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Abstract
Recent advancements in 3D Gaussian Splatting
(3D-GS) enable high-quality 3D scene reconstruc-
tion from RGB images. Many studies extend this
paradigm for language-driven open-vocabulary
scene understanding. However, most of them
simply project 2D semantic features onto 3D
Gaussians and overlook a fundamental gap
between 2D and 3D understanding: a 3D object
may exhibit various semantics from different
viewpoints—a phenomenon we term view-
dependent semantics. To address this challenge,
we propose LaGa (Language Gaussians), which
establishes cross-view semantic connections
by decomposing the 3D scene into objects.
Then, it constructs view-aggregated semantic
representations by clustering semantic descriptors
and reweighting them based on multi-view
semantics. Extensive experiments demonstrate
that LaGa effectively captures key information
from view-dependent semantics, enabling a more
comprehensive understanding of 3D scenes.
Notably, under the same settings, LaGa achieves
a significant improvement of +18.7% mIoU
over the previous SOTA on the LERF-OVS
dataset. Our code is available at: https:
//github.com/https://github.com/
SJTU-DeepVisionLab/LaGa.

1. Introduction
3D Gaussian Splatting (3D-GS) (Kerbl et al., 2023), a recent
breakthrough in radiance fields, offers superior rendering
efficiency and quality. Its unstructured 3D point-cloud-like
representation makes it a promising foundation for open-
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Figure 1. Pipeline comparison of existing 2D methods (a) and the
direct 3D scene understanding paradigm (b). While 2D methods
excel in pixel-wise understanding via rendered feature maps, they
fail unexpectedly when 3D Gaussians are directly retrieved by
matching learned 3D features with CLIP text embeddings.

vocabulary scene understanding. To this end, recent stud-
ies (Qin et al., 2024; Shi et al., 2024; Bhalgat et al., 2024;
Peng et al., 2025; Cheng et al., 2024; Qu et al., 2024) extend
3D-GS by lifting multi-view 2D semantic features extracted
from vision-language models like CLIP (Radford et al.,
2021) into the 3D feature representation. As shown in Fig-
ure 1(a), these methods heavily rely on the differentiable
rasterization mechanism of 3D-GS. During training, they
optimize the 3D features by aligning rendered feature maps
with 2D semantic features at corresponding viewpoints. At
inference, they continue rendering the learned 3D semantic
features into 2D feature maps, using them for pixel-wise
semantic understanding with cross-view consistency.

However, when applying their learned 3D features to di-
rect 3D perception (Wu et al., 2024b; Lee et al., 2025), as
shown in Figure 1(b), their effectiveness degrades signifi-
cantly, limiting their applicability to downstream tasks such
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Figure 2. An illustration of view-dependent 3D semantics. The
passport exhibits different semantics from different viewpoints.

as 3D object editing, AI-driven interaction, and precise 3D
localization. We identify a fundamental issue behind this
limitation: the view-dependency of 3D semantics. As illus-
trated in Figure 2, a passport viewed from the front clearly
reveals its title, while from the back or side, it becomes
unrecognizable. This phenomenon highlights a fundamental
gap between 2D and 3D understanding. Simply projecting
2D semantics onto 3D Gaussians results in incomplete or
inaccurate semantic assignments, as each Gaussian inherits
semantics visible only from specific viewpoints. Specifi-
cally, this leads to false positives (noisy Gaussians) and false
negatives (incomplete results), as depicted in Figure 1(b).

To quantify this issue, we conduct two analyses. First, a
semantic similarity distribution analysis shows that multi-
view semantic features of the same object often exhibit lower
intra-object similarities than inter-object similarities, provid-
ing direct evidence of view-dependent semantics. Second, a
semantic retrieval integrity analysis finds that about 50%
of 2D semantic features fail to retrieve their corresponding
3D objects completely, further validating its negative affect.

To address this challenge, we propose LaGa, a simple yet
effective method for open-vocabulary 3D scene understand-
ing with 3D-GS. LaGa first performs 3D scene decompo-
sition by grouping multi-view 2D masks into coherent 3D
objects, establishing cross-view semantic connections to ex-
plicitly capture view-dependent 3D semantics. Then, LaGa
constructs view-aggregated semantic representations by ex-
tracting a representative set of semantic descriptors for each
3D object via adaptive clustering. To enhance robustness,
LaGa assigns weights to descriptors based on two factors:
(1) Global alignment, measuring the directional similarity
between the descriptor and its global feature, i.e., the aver-
age semantic embedding across all related 2D semantics;
and (2) Internal compactness, reflecting the consistency of
semantics within the descriptor’s feature cluster. During
inference, LaGa selects the highest weighted response of
descriptors as the object’s final output, thereby preserving

critical information across viewpoints.

Despite its simplicity, LaGa significantly bridges the per-
formance gap between 3D and 2D perception on existing
benchmarks, achieving +18.7% mIoU over previous 3D
methods and surpassing state-of-the-art 2D results by +8.8%
mIoU. Our approach offers a new perspective for advancing
3D semantic understanding within the 3D-GS framework.

2. Related Work
2.1. Radiance Fields and 3D Gaussian Splatting

Neural Radiance Fields (NeRF) (Mildenhall et al., 2020) pi-
oneer using differentiable rendering for 3D scene reconstruc-
tion from multi-view images. Numerous works enhance its
rendering quality (Zhang et al., 2020; Martin-Brualla et al.,
2021; Barron et al., 2021; 2022; 2023) and efficiency (Sun
et al., 2022; Chen et al., 2022; Lindell et al., 2021; Hedman
et al., 2024; Reiser et al., 2021; Müller et al., 2022; Wizad-
wongsa et al., 2021; Neff et al., 2021; Fridovich-Keil et al.,
2022). Recently, 3D Gaussian Splatting (3D-GS) (Kerbl
et al., 2023) uses explicit 3D Gaussians as 3D representation
and differentiable rasterization for real-time, high-quality
rendering. It inspires applications in 3D generation (Yi et al.,
2024; Yang et al., 2024a; Tang et al., 2025), 3D scene edit-
ing (Chen et al., 2024; Wang et al., 2024), and 4D scene
reconstruction (Yang et al., 2024b; Wu et al., 2024a; Duan
et al., 2024; Mihajlovic et al., 2025). We build upon 3D-GS
to achieve open-vocabulary 3D scene understanding.

2.2. 3D Scene Understanding in Radiance Fields

Semantic-Agnostic Scene Understanding. The growing
popularity of radiance fields leads to research in interactive
3D segmentation and scene decomposition. NVOS (Ren
et al., 2022) introduces the first interactive method for ob-
ject selection in NeRFs. N3F (Tschernezki et al., 2022),
DFF (Kobayashi et al., 2022), and ISRF (Goel et al., 2023)
lift features from 2D self-supervised models (Caron et al.,
2021) into 3D via learned feature fields. NeRF-SOS (Fan
et al., 2023) and ContrastiveLift (Bhalgat et al., 2023) dis-
till 2D feature similarities into 3D. More recently, with the
advent of the Segment Anything Model (SAM) (Kirillov
et al., 2023), studies such as Garfield (Kim et al., 2024),
OmniSeg3D (Ying et al., 2024), SA3D (Cen et al., 2023),
GaGa (Lyu et al., 2024), and SAGA (Cen et al., 2025a) uses
SAM-extracted segmentation masks for scene decomposi-
tion. Our approach builds upon this framework by using
SAM-extracted masks to construct cross-view semantic con-
nections and decompose the 3D scene into objects.

Semantic-Aware Scene Understanding. Prior to open-
vocabulary methods, research primarily focus on extend-
ing 2D closed-set perception models to radiance fields.
Semantic-NeRF (Zhi et al., 2021) explore semantic propa-
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gation in NeRFs, while methods such as ObSuRF (Stelzner
et al., 2021), DM-NeRF (Bing et al., 2023), Panoptic-
NeRF (Fu et al., 2022), PCF-Lift (Zhu et al., 2024),
NESF (Vora et al., 2022), and Siddiqui et al. (2023) employ
2D vision models for instance or panoptic segmentation in
3D. Additionally, Instance-NeRF (Liu et al., 2023b) and
NeRF-RPN (Hu et al., 2023) introduce end-to-end models
for instance detection within radiance fields. However, these
methods are inherently constrained to closed-set categories.

Recent studies incorporate vision-language models for open-
vocabulary scene understanding. LERF (Kerr et al., 2023)
learns a feature field that mimics CLIP (Radford et al.,
2021) features across multiple views, while 3D-OVS (Liu
et al., 2023a) performs weakly-supervised segmentation in
NeRFs. With the emergence of 3D-GS, methods such as
LangSplat (Qin et al., 2024), LEGaussians (Shi et al., 2024),
GOI (Qu et al., 2024), and N2F2 (Bhalgat et al., 2024)
focus on efficiently encoding high-dimensional language
features within the explicit 3D Gaussians using feature com-
pression techniques like codebooks or hyperplane-based
grid decomposition. However, these approaches rely on 2D
rendered feature maps for perception, and show degraded
performance in 3D scene understanding.

To address this limitation, OpenGaussian (Wu et al., 2024b)
and Open3DRF (Lee et al., 2025) constrain 3D features
directly instead of supervising 2D rendered features. Open-
Gaussian employs scene decomposition for 3D point-wise
perception but primarily enforces semantic consistency
within objects. However, it overlooks view-dependent se-
mantic variations and rigidly assigns semantics, leading
to significant information loss and limiting its ability to
achieve comprehensive 3D understanding. In contrast, we
leverage scene decomposition to establish cross-view seman-
tic connections, effectively capturing and preserving view-
dependent semantics, thereby bridging the gap between
direct 3D understanding and 2D pixel-wise understanding.

3. Preliminary
3D Gaussian Splatting (3D-GS) is a recent advancement
in radiance fields that represents a 3D scene using a set of
colored 3D Gaussians, G = {g1,g2, . . . ,gN}, where N
is the number of Gaussians in the scene. Each Gaussian’s
mean defines its position, and its covariance determines its
scale. By “splatting” these 3D Gaussians onto an image
plane, 3D-GS enables real-time rendering.

Given a viewpoint with camera intrinsics and extrinsics,
3D-GS first projects the 3D Gaussians onto a 2D plane. The
color C(p) of a pixel p is computed via alpha blending over
an ordered set of Gaussians Gp overlapping the pixel. Let
gp
i denote the i-th Gaussian in Gp, the pixel color is:

C(p) =

|Gp|∑
i=1

cgp
i
αgp

i

i−1∏
j=1

(1− αgp
j
), (1)

where cgp
i

is the color of gp
i , and αgp

i
is computed from the

corresponding 2D Gaussian with covariance Σ, scaled by a
learnable per-Gaussian opacity.

To extend 3D-GS for scene understanding, many studies
propose augmenting 3D Gaussians with additional attributes.
A common approach is to attach a feature vector fg to each
Gaussian g. This allows rendering a feature map using the
same alpha blending formulation as in Equation (1):

F(p) =

|Gp|∑
i=1

fgp
i
αgp

i

i−1∏
j=1

(1− αgp
j
). (2)

Specifically, language-embedded 3D Gaussian Splatting
methods (Qin et al., 2024; Zhou et al., 2024; Bhalgat et al.,
2024; Qu et al., 2024; Shi et al., 2024) align the rendered
feature map F with CLIP’s visual features during training.
At inference, open-vocabulary understanding is performed
by computing the relevance between a text query and the
rendered feature map. However, these learned features are
optimized for 2D perception. When directly applied to 3D
understanding using the learned 3D features {fg | g ∈ G},
performance degrades significantly, as shown in Figure 1.

4. View-Dependency of 3D Semantics
As discussed in Section 1, a 3D object’s semantics vary
with viewpoint shifts. To quantitatively analyze this effect,
we conduct two experiments. The data preprocessing for
them is introduced in Section 5.2, which delivers a set of
2D masks and their corresponding semantic features. Using
these masks, the 3D-GS scene is decomposed into struc-
turally meaningful but semantic-agnostic 3D objects Sec-
tion 5.3, establishing connections between 2D masks and
their corresponding 3D Gaussians. We assume the retrieved
3D Gaussians represent a ‘complete’ 3D object.

We then introduce two analytical experiments: (1) Semantic
similarity distribution analysis and (2) Semantic retrieval
integrity analysis.

Semantic Similarity Distribution. After the 3D decom-
position phase, the multi-view 2D masks along with the
corresponding semantics of the same 3D object are clus-
tered together. Thus, we can compute the cosine similarities
of semantic features of the same object (intra-object) and
between different objects (inter-object). This analysis is con-
ducted across four scenes from the LERF (Kerr et al., 2023)
dataset. The results are shown in Figure 3, where the two
distributions demonstrate a significant overlap, indicating
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Figure 3. Distribution of intra- and inter-object cosine similarities.

that the multi-view semantics of a single 3D object often ex-
hibit lower cosine similarities than those of semantics from
different 3D objects. This statistical finding provides strong
evidence of the existence of view-dependent semantics.

Figure 4. Distribution of recall rates for 2D semantic features.

Semantic Retrieval Integrity. We project multi-view
2D semantics onto 3D Gaussians and use them to re-
trieve 3D Gaussians from the scene (implementation details
in Appendix B.3). Since each 2D mask corresponds to a
‘complete’ 3D object via scene decomposition, the recall
rate—proportion of semantically retrieved 3D Gaussians
within the corresponding region—evaluates how well the
semantics capture the object. We define detected Gaussians
as those with a cosine similarity above 0.75 to a given 2D
feature. Results in Figure 4 show that low-recall features
([0.1, 0.9]) account for 50%. Notably, for complex scenes
containing numerous objects with 360◦ viewpoints, such as
‘Figurines’, this percentage rises to 61.9%. This indicates

that a single object’s Gaussians may exhibit varying 2D
semantics, highlighting the need for multi-view semantic
aggregation in 3D understanding.

5. Method
In this section, we introduce the overall pipeline of LaGa
(Section 5.1) and its key components, including 3D scene
decomposition (Section 5.3) and view-aggregated semantic
representation (Section 5.4).

5.1. Overall Pipeline

Figure 5 presents the overall pipeline of LaGa. First, LaGa
performs 3D scene decomposition to establish cross-view
semantic connections by grouping multi-view 2D semantics
corresponding to the same 3D object. This process natu-
rally partitions the scene into 3D objects, which serve as
fundamental carriers of multi-view semantics.

Next, LaGa constructs view-aggregated semantic represen-
tations to effectively preserve view-dependent semantics.
It first adaptively extracts representative sets of semantic
descriptors for 3D objects, consolidating multi-view seman-
tics into a more holistic representation. Then, a weighted
descriptor relevance aggregation strategy refines the impor-
tance of each descriptor, enhancing noise tolerance. Using
these weighted descriptors, LaGa enables direct 3D scene
understanding without relying on 2D rendered feature maps.

5.2. Data Preparation

We follow the data preparation pipeline introduced by Qin
et al. (2024) to obtain 2D segmentation and semantics priors.
Concrete extraction method is introduced in Appendix B.1.
After the data preparation, we have:

• A set of 2D masks MI = {MI
i ∈ {0, 1}HW | i =

1, . . . , NI} for each image I in the training set I.

• A l2-normalized feature vM ∈ RC corresponding to
each mask M, where C denotes the feature dimension.

5.3. 3D Scene Decomposition

To address the view-dependency of 3D semantics, we aim
to establish connections among different 2D semantics de-
picting the same 3D object. Since 2D semantic features are
linked to multi-view 2D masks, and these masks inherently
correspond to coherent 3D objects, these connections can
be effectively constructed by decomposing the 3D scene.

Inspired by existing 3D-GS decomposition methods (Kim
et al., 2024; Ying et al., 2024; Lyu et al., 2024; Cen et al.,
2025a), we adopt a contrastive learning approach to train a
set of Gaussian affinity features F = {fg ∈ RC′ | g ∈ G},
where C ′ denotes the affinity feature dimension. These
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Figure 5. Overall pipeline of LaGa. LaGa first establishes cross-view semantic connections through contrastive 3D scene decomposition
and then constructs view-aggregated semantic representations by adaptively clustering semantic descriptors and reweighting them.

features serve as indicators of whether two 3D Gaussians
belong to the same object, ensuring that their similarity
reflects their structural and spatial coherence.

To train these affinity features, we render a feature map FI

for each view I using Equation (2). We then assign a mask
affinity prototype f̂MI ∈ RC′

to each 2D mask MI through
masked average pooling:

MAP(MI,FI) =
1∑

p∈δ(I) M
I(p)

∑
p∈δ(I)

MI(p)FI(p).

(3)

Here, δ(I) denotes the set of pixels in image I. The train-
ing objective encourages features within the same mask to
cluster while separating those outside the mask:

L =
∑
I∈I

∑
M∈MI

∑
p∈δ(I)

(1− 2M(p))max(⟨f̂M,FI(p)⟩, 0).

(4)
Though the loss is computed in 2D, after training, the affinity
features and mask prototypes of the same 3D object will
converge into a compact cluster, as the rendered features
originate from the same group of 3D Gaussians.

LetM =
⋃

I∈IMI be the set of masks of all training im-
ages. After training, we employ HDBSCAN (McInnes et al.,
2017) to automatically cluster the masks in M based on
their prototypes f̂M, resulting inM =

⋃Np

i=1 Si, where Si is
a set of 2D masks that belong to the same 3D object and Np

denotes the number of clusters. This step explicitly estab-
lishes cross-view connections among 2D masks, grouping
multi-view semantics into coherent 3D objects.

Beyond connecting masks across views, mask prototypes
also serve as references for identifying the 3D Gaussians
associated with their corresponding object. The prototype
of each 3D object is computed as:

tSi =
1

|Si|
∑

M∈Si

f̂M. (5)

The object index i∗ to which a Gaussian g is assigned is
determined by maximizing the similarity between its affinity
feature fg and the prototype tSi of each object Si:

i∗ = argmax
i
⟨fg, tSi⟩. (6)

where ⟨·, ·⟩ represents the cosine similarity.

At this stage, the scene is decomposed into Np distinct
objects, represented as G =

⋃Np

i=1 GSi . Each object GSi

corresponds to a group of 2D masks Si, effectively preserv-
ing multi-view semantics across the scene. Moreover, these
objects enable the 3D Gaussians within each object to share
a common set of semantics, significantly reducing storage
requirements and accelerating inference. In the next section,
we detail the process of extracting semantic descriptors for
these objects based on their related semantics.

Why Is 3D Scene Decomposition Unaffected by View-
Dependency? Unlike high-level semantics, which need
to encode rich semantic information, 2D segmentation pri-
marily captures object boundaries and thus remains stable
across viewpoints. Except in extreme cases, SAM reliably
produces accurate segmentations, allowing LaGa to estab-
lish robust multi-view semantic connections.

5



Tackling View-Dependent Semantics in 3D Language Gaussian Splatting

5.4. View-Aggregated Semantic Representation

For each object GSi with multi-view 2D masks Si, we de-
note its multi-view semantic features as:

VSi = {vM |M ∈ Si}. (7)

LaGa obtains a robust 3D view-aggregated semantic repre-
sentation from these multi-view 2D semantics through two
key steps: 1) Cross-view descriptor extraction: Generates
an informative set of representative semantic descriptors;
2) Weighted descriptor relevance aggregation: Adjusts the
importance of each descriptor to mitigate noise.

Cross-View Descriptor Extraction. After the 3D scene
decomposition, VSi maintain all available multi-view se-
mantic information about the 3D object GSi , it is crucial
to extract a representative set of descriptors that effectively
summarize the semantic variations observed across different
viewpoints. To achieve this, we apply K-means clustering
to VSi , obtaining a set of cluster centroids:

DGSi
=

{
di ∈ RC′

| i ∈ {1, . . . , NGSi }
}
. (8)

These centroids serve as semantic descriptors for the object
GSi . Since semantic complexity varies across objects, we
determine the number of descriptors NGSi adaptively using
the silhouette score (see Algorithm 1 for details).

Weighted Descriptor Relevance Aggregation. Instead of
treating all descriptors equally, we introduce a weighting
mechanism that prioritizes more reliable descriptors. Given
a text query q ∈ RC encoded by CLIP, we define the object-
level relevance score as:

REL(GSi ,q) = max
d∈DGSi

ωd · Rel(d,q). (9)

The relevance score Rel(d,q) follows Kerr et al. (2023):

Rel(d,q) = min
i

exp ⟨d,q⟩
exp ⟨d,q⟩+ exp ⟨d · ϕi

canon⟩
, (10)

where ϕi
canon represents canonical text embeddings1.

The weight ωd for each descriptor d is based on two criteria:

ωd = d · v̄Si

||v̄Si ||2

=
d

||d||2
· v̄Si

||v̄Si ||2︸ ︷︷ ︸
(i) Directional Consistency

× ∥d∥2︸ ︷︷ ︸
(ii) Internal Compactness

, (11)

v̄Si =
1

|VSi |
∑

v∈VSi

v, (12)

1Following prior work, the canonical phrases are “object,”
“thing,” “texture,” and “stuff”.

• Directional Consistency measures the cosine similar-
ity between each descriptor and the global feature v̄Si

of its corresponding object. Descriptors that aligns
with the dominant semantics of the object are assigned
higher weights. For instance, the spine of a book may
appear as a “knife” from certain viewpoints, which is
suppressed due to semantic inconsistency. In contrast,
descriptor resembling a “passport” is more semanti-
cally aligned with the global semantics “book,” and is
thus assigned higher weights.

• Internal Compactness quantifies intra-cluster seman-
tic agreement via the L2 norm of a descriptor. Semanti-
cally consistent descriptors have compact clusters and
yield higher norms. In contrast, if the features of a de-
scriptor are inconsistent with diverse directions, their
vector average will cancel out, resulting in a lower
norm. Thus, the norm serves as a confidence measure
for semantic reliability.

Together, these criteria allow LaGa to suppress unreliable
descriptors. Since the view-aggregated semantic represen-
tations are assigned to 3D objects, LaGa enables direct 3D
understanding without relying on rendered feature maps.

6. Experiments
In this section, we first introduce the datasets and evaluation
protocol. We then present both quantitative and qualitative
results to demonstrate the effectiveness of LaGa. Addition-
ally, we conduct extensive ablation studies to analyze the
impact of different design choices in LaGa.

6.1. Datasets and Evaluation Protocol

We evaluate LaGa on LERF-OVS (Kerr et al., 2023; Qin
et al., 2024), 3D-OVS (Liu et al., 2023a), and ScanNet (Dai
et al., 2017). LERF-OVS consists of complex 360◦ indoor
scenes, while 3D-OVS features forward-facing scenes with
long-tailed categories. Both datasets provide 2D annota-
tions. Unlike prior methods that perform segmentation on
rendered 2D feature maps, we conduct 3D segmentation at
the Gaussian level, generating binary Gaussian segmenta-
tion maps (‘1’ for foreground, ‘0’ for background). These
maps are then rendered into 2D views and evaluated against
ground-truth masks.

For ScanNet, we follow OpenGaussian (Wu et al., 2024b)
to perform 3D point cloud semantic segmentation, directly
comparing predictions with point-wise ground-truth annota-
tions for a more direct assessment of 3D perception quality.

6.2. Quantitative Results

LERF-OVS Dataset. Table 1 compares LaGa with both
3D and 2D approaches, demonstrating substantial improve-
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Table 1. Quantitative mIoU (%) results on the LERF-OVS dataset:
“F.” (Figurines), “T.” (Teatime), “R.” (Ramen), and “W.” (Waldo
Kitchen). ‘†’ indicates results from Wu et al. (2024b), ‘‡’ indicates
our reimplementation, and ‘*’ denotes unrefereed preprints.

METHODS F. T. R. W. MEAN

2D

LSEG 7.6 21.7 7.0 29.9 16.6
LERF 38.6 45.0 28.2 37.9 37.4
LEGAUSSIANS 60.3 44.5 52.6 41.4 46.9
LANGSPLAT 44.7 65.1 51.2 44.5 51.4
N2F2 47.0 69.2 56.6 47.9 54.4
OCCAMLGS* 58.6 70.2 51.0 65.3 61.3
VLGS* 58.1 73.5 61.4 54.8 62.0

3D

OPENGAUSSIAN† 39.3 60.4 31.0 22.7 38.4
SAGA‡ 36.2 19.3 53.1 14.4 30.7
LANGSPLAT‡ 25.9 35.6 29.3 33.5 31.1
LEGAUSSIANS‡ 31.2 34.5 17.6 17.3 25.2
OPENGAUSSIAN‡ 61.1 59.1 29.2 31.9 45.3
SUPERGSEG* 43.7 55.3 18.1 26.7 35.9
LAGA (OURS) 64.1 70.9 55.6 65.6 64.0

ments over previous state-of-the-art methods. Unlike 2D
methods that rely on rendered feature maps, LaGa performs
direct 3D segmentation at the Gaussian level. Under identi-
cal settings, LaGa achieves an 18.7% mIoU improvement
over OpenGaussian (Wu et al., 2024b)2.

Notably, LaGa achieves significant gains in the “Waldo
Kitchen” scene, where OpenGaussian’s rigid feature as-
signment fails to capture key distinguishing semantics that
appear inconsistently across viewpoints. This result high-
lights the importance of LaGa’s view-aggregated semantic
representation in addressing view-dependent semantics.

Furthermore, LaGa outperforms recent preprints, including
OccamLGS (Cheng et al., 2024), VLGS (Peng et al., 2025),
and SuperGSeg (Liang et al., 2024), establishing a new
benchmark for open-vocabulary 3D segmentation.

3D-OVS Dataset. As shown in Table 2, LaGa achieves
competitive 3D segmentation performance on the 3D-OVS
dataset, reaching a 95.3% mIoU, comparable to state-of-
the-art 2D methods. The lack of significant improvement
can be attributed to the dataset’s lower complexity—each
scene contains only a few distinctive objects, and existing
methods already achieve near-optimal performance (over
90% mIoU). Additionally, the forward-facing scene config-
uration and limited viewpoint variations reduce the impact
of view-dependent semantics, which LaGa is designed to
handle. These results align with our expectations.

ScanNet Dataset. The detailed implementation details of
point cloud segmentation can be found in Appendix B.6.

2We revise the evaluation script of OpenGaussian’s official
code. As a result, our reimplementation achieves +6.9% mIoU
higher than originally reported.

Table 2. Quantitative mIoU (%) results on the 3D-OVS dataset.
Methods marked with ‘*’ denote concurrent preprints.

METHODS BED BENCH ROOM SOFA LAWN MEAN

LERF 73.5 53.2 46.6 27.0 73.7 54.8
3D-OVS 89.5 89.3 92.8 74.0 88.2 86.8
GOI 89.4 92.8 91.3 85.6 94.1 90.6
LEGAUSSIANS 84.9 91.1 86.0 87.8 92.5 88.5
LANGSPLAT 92.5 94.2 94.1 90.0 96.1 93.4
N2F2 93.8 92.6 93.5 92.1 96.3 93.9
OCCAMLGS* 96.8 95.8 96.5 88.8 97.0 95.0
VLGS* 96.8 97.3 97.7 95.5 97.9 97.1

LAGA (OURS) 96.8 92.8 97.0 93.0 96.9 95.3

Table 3. Quantitative results on the ScanNet dataset.

METHODS
19 CLASSES 15 CLASSES 10 CLASSES

MIOU / MACC. MIOU / MACC. MIOU / MACC.

LEGAUSSIANS 3.8 / 10.9 9.0 / 22.2 12.8 / 28.6
LANGSPLAT 3.8 / 9.1 5.4 / 13.2 8.4 / 22.1
OPENGAUSSIAN 24.7 / 41.5 30.1 / 48.3 38.3 / 55.2
LAGA (OURS) 32.5 / 49.1 35.5 / 53.5 42.6 / 63.2

The results are shown in Table 3. Predictably, both 2D
segmentation methods, LangSplat (Qin et al., 2024) and
LEGaussians (Shi et al., 2024), fail to produce reasonable
results due to poor 3D point feature quality. In contrast,
LaGa outperforms OpenGaussian, demonstrating superior
capability in handling point cloud segmentation.

Difference between LaGa and OpenGaussian. Both
OpenGaussian (Wu et al., 2024b) and LaGa decompose 3D
scenes for open-vocabulary understanding. However, Open-
Gaussian assigns a 2D CLIP feature to each Gaussian via a
rule-based representative view selection, which overlooks
the information in multi-view semantics and results in sub-
optimal performance. In contrast, LaGa extracts semantic
descriptors through adaptive multi-view clustering and ap-
plies weighted relevance aggregation to suppress noise and
enhance robustness. This design enables LaGa to achieve a
significantly more robust 3D semantic representation, with
an improvement of +18.7% in mIoU.

6.3. Qualitative Results

We provide a visual comparison with existing methods
in Figure 6. Compared to 2D methods such as LEGaus-
sians (Shi et al., 2024) and LangSplat (Qin et al., 2024),
LaGa generates sharper boundaries and more complete 3D
segmentations. While these prior methods can coarsely de-
tect objects, they suffer from multiple false positives and
false negatives due to the inherent limitation of learning 3D
Gaussian features from restricted viewpoints.

For example, in the “Waldo Kitchen-Ottolenghi” example,
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Figure 6. Qualitative comparison on the LERF-OVS dataset. LaGa delivers more precise 3D segmentations within 3D-GS. Although
corresponding views are provided with colored bounding boxes for clarity, neither viewpoint information nor visual prompts are used.

both LEGaussians and LangSplat capture only a partial
outline of the book, as CLIP can only recognize its title from
certain perspectives. In most views, the title is unidentifiable,
leading to incomplete feature fusion and missing regions. In
contrast, LaGa effectively captures the book’s full semantics
by integrating information across multiple views.

OpenGaussian (Wu et al., 2024b) also produces clean and
distinct segmentations by enforcing feature consistency
within pre-segmented 3D regions. However, it fails to ac-
count for view-dependent semantics, as it rigidly assigns
a single 2D feature to an entire 3D region. This limitation
results in frequent misclassifications (e.g., Figurines-Miffy,
Ramen-Egg, and Waldo Kitchen-Toaster). These findings
further underscore the necessity of preserving multi-view
semantics and highlight the effectiveness of LaGa.

To further demonstrate the generalizability of LaGa, we
present visualization results on the MIP-360 dataset (Barron
et al., 2022). As illustrated in Figure 7, LaGa performs
well in both complex indoor and outdoor environments. For
more qualitative results, including more visual comparisons,
multi-view and multi-granularity segmentation results, vi-
sualizations on the 3D-OVS dataset, and examples of mask
clustering and scene editing, see Appendix C.

6.4. Ablation Study

Our ablation studies evaluate the effectiveness of the view-
aggregated semantic representation, focusing on cross-view
descriptor extraction and weighted descriptor relevance ag-

Figure 7. Visualization results on the MIP-360 dataset. LaGa
shows accurate localization across diverse textual prompts in both
indoor and outdoor complex environments.

gregation. To assess the impact of cross-view descriptor
extraction, we introduce two simple baseline methods for
deriving semantic descriptors of 3D objects:

1. Average Pooling: Represent the object GSi by com-
puting the average of the visual features in VSi .

2. Max Pooling: Retain all features in VSi and, during
inference, use the highest response among them as the
representative response for the object GSi .

The results are presented in Table 4. “Fixed: k” denotes
clustering the multi-view features using a fixed number of

8
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Table 4. Ablation study on the LERF-OVS dataset. For each
scene, the best and second-best results are highlighted in bold
and underlined fonts. “DW” represents the descriptor weighting
scheme introduced in Section 5.4. Within each “DW” experiment
group, superior results are marked with a gray background.

METHODS F. T. R. W. MEAN

AVG. POOLING 48.6 64.9 47.8 52.4 53.4
MAX POOLING 38.4 42.7 35.4 56.7 43.3

FIXED: 5 – DW 64.7 58.9 50.5 62.2 59.1
+ DW 63.2 64.5 56.2 63.5 61.9

FIXED: 10 – DW 62.8 68.0 46.3 60.3 59.4
+ DW 59.5 71.3 54.3 63.9 62.3

FIXED: 20 – DW 61.1 63.5 41.6 63.0 57.3
+ DW 58.2 63.2 48.9 66.4 59.2

ADAPTIVE

– DW 59.7 65.5 53.8 62.8 60.4
+ DWc 61.6 69.3 53.6 59.2 60.9
+ DWd 60.8 67.3 55.6 63.9 61.9
+ DW 64.1 70.9 55.6 65.6 64.0

clusters k, and “Adaptive” represents our final descriptor
extraction method, which adaptively selects the number of
clusters. “DW” denotes the descriptor weighting scheme.

By replacing the descriptor extraction method with the naive
“average pooling” and “max pooling” strategies, the results
show significant drops of 10.6% mIoU and 20.7% mIoU,
respectively. This is because that merely averaging the
multi-view features can lead to information loss due to view-
dependent semantics. Conversely, retaining all features
makes the segmentation susceptible to noisy features ex-
tracted by CLIP. In contrast, using a clustering algorithm to
preserve multi-view semantic information leads to a notice-
able performance improvement. However, it is evident that
the optimal number of clusters varies across different scenes
due to differences in data distribution. Manually adjust-
ing these hyper-parameters is impractical and unreasonable,
demonstrating the necessity of our adaptive strategy.

Moreover, regardless of whether a fixed number of clus-
ters or the adaptive strategy is used, results with the de-
scriptor weighting consistently outperform those without
it. DWc and DWd represent descriptor weighting schemes
that consider only the internal compactness of the descriptor
(||d||2) and the global alignment (⟨d, v̄Si⟩), respectively.
Both schemes show improvements compared to the –DW
setting; however, combining them yields the most significant
enhancement, highlighting the necessity of our design.

For more discussion on the hyper-parameter selection of
LaGa, please refer to Appendix B.5.

6.5. Discussion on Failure Cases

We analyze common failure cases of LaGa. As shown in Fig-
ure 8, two main issues are observed:

Figure 8. Failure cases of LaGa, with prompts shown below and
predicted regions highlighted.

• Bag-of-Words Effect in CLIP. Prompts such as “pi-
rate hat on the rubber duck” or “cookies in the plate”
require models to resolve compositional semantics.
However, CLIP tends to activate on isolated nouns
(e.g., “hat”, “duck”) rather than the full phrase. LaGa
inherits this limitation from CLIP.

• Lack of Context in 2D Semantics. LaGa extracts
2D semantics by feeding SAM-segmented image crops
into CLIP to reduce distractions from unrelated content.
However, this operation removes necessary contextual
information, leading to errors in relational (“chair un-
der the sheep”) or part-level queries (“hooves”).

These failure cases highlight the gap between real-world
open-vocabulary perception and current model capabilities.
Future work could explore the use of large language models
to better handle such compositional grounding.

7. Conclusion
In this paper, we investigate language-driven open-
vocabulary scene understanding methods based on 3D-GS
and identify the view-dependency of 3D semantics as a crit-
ical limitation hindering robust 3D understanding. Through
experiments, we validate the existence and impact of this is-
sue. To address this challenge, we propose LaGa, a method
that establishes cross-view connections among multi-view
semantics and constructs view-aggregated semantic repre-
sentations for 3D scene understanding. Extensive experi-
ments demonstrate that LaGa effectively achieves a more
comprehensive understanding of 3D scenes. Our findings
provide a new perspective for advancing open-vocabulary
scene understanding within the 3D-GS framework.

9



Tackling View-Dependent Semantics in 3D Language Gaussian Splatting

Acknowledgments
This work was supported by NSFC 62322604, NSFC
62176159, Shanghai Municipal Science and Technology
Major Project 2021SHZDZX0102.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P.,

Martin-Brualla, R., and Srinivasan, P. P. Mip-nerf: A
multiscale representation for anti-aliasing neural radiance
fields. In ICCV, 2021.

Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P.,
and Hedman, P. Mip-nerf 360: Unbounded anti-aliased
neural radiance fields. In CVPR, 2022.

Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P.,
and Hedman, P. Zip-nerf: Anti-aliased grid-based neural
radiance fields. In ICCV, 2023.

Bhalgat, Y., Laina, I., Henriques, J. a. F., Vedaldi, A., and
Zisserman, A. Contrastive lift: 3d object instance seg-
mentation by slow-fast contrastive fusion. In NeurIPS,
2023.

Bhalgat, Y., Laina, I., Henriques, J. F., Zisserman, A., and
Vedaldi, A. N2f2: Hierarchical scene understanding with
nested neural feature fields. In ECCV, 2024.

Bing, W., Chen, L., and Yang, B. Dm-nerf: 3d scene geom-
etry decomposition and manipulation from 2d images. In
ICLR, 2023.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties in
self-supervised vision transformers. In ICCV, 2021.

Cen, J., Zhou, Z., Fang, J., Yang, C., Shen, W., Xie, L.,
Jiang, D., Zhang, X., and Tian, Q. Segment anything in
3d with nerfs. In NeurIPS, 2023.

Cen, J., Fang, J., Yang, C., Xie, L., Zhang, X., Shen, W.,
and Tian, Q. Segment any 3d gaussians. In AAAI, 2025a.

Cen, J., Zhou, Z., Fang, J., Yang, C., Shen, W., Xie, L.,
Jiang, D., Zhang, X., and Tian, Q. Segment anything in
3d with radiance fields. IJCV, 2025b.

Chen, A., Xu, Z., Geiger, A., Yu, J., and Su, H. Tensorf:
Tensorial radiance fields. In ECCV, 2022.

Chen, Y., Chen, Z., Zhang, C., Wang, F., Yang, X., Wang,
Y., Cai, Z., Yang, L., Liu, H., and Lin, G. Gaussianeditor:
Swift and controllable 3d editing with gaussian splatting.
In CVPR, 2024.

Cheng, J., Zaech, J.-N., Gool, L. V., and Paudel, D. P. Oc-
cam’s lgs: A simple approach for language gaussian splat-
ting. arXiv preprint arXiv:2412.01807, 2024.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser,
T., and Nießner, M. Scannet: Richly-annotated 3d recon-
structions of indoor scenes. In CVPR, 2017.

Duan, Y., Wei, F., Dai, Q., He, Y., Chen, W., and Chen, B.
4d-rotor gaussian splatting: Towards efficient novel view
synthesis for dynamic scenes. In SIGGRAPH, 2024.

Fan, Z., Wang, P., Jiang, Y., Gong, X., Xu, D., and Wang, Z.
Nerf-sos: Any-view self-supervised object segmentation
on complex scenes. In ICLR, 2023.

Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B.,
and Kanazawa, A. Plenoxels: Radiance fields without
neural networks. In CVPR, 2022.

Fu, X., Zhang, S., Chen, T., Lu, Y., Zhu, L., Zhou, X.,
Geiger, A., and Liao, Y. Panoptic nerf: 3d-to-2d label
transfer for panoptic urban scene segmentation. In 3DV,
2022.

Goel, R., Sirikonda, D., Saini, S., and Narayanan, P. Inter-
active segmentation of radiance fields. In CVPR, 2023.

Hedman, P., Srinivasan, P. P., Mildenhall, B., Reiser, C.,
Barron, J. T., and Debevec, P. Baking neural radiance
fields for real-time view synthesis. IEEE TPAMI, 2024.

Hu, B., Huang, J., Liu, Y., Tai, Y.-W., and Tang, C.-K. Nerf-
rpn: A general framework for object detection in nerfs.
In CVPR, 2023.

Hu, X., Wang, Y., Fan, L., Fan, J., Peng, J., Lei, Z., Li, Q.,
and Zhang, Z. Segment anything in 3d gaussians. arXiv
preprint arXiv:2401.17857, 2024.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G. 3d
gaussian splatting for real-time radiance field rendering.
ACM TOG, 2023.

Kerr, J., Kim, C. M., Goldberg, K., Kanazawa, A., and
Tancik, M. Lerf: Language embedded radiance fields. In
ICCV, 2023.

Kim, C. M., Wu, M., Kerr, J., Tancik, M., Goldberg, K., and
Kanazawa, A. Garfield: Group anything with radiance
fields. In CVPR, 2024.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., et al. Segment anything. In ICCV, 2023.

10



Tackling View-Dependent Semantics in 3D Language Gaussian Splatting

Kobayashi, S., Matsumoto, E., and Sitzmann, V. Decom-
posing nerf for editing via feature field distillation. In
NeurIPS, 2022.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, H., Yun, Y., Bae, J., Kim, S., and Uh, Y. Rethinking
open-vocabulary segmentation of radiance fields in 3d
space. In AAAI, 2025.

Liang, S., Wang, S., Li, K., Niemeyer, M., Gasperini, S.,
Navab, N., and Tombari, F. Supergseg: Open-vocabulary
3d segmentation with structured super-gaussians. arXiv
preprint arXiv:2412.10231, 2024.

Lindell, D. B., Martel, J. N. P., and Wetzstein, G. Autoint:
Automatic integration for fast neural volume rendering.
In CVPR, 2021.

Liu, K., Zhan, F., Zhang, J., XU, M., Yu, Y., Saddik, A. E.,
Theobalt, C., Xing, E., and Lu, S. Weakly supervised 3d
open-vocabulary segmentation. In NeurIPS, 2023a.

Liu, Y., Hu, B., Huang, J., Tai, Y.-W., and Tang, C.-K.
Instance neural radiance field. In ICCV, 2023b.

Lyu, W., Li, X., Kundu, A., Tsai, Y.-H., and Yang, M.-H.
Gaga: Group any gaussians via 3d-aware memory bank.
arXiv preprint arXiv:2404.07977, 2024.

Martin-Brualla, R., Radwan, N., Sajjadi, M. S., Barron,
J. T., Dosovitskiy, A., and Duckworth, D. Nerf in the wild:
Neural radiance fields for unconstrained photo collections.
In CVPR, 2021.

McInnes, L., Healy, J., and Astels, S. hdbscan: Hierarchi-
cal density based clustering. Journal of Open Source
Software, 2017.

Mihajlovic, M., Prokudin, S., Tang, S., Maier, R., Bogo,
F., Tung, T., and Boyer, E. Splatfields: Neural gaussian
splats for sparse 3d and 4d reconstruction. In ECCV,
2025.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. In ECCV,
2020.

Müller, T., Evans, A., Schied, C., and Keller, A. Instant
neural graphics primitives with a multiresolution hash
encoding. ACM TOG, 2022.

Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J. H.,
Chaitanya, C. R. A., Kaplanyan, A., and Steinberger, M.
Donerf: Towards real-time rendering of compact neural

radiance fields using depth oracle networks. In Computer
Graphics Forum, 2021.

Peng, Q., Planche, B., Gao, Z., Zheng, M., Choudhuri,
A., Chen, T., Chen, C., and Wu, Z. 3d vision-language
gaussian splatting. ICLR, 2025.

Qin, M., Li, W., Zhou, J., Wang, H., and Pfister, H.
Langsplat: 3d language gaussian splatting. In CVPR,
2024.

Qu, Y., Dai, S., Li, X., Lin, J., Cao, L., Zhang, S., and Ji,
R. Goi: Find 3d gaussians of interest with an optimizable
open-vocabulary semantic-space hyperplane. In ACM
MM, 2024.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision. In
ICML, 2021.

Reiser, C., Peng, S., Liao, Y., and Geiger, A. Kilonerf:
Speeding up neural radiance fields with thousands of tiny
mlps. In ICCV, 2021.

Ren, Z., Agarwala, A., Russell, B. C., Schwing, A. G., and
Wang, O. Neural volumetric object selection. In CVPR,
2022.

Shi, J.-C., Wang, M., Duan, H.-B., and Guan, S.-H. Lan-
guage embedded 3d gaussians for open-vocabulary scene
understanding. In CVPR, 2024.
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A. Appendix Overview
This appendix provides additional details and analyses to complement the main paper. It includes implementation details,
experimental setup, and extensive qualitative results. The appendix is structured as follows:

• Appendix B: Implementation details, including data preparation, additional training strategies, semantic retrieval
analysis, cross-view descriptor extraction, hyper-parameter discussion and ScanNet experiments.

• Appendix C.1: Additional qualitative comparisons on the LERF-OVS dataset.

• Appendix C.2: Multi-view segmentation results on the LERF-OVS dataset.

• Appendix C.3: Multi-view segmentation results on the 3D-OVS dataset.

• Appendix C.4: Multi-granularity segmentation results on the LERF-OVS dataset.

• Appendix C.5: Scene editing examples.

• Appendix C.6: Examples of mask groups obtained from 3D scene decomposition.

• Appendix C.7: Analysis of view-dependent 3D semantics, demonstrating variations in 2D relevance scores across
different viewpoints.

B. Implementation Details
To extract 2D segmentation priors and language features for the training images, we follow previous works (Qin et al., 2024;
Bhalgat et al., 2024; Wu et al., 2024b) by using the ViT-H model of SAM and the OpenCLIP ViT-B/16 model of CLIP.
The semantic feature dimension is 512, and the Gaussian affinity feature dimension C ′ is set to 32. For the LERF-OVS
dataset, we follow LangSplat to train a three-level model corresponding to the “subpart,” “part,” and “whole” levels of
SAM-extracted masks. Rather than selecting the level with the highest response as in LangSplat, we average responses
across all three levels, which we find to be more robust. For 3D-OVS and ScanNet, we use only the ”whole” level of SAM
masks, as these datasets are simpler. For each scene, the 3D-GS model is trained for 30000 iterations, followed by 30000
iterations training of the Gaussian affinity features. For ScanNet, we apply a KNN-based local feature smoothing operation
following SAGA (Cen et al., 2025a) during training the affinity features. During inference, in addition to the relevance
score, we find that applying an auxiliary cosine similarity threshold (0.23) helps remove unwanted regions. For all remained
objects in the scene, relevance scores are first min-max normalized. A 3D bilateral filtering step is then applied to the
resulting 3D relevance map to suppress noise. Gaussians with relevance scores above 0.6 are classified as foreground3. All
experiments are conducted on a single NVIDIA RTX 3090 GPU.

B.1. Concrete Data Preparation Pipeline

We follow LangSplat (Qin et al., 2024) to combine SAM with CLIP to generate 2D segmentation priors with pixel-wise
semantic features. Specifically, for each 2D image I, we first use SAM to extract a set of 2D masks automatically, denoted by
MI = {MI

i ∈ {0, 1}HW | i = 1, . . . , NI}. To obtain the corresponding visual semantic feature for a mask MI
i , we begin

by computing its bounding box B ∈ R4. We then apply MI
i to I and crop the resulting masked image with B, producing a

cropped image IM
I
i . Finally, we resize this crop to 224× 224 and feed it into the CLIP image encoder to obtain its visual

feature vMI

.

B.2. Additional Training Strategy

Due to severe data imbalance when training Gaussian affinity features, we resample positive and negative samples in each
training iteration. Rather than applying the loss function in Equation (4) directly, we split it into two components: a positive
component that draws features within the same mask closer to the feature prototype f̂M, and a negative component that
pushes features from outside the mask away from the prototype. We randomly select a set of positive samples PM and
negative samples NM, ensuring |PM| = |NM|. The rebalanced loss is then defined as:

3This strategy follows LangSplat, which applies min-max normalization to the 2D relevance map and uses a threshold for foreground-
background separation. In contrast, LaGa operates in 3D and applies the same procedure to the 3D relevance map.
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Lr =
∑
I∈I

∑
M∈MI

∑
p∈PM

−MI(p)⟨f̂M,FI(p)⟩+
∑
I∈I

∑
M∈MI

∑
p∈NM

(
1−MI(p)

)
max(⟨f̂M,FI(p)⟩, 0). (13)

This re-balancing strategy is essential for obtaining high-quality scene decomposition results.

In addition, to better align affinity features between inner Gaussians and those located near the object surface, we follow
SAGA (Cen et al., 2025a) and incorporate a feature norm regularization. Specifically, the aggregated feature F(p) at
location p is computed as:

F(p) =

|Gp|∑
i=1

fgp
i

||fgp
i
||2

αgp
i

i−1∏
j=1

(1− αgp
j
), (14)

and the regularization term is defined as:

Lnorm(p) = 1− ||F(p)||2, (15)

resulting in the final loss function:

L = Lr +
∑
I∈I

∑
p∈δ(I)

Lnorm(p). (16)

Please refer to Cen et al. (2025a) for more details on the underlying mechanism of this regularization.

B.3. Details of Semantic Retrieval

To obtain the fused semantic features of 3D Gaussians, we first analyze the 3D Gaussians responsible for rendering each 2D
mask. This is achieved by examining the weights used in the rendering phase (Equation (1)). For ease of implementation,
given a 2D mask M, we use the backward pass of the differentiable rasterization algorithm to propagate the mask information
onto the 3D Gaussians. This process yields a set of gradient scores Z = {zg | g ∈ G}. Let lg denote the fused visual feature
from the semantic retrieval experiment. During an iteration of projection, lg is updated as follows:

lg ← lg − zgv
M, (17)

where vM represents the feature of the 2D mask M. After processing all mask features, the fused visual features are
normalized:

lg ←
lg
||lg||2

. (18)

Using these fused features, the 3D Gaussians corresponding to a given 2D mask feature vM are retrieved as:

{g | g ∈ G, ⟨vM, lg⟩ > 0.75}. (19)

Note that the 0.75 threshold is chosen empirically based on analysis of the precision–recall trade-off under different cosine
similarity values. Here, precision refers to the proportion of retrieved 3D Gaussians that actually belong to the corresponding
3D object. Low precision indicates that unrelated Gaussians are being retrieved for a given 2D mask.

As shown in Table 5, lowering the similarity threshold (e.g., to 0.7) increases the proportion of samples with high recall
(¿0.9), but at the cost of significantly reduced precision. For example, at 0.7, the average precision of high-recall samples
drops to just 13.4%.

From these observations, we find that thresholds in the [0.75, 0.8] range strike a better balance. We conservatively select
0.75, where 50.2% of samples exhibit low recall, clearly demonstrating the challenge of view-dependent semantics. A
threshold of 0.8 also yields valid results, with fewer high-recall samples but higher precision.

Note that the average precision does not reach 100%, as CLIP features operate at the semantic level, not the instance level.
Therefore, 3D Gaussians with similar semantics but belonging to different objects may also be retrieved, even with a high
threshold.
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Table 5. Precision-recall trade-off at different relevance thresholds.

Threshold 0.5 0.6 0.7 0.75 0.8 0.9

Low / (Low+High) (%) 2.6 13.1 33.7 50.2 65.4 93.8
AP of High (%) 1.7 3.9 13.4 24.1 38.6 48.7

Algorithm 1 Cross-View Descriptor Extraction
Input: Feature set VSi , maximum clusters Kmax

Output: Semantic descriptors DGSi for the 3D object GSi , and the number of descriptors NGSi .
Initialize best silhouette score s∗ ← −1
Initialize optimal number of clusters K∗ ← 1
for K = 1 to Kmax do

Perform K-means clustering on VSi with K clusters, obtaining clusters C1, . . . , CK
Compute silhouette score sK for the current clustering
if sK > s∗ then
s∗ ← sK , K∗ ← K
C∗ ← {C1, . . . , CK}

end if
end for
NGSi ← K∗

DGSi ← {Centroid(C∗1 ), . . . ,Centroid(C∗K∗)}

B.4. Detailed Algorithm of the Cross-View Descriptor Extraction

The pseudo code of the cross-view descriptor extraction is shown in Algorithm 1.

B.5. Hyper-parameter Selection and Discussion

LaGa involves two key hyper-parameters: the maximum number of clusters (Kmax) in the adaptive K-means algorithm,
and the cluster selection threshold ϵ used in HDBSCAN. Kmax is set to 20 for all experiments. For multi-level modeling
(see Appendix B.1), ϵ is set to 0.1, 0.2, and 0.3 for the “subpart”, “part”, and “whole” levels, respectively. In experiments
with a single-level decomposition, ϵ is fixed at 0.1.

To evaluate the robustness of LaGa with respect to these hyper-parameters, we conduct ablation studies on the LERF-OVS
dataset. As shown in Table 6, LaGa maintains stable performance across a wide range of Kmax values (5–30). Similarly,
Table 7 demonstrates that LaGa is insensitive to ϵ within the range of 0 to 0.3 at the “whole” level. However, setting ϵ too
large (e.g., 0.4) can lead to unintended object merging.

B.6. Implementation Details for Experiments on ScanNet Dataset

For the point cloud semantic segmentation task on the ScanNet dataset, we adapt our 3D segmentation method to align with
the evaluation protocol, which does not support a complete 3D-GS model. Specifically, during the cross-view semantics
grouping phase, we fix the coordinates of the 3D points (i.e., the means of the 3D Gaussians) and disable the densification
mechanism of 3D-GS. This allows us to directly train the affinity features of these Gaussians while maintaining consistency
in other processes. During evaluation, we employ the inference procedure described in Section 5.4 to assign each 3D point a
multi-class segmentation score, classifying each point into the category with the highest score.

C. More Qualitative Results
In this section, we present additional visual results to further demonstrate the effectiveness of LaGa. We first show more
qualitative comparisons with existing methods on the LERF-OVS dataset. Next, we provide multi-view 3D segmentation
results on LERF-OVS to demonstrate the integrity of the segmented objects of LaGa. We also show multi-view semantic
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Table 6. Impact of Kmax on segmentation performance (mIoU).

Kmax 5 10 15 20 30

mIoU (%) 63.4 63.4 64.1 64.0 63.2

Table 7. Effect of ϵ on segmentation performance (mIoU).

ϵ 0 0.1 0.2 0.3 0.4

mIoU (%) 62.6 63.0 62.1 64.0 60.6

segmentation results on 3D-OVS. Finally, we offer some representative scene-editing examples to highlight the practical
significance of LaGa.

C.1. More Visual Comparisons with Existing Methods

Figure 9 presents the results, which lead to conclusions similar to those in Section 6.3. One phenomenon worth clarifying is
the needle-like borders around segmented objects. This effect arises from an inherent flaw of the 3D-GS representation,
where 3D Gaussians are trained to fit multi-view RGB images without explicit object awareness. Consequently, numerous
ambiguous Gaussians contribute to the rendering of different objects. After segmentation, these Gaussians manifest as
needle-like borders. Although certain 3D-GS segmentation methods (Cen et al., 2025b; Hu et al., 2024) have examined this
issue, it lies beyond the scope of this paper.

Figure 9. More qualitative comparison results on the LERF-OVS dataset.

C.2. Multi-view Segmentation Results on the LERF-OVS Dataset

We present multi-view segmentation results for the LERF-OVS dataset in Figure 10. Both rendered 2D masks and the
corresponding 3D objects (with backgrounds removed) are displayed. In the ”Figurines–pink ice cream” and ”Teatime–coffee
mug” examples, the 2D rendered masks are empty, yet the 3D objects become visible once occlusions are removed. This
underscores a key difference between previous 2D-based approaches and our 3D method: because 2D methods rely on
rendered feature maps, they cannot perceive objects occluded by obstacles. In contrast, conducting direct 3D understanding
in 3D space is free from this limitation.
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C.3. Multi-view Semantic Segmentation Results on the 3D-OVS Dataset

We also present multi-view semantic segmentation results on the 3D-OVS dataset, as shown in Figure 11. Although LaGa is
primarily designed for 3D space, it readily handles forward-facing scenes. The forward-facing nature of this dataset reduces
the impact of view-dependent semantics. Nevertheless, LaGa achieves on-par performance with existing 2D-based methods.

C.4. Multi-granularity Segmentation Results on the LERF-OVS Dataset

As described in Appendix B, LaGa performs multi-granularity segmentation by training three levels of affinity features. We
show this ability in Figure 12. The “Avg.” setting denotes the default strategy that averages predictions across all levels. We
observe that relying on a single segmentation level is generally less reliable than the multi-level averaging approach. At the
coarsest level, different objects may occasionally be merged due to under-segmentation by SAM. At the finest (“subpart”)
level, over-segmentation often produces regions with limited semantic content, making CLIP-based classification less
effective.

C.5. Scene Editing Results

We present a few representative scene-editing examples in Figure 13. By selecting 3D objects via text prompts, we can
modify their appearance or remove them entirely from the scene. A more intriguing example involves transplanting a
”cup” from the ”Figurines” scene into the ”Waldo-kitchen” scene. A more intriguing example involves transplanting a
”cup” from the ”Figurines” scene into the ”Waldo-kitchen” scene. This demonstration not only confirms LaGa’s ability to
retrieve high-quality objects but also highlights its potential for more complex interactive tasks, such as training AI agents
by constructing simulation environments.

C.6. Mask Group Examples

We present visualization examples of mask groups obtained during the cross-view semantics grouping phase, as shown
in Figure 14. Masks representing the same 3D object are accurately grouped regardless of their relative size in the current
view or the viewing angle, enabling a comprehensive aggregation of view-dependent semantics.

In addition to demonstrating the effectiveness of the semantics grouping approach, we aim to uncover the general causes of
view-dependent semantics by analyzing the multi-view masked images. We attribute view-dependent semantics primarily to
key information loss under specific viewpoints. For instance, targets of interest may become occluded, fall outside the field
of view, or appear too distant for their key features to be recognized. These scenarios are both common and unavoidable due
to the inherent limitations of the vision cone. Another contributing factor is poor data quality, as illustrated by the spice jars
in the ‘Waldo Kitchen’ scene. Blurred images in the collected dataset result in a loss of detail for concrete objects. While
the former issue is intrinsic, the latter can be mitigated through more careful data collection processes.

C.7. Examples of View-Dependent Semantics

To further illustrate the phenomenon of view-dependent semantics, we present qualitative results in Figure 15. The relevance
score for each 2D semantic feature is computed using Equation (10), where scores above 0.5 are classified as positive. The
computed relevance scores are displayed above each figure, with the corresponding text prompts shown in the top-left corner
of each row.

Notably, the semantics of the same 3D object exhibit significant variations across different viewpoints. Even when the 2D
masks are correctly assigned, the relevance scores for the same 3D object can range from 0.3 to 0.8. This variation strongly
demonstrates the existence of significant view-dependent semantics.
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Figure 10. Multi-view segmentation results on the LERF-OVS dataset.
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Figure 11. Multi-view semantic segmentation results on the 3D-OVS dataset.
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Figure 12. Multi-granularity semantic segmentation results on the LERF-OVS dataset.

Figure 13. Scene editing examples with the help of LaGa.
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Figure 14. Visualization of mask groups obtained from the 3D scene decomposition phase. Highlighted regions indicate the corresponding
masks. Groups of masks are visually separated by dotted lines.
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Figure 15. View-dependent semantic variations within the same mask group. Each row corresponds to a different text prompt, shown in
the top-left corner. The relevance scores for individual 2D semantics are displayed above each figure.
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