficiently learn accurate solver schemes for
linear/nonlinear PDEs. We further show that the solvers are independent of the
initial trained geometry, i.e. the trained solver can find PDE solution on different
complex domains. Lastly, we show that a recurrent graph neural network approach
can find a temporal sequence of solutions to a PDE.

1 INTRODUCTION

Physical phenomena are generally modeled through partial differential equations (PDEs) that govern
the dynamic evolution or static solution of a physical system. Numerically solving partial differential
equations is an important aspect of scientific and mathematical modeling in a broad range of fields
including physics, biology, material science, and finance. There have been many efforts to develop
efficient and accurate numerical solvers for PDEs using different techniques including finite difference
(LeVeque, 2007; Shashkov & Steinberg, 2018), finite volume (Eymard et al., 2000; Brenner et al.,
2008), and finite element schemes (Reddy, 2014; Wriggers, 2008). While these methods have
been successful in producing accurate solutions, major challenges for accelerating and reducing
computational cost when the governing PDE is known, and also determining the governing PDE when
the physical system is unknown, remains to be addressed, problems such as those in climate modeling,
turbulent flow, contact problems, or plastic material deformation. With the recent developments in
deep learning, faster algorithms have been proposed to evaluate the response of a physical system,
using only observational data. While deep learning approaches, such as multi-layer perceptron (MLP)
or convolutional neural networks (CNNs), are powerful in learning PDE solutions, they are, however,
restricted to a specific discretization of the physical domain in which they are trained. As a result, the
learned model is limited to a specific domain and can not be generalized to solve on different domains
or for different discretizations, although the underlying physics remains to be the same. New training
is required for any change in the physical domain or discretization. Here we propose a discretization
and domain invariant neural network time-dependent PDE solver based on message passing graph
neural nets (MPGNN) which is trained on a sample domain with different discretizations. The trained
MPGNN can then be used to solve for different discretization or even on other domains as long as the
underlying physics remains the same. We further show that a recurrent version of MPGNN can be
used to find a temporal sequence of solutions to a PDE.

2 RELATED WORKS

One class of neural-net-based PDE solvers focuses on using neural networks as proxies of PDEs
and aims at finding the solution by minimizing a loss that corresponds to the solution satisfying the
governing equations and the boundary conditions (Raissi et al., 2017a;b; Lagaris et al., 1998; Weinan
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& Yu, 2018; Sirignano & Spiliopoulos, 2018; Khoo et al., 2021). Although such an approach helps to
find the one-time solution of a PDE with an instance of parameters, a slight modification to the PDE
parameters, boundary conditions, or the domain requires re-training of the network.

Another approach to solving PDEs is to use convolutional neural nets and snapshots of observations
over the discretized input domain and to learn the dynamic evolution of a PDE (Long et al., 2018; Shi
et al., 2020). Further modifications such as using residual connections (Ruthotto & Haber, 2020),
or autoregressive dense encoder-decoder (Geneva & Zabaras, 2020), or symbolic multi-layer neural
network (Long et al., 2019) in addition to the CNN can be used to improve the results. While these
models do not require prior knowledge of the PDE, they are limited to domain discretization (as a
result cannot be generalized to arbitrary domains) and are limited to certain time discretization (as a
result unable to handle temporally and spatially sparse or non-uniform observations).

Inspired by the discretization techniques in solving PDEs, a class of methods uses observational
data to learn the discretization approximation required for the updates in classical computational
PDE solver methods (Bar-Sinai et al., 2019; Kochkov et al., 2021; Zhuang et al., 2021; Han et al.,
2018). In this approach, a neural network is used for better interpolation at coarse scale to be used
in the framework of traditional numerical discretization. These methods are used in conjunction
with classical numerical methods and can improve the accuracy and accelerate the solutions of the
traditional numerical schemes (Kochkov et al., 2021). Although these methods have been shown
to generalize to new parameter regimes of a PDE, they are still bounded to the initially trained
discretization and can not be used for arbitrary domains without re-training.

Lastly, a class of neural PDE solvers focus on graph representation of the discretized mesh data-
structure to approximate the PDE solution (Li et al., 2020a;b; Iakovlev et al., 2020; Belbute-Peres
et al., 2020). The numerical solution of a PDE is an approximation of the solution on discrete
locations comprising a discretized mesh of continuous space. Each node represents a region in
the continuous space and the approximate solution of the PDE in that region is assigned to the
representative node. The discretized mesh forms a graph where each node is used to model the state
of the system and forms a connectivity graph connecting to the neighboring nodes. This method
has successfully been used to solve time-independent PDEs with different mesh sizes on the same
physical domain (Li et al., 2020a). The connectivity and the location of the nodes can further be
optimized to learn the solution with different levels of precision (Alet et al., 2019). If the PDE
includes long-range interactions, which happens mostly in time-independent PDEs, a multi-level
graph neural network framework to encapsulate long-range interactions can be used to improve the
results (Li et al., 2020b). In contrast to time-independent PDEs, in the case of time-dependent PDEs,
it has been shown that a continuous-time model similar to physics informed neural nets but with
a graph neural network can be used to recover system’s dynamics with sparse observational data
recorded at irregular times (Iakovlev et al., 2020; Poli et al., 2019). Recently, it have been shown
that message passing graph neural networks can be used to implement powerful physical simulation
engines (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020). The state of a physical system can be
expressed using a particle-based method as a reduced order model. The particles are then expressed
as nodes in a graph and the message passing neural network learns to compute the dynamics of the
particles(Sanchez-Gonzalez et al., 2020). In addition to particle-based methods, mesh-based methods
have been shown to be successful in physical simulations (Pfaff et al., 2020). Such graph-based
models, first encodes the input data into a latent space and then process it in the latent space (reduced
model), and to obtain the physical results decode the data back to the physical space. Here, we first
show why graph neural networks can generalize to learn fast PDE solvers inspired by finite difference
schemes. We introduce domain invariant features and boundary conditions inspired by classical
PDE solvers to improve the generalization of the learned PDE solver operator. With the introduced
features, we show that message passing graph neural network architecture efficiently fits the classical
PDE solvers and can learn time-stepping/solver operators for linear and nonlinear PDEs with different
boundary conditions. We further demonstrate that our trained graph neural network solver can be
generalized to solve PDEs on physical domains different from the domain that it is trained on. This is
beneficial to train GNN on a sample of small domains for even with unknown dynamics, and further,
explore the dynamic behavior on different larger physical domains. Lastly, we show that a recurrent
version of our MPGNN can be used to predict the temporal sequence of solutions to a PDE.
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3 TIME-DEPENDENT PDES

We consider continuous dynamical system u(x, t) ∈ R evolving over time t ∈ R+ and spatial
coordinate x ∈ Ω ⊂ Rd where Ω is a bounded d-dimensional domain. We assume the system is
governed by a partial differential equation of the form

ut = N [u;λ] (1)

where N [·;λ] denotes the linear/nonlinear differential operator(s) parameterized by the vector λ. In
the above general form, the temporal evolution of the current state ut depends on the differential
operator N [·;λ] which may include various spatial derivatives of the state including∇u,∇2u, etc.
Depending on the differential operator N , appropriate boundary conditions on ∂Ω is required for a
well-posed PDE with a unique solution. Such PDE model is the cornerstone of mathematical models
and is widely used to model various systems, from fluid dynamics, thermal sciences, to acoustics, and
quantum mechanics. As an example, ut = N [u;λ] = λ1∇2u + λ2 · ∇u constitutes a convection
diffusion equation for u ∈ R as variable of interest, where λ = λ1,λ2 are the diffusitivity and the
velocity field vector with which the quantity is moving with.

The state of the system at each time can be obtained using its initial state and time integration
as u(x, t) = u(x, 0) +

∫ t
0
N (u;λ)dt. Numerous numerical techniques such as Finite Elements,

Spectral Methods, Finite Difference, or Finite Volume techniques have been developed to efficiently
approximate the differential operator N (·;λ) and solve for a dynamical system over time. In
all numerical schemes, the domain is first discretized with a mesh, the differential operator is
approximated locally using neighboring points, and the solution is calculated over small time steps
using a time integrator such as Euler’s scheme, i.e.,

un+1(xi) = un(xi) + δtF(un(xi),∇un(xi),∇2un(xi), · · · ;λ(xi)) (2)

Figure 1: (a) A square domain with structured
mesh discritization (b) A curved domain with an
unstructured

where the superscript n shows the solution over
discretised time tn, and the differential operator
N (u;λ) = F(u,∇u,∇2u, · · · ;λ) shows that
it contains information about local spatial deriva-
tives. As an example, consider solving heat
equation, ut = D∇2u, where D is the diffusion
constant and ∇2u = ∂2u/∂x2 + ∂2u/∂y2, on
an structured grid shown in Fig. 1a. Let uni,j be
the discretized solution at time t = nδt and spa-
tial location x = iδx and y = jδy where δt, δx,
and δy are the time, horizontal, and vertical spa-
tial discretization respectively. The time and
spatial derivatives in the heat equation can be
expanded using Taylor series at each discretized
point, where ∂uni,j/∂t = (un+1

i,j − uni,j)/δt,
∂2uni,j/∂x

2 =
(
uni+1,j − 2uni,j + uni+1,j

)
/δx2,

and etc. Re-writing the equation for an arbitrary discretized point, we find un+1
i,j = uni,j + δtF

where F = α (ui,j+1 − ui,j) + α (ui,j−1 − ui,j) + β (ui+1,j − ui,j) + β (ui−1,j − ui,j), where
α = Dδt/δx2 and β = Dδt/δy2. Solving for this equation for all the points along with the boundary
conditions the updates for the discretized points can be achieved. Note that here the update rule
can be seen as the summation of updates that only depend on neighboring points. Although in
this example with a simple linear equation and a structured grid it was easy to find the update rule
F , given an arbitrary domain that requires a triangular mesh for discretization (see Fig. 1b) and a
nonlinear governing equation the update rule is not straight forward to be worked out. Our objective
here is to learn the approximation of the differential operator using a graph representation of the
domain with message passing neural networks. Since in a general PDE the differential operator
F(u,∇u,∇2u, · · · ;λ) contains local spatial derivatives and only local neighboring values at a point
are relevant to approximate the differential operator at that point. As a result, a graph neural network
is a promising framework to approximate the above right-hand side for the next value predictions.
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4 CONTRIBUTIONS

In this paper, we propose a graph-based model to learn domain-invariant and free-form solvers for
a PDE on arbitrary spatial discretization using message passing neural networks. Our method here
is inspired by the finite difference method and the possibility of approximating a partial differential
equation using discrete point stencils. Here, we use graph neural networks as a nonlinear function
approximator and use the simulated data to learn the required stable stencils. In order to show that
that the graph neural network has learned the correct PDE solvers, we test our learned graph network
to find PDE solutions in a domain with a different geometry and mesh discretization. We find that
the trained model on a sample domain can be used to predict the PDE solution on other physical
domains and mesh discretization. This is only possible by creating relevant features inspired by
classical PDE solver techniques to represent the differential operator. Our contributions are: (i)
introducing locally invariant feature representation inspired by classical PDE solvers to efficiently
learn a differential operator solver; (ii) showing graph representation with message passing neural
networks that can parametrize PDE solvers with a domain-invariant representation; (iii) obtaining
robust high-performance models for various linear/nonlinear PDEs with arbitrary spatial discretization
and showing that it can generalize to arbitrary physical domains, (iv) proposing a recurrent message
passing graph neural network approach to predict a temporal sequence of PDE solution over time.

5 GRAPH NEURAL NETWORKS FOR PDES

Let G = (V, E) be graph representation of a mesh with nodes V = {xi}Ni=1 where xi denotes the
positions, and edges E = {eij} where eij represents the connecting neighboring points at xi and
xj . Given a physical domain, we use a uniform random distribution of points for the nodes, and
use Delaunay triangulation to find the neighboring points. We denote neighbors of node i with
M(i) = {j|eij ∈ E}. We further assign the node and edge attributes with ui and eij respectively
(see Fig. 2). In a message-passing neural network (Gilmer et al., 2017), we propagate the latent state
of nodes ui of for K layers, where at each layer k, we have

u
(k)
i = γ(k)

u
(k−1)
i ,

1

|M(i)|
∑

j∈M(i)

φ(k)
(
u
(k−1)
i ,u

(k−1)
j , eij

) (3)

where φ(k) and γ(k) are differentiable deep neural networks. Note that N = |M(i)| represents the
number of neighbors for node i, and furthermore instead of the average used in equation 3, other
permutation invariant aggregation function such as sum or max can also be used. Since equation (3)
is an approximation of equation (2) where N (u;λ) includes various spatial differentials, we take
our edge features to include xj − xi for j ∈M(i), and also λ(xij) which is the PDE parameters at
the midpoint of the edge xij = (xi + xj)/2. We further can include, higher derivatives of the PDE
parameters such as∇λ(xij),∇2λ(xij) for a better approximation representation. At each point in
time, we set ui = [u(xi, t), u(xi, t− δt), · · · , u(xi, t− nδt)] as the last n snapshots for the initial
latent space and use it to create the desired u

(K)
i = [u(xi, T ), u(xi, T − δt′), · · · , u(xi, T −mδt′)]

as the desired last m frames of the solution. The main assumption here is that the derivatives can
be approximated using the graph nodes, which is possible in most physical simulations where the
solutions are smooth. Additionally, note that the predicted values here include all inside and boundary
nodes.

We use multilayer perceptron for the γ(k) and φ(k) with three hidden layers. Note that three hidden
layers, allows each point to connect to the third order neighbors (i.e., neighbors of neighbors of
neighbors), which potentially only allows for a maximum 6th order derivative estimation. In general,
the node features consist of the solution in previous time steps and edge features, motivated by the
logic of solving PDEs, are made up of the distance between connecting neighboring nodes, along
with the PDE parameters calculated at the center of the edge. We also add an extra feature to the node
attributes showing that if the node lies on the boundary or not. This extra feature is 1 if the node lies
on the boundary and 0 otherwise. Our decision on the node and edge features might slightly differ for
different equations, and we point out if there is any change in the features set.

4



Under review as a conference paper at ICLR 2022

Figure 2: (a) Example of a physical domain governed by the time dependent PDE ut = N (u;λ), and
the spatial discretization that represents a graph structure. The inset figure shows the node features ui
and the edge features on the mesh eij . (b) Graphical representation for one layer pass of message
passing neural network: given node values u

(k)
i and edge attributes eij , a message is generated

for each edge such that m(k)
ij = φ(k)

(
u
(k)
i ,u

(k)
j , eij

)
where φ(k) is a neural network; next, given

average message value 1
N

∑
j∈M(i) m

(k)
ij and the node features u(k)

i , the next feature set u(k+1)
i for

the nodes are obtained using another neural network γ(k).

6 TEST CASES

In this section, we go through different linear/nonlinear PDEs for physical systems and evaluate
the performance of our modeling. First, we start with the time-dependent heat equation and show
how our model can learn to predict the future state(s) (see section 6.1), and more importantly, the
learned model can be used for predictions in new physical domains different from initial learned
domain (see figure 4). To predict the sequence of temporal data of a PDE, we use a recurrent message
passing graph neural network approach and show that our model is able to predict the sequence of
PDE temporal data (see figure 6). Next, to show that the model is able to learn the nonlinearities,
we focus on the Navier-Stokes equation to predict future solutions with an arbitrary discretization
(see section 6.2). Lastly, to show that the model is able to include PDE parameters, we focus on the
advection-diffusion equation and by including the PDE parameters as edge attributes, we show that
the model is able to learn to predict for various PDE parameters (see section 6.3).

6.1 HEAT EQUATION

Time-dependent heat equation in two dimensions can be written as

ut = ∇2u, x ∈ Ω (4)

which can be solved with an initial condition u(x, t = 0) and the Dirichlet boundary condition, i.e.,
u(x ∈ ∂Ω, t) = u0, where ∂Ω denotes domain’s boundary. We chose a square grid [0, 1] × [0, 1],
and use Firedrake (Rathgeber et al., 2016) with a characteristic length of δx = 0.0625 for a
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PredictionInput Ground
Truth

Figure 3: Message passing graph neural network learning to predict the heat equation: Input data
frames (first four columns), prediction (fifth column), and ground truth (the last column) for three
different test cases in each row. The simulation data corresponds to the heat equation 4 with different
boundary conditions. The first four columns correspond to the results with ∆t = 20δ time difference,
and the network predicts the results for the next frame with ∆t = 20δt after the last frame. The
average MSE loss for the test data is 5.1× 10−6.

triangular mesh and time-stepping of δt =8e-4. Note that the mesh in the simulations are generated
using built-in mesh generator in Firedrake. In order to sample the data for training the MPGNN,
we construct a Delaunay triangulation of uniformly distributed nodes (Poisson point process) in
the domain. We chose different Dirichlet boundary conditions where we set top, left, right, and
bottom boundary conditions to different constant values of u0 ∈ [0, 200]. Note that u for different
simulation also remains in the same range as ui ∈ [0, 200]. For each simulation, we use a newly
generated mesh and set of boundary conditions. We set record the data every 20δt, and use four
subsequent observations for the input data (i.e., n = 4), and predict the next frame (i.e., m = 1). As
a result, we input frames, 0, 20δt, 40δt, 60δt and predict the frame 80δt. Since per each simulation,
we can further use the initial frame to be any of 0 to 20δt frames, we can generate 20 data inputs per
simulation. We generate 1000 simulations with different meshes and boundary conditions, and with
that, we create 20,000 input data. We define a MSE loss between the network output and the true
values as

∑
i ‖ûi − ui‖2/N , where ûi, ui are the network prediction and ground truth for the node i

value and N is the number of nodes. We further use three layers for the message passing graph neural
network with 64 nodes, three message passing layers K = 3, and choose two three-layer neural
networks for γ(k) and φ(k) where the hidden layers are of the size 6× 128, 128× 128 and 128× 256
respectively. We set the learning rate to 0.001 using ADAM optimizer and a step learning scheduler
of 0.2 after every 5 epochs. Note that the network architecture and hyperparameters remains the same
for different simulations, unless mentioned otherwise. We find that the MSE error starts at 179.2
and reduces to 7× 10−7 after 20 epochs. The relative L2 on the test data after training falls below
6× 10−6. The results for the prediction and ground truth for different boundary conditions on test
simulations that the network has never seen are shown in figure 3. We further use the same generated
data, however with more number of nodes (changing from 64 to 128) in the graph neural network and
find that the error on the MPGNN on the test data does not change (mean of relative L2 error on the
test data changes from 5.2× 10−6 to 5.1× 10−6).
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Figure 4: MPGNN trained on a square domain, predicting the values on a new unseen physical
domain. We train an MPGNN to predict the heat equation on a square domain (see figure 3). Next, we
use the sample MPGNN to predict the PDE values on an unseen geometry and boundary conditions.
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Figure 5: MSE error tried on the
same and different geometry versus
number of input frames

Next, to show that the learned MPGNN can generalize to dif-
ferent physical domains, we create a distorted physical domain
with a curved boundary, two inclined edges, and a vertical
wall. The newly generated geometry is different from the initial
square geometry and the network has never seen such domains.
We introduce a random mesh on this new physical domain with
a similar characteristic mesh size and use the MPGNN (that is
only trained on the square domain) to predict the results. We
find that the MPGNN indeed predicts the output with high accu-
racy (average MSE loss of 2.8× 10−4). Examples of different
simulations with different boundary conditions are shown in
figure 4. This shows that the graph neural network here learns
to predict the future values independent of the initial physical
geometry and can be extended to predict a PDE results on new
unseen physical domains. Here we have used four previous
snapshots as the input to our network. In order to show the
effect of number of input frames on the prediction power of our
network, we run tests by changing the number of input frames
and calculating the final average MSE error on the test data set on both similar and different geometry.
In all the cases we predict the frame at 80δt after the final frame. When we change the number of
input frames, the input frames are respectively 40δt, 25δt, 20δt, 15δt, and 10δt apart for two, three,
four, five, and eight input frames respectively. Interestingly, we find that two input frames are enough
for prediction on similar geometries, however to have a reliable MSE on a different geometry we
need at least three to four frames.
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Lastly, we show that the MPGNN is capable of predicting sequence of temporal data, we use our
MPGNN in a recurrent format (see figure 6a). We first train our MPGNN with a sequence of three
past results (i.e, n = 3) to predict the next frame (i.e., m = 1). As a result, in the trained network,
given input data of initial three frames of a simulation (t1, t2, t3), it can predict the next time step
solution t4. Next, we concatenate the last three obtained results, i.e. (t2, t3, t4) to predict the next
time frame and so on. The results for a sample test case is shown in figure 6b. It is to be noted that we
did not use a recurrent loss function to train our network, and as a result, the average MSE loss keeps
growing with the number of predicted frames. The average MSE error for 1000 different simulations
along with the range of error are shown in figure 6c where the error slowly increases with the number
of predicted frames. It is expected that training the MPGNN with a recurrent loss function would
improve the overall result.

MPGNN

MPGNN

MPGNN

pr
ed

.
tr
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h
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R-MPGNN

0

1

2

3

4

%
 E
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Average MSE Error 
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Figure 6: (a) Schematic of a recurrent message passing graph neural network (R-MPGNN) learning
to predict the heat equation: input data are the initial three frames (t1, t2, t3) and the network predicts
the next time step (t4). In the next layer the output of the previous layer t4 is concatenated to the last
two frames t2, t3 to create the input for the next layer (t2, t3, t4), and so on. (b) Test data input and
outputs for the R-MPGNN predicting the next frames in time in comparison with the ground truth.
(c) The average of the MSE loss for each frame prediction over time.

6.2 NAVIER-STOKES EQUATION

In order to find MPGNN’s performance on learning nonlinear PDEs, we use a two-dimensional
incompressible Navier-Stokes equation as

∂vt + v · ∇v = −1

ρ
∇p+ ν∇2v

∇ · v = 0 (5)

where v = (u, v, 0) is the velocity field, p is pressure, ρ is the fluid’s density, and ν is the diffusion
constant. The second equation is known as the incompressibility equation which assures a divergence-
free velocity field (i.e.,∇.v = 0). We use spectral methods to solve the above equation on a square
domain with periodic boundary conditions (see supplementary material for the details). We chose
a square domain with [0, 2π] × [0, 2π] and input a random initial condition to generate the initial
conditions we sample random numbers uniformly in the range [0, 5] for the nodes in the graph and
then we then remove the high frequency patterns by taking a Fourier transformation and discarding
the top 1/3 of high frequency wave numbers. Furthermore, in this setting our ρ = 1 and ν =3e-4.
and run our numerical PDE solver for T = 50 and record frames with δt = 0.002. Note that ui for
different simulation also remains in the same range as ui ∈ [0, 4]. We chose δt such that the results
become visually different. We first input five different frames (i.e., n = 5) and predict the next frame
(i.e., m = 1). We generate 20000 data points from 25 simulations similar to the heat equation data
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generation. In this case, we use the same network geometry for the message passing neural network
as the one used for the heat equation. We find the relative L2 error for the test data after 25 epochs
drops from 10.1 to below 5.4× 10−5. The results for three different test cases are shown in figure 7.
Note that in here in the plots, we are presenting the vorticity field ζ = ∂xv − ∂uu instead of velocity
fields separately. The result here shows that the nonlinear PDE structure can also be learned using the
MPGNN architecture.

PredictionInput Ground
Truth

Figure 7: MPGNN trained Navier-Stokes equation with periodic boundary condition. Each row
represents a different test simulation, where the first five columns are the input frames and the last
two columns are respectively the MPGNN prediction and the ground truth result. We find that the
average L2 error for the test data is 5.4× 10−5.

6.3 ADVECTION-DIFFUSION EQUATION

Prediction
Input Ground

Truth

Figure 8: MPGNN trained to predict advection-diffusion equation with horizontal periodic boundary.
Each row represents a different test simulation, where the first five columns are the input frames and
the last two columns are respectively the MPGNN prediction and the ground truth result. We find
that the average MSE loss for the test data is 1.3× 10−6.
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In all the PDEs we tried so far, we kept the PDE parameters as constant. In this section, we focus on
the advection-diffusion equation where the PDE includes different free parameters that can be used
as edge features in the MPGNN. The advection-diffusion equation is

ut + λ1ux = λ2∇2u (6)

where λ1 and λ2 are the advection velocity and diffusion constant respectively. We chose our
domain to be [0, 1] × [0, 1] and use characteristic mesh size of δx = 0.0625 and time stepping of
δt = 10−4. We record the data every 200δt and use four subsequent input frames (i.e., m = 4)
and predict the next frame (i.e., n = 1). We use Firedrake (Rathgeber et al., 2016) to simulate
our PDE with random initial meshes and initial conditions. We use periodic boundary conditions
at x = 0, 1 and Neumann boundary conditions at y = 0, 1. The initial condition is created using
u0 = aa sin(x) + a2 sin(2x) + a3 cos(x) + a4 cos(2x) where all ai, i = 1, · · · , 4 are drawn from a
uniform distribution U [−1, 1]. Note that u for different simulation also remains in the same range as
i ∈ [−3.5, 3.5]. We select λ1 and λ2 randomly from uniform distributions U [0.5, 1.5]. In total we
generate 300 simulations with random initial conditions and random PDE parameters and generate
300k input data for our network. We find that in training our network the average L2 error for the
test data (new simulations that network has never seen) drops from 3.4 before training to 1.3× 10−6

after training. Three different test results are shown here in figure 8.

7 BENCHMARK TESTS

In this section we compare our approach with other existing relevant studies. We have identified two
relevant neural network approaches closely related to our work: (1) Iakovlev et al. (2020) and (2)
Li et al. (2020b) . Since we are interested in generalization of the network to other domains and
mesh sizes, we perform two different tests on all of the networks and compare their performance
by measuring average MSE for prediction on the test dataset. We select the heat equation as our
basis (see Sec. 6.1) to test different approaches on a square geometry and test it on the unseen
domain discussed in Sec. 6.1. We perform two set of tests: training on a square domain with a
small characteristic mesh length (average edge size is 0.1 which we call high res), and testing the
performance on the same geometry, and on a different geometry (shown in Fig. 4) with similar
resolution as well as a lower resolution (average edge distance of 0.2 which we call low res). Next, we
repeat the same experiment but with training on low resolution data. The results are summarized in
Table 1. In repeating the work by Li et al. (2020b), we used their provided code at the corresponding
git repository and used their suggested hyper-parameters and made use of ui as node features, and
the position of the nodes as edge features. As seen in table 1, the proposed network has a lower MSE
best when it is applied to the same geometry, however, in generalization it performs poorly which is
due to the positional feature of the nodes instead of the invariant edge distance. In following Iakovlev
et al. (2020), similar to the previous case, we followed the proposed structure by the authors (i.e.,
three hidden layers with 60 neurons along with tanh activation function and one message passing
layer). The main difference here is that the edge features contain relative positions as the edge
features instead of absolute positions. This is indeed the main reason for a better generalization of
this approach compared to the other method. Our method with a different activation function (ReLU
instead of tanh) as well as three layers of message passing, along with extra feature flagging the
boundary nodes shows an improved result.

Trained on high res Trained on low res
MSE on test data Our work (1) (2) Our work (1) (2)

same geometry (same res) 4.01e-6 3.33e-5 1.49e-6 4.53e-6 6.27e-5 2.41e-6
different geometry (low res) 7.98e-5 1.57e-4 9.87e-3 1.57e-4 1.63e-4 1.47e1
different geometry (high res) 5.56e-5 9.86e-5 5.34e-3 8.06e-5 1.11e-4 5.26e0

Table 1: Comparison between our MPGNN, with (1) Iakovlev et al. (2020) and (2) Li et al. (2020b).
We train all networks using different mesh resolution and test it on similar resolution networks,
moreover to a different geometry with two different resolution.
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8 CONCLUSION

In this paper, we showed how message passing neural networks can parametrize time-dependent
partial differential equations and their discrete classical PDE solvers. Inspired by numerical PDE
solvers, we introduce domain invariant features for an efficient representation of PDE data. Us-
ing graphs to represent an unstructured mesh, we trained message passing graph neural networks
(MPGNN) to efficiently learn accurate solver schemes for linear/nonlinear PDEs independent of the
initial trained geometry. We showed that MPGNN can predict single/multiple frame(s) of the future
data and furthermore a trained model can predict results on unseen geometries. We further proposed
a recurrent version of MPGNN to march in time and find a temporal sequence of solutions to a PDE.
In summary, the main important features of a message passing graph neural network that make them
suitable platforms for learning the time-dependent PDEs are: (i) MPGNNs similar to time-dependent
PDEs are spatially locally dependent where each point is only affected by the neighboring points for
a small time-step, (ii) the permutation invariant combination of the messages signifies the rotational
and translational symmetries in a given physics-based PDE and helps the network to learn more
efficiently, (iii) the neural networks used in creating the messages and the updates are general learners
that can potentially learn the nonlinear update rules, and lastly (iv) the possibility of running several
passes in message-passing neural networks helps the update of a node to see features of neighbors
of neighbors and as a result MPGNN can find the update rule for larger time-steps. The possible
future extension of our current MPGNN solver are: 1) including random long range connections
in the initial mesh to enable long-time predictions with less number of message-passing layers; 2)
training on a recurrent loss function and addressing significant memory required in backpropagation
in order to improve long time predictions, ;3) using more accurate temporal schemes rather than
Euler discretization to improve predictions, 4) including symbolic regression analysis to uncover
the discretized kernel learned by the MPGNN and exploring the possibility of uncovering new PDE
solver schemes.
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A SPECTRAL METHODS SOLUTION TO NAVIER-STOKES EQUATION

Spectral methods solution to the Navier-Stokes equation. In this section, we review the spectral
methods used to solve the 2d incompressible Navier-Stokes (NS) equation (5). In a 2D-fluid motion
with v = (u, v, 0), the NS equations (equation equation 6.2) in the expanded form are

∂tu+ u∂xu+ v∂yu = −∂xp+ ν∇2u (7)

∂tv + u∂xv + v∂yv = −∂yp+ ν∇2v (8)
∂xu+ ∂yv = 0 (9)

We define a stream function as u = −∂yψ, v = ∂xψ. The incomprehensibility condition, equation 9,
is immediately satisfied. In order to remove the pressure from the equations, we ∂x (Eq. 8) - ∂y (Eq.
7) to find

∂t∇2ψ + u∂x∇2ψ + v∂y∇2ψ = ν∂4ψ (10)
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Note that this ∇2ψ = ∂xv − ∂yu = (∇ × v) · ẑ. We can simplify the last vorticity equation,
equation 10, in terms of ζ = ∇2ψ to find

∂tζ +
(
−∂y∇−2ζ

)︸ ︷︷ ︸
=u

∂xζ +
(
∂x∇−2ζ

)︸ ︷︷ ︸
=v

∂yζ = ν∇2ζ (11)

Next, we discretize the equation,

∂tζ =
(
∂y∇−2ζ

)
∂xζ −

(
∂x∇−2ζ

)
∂yζ + ν∇2ζ (12)

ζn+1 − ζn

δt
=
(
∂y∇−2ζn

)
∂xζ

n −
(
∂x∇−2ζn

)
∂yζ

n +
ν

2

(
∇2ζn +∇2ζn+1

)
(13)

where we used the implicit Crank-Nicolson for the linear part and explicit part for the linear part.
Assuming periodic boundary conditions in both x and y direction, and taking the Fourier transform
of the above equation, we find

ζ̂n+1 − ζ̂n

δt
= F̂(ζn)− ν

2

(
|k|2ζ̂n+1 + |k|2ζ̂n

)
,

P(ζ) =
(
∂y∇−2ζ

)
∂xζ −

(
∂x∇−2ζ

)
∂yζ (14)(

1 +
νδt

2
|k|2

)
ζ̂n+1 = P̂(ζn) +

(
1− νδt

2
|k|2

)
ζ̂n (15)

ζ̂n+1 =
P̂(ζn) +

(
1− νδt

2 |k|
2
)
ζ̂n(

1 + νδt
2 |k|2

) (16)

where ζ̂ = F(ζ) is the Fourier transform of the vorticity field, and P = F (g(ζn)) where g(ζn) =(
∂y∇−2ζn

)
∂xζ

n −
(
∂x∇−2ζn

)
∂yζ

n. We use equation 16 to propagate in time and to solve for the
vorticity field. Given the vorticity field, we can further calculate the horizontal and vertical velocity
with u = −∂y∇−2ζ, v = ∂x∇−2ζ.

B PERIODIC BOUNDARY CONDITION

In order to impose the periodic boundary condition, we add connections to the boundary nodes that
would result in a periodic boundary condition. Particularly, we consider similar copies of the nodes
and by repeating the Delaunay triangulation for the nodes, we find how the boundary nodes are
connected with the other the inside and boundary nodes (see Fig. 9).

Figure 9: Schematic of a nodes and edges for a simulation with a periodic boundary condition.
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