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ABSTRACT

Trilevel learning (TLL) found diverse applications in numerous machine learning
applications, ranging from robust hyperparameter optimization to domain adapta-
tion. However, existing researches primarily focus on scenarios where TLL can
be addressed with first order information available at each level, which is inade-
quate in many situations involving zeroth order constraints, such as when black-
box models are employed. Moreover, in trilevel learning, data may be distributed
across various nodes, necessitating strategies to address TLL problems without
centralizing data on servers to uphold data privacy. To this end, an effective dis-
tributed trilevel zeroth order learning framework DTZO is proposed in this work to
address the TLL problems with level-wise zeroth order constraints in a distributed
manner. The proposed DTZO is versatile and can be adapted to a wide range of
(grey-box) TLL problems with partial zeroth order constraints. In DTZO, the cas-
caded polynomial approximation can be constructed without relying on gradients
or sub-gradients, leveraging a novel cut, i.e., zeroth order cut. Furthermore, we
theoretically carry out the non-asymptotic convergence rate analysis for the pro-
posed DTZO in achieving the ϵ-stationary point. Extensive experiments have been
conducted to demonstrate and validate the superior performance of the proposed
DTZO, e.g., it approximately achieves up to a 40% improvement in performance.

1 INTRODUCTION

Trilevel learning (TLL), also known as trilevel optimization, pertains to nested optimization prob-
lems involving three levels of optimization, thus exhibiting a trilevel hierarchical structure. Trilevel
learning has been widely used in many machine learning applications, such as robust hyperparame-
ter optimization (Sato et al., 2021), domain adaptation (Choe et al., 2023), robust neural architecture
search (Guo et al., 2020; Jiao et al., 2024), and so on. The general form of a trilevel learning problem
can be expressed as,

min f1(x1,x2,x3)

s.t. x2 = argmin
x2

′
f2(x1,x2

′,x3)

s.t. x3 = argmin
x3

′
f3(x1,x2

′,x3
′)

var. x1,x2,x3,

(1)

where f1, f2, f3 denote the first, second, and third level objectives, and x1 ∈ Rd1 ,x2 ∈Rd2 ,x3 ∈
Rd3 are variables. Existing trilevel learning approaches focus on scenarios where TLL problems
can be addressed with first order information available at each level. However, situations where
first order information is unavailable (i.e., ∇f1, ∇f2, ∇f3 are non-available), such as when black-
box models are employed, remain under-explored. Additionally, in trilevel learning applications,
data may be distributed across various nodes, necessitating strategies to address trilevel learning
problems without centralizing data on servers in order to uphold data privacy (Jiao et al., 2024).

Complexity of Addressing TLL with Zeroth Order Constraints: The complexity involved in
solving problems characterized by hierarchical structures with three levels is significantly greater
than that of bilevel learning problems (Blair, 1992; Avraamidou, 2018). It is worth mentioning that
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even finding a feasible solution in TLL problem is NP-hard since it necessitates addressing the inner
bilevel learning problem, which is NP-hard (Ben-Ayed and Blair, 1990; Sinha et al., 2017). Existing
approaches are not applicable for addressing TLL with zeroth order constraints, as they either rely
on the first order information to solve the TLL problems (Jiao et al., 2024; Sato et al., 2021) or focus
on single-level and bilevel zeroth order learning problems (Fang et al., 2022; Qiu et al., 2023).

To this end, an effective Distributed Trilevel Zeroth Order learning (DTZO) framework is proposed
in this work. Specifically, we first introduce the cascaded zeroth order polynomial approximation for
the trilevel learning problems, which consists of the inner layer and outer layer polynomial approx-
imation. Next, how to generate the novel zeroth order cuts without using gradients or sub-gradients
to gradually refine the cascaded polynomial approximation is discussed. Zeroth order cut is a type of
cutting plane that does not rely on first order information during generation. Finally, the distributed
zeroth order algorithm is developed to address trilevel zeroth order learning problems (i.e., TLL
with level-wise zeroth order constraints) in a distributed manner. Theoretically, we demonstrate that
the proposed zeroth order cuts can construct a polynomial relaxation for TLL problems, and this re-
laxation will be gradually tightened with zeroth order cuts added. Additionally, we also analyze the
non-asymptotic convergence rate, i.e., iteration and communication complexities, for the proposed
DTZO to achieve the ϵ-stationary point. The contributions of this work are summarized as follows.

1. Different from the existing works on single-level and bilevel zeroth order learning, this work
takes an initial step towards addressing trilevel zeroth order learning. To the best of our knowledge,
this is the first work to address the trilevel zeroth order learning problems.

2. An effective framework DTZO with novel zeroth order cuts is proposed for tackling trilevel zeroth
order learning problems in a distributed manner. Different from the existing methods, the proposed
DTZO is capable of constructing the cascaded zeroth order polynomial approximation without using
gradients or sub-gradients.

3. Extensive experiments on black-box large language models (LLMs) trilevel learning and robust
hyperparameter optimization substantiate the superior performance of the proposed DTZO.

2 RELATED WORK

2.1 DISTRIBUTED ZEROTH ORDER OPTIMIZATION

Zeroth order optimization is widely-used for addressing machine learning problems where obtaining
explicit gradient expressions is challenging or impractical (Liu et al., 2018c; Chen et al., 2019; Wang
et al., 2018b; Chen et al., 2017; Héliou et al., 2021; Cai et al., 2021; Gao and Huang, 2020; Yue et al.,
2023; Li et al., 2022; Ren et al., 2023; Nikolakakis et al., 2022; Tu et al., 2019; Rando et al., 2024).
In practical applications of zeroth order optimization, data may be distributed across different nodes.
To address zeroth order optimization problems in a distributed manner, the distributed zeroth order
optimization methods have recently garnered significant attention, e.g., Lian et al. (2016); Tang
et al. (2020); Fang et al. (2022); Chen et al. (2024a); Akhavan et al. (2021); Sahu et al. (2018); Shu
et al. (2023). Furthermore, to tackle the bilevel zeroth order optimization problems in a distributed
manner, the federated bilevel zeroth order optimization method FedRZObl (Qiu et al., 2023) has
been proposed. However, how to address the higher-nested zeroth order optimization problems,
e.g., trilevel, in a distributed manner remains under-explored. To the best of our knowledge, this is
the first work that considers how to address the trilevel zeroth order optimization problems.

2.2 TRILEVEL LEARNING

Trilevel learning has found applications in various fields within machine learning. A robust neural
architecture search (NAS) approach that integrates adversarial learning with NAS is introduced in
Guo et al. (2020). The robust NAS can be viewed as a trilevel learning problem, as discussed in
Jiao et al. (2024). A trilevel learning problem comprising two levels pretraining, fine-tuning and
hyperparameter optimization, is explored in Raghu et al. (2021). In Garg et al. (2022), the trilevel
learning problem involves data reweight, architecture search, and model training is investigated. In
Sato et al. (2021), the robust hyperparameter optimization is framed as a trilevel learning problem,
and a hypergradient-based method is proposed to address such problems. In Choe et al. (2023), a
general automatic differentiation technique is proposed, which can be applied to trilevel learning
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problems. Additionally, a cutting plane based distributed algorithm is proposed in Jiao et al. (2024)
for trilevel learning problems. Nevertheless, existing methods predominantly rely on first order
information to solve trilevel learning problems. This is the first framework that can be used to
solve trilevel learning problems without relying on first order information.

2.3 CUTTING PLANE METHOD

Cutting plane methods are widely used in convex optimization (Bertsekas, 2015; Franc et al., 2011),
robust optimization (Yang et al., 2014; Bürger et al., 2013), and so on. Recently, there has been no-
table interest in leveraging cutting plane methods to tackle distributed nested optimization problems.
It is shown in Jiao et al. (2023) that the nested optimization problem can be transformed into a de-
composable optimization problem by utilizing cutting plane method, which significantly facilitates
the design of distributed algorithms for nested optimization. In Jiao et al. (2023), the cutting plane
method is employed to tackle bilevel optimization problems in a distributed manner. Similarly, Chen
et al. (2024c) utilizes the cutting plane method to address distributed bilevel optimization problems
within downlink multi-cell systems. Furthermore, Jiao et al. (2024) applies the cutting plane method
to solve distributed trilevel optimization problems. However, the existing cutting plane methods for
nested optimization rely on the gradients or the sub-gradients to generate cutting planes, which is not
available in zeroth order optimization. In this work, the proposed framework is capable of generating
zeroth order cuts for nested optimization problems without using gradients or sub-gradients.

3 DISTRIBUTED TRILEVEL ZEROTH ORDER LEARNING

In the practical applications of trilevel zeroth order learning, data may be distributed across multiple
nodes (Jiao et al., 2024). Aggregating data on central servers may pose significant privacy risks
(Subramanya and Riggio, 2021). Therefore, it is crucial to develop an effective framework to address
trilevel zeroth order learning problems in a distributed manner. The distributed trilevel zeroth order
learning problem can be expressed as,

min
∑N

j=1 f1,j(x1,x2,x3)

s.t. x2 = argmin
x2

′

∑N
j=1 f2,j(x1,x2

′,x3)

s.t. x3 = argmin
x3

′

∑N
j=1 f3,j(x1,x2

′,x3
′)

var. x1,x2,x3,

(2)

where f1,j , f2,j , f3,j respectively denote the first, second, and third level objectives in jth worker,
x1 ∈Rd1 ,x2 ∈Rd2 ,x3 ∈Rd3 are variables. The first order information of functions f1,j , f2,j , f3,j ,
i.e., ∇f1,j ,∇f2,j ,∇f3,j , is not available in Eq. (2), corresponding to the level-wise zeroth order
constraints. To facilitate the development of distributed algorithms in parameter-server architecture
(Jiao et al., 2023; Assran et al., 2020), the distributed TLL with zeroth order constraints in Eq. (2)
is equivalently reformulated as a consensus trilevel zeroth order learning problem as follows.

min
∑N

j=1 f1,j(x1,j ,x2,j ,x3,j)
s.t. x1,j = z1,∀j = 1, · · · , N
{x2,j}, z2 = argmin

{x2,j
′},z2

′

∑N
j=1 f2,j(z1,x2,j

′,x3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N
{x3,j}, z3= argmin

{x3,j
′},z3

′

∑N
j=1 f3,j(z1, z2

′,x3,j
′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N
var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,

(3)

where x1,j ∈Rd1 ,x2,j ∈Rd2 ,x3,j ∈Rd3 denote the local variables in jth worker, z1 ∈Rd1 , z2 ∈
Rd2 , z3∈Rd3 denote the consensus variables in the master, N denotes the number of workers.

Overview of the proposed framework. In Sec. 3.1, the construction of cascaded zeroth order
polynomial approximation for the trilevel zeroth order learning problem is proposed, which consists
of the inner layer and outer layer polynomial approximation. Then, how to gradually update zeroth
order cuts to refine the cascaded polynomial approximation is discussed in Sec. 3.2. Finally, a dis-
tributed zeroth order algorithm is developed to effectively address the trilevel zeroth order learning
problem in a distributed manner in Sec. 3.3. To improve the readability of this work, The notations
used in this work and their corresponding definitions are summarized in Table 2.
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3.1 CASCADED ZEROTH ORDER POLYNOMIAL APPROXIMATION

In this section, how to construct the cascaded zeroth order polynomial approximation for trilevel
zeroth order learning is introduced. The proposed cascaded zeroth order polynomial approxima-
tion consists of two key parts: 1) the inner layer polynomial approximation and 2) the outer layer
polynomial approximation, which will be discussed in detail below.

3.1.1 INNER LAYER POLYNOMIAL APPROXIMATION

In trilevel learning, the third-level optimization problem can be viewed as the constraint to the
second-level optimization problem (Jiao et al., 2024; Pan et al., 2024; Kwon et al., 2023; Jiang
et al., 2023), it equals the constraint ϕin({x3,j}, z1, z2′, z3) = 0, where ϕin({x3,j}, z1, z2′, z3) =

||
[

{x3,j}
z3

]
− argmin

{x3,j
′},z3

′

∑
j f3,j(z1, z2

′,x3,j
′) s.t.x3,j

′=z3
′,∀j||2. In many bilevel and trilevel

machine learning applications, e.g., neural architecture search in Liu et al. (2018a), robust hyper-
parameter optimization in Jiao et al. (2024), the lower-level optimization problem serves as a soft
constraint (Kautz et al., 1996) to the upper-level optimization problem, i.e., this constraint (con-
straint ϕin({x3,j}, z1, z2′, z3) = 0 in our problem) can be violated to a certain extent while still
yielding a feasible and meaningful solution, more discussions are provided in Appendix E. Inspired
by Jiao et al. (2023); Chen et al. (2024c), the cutting plane based method is utilized to construct a de-
composable polynomial relaxation for this constraint, which significantly facilitates the development
of distributed algorithms. Specifically, the inner layer zeroth order cuts are utilized to approximate
the feasible region with respect to constraint ϕin({x3,j}, z1, z2′, z3) = 0. Zeroth order cuts refer to
the cutting planes that do not rely on first order information during generation. In this section, we
focus on the construction of cascaded polynomial approximation, and how to generate the zeroth
order cuts is discussed in detail in the next section 3.2. Consequently, the feasible region formed by
inner layer zeroth order cuts in tth iteration can be expressed as,

P t
in=

{∑
j
ain
j,l

⊤
x2
3,j+binj,l

⊤
x3,j+

∑
i∈{1,3}

cini,l
⊤
z2
i +din

i,l

⊤
zi+cin2,l

⊤
z2
2
′
+din

2,l

⊤
z2

′+einl ≤εin,∀l
}
,

(4)
where x2

i,j = [x2
i,j,1, · · · , x2

i,j,di
] ∈Rdi , z2

i = [z2i,1, · · · , z2i,di
] ∈Rdi , i= 1, 2, 3, ain

j,l ∈Rd3 , binj,l ∈
Rd3 , cini,l∈Rdi , din

i,l∈Rdi , and einl ∈R1 are the parameters of lth inner layer zeroth order cut, εin ≥ 0
is a constant. By using the inner layer polynomial approximation according to Eq. (4), the resulting
problem can be written as,

min
∑N

j=1 f1,j(x1,j ,x2,j ,x3,j)
s.t. x1,j = z1,∀j = 1, · · · , N

{x2,j}, z2 = argmin
{x2,j

′},z2
′

∑N
j=1 f2,j(z1,x2,j

′,x3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N
({x3,j}, z1, z2′, z3) ∈ P t

in

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.

(5)

3.1.2 OUTER LAYER POLYNOMIAL APPROXIMATION

Likewise, the lower-level optimization problem in Eq. (5) can be regarded as the
constraint to the upper-level optimization problem. Defining hin

l ({x3,j}, z1, z2′, z3) =∑
ja

in
j,l

⊤
x2
3,j+binj,l

⊤
x3,j+

∑
i∈{1,3}c

in
i,l

⊤
z2
i +din

i,l
⊤
zi+cin2,l

⊤
z2
2
′
+din

2,l
⊤
z2

′+einl . This constraint
equals ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, where

ϕout({x2,j}, {x3,j}, z1, z2, z3)

= ||
[

{x2,j}
z2

]
−

argmin
{x2,j

′},z2
′

∑N
j=1 f2,j(z1,x2,j

′,x3,j)

s.t.x2,j
′=z2

′,∀j, hin
l ({x3,j}, z1, z2′, z3)≤εin,∀l

||2. (6)

The constraint ϕout({x2,j}, {x3,j}, z1, z2, z3)=0 also serves as a soft constraint to the upper-level
optimization problem, more discussions about the soft constraint are provided in Appendix E. Outer
layer zeroth order cuts are utilized to construct the polynomial approximation for the feasible region
with respect to the constraint ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, that is,

P t
out=

{
{x2,j},{x3,j},z1, z2, z3| hout

l ({x2,j},{x3,j},z1, z2, z3)≤εout,∀l
}
, (7)
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where hout
l ({x2,j},{x3,j},z1, z2, z3) =

∑3
i=2

∑N
j=1a

out
i,j,l

⊤
x2
i,j + bouti,j,l

⊤
xi,j +

∑3
i=1c

out
i,l

⊤
z2
i +

dout
i,l

⊤
zi + eoutl , and εout ≥ 0 is a pre-set constant. Based on Eq. (7), the resulting cascaded zeroth

order polynomial approximation problem can be written as,

min
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j)

s.t. x1,j = z1,∀j = 1, · · · , N
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l
⊤
zi+eoutl ≤εout,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,

(8)

where aout
i,j,l∈Rdi , bouti,j,l∈Rdi , couti,l ∈Rdi , dout

i,l ∈Rdi , and eoutl ∈R1 are the parameters of lth outer
layer zeroth order cut.

3.2 REFINING THE CASCADED POLYNOMIAL APPROXIMATION

For every T iteration, the zeroth order cuts will be updated to refine the proposed cascaded polyno-
mial approximation when t < T1. Different from the existing cutting plane methods for nested opti-
mization, the proposed zeroth order cuts can be generated without using gradients or sub-gradients,
which is why we refer to them as zeroth order cuts. Specifically, in tth iteration, the zeroth order cuts
will be updated by three key steps: 1) generating inner layer zeroth order cut; 2) generating outer
layer zeroth order cut; 3) removing inactive zeroth order cuts, which will be discussed as follows. In
addition, we demonstrate the proposed zeroth order cuts can construct a relaxation for the original
feasible regions in Proposition 1 and 2.

3.2.1 GENERATING INNER LAYER ZEROTH ORDER CUT

At tth iteration, based on point ({xt
3,j}, zt

1, z
t
2, z

t
3), the new inner layer zeroth order cut will be

generated to refine the inner layer polynomial approximation, i.e., Eq. (4), as follows.

ϕin({xt
3,j},zt

1, z
t
2
′
, zt

3) +Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)
⊤


 {x3,j}

z1
z2

′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




≤ L+1
2

(∑
j ||x3,j−xt

3,j ||2+||z1−zt
1||2+||z2′−zt

2
′||2+||z3−zt

3||2
)
+ µ2

8 L2din+εin,

(9)

where din = (d1+d2+(N+1)d3+3)3 and

Gin
µ ({xt

3,j}, zt
1, z

t
2
′
, zt

3) =
ϕin({xt

3,j+µµx3,j
},zt

1+µµz1
,zt

2
′
+µµz2 ,z

t
3+µµz3 )−ϕin({xt

3,j},z
t
1,z

t
2
′
,zt

3)

µ µin,

(10)
where µin = [{µx3,j

},µz1 ,µz2 ,µz3 ] is a standard Gaussian random vector, L > 0 is a constant, and
µ > 0 is the smoothing parameter (Kornowski and Shamir, 2024; Ghadimi and Lan, 2013). Then,
the new generated zeroth order cut cpnewin will be added into P t

in, i.e., P t
in = Add(P t−1

in , cpnewin ).

Proposition 1 The original feasible region of constraint ϕin({x3,j}, z1, z2′, z3) = 0 is
a subset of the feasible region formed by inner layer zeroth order cuts, i.e., P t+1

in ={
hin
l ({x3,j}, z1, z2′, z3) ≤ εin,∀l

}
when ϕin has L-Lipschitz continuous gradient. The proof is

provided in Appendix C.

3.2.2 GENERATING OUTER LAYER ZEROTH ORDER CUT

At tth iteration, according to point ({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3), the new outer layer zeroth order cut

will be generated to refine the outer layer polynomial approximation in Eq. (7) as follows.

ϕout({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3)+Gout

µ ({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3)

⊤




{x2,j}
{x3,j}
z1
z2
z3

−


{xt
2,j}

{xt
3,j}

zt
1

zt
2

zt
3




≤ L+1
2

(∑3
i=2

∑
j ||xi,j−xt

i,j ||2+
∑

i||zi−zt
i ||2
)
+ µ2

8 L2(d1+(N+1)(d2+d3)+3)3+εout.

(11)
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In Eq. (11), we have that,

Gout
µ ({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3)

=
ϕout({xt

2,j+µµx2,j
},{xt

3,j+µµx3,j
},zt

1+µµz1
,zt

2+µµz2
,zt

3+µµz3
)−ϕout({xt

2,j},{x
t
3,j},z

t
1,z

t
2,z

t
3)

µ µout,

(12)
where µout = [{µx2,j}, {µx3,j},µz1 ,µz2 ,µz3 ] is a standard Gaussian random vector. Sub-
sequently, the new generated outer layer zeroth order cut cpnewout will be added into P t

out, i.e.,
P t
out = Add(P t−1

out , cp
new
out ).

Proposition 2 The original feasible region of constraint ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0

is a subset of the feasible region formed by outer layer zeroth order cuts, i.e., P t+1
out ={

{x2,j},{x3,j},z1,z2,z3|
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l
⊤
zi+eoutl ≤εout,∀l

}
when ϕout has L-Lipschitz continuous gradient. Proofs are provided in Appendix C.

3.2.3 REMOVING INACTIVE ZEROTH ORDER CUTS

To improve the effectiveness and reduce the complexity (Yang et al., 2014; Jiao et al., 2023), the
inactive zeroth order cuts will be removed during the iteration process. The corresponding inner
layer P t

in and outer layer P t
out will be updated as follows.

P t
in =

{
Remove(P t

in, cpin,l), if h
in
l ({xt

3,j}, zt
1, z

t
2
′
, zt

3)<εin,∀l
P t
in, otherwise

, (13)

P t
out =

{
Remove(P t

out, cpout,l), if h
out
l ({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3)<εout,∀l

P t
out, otherwise

, (14)

where Remove(P t
in, cpin,l) and Remove(P t

out, cpout,l) respectively represent that the lth inner layer
and outer layer zeroth order cuts will be removed from P t

in and P t
out.

3.3 ZEROTH ORDER DISTRIBUTED ALGORITHM

In this section, a distributed zeroth order algorithm is proposed. First, defining function
o({x2,j}, {x3,j}, z1, z2, z3) =

∑
lλl[max{hout

l ({x2,j}, {x3,j}, z1, z2, z3) − εout, 0}]2, where
λl > 0 is a penalty parameter. The constrained optimization problem described in Eq. (8) is re-
formulated as an unconstrained optimization problem by using the exterior penalty method (Shen
and Chen, 2023; Shi and Gu, 2021; Boyd and Vandenberghe, 2004) as follows.

F ({x1,j},{x2,j},{x3,j},z1,z2,z3)=
∑N

j=1f1,j(x1,j ,x2,j ,x3,j) + ϕj ||x1,j−z1||2

+o({x2,j}, {x3,j}, z1, z2, z3),
(15)

where ϕj > 0 is a penalty parameter. It is worth noting that the proposed DTZO is an expandable
framework, allowing the incorporation of approaches beyond exterior penalty method, e.g., gradient
projection based approaches (Xu et al., 2020) and Frank-Wolfe based methods (Shen et al., 2019).
We chose exterior penalty method because the lower-level problem often serves as a soft constraint
(as discussed in Sec. 3.1 and Appendix E) and using exterior penalty method offers comparatively
lower complexity. In addition, we demonstrate that the optimal solution to problem in Eq. (15) is
a feasible solution to the original constrained problem; 2) the gap between the problem in Eq. (15)
and original constrained problem will continuously decrease as λl, ϕj increase. Detailed discussions
are provided in Appendix H. In (t+ 1)th iteration, the proposed algorithm proceeds as follows.

In Worker j. After receiving the updated parameters zt
i and ∇xi,j

o({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3),

worker j updates the local variables as follows,

xt+1
1,j = xt

1,j − ηx1
Gx1,j

({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3), (16)

xt+1
2,j = xt

2,j − ηx2
Gx2,j

({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3), (17)

xt+1
3,j = xt

3,j − ηx3
Gx3,j

({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3), (18)

we have that,

Gx1,j ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)

=
f1,j(x

t
1,j+µuk,1,x

t
2,j ,x

t
3,j)−f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j)

µ uk,1 + 2ϕj(x
t
1,j − zt

1),
(19)
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Algorithm 1 DTZO: Distributed Trilevel Zeroth Order Learning
Initialization: master iteration t = 0, variables {x0

1,j}, {x0
2,j}, {x0

3,j}, z0
1 , z

0
2 , z

0
3 .

repeat
for local worker j do

updates the local variables xt+1
1,j ,xt+1

2,j ,xt+1
3,j according to Eq. (16)-(21);

end for
local workers transmit the updated variables to the master;
for master do

updates consensus variables zt+1
1 , zt+1

2 , zt+1
3 according to Eq. (22)-(24);

computes ∇o({xt+1
2,j }, {xt+1

3,j }, zt+1
1 , zt+1

2 , zt+1
3 );

end for
master broadcasts the updated parameters and gradients to workers;
if (t+ 1) mod T == 0 and t < T1 then

new inner layer zeroth order cuts are generated by Eq. (9) and (10);
new outer layer zeroth order cuts are generated by Eq. (11) and (12);
inactive zeroth order cuts are deleted by (13) and (14);

end if
t = t+ 1;

until termination.

Gx2,j ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)

=
f1,j(x

t
1,j ,x

t
2,j+µuk,2,x

t
3,j)−f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j)

µ uk,2+∇x2,jo({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3),

(20)

Gx3,j ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)

=
f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j+µuk,3)−f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j)

µ uk,3+∇x3,jo({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3),

(21)

where uk,i ∈Rdi ,∀i are standard Gaussian random vectors, µ> 0 is smoothing parameter, ηxi
,∀i

are step-sizes. Then, the updated variables xt+1
1,j ,xt+1

2,j ,xt+1
3,j will be transmitted to the master.

In Master. After receiving updated variables from workers, the master performs the following steps,
1. Updating consensus variables,

zt+1
1 = zt

1−ηz1

(∑
j
2ϕj(z

t
1−xt

1,j)+∇z1
o({xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)
)
, (22)

zt+1
2 = zt

2 − ηz2
∇z2

o({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3), (23)

zt+1
3 = zt

3 − ηz3∇z3o({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3), (24)

where ηz1
, ηz2

and ηz3
are step-sizes.

2. Computing gradient of o({xt+1
2,j }, {xt+1

3,j }, zt+1
1 , zt+1

2 , zt+1
3 ). Broadcasting the updated parame-

ters zt+1
i , i = 1, 2, 3 and ∇xi,j

o({xt+1
2,j }, {xt+1

3,j }, zt+1
1 , zt+1

2 , zt+1
3 ), i = 2, 3 to workers.

Discussion: TLL with level-wise zeroth order constraints is considered in this work, where first
order information at each level is unavailable. Note that the proposed DTZO is versatile and can be
adapted to a wide range of TLL, e.g., grey-box TLL (gradients at some levels in TLL are available
(Huang et al., 2024b)), with slight adjustments. For instance, if gradients at first-level in TLL are
accessible, we can use gradient descent steps to replace Eq. (16)-(18). Similarly, if the second or
third-level gradients are available, first order based cuts, e.g., (Jiao et al., 2024), can be employed to
construct the cascaded polynomial approximation. Detailed discussions are offered in Appendix I.

4 THEORETICAL ANALYSIS

Definition 1 (Stationarity Gap) Following Xu et al. (2020); Jiao et al. (2023), the stationarity gap
at tth iteration in this problem can be expressed as,

Gt =


{∇x1,j

F ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)}

{∇x2,j
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)}

{∇x3,j
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)}

∇z1
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)

∇z2
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)

∇z3
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)

 . (25)
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It is seen from Eq. (25) that,

||Gt||2 =
∑3

i=1

∑N
j=1 ||∇xi,jF ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)||2

+
∑3

i=1 ||∇zi
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)||2.

(26)

Definition 2 (ϵ-Stationary Point) ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3) is the stationary point when

||Gt||2 = 0. ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3) is the ϵ-stationary point when ||Gt||2 ≤ ϵ. Defining

T (ϵ) as the first iteration when ||Gt||2 ≤ ϵ, i.e., T (ϵ) = min{t| ||Gt||2 ≤ ϵ}.

Definition 3 (µ-Smooth Approximation) Following Ghadimi and Lan (2013); Fang et al. (2022);
Nesterov and Spokoiny (2017); Kornilov et al. (2024); Rando et al. (2024), the µ-smooth approxi-
mation of a function F (w) : Rd → R1 is given by,

Fµ(w) =
1

(2π)
d
2

∫
F (w + µu)e−

1
2 ||u||2du = Eu [F (w + µu)] , (27)

where u ∈ Rd is a standard Gaussian random vector and µ > 0 is the smoothing parameter.

Assumption 1 (Boundedness) Following many works in machine learning, e.g., Deng et al. (2020);
Jiao et al. (2023); Qian et al. (2019); Lei and Tang (2018); Zheng et al. (2017), the bounded domain
is assumed, i.e., ||xi,j−x∗

i,j ||2 ≤ αi,∀xi,j , ||zi−z∗
i ||2 ≤ αi,∀zi, where x∗

i,j , z
∗
i denote the optimal

solution. Following Cutkosky and Orabona (2019); Liu et al. (2021a); Fang et al. (2022); Shaban
et al. (2019), we assume the optimal value Fµ

∗ > −∞.

Assumption 2 (L-smoothness) Following many work in nested optimization and zeroth order learn-
ing, e.g., Chen et al. (2023a); Lin et al. (2024); Ghadimi and Lan (2013), we assume the gradient of
function F is Lipschitz continuous with constant L < ∞, that is, for any point w,w′, we have that,

||∇F (w)−∇F (w′)|| ≤ L||w −w′||. (28)

It is worth noting that both Assumptions 1 and 2 are mild and commonly used in machine learning.
Detailed discussions of these assumptions are provided in Appendix G.

Theorem 1 (Iteration Complexity) Under Assumption 1 and 2, by setting step-sizes ηxi
= ηzi

=

min

{
1

8L(d1+4) ,
1

8L(d2+4) ,
1

8L(d3+4) ,
3

2(L+1) ,
1√

T (ϵ)−T1

}
, i = 1, 2, 3 and letting smoothing param-

eter 0 < µ ≤ 1√
T (ϵ)−T1

, we have that,

T (ϵ) ∼ O

((∑3
i=1 ci + d

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
))2

1
ϵ2 + T1

)
, (29)

where constants d = 4(1 + max
{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
), ci =

L2(di+6)3

4(di+4) + L2(di+3)
3
+4L(N+1)di

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
+1
)

.
T1 > 0 is a constant that controls the cascaded polynomial approximation, as discussed in Sec. 3.2.
Detailed proofs of Theorem 1 are provided in Appendix A, with further discussions offered below.

Theorem 2 (Communication Complexity) The overall communication complexity of the proposed
DTZO can be divided into the communication complexity at every iteration (C1) and the commu-
nication complexity of updating zeroth order cuts (C2). Specifically, the overall communication
complexity can be expressed as C1 + C2 = T (ϵ)(2d1 + 3d2 + 3d3)N + 2N⌊T1

T ⌋T (d2 + d3). The
detailed proofs are provided in Appendix B, with further discussions offered as follows.

Discussion: It is seen from Theorem 1 and 2 that the proposed framework DTZO can flexibly con-
trol the trade-off between the performance of cascaded polynomial approximation and the iteration
complexity (i.e., T (ϵ) in Theorem 1) and communication complexity (i.e., C1 + C2 in Theorem
2) by adjusting a single parameter T1. Specifically, a larger T1 corresponds to a better cascaded
polynomial approximation, but it also entails higher iteration and communication complexity. Con-
sequently, if the distributed system has limited computational and communication capabilities, a
smaller value of T1 can be selected. Conversely, if a higher quality of cascaded polynomial ap-
proximation is desired, a larger value of T1 can be chosen, which demonstrates the flexibility in the
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Figure 1: Comparisons about ASR and ACC between the proposed DTZO and the state-of-the-art
distributed bilevel zeroth order learning method FedRZObl (Qiu et al., 2023).

proposed framework. In addition, as shown in Theorem 1, the iteration complexity of the proposed
distributed trilevel zeroth order learning framework can be written as O(

∑
i d

6
i /ϵ

2). It is worth men-
tioning that the dimension-dependent iteration complexity is common in zeroth order optimization,
as discussed in various works (Zhang et al., 2024b;a; Duchi et al., 2015; Sun et al., 2022; Qiu et al.,
2023). For instance, the iteration complexity of the state-of-the-art distributed zeroth order bilevel
learning method (Qiu et al., 2023) is given by O(d8/ϵ2), where d denotes the dimension of variables.

5 EXPERIMENTS

In the experiment, two distributed trilevel zeroth order learning scenarios, i.e., black-box trilevel
learning on large language models (LLMs) and robust hyperparameter optimization are used to
evaluate the performance of the proposed DTZO. In the zeroth order setting, the existing distributed
nested optimization algorithms based on first order information, e.g., (Jiao et al., 2024), are not
available in the experiment. The proposed DTZO is compared with the state-of-the-art distributed
zeroth order learning method FedZOO (Fang et al., 2022) and distributed bilevel zeroth order learn-
ing method FedRZObl (Qiu et al., 2023). In the experiment, all the models are implemented using
PyTorch, and the experiments are conducted on a server equipped with two NVIDIA RTX 4090
GPUs. More experimental details are provided in Appendix F.

5.1 BLACK-BOX TRILEVEL LEARNING

Prompt learning is a key technique for enabling LLMs to efficiently and effectively adapt to various
downstream tasks (Ma et al., 2024; Wang et al., 2024). In many practical scenarios involving LLMs,
access to first-order information is restricted due to the proprietary nature of these models or API
constraints. For instance, commercial LLM APIs only allow input-output interactions and do not
provide visibility into gradients. Inspired by the black-box prompt learning (Diao et al., 2022) and
backdoor attack on prompt-based LLMs (Yao et al., 2024), the backdoor attack on black-box LLMs
is considered in the experiment, which can be expressed as a black-box trilevel learning problem,

min
λ

∑N
j=1

1
|Dval

j |
∑

(si,yi)∼Dval
j

L(G, [ktri,p, si], yi)

s.t. ktri = argmin
ktri

′

∑N
j=1

1
|Dtr

j |
∑

(si,yi)∼Dtr
j

L(G, [ktri
′,p, si], yi) + λ||ktri

′||2

s.t. p = argmin
p′

∑N
j=1

1
|Dtr

j |
∑

(si,yi)∼Dtr
j

L(G, [ktri
′,p′, si], yi)

var. λ,ktri,p,

(30)

where G denotes the black-box LLM. λ, ktri, p respectively denote the hyperparameter, backdoor
trigger, and prompt. Dtr

j and Dval
j denote the training and validation dataset in jth worker, and N

denotes the number of workers. si, yi denote the ith input sentence and label. In the experiment,
Qwen 1.8B-Chat (Bai et al., 2023) is utilized as the black-box LLM. The General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang et al., 2018a) is used to evaluate the proposed
DTZO. Specifically, the experiments are carried out on: 1) SST-2 for sentiment analysis; 2) COLA
for linguistic acceptability; and 3) MRPC for semantic equivalence of sentences. In this task, we
aim to obtain the effective backdoor triggers while ensuring the model performance on clean in-
puts (i.e., inputs without triggers). Therefore, following Yao et al. (2024), the Attack Success Rate

9
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Table 1: Comparisons between the proposed DTZO and the state-of-the-art methods. Experiments
are repeated five times and higher scores represent better performance.

Dataset FedZOO (Fang et al., 2022) FedRZObl (Qiu et al., 2023) DTZO
MNIST 52.89 ± 0.49 % 54.05 ± 0.81 % 79.27 ± 0.19 %
QMNIST 52.45 ± 0.88 % 54.67 ± 0.65 % 78.04 ± 0.37 %
F-MNIST 48.74 ± 0.61 % 50.23 ± 0.49 % 70.07 ± 0.45 %
USPS 72.77 ± 0.43 % 73.79 ± 0.56 % 85.13 ± 0.14 %

(ASR) when the triggers are activated and the Accuracy (ACC) on clean samples are utilized as the
metrics in the experiments. The comparisons between the proposed DTZO and the state-of-the-art
distributed bilevel zeroth order learning method FedRZObl are illustrated in Figure 1. It is seen from
Figure 1(a) and 1(b) that the proposed DTZO can effectively tackle the distributed trilevel zeroth or-
der learning problem and achieve superior performance than FedRZObl since the proposed DTZO
is capable of addressing higher-nested zeroth order learning problems compared to FedRZObl.

5.2 ROBUST HYPERPARAMETER OPTIMIZATION

Inspired by Sato et al. (2021); Jiao et al. (2024) in trilevel learning, the robust hyperparameter
optimization is considered in the experiment, which can be formulated as follows.

min
φ

∑N
j=1 fj(X

var
j , yvarj ,w)

s.t. w = argmin
w′

∑N
j=1 fj(X

tr
j + pj , y

tr
j ,w

′) + φ||w′||2

s.t. p = argmax
p′

∑N
j=1 fj(X

tr
j + pj

′, ytrj ,w
′)

var. φ,w,p,

(31)

where N represents the number of workers in a distributed system, φ, w, and p′ = [p1
′, · · · , pN ′]

denote the regularization coefficient, model parameter, and adversarial noise, respectively. Xtr
j and

ytrj represent the training data and labels, while Xvar
j and yvarj represent the validation data and

labels, respectively. Following the setting for nondifferentiable functions as described in Qiu et al.
(2023), ReLU neural networks are employed in the experiments. The digits recognition tasks in
Qian et al. (2019); Wang et al. (2021) with four benchmark datasets, i.e., MNIST (LeCun et al.,
1998), USPS, Fashion MNIST (Xiao et al., 2017), and QMNIST (Yadav and Bottou, 2019), are
utilized to assess the performance of the proposed DTZO. The average across accuracy on clean
samples and robustness against adversarial samples is used as the metric, more details about the
experimental setting are provided in Appendix F. We compare the proposed DTZO with the state-
of-the-art methods FedZOO (Fang et al., 2022) and FedRZObl (Qiu et al., 2023) in Table 1. It is
seen from Table 1 that the proposed DTZO can effectively tackle the trilevel zeroth order learning
problem in a distributed manner. The superior performance of DTZO, as compared to state-of-the-
art methods, can be attributed to its ability to address higher-nested zeroth order learning problems.

Within the proposed framework, the trade-off between complexity and performance can be flexibly
controlled by adjusting T1, as discussed in Sec. 4. As shown in Figure 2 in Appendix F, the
performance of DTZO improves as T1 increases, we can flexibly adjust T1 based on the distributed
system requirements. Removing inactive cuts can significantly improve the effectiveness of cutting
plane method, as discussed in Jiao et al. (2024); Yang et al. (2014). In the experiment, we also
investigate the effect of removing inactive cuts within the proposed DTZO. It is seen from Figure 3 in
Appendix F that pruning inactive cuts significantly reduces training time, indicating the importance
of this procedure.

6 CONCLUSION

In this work, a distributed trilevel zeroth order learning (DTZO) framework is proposed to address
the trilevel learning problems in a distributed manner without using first order information. To our
best knowledge, this is the first work that considers how to tackle the trilevel zeroth order learning
problems. The proposed DTZO is capable of constructing the cascaded polynomial approximation
for trilevel zeroth order learning problems without using gradients or sub-gradients by utilizing the
novel zeroth order cuts. Additionally, we theoretically analyze the non-asymptotic convergence rate
for the proposed DTZO to achieve the ϵ-stationary point. Experiments on black-box LLMs trilevel
learning and robust hyperparameter optimization demonstrate the superior performance of DTZO.
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J.-C. Régin. Using hard constraints for representing soft constraints. In Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems: 8th Inter-
national Conference, CPAIOR 2011, Berlin, Germany, May 23-27, 2011. Proceedings 8, pages
176–189. Springer, 2011.

Z. Ren, Y. Tang, and N. Li. Escaping saddle points in zeroth-order optimization: the power of two-
point estimators. In International Conference on Machine Learning, pages 28914–28975. PMLR,
2023.

A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar. Distributed zeroth order optimization over random
networks: A kiefer-wolfowitz stochastic approximation approach. In 2018 IEEE Conference on
Decision and Control (CDC), pages 4951–4958. IEEE, 2018.

R. Sato, M. Tanaka, and A. Takeda. A gradient method for multilevel optimization. Advances in
Neural Information Processing Systems, 34:7522–7533, 2021.

A. Shaban, C.-A. Cheng, N. Hatch, and B. Boots. Truncated back-propagation for bilevel opti-
mization. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1723–1732. PMLR, 2019.

H. Shen and T. Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

H. Shen, Z. Yang, and T. Chen. Principled penalty-based methods for bilevel reinforcement learning
and rlhf. arXiv preprint arXiv:2402.06886, 2024.

Z. Shen, C. Fang, P. Zhao, J. Huang, and H. Qian. Complexities in projection-free stochastic non-
convex minimization. In The 22nd International Conference on Artificial Intelligence and Statis-
tics, pages 2868–2876. PMLR, 2019.

W. Shi and B. Gu. Improved penalty method via doubly stochastic gradients for bilevel hyperparam-
eter optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 9621–9629, 2021.

Y. Shu, X. Lin, Z. Dai, and B. K. H. Low. Federated zeroth-order optimization using trajectory-
informed surrogate gradients. arXiv preprint arXiv:2308.04077, 2023.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: From classical to evolutionary
approaches and applications. IEEE Transactions on Evolutionary Computation, 22(2):276–295,
2017.

S. Sra, A. W. Yu, M. Li, and A. Smola. Adadelay: Delay adaptive distributed stochastic optimization.
In Artificial Intelligence and Statistics, pages 957–965. PMLR, 2016.

T. Subramanya and R. Riggio. Centralized and federated learning for predictive vnf autoscaling in
multi-domain 5g networks and beyond. IEEE Transactions on Network and Service Management,
18(1):63–78, 2021.

T. Sun, Y. Shao, H. Qian, X. Huang, and X. Qiu. Black-box tuning for language-model-as-a-service.
In International Conference on Machine Learning, pages 20841–20855. PMLR, 2022.

Y. Tang, J. Zhang, and N. Li. Distributed zero-order algorithms for nonconvex multiagent optimiza-
tion. IEEE Transactions on Control of Network Systems, 8(1):269–281, 2020.

C.-C. Tu, P. Ting, P.-Y. Chen, S. Liu, H. Zhang, J. Yi, C.-J. Hsieh, and S.-M. Cheng. Autozoom:
Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pages 742–749, 2019.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. Glue: A multi-task benchmark
and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355,
2018a.

B. Wang, Z. Wang, X. Wang, Y. Cao, R. A Saurous, and Y. Kim. Grammar prompting for domain-
specific language generation with large language models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

J. Wang, J. Chen, J. Lin, L. Sigal, and C. W. de Silva. Discriminative feature alignment: Improving
transferability of unsupervised domain adaptation by gaussian-guided latent alignment. Pattern
Recognition, 116:107943, 2021.

Y. Wang, S. Du, S. Balakrishnan, and A. Singh. Stochastic zeroth-order optimization in high di-
mensions. In International conference on artificial intelligence and statistics, pages 1356–1365.
PMLR, 2018b.

Y.-X. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sra, and E. Xing. Parallel and distributed
block-coordinate frank-wolfe algorithms. In International Conference on Machine Learning,
pages 1548–1557. PMLR, 2016.

E. Wilson, F. Mueller, and S. Pakin. Combining hard and soft constraints in quantum constraint-
satisfaction systems. In SC22: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–14. IEEE, 2022.

X. Wu, J. Sun, Z. Hu, J. Li, A. Zhang, and H. Huang. Federated conditional stochastic optimization.
Advances in Neural Information Processing Systems, 36, 2024.

W. Xian, F. Huang, and H. Huang. Communication-efficient frank-wolfe algorithm for nonconvex
decentralized distributed learning. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 10405–10413, 2021.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Q. Xiao, H. Shen, W. Yin, and T. Chen. Alternating projected sgd for equality-constrained bilevel
optimization. In International Conference on Artificial Intelligence and Statistics, pages 987–
1023. PMLR, 2023.

Z. Xu, H. Zhang, Y. Xu, and G. Lan. A unified single-loop alternating gradient projection al-
gorithm for nonconvex-concave and convex-nonconcave minimax problems. arXiv preprint
arXiv:2006.02032, 2020.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C. Yadav and L. Bottou. Cold case: The lost mnist digits. Advances in neural information processing
systems, 32, 2019.

J. Yang, K. Ji, and Y. Liang. Provably faster algorithms for bilevel optimization. Advances in Neural
Information Processing Systems, 34:13670–13682, 2021.

K. Yang, J. Huang, Y. Wu, X. Wang, and M. Chiang. Distributed robust optimization (DRO), part I:
Framework and example. Optimization and Engineering, 15(1):35–67, 2014.

H. Yao, J. Lou, and Z. Qin. Poisonprompt: Backdoor attack on prompt-based large language models.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 7745–7749. IEEE, 2024.

P. Yue, L. Yang, C. Fang, and Z. Lin. Zeroth-order optimization with weak dimension dependency.
In The Thirty Sixth Annual Conference on Learning Theory, pages 4429–4472. PMLR, 2023.

H. Zhang, H. Zhang, B. Gu, and Y. Chang. Subspace selection based prompt tuning with nonconvex
nonsmooth black-box optimization. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 4179–4190, 2024a.

M. Zhang, Z. Shen, A. Mokhtari, H. Hassani, and A. Karbasi. One sample stochastic frank-wolfe.
In International Conference on Artificial Intelligence and Statistics, pages 4012–4023. PMLR,
2020.

Y. Zhang, G. Zhang, P. Khanduri, M. Hong, S. Chang, and S. Liu. Revisiting and advancing fast
adversarial training through the lens of bi-level optimization. In International Conference on
Machine Learning, pages 26693–26712. PMLR, 2022.

Y. Zhang, P. Li, J. Hong, J. Li, Y. Zhang, W. Zheng, P.-Y. Chen, J. D. Lee, W. Yin, M. Hong,
et al. Revisiting zeroth-order optimization for memory-efficient llm fine-tuning: A benchmark.
In Forty-first International Conference on Machine Learning, 2024b.

S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu. Asynchronous stochastic
gradient descent with delay compensation. In International conference on machine learning,
pages 4120–4129. PMLR, 2017.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix

To improve the readability of the Appendix, we have organized its contents as follows: In Appendix
A and B, we delve into the comprehensive proofs of Theorem 1 (Iteration Complexity) and The-
orem 2 (Communication Complexity). In Appendix C, the detailed proofs of Propositions 1 and
2 are provided. Furthermore, we offer the theoretical analyses about the cascaded polynomial ap-
proximation in Appendix D. Additionally, detailed discussions about the soft constraint are given in
Appendix E, and the discussions about ϕin and ϕout are also conducted in this part. In Appendix F,
details of the experimental setting and additional experimental results are provided. The discussions
about Assumptions 1 and 2 are offered in Appendix G, we show that both Assumptions 1 and 2 are
mild and widely-used in machine learning. In Appendix H, the reasons why we choose the exterior
penalty method in the proposed framework are discussed, and we demonstrate the close relationship
between the original constrained optimization problem and the unconstrained optimization problem.
In Appendix I, we show that the proposed framework can be applied to a wide range of TLL prob-
lems, e.g., (grey-box) TLL with partial zeroth order constraints. More discussions about the cutting
plane method and the choice of gradient estimator are provided in Appendix J. Lastly, the future
work is discussed in Appendix K.

Furthermore, to enhance the readability of this work, the notations used in this work and their cor-
responding meanings are summarized in Table 2.
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Table 2: Notations used in this work and the corresponding meanings.

Notation Meaning
fi(·),∀i = 1, 2, 3 ith level objective.
xi,∀i = 1, 2, 3 ith level variable.
fi,j(·),∀i = 1, 2, 3, j = 1,· · ·, N ith level local objective in worker j.
xi,j ,∀i = 1, 2, 3, j = 1,· · ·, N ith level local variable in worker j.
zi,∀i = 1, 2, 3 ith level global variable in master.
Pin, Pout feasible regions formed by inner and outer layer zeroth order cuts.
cpin,l, cpout,l lth inner layer and outer layer zeroth order cuts.
ain
j,l, b

in
j,l, c

in
i,l, d

in
i,l, e

in
l lth inner layer zeroth order cut’s parameters.

aout
i,j,l, b

out
i,j,l, c

out
i,l , dout

i,l , eoutl lth outer layer zeroth order cut’s parameters.
F (·) penalty function.
Fµ(·) smooth approximation of F (·).
µ smoothing parameter.
Fµ

∗ optimal objective value of Fµ(·).
λl, ϕj penalty parameters.
ϕin(·), ϕout(·) functions used in third level and second level constraint.
Gxi,j

,∀i = 1, 2, 3, j = 1,· · ·, N gradient estimator for ith level variable in worker j
ηxi , ηzi ,∀i = 1, 2, 3 step sizes for variables xi, zi.
µin,µout,uk,1,uk,2,uk,3 standard Gaussian random vectors.
Gt stationarity gap.
T (ϵ) iteration complexity to achieve ϵ-stationary point.
T1 parameter controls the trade-off between complexity and performance.
T zeroth order cuts will be updated every T iteration.
N the number of workers in distributed systems.
L parameter in L-smoothness.
di,∀i = 1, 2, 3 the dimension of ith level variable.

A PROOF OF THEOREM 1

In this section, the detailed proofs of Theorem 1, i.e., iteration complexity of the proposed DTZO,
are offered. The iteration complexity refers to the number of iterations for the proposed algorithm
to obtain the ϵ-stationary point (Jiao et al., 2023). According to Ghadimi and Lan (2013), the
gradient of the smooth approximation of F , i.e., Fµ (which is given in Definition 3), is also Lipschitz
continuous with constant Lµ (0 < Lµ ≤ L), thus, we have that when t ≥ T1,

Fµ({xt+1
i,j }, {zt

i})

≤Fµ({xt
i,j}, {zt

i})+

 {xt+1
1,j −xt

1,j}
{xt+1

2,j −xt
2,j}

{xt+1
3,j −xt

3,j}


⊤ {∇x1,j

Fµ({xt
i,j}, {zt

i})}
{∇x2,j

Fµ({xt
i,j}, {zt

i})}
{∇x3,jFµ({xt

i,j}, {zt
i})}

+ L
2 ||

 {xt+1
1,j −xt

1,j}
{xt+1

2,j −xt
2,j}

{xt+1
3,j −xt

3,j}

||2

=Fµ({xt
i,j}, {zt

i})−

 {ηx1Gx1,j ({xt
i,j}, {zt

i})}
{ηx2

Gx2,j
({xt

i,j}, {zt
i})}

{ηx3
Gx3,j

({xt
i,j}, {zt

i})}


T  {∇x1,jFµ({xt

i,j}, {zt
i})}

{∇x2,j
Fµ({xt

i,j}, {zt
i})}

{∇x3,j
Fµ({xt

i,j}, {zt
i})}


+L

2

3∑
i=1

N∑
j=1

η2xi
||Gxi,j

({xt
i,j}, {zt

i})||2.

(32)
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According to Assumption 2 (i.e., function F has L-Lipschitz continuous gradient) and combining it
with Cauchy-Schwarz inequality, we have that,

F ({xt+1
i,j }, {zt+1

i })

≤ F ({xt+1
i,j }, {zt

i}) +

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3


T  ∇z1

F ({xt+1
i,j }, {zt

i})
∇z2

F ({xt+1
i,j }, {zt

i})
∇z3

F ({xt+1
i,j }, {zt

i})

+ L
2 ||

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3

 ||2

= F ({xt+1
i,j }, {zt

i}) +

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3


T  ∇z1

F ({xt
i,j}, {zt

i})
∇z2

F ({xt
i,j}, {zt

i})
∇z3F ({xt

i,j}, {zt
i})



+

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3


T  ∇z1F ({xt+1

i,j }, {zt
i})−∇z1F ({xt

i,j}, {zt
i})

∇z2F ({xt+1
i,j }, {zt

i})−∇z2F ({xt
i,j}, {zt

i})
∇z3F ({xt+1

i,j }, {zt
i})−∇z3F ({xt

i,j}, {zt
i})

+ L
2 ||

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3

 ||2

≤ F ({xt+1
i,j }, {zt

i})−
3∑

i=1

(ηzi
− Lη2

zi

2 − η2
zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2+

3∑
i=1

N∑
j=1

L
2 ||x

t+1
i,j −xt

i,j ||2.

(33)

Combining Eq. (33) with the Eq. (3.5) in Ghadimi and Lan (2013), we have that,

Fµ({xt+1
i,j }, {zt+1

i })− µ2L(N+1)
∑

i di

2

≤ F ({xt+1
i,j }, {zt+1

i })

≤ F ({xt+1
i,j }, {zt

i})−
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

N∑
j=1

L
2 ||x

t+1
i,j − xt

i,j ||2

≤ Fµ({xt+1
i,j }, {zt

i})−
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

N∑
j=1

L
2 ||x

t+1
i,j − xt

i,j ||2

+
µ2L(N+1)

∑
i di

2 .
(34)

Combining Eq. (32) with Eq. (34), we can obtain that,

Fµ({xt+1
i,j }, {zt+1

i })

≤ Fµ({xt
i,j}, {zt

i})−

 {ηx1Gx1,j ({xt
i,j}, {zt

i})}
{ηx1

Gx2,j
({xt

i,j}, {zt
i})}

{ηx1
Gx3,j

({xt
i,j}, {zt

i})}


T  {∇x1,jFµ({xt

i,j}, {zt
i})}

{∇x2,j
Fµ({xt

i,j}, {zt
i})}

{∇x3,j
Fµ({xt

i,j}, {zt
i})}


+L

2

3∑
i=1

N∑
j=1

η2xi
||Gxi,j

({xt
i,j}, {zt

i})||2 −
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

+
3∑

i=1

N∑
j=1

L
2 ||x

t+1
i,j − xt

i,j ||2 + µ2L(N + 1)
∑

i di

= Fµ({xt
i,j}, {zt

i})−

 {ηx1
Gx1,j

({xt
i,j}, {zt

i})}
{ηx1Gx2,j ({xt

i,j}, {zt
i})}

{ηx1
Gx3,j

({xt
i,j}, {zt

i})}


T  {∇x1,j

Fµ({xt
i,j}, {zt

i})}
{∇x2,jFµ({xt

i,j}, {zt
i})}

{∇x3,j
Fµ({xt

i,j}, {zt
i})}


+

3∑
i=1

N∑
j=1

Lη2xi
||Gxi,j

({xt
i,j}, {zt

i})||2 −
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

+µ2L(N + 1)
∑

i di.

(35)
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Taking expectation on the both sides of Eq. (32), we can obtain that,

E[Fµ({xt+1
i,j }, {zt+1

i })]

≤ E[Fµ({xt
i,j}, {zt

i})]−
3∑

i=1

N∑
j=1

ηxi ||∇xi,jFµ({xt
i,j}, {zt

i})||2 + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi
E[||Gxi,j

({xt
i,j}, {zt

i})||2]−
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2.

(36)

Combining the definition of Gx1,j
, Gx2,j

, Gx3,j
with the Eq. (3.12) in Ghadimi and Lan (2013), we

have that,

E[||Gx1,j
({xt

i,j}, {zt
i})||2] ≤ 2(d1 + 4)||∇x1,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2
(d1 + 6)3, (37)

E[||Gx2,j
({xt

i,j}, {zt
i})||2] ≤ 2(d2 + 4)||∇x2,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2
(d2 + 6)3, (38)

E[||Gx3,j ({xt
i,j}, {zt

i})||2] ≤ 2(d3 + 4)||∇x3,jF ({xt
i,j}, {zt

i})||2 +
µ2L2

2
(d3 + 6)3. (39)

By combining Eq. (36) with Eq. (37), (38), and (39), we can get that,

E[Fµ({xt+1
i,j }, {zt+1

i })]

≤ E[Fµ({xt
i,j}, {zt

i})]−
3∑

i=1

N∑
j=1

ηxi
||∇xi,j

Fµ({xt
i,j}, {zt

i})||2 + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi

(
2(di + 4)||∇xi,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2 (di + 6)
3
)

−
3∑

i=1

(ηzi −
(L+1)η2

zi

2 )||∇ziF ({xt
i,j}, {zt

i})||2,

(40)

that is,

3∑
i=1

N∑
j=1

ηxi
||∇xi,j

Fµ({xt
i,j}, {zt

i})||2 +
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

≤ E[Fµ({xt
i,j}, {zt

i})]− E[Fµ({xt+1
i,j }, {zt+1

i })] + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi

(
2(di + 4)||∇xi,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2 (di + 6)
3
)
.

(41)

Combining Eq. (41) with Eq. (3.8) in Ghadimi and Lan (2013), we can obtain that,

3∑
i=1

N∑
j=1

ηxi

(
1
2 ||∇xi,j

F ({xt
i,j}, {zt

i})||2 −
µ2L2

4 (di + 3)
3
)

+
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

≤
3∑

i=1

N∑
j=1

ηxi
||∇xi,j

Fµ({xt
i,j}, {zt

i})||2 +
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

≤ E[Fµ({xt
i,j}, {zt

i})]− E[Fµ({xt+1
i,j }, {zt+1

i })] + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi

(
2(di + 4)||∇xi,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2 (di + 6)
3
)
,

(42)
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that is,

3∑
i=1

N∑
j=1

(ηxi

2 − 2L(di + 4)η2xi

)
||∇xi,j

F ({xt
i,j}, {zt

i})||2

+
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

≤ Fµ({xt
i,j}, {zt

i})− Fµ({xt+1
i,j }, {zt+1

i }) +
3∑

i=1

N∑
j=1

η2
xi

µ2L3

2 (di + 6)
3

+
3∑

i=1

N∑
j=1

µ2L2ηxi

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di.

(43)

According to the setting of ηxi , i = 1, 2, 3, i.e., 0 < ηxi ≤ 1
8L(di+4) , i = 1, 2, 3, we have that,

ηxi

2
− 2L(di + 4)η2xi

> 0, i = 1, 2, 3. (44)

Likewise, according to the setting of ηzi , i = 1, 2, 3, i.e., 0 < ηzi ≤ 3
2(L+1) , i = 1, 2, 3, we have

that,

ηzi
−

(L+ 1)η2zi

2
> 0, i = 1, 2, 3. (45)

Combining Eq. (43) with Eq. (44) and (45), we can obtain that,

3∑
i=1

N∑
j=1

||∇xi,jF ({xt
i,j}, {zt

i})||2 +
3∑

i=1

||∇ziF ({xt
i,j}, {zt

i})||2

≤

3∑
i=1

N∑
j=1

(ηxi

2 − 2L(di + 4)η2xi

)
||∇xi,j

F ({xt
i,j}, {zt

i})||2

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi −

(L+1)η2
zi

2 , i = 1, 2, 3
}

+

3∑
i=1

(ηzi −
(L+1)η2

zi

2 )||∇ziF ({xt
i,j}, {zt

i})||2

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi −

(L+1)η2
zi

2 , i = 1, 2, 3
}

≤
Fµ({xt

i,j}, {zt
i})− Fµ({xt+1

i,j }, {zt+1
i }) +

3∑
i=1

η2
xi

µ2L3N

2 (di + 6)
3

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}

+

+
3∑

i=1

µ2L2ηxi
N

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
} .

(46)

Summing up the inequality in Eq. (46) from t = T1 to t = T (ϵ)− 1, we have that,
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1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
Fµ({xT1

i,j}, {z
T1
i })− Fµ({xT (ϵ)

i,j }, {zT (ϵ)
i })

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}
(T (ϵ)− T1)

+

3∑
i=1

η2
xi

µ2L3N

2 (di + 6)
3
+

3∑
i=1

µ2L2ηxi
N

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}

≤
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}
(T (ϵ)− T1)

+

3∑
i=1

η2
xi

µ2L3N

2 (di + 6)
3
+

3∑
i=1

µ2L2ηxi
N

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi −

(L+1)η2
zi

2 , i = 1, 2, 3
} .

(47)

According to the setting of ηxi
, ηzi

, i = 1, 2, 3, we can obtain that,

ηxi

2
− 2L(di + 4)η2xi

= ηxi

(
1

2
− 2L(di + 4)ηxi

)
≥ ηxi

4
, i = 1, 2, 3, (48)

ηzi
−

(L+ 1)η2zi

2
= ηzi

(1− (L+ 1)ηzi

2
) ≥ ηzi

4
, i = 1, 2, 3. (49)

Thus, we have that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

min {ηx1
, ηx2

, ηx3
, ηz1

, ηz2
, ηz3

} (T (ϵ)− T1)

+

3∑
i=1

2η2xi
µ2L3N(di + 6)

3
+

3∑
i=1

µ2L2ηxiN(di + 3)
3
+ 4µ2L(N + 1)

∑
i di

min {ηx1
, ηx2

, ηx3
, ηz1

, ηz2
, ηz3

}
.

(50)

According to the setting that,

ηxi = ηzi = min

{
1

8L(d1 + 4)
,

1

8L(d2 + 4)
,

1

8L(d3 + 4)
,

3

2(L+ 1)
,

1√
T (ϵ)− T1

}
, i = 1, 2, 3,

(51)
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we have that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

min

{
1

8L(d1+4) ,
1

8L(d2+4) ,
1

8L(d3+4) ,
3

2(L+1) ,
1√

T (ϵ)−T1

}
(T (ϵ)− T1)

+

3∑
i=1

2ηxi
µ2L3N(di + 6)

3
+

3∑
i=1

µ2L2N(di + 3)
3

+

3∑
i=1

4µ2L(N + 1)di
1

min

{
1

8L(d1+4) ,
1

8L(d2+4) ,
1

8L(d3+4) ,
3

2(L+1) ,
1√

T (ϵ)−T1

}

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)(

max
{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

})
T (ϵ)− T1

+

4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)√

T (ϵ)− T1

T (ϵ)− T1

+

3∑
i=1

2ηxiµ
2L3N(di + 6)

3
+

3∑
i=1

µ2L2N(di + 3)
3

+

3∑
i=1

4µ2L(N + 1)di

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+
√
T (ϵ)− T1

)
.

(52)

Since ηxi
≤ 1

8L(di+4) , i = 1, 2, 3, we can obtain that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)(

max
{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

})
T (ϵ)− T1

+

4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)√

T (ϵ)− T1

T (ϵ)− T1
+
µ2L2N

4

3∑
i=1

(di + 6)
3

di + 4
+µ2L2

3∑
i=1

(di + 3)
3

+

3∑
i=1

4µ2L(N + 1)di

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+
√
T (ϵ)− T1

)
.

(53)
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Because of T (ϵ) − T1 ≥ 1, we have that 1
T (ϵ)−T1

≤ 1√
T (ϵ)−T1

. Combining with the setting of µ,

i.e., µ2 ≤ 1
T (ϵ)−T1

, we can obtain that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,jF ({xt
i,j}, {zt

i})||2 +
3∑

i=1

||∇ziF ({xt
i,j}, {zt

i})||2)

≤
4max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

T (ϵ)− T1

+

max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗√

T (ϵ)− T1

+
L2

4

3∑
i=1

(di + 6)
3

di + 4

1

T (ϵ)− T1
+ L2

3∑
i=1

(di + 3)
3 1

T (ϵ)− T1

+

3∑
i=1

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+
√

T (ϵ)− T1

)
4L(N + 1)di
T (ϵ)− T1

≤
4(1 + max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
)

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

√
T (ϵ)− T1

+
L2

4

3∑
i=1

(di + 6)
3

di + 4

1√
T (ϵ)− T1

+ L2
3∑

i=1

(di + 3)
3 1√

T (ϵ)− T1

+

3∑
i=1

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+ 1

)
4L(N + 1)di

1√
T (ϵ)− T1

.

(54)

Combining the definition of stationarity gap and ϵ-stationary point in Definition 1, 2 with Eq. (54),
we have that,

||GT (ϵ)||2

=

3∑
i=1

N∑
j=1

||∇xi,j
F ({xT (ϵ)

i,j }, {zT (ϵ)
i })||2 +

3∑
i=1

||∇zi
F ({xT (ϵ)

i,j }, {zT (ϵ)
i })||2

≤ 1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,jF ({xt
i,j}, {zt

i})||2 +
3∑

i=1

||∇ziF ({xt
i,j}, {zt

i})||2)

≤
4(1 + max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
)

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

√
T (ϵ)− T1

+
L2

4

3∑
i=1

(di + 6)
3

di + 4

1√
T (ϵ)− T1

+ L2
3∑

i=1

(di + 3)
3 1√

T (ϵ)− T1

+

3∑
i=1

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+ 1

)
4L(N + 1)di

1√
T (ϵ)− T1

.

(55)

Thus, we can conclude that, when

T (ϵ) ≥
(

3∑
i=1

ci + d

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
))2

1
ϵ2 + T1 , (56)

we have that ||GT (ϵ)||2 ≤ ϵ, where constants

d = 4(1 + max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
), (57)
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ci =
L2(di+6)3

4(di+4) + L2(di + 3)
3

+4L(N + 1)di

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
+ 1
)
.

(58)

B COMMUNICATION COMPLEXITY

The overall communication complexity of the proposed DTZO can be divided into 1) the communi-
cation complexity at every communication round and 2) the communication complexity of updating
zeroth order cuts, which is discussed as follows.

1) The communication complexity at each iteration.

At each iteration, e.g., (t + 1)th iteration, the workers transmit the updated variables
xt+1
1,j ,xt+1

2,j ,xt+1
3,j to the master, resulting in a communication complexity of

∑N
j=1

∑3
i=1 di.

Upon receiving these updated local variables, the master proceeds to update the global vari-
ables. Then, the master broadcasts the updated variables zt+1

1 , zt+1
2 , zt+1

3 and gradients
∇xi,jo({xt+1

2,j }, {xt+1
3,j }, zt+1

1 , zt+1
2 , zt+1

3 ), i = 2, 3 to worker j. Therefore, the cumulative com-
munication complexity from t = 1 to t = T (ϵ) is

C1 = T (ϵ)(2d1 + 3d2 + 3d3)N. (59)

2) The communication complexity of updating zeroth order cuts.

During every iteration T (t < T1), the cutting planes are updated to refine the cascaded polynomial
approximation, involving two main steps:

2a) Updating the inner layer polynomial approximation: In this phase, local variables xk+1
3,j are trans-

mitted from worker j, while global variables zk+1
3 are sent from the master in the (k+1)th iteration.

The communication complexity associated with updating the inner layer polynomial approximation
can be expressed as follows: ∑N

j=1
2⌊T1

T
⌋T Kd3. (60)

2b) Updating the outer layer polynomial approximation: During the (k + 1)th iteration when up-
dating the outer layer approximation, the worker j transmits the updated variables xk+1

2,j , to the
master. Subsequently, the master broadcasts the updated global variables zk+1

2 to worker j. The
communication complexity involved in this process can be expressed as,

∑N

j=1
2⌊T1

T
⌋T Kd2. (61)

Combining Eq. (60) with (61), and considering utilizing one communication round to approximate
the ϕin({x3,j}, z1, z2, z3) and ϕout({x2,j}, {x3,j}, z1, z2, z3), i.e., K = 1, we have that the com-
munication complexity of updating cascaded polynomial approximation is,

C2 = 2N⌊T1

T
⌋T (d2 + d3). (62)

Consequently, the overall communication of the proposed method is C1 + C2, which can be ex-
pressed as,

3T (ϵ)(d1 + d2 + d3)N + 2N⌊T1

T
⌋T (d2 + d3). (63)
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C PROOF OF PROPOSITION 1 AND 2

C.1 PROOF OF PROPOSITION 1

For any point ({x3,j}, z1, z2′, z3) in the original feasible region, i.e., ϕin({x3,j}, z1, z2′, z3) = 0,
according to the properties of L-smoothness, we have that,

ϕin({x3,j}, z1, z2′, z3)

≥ ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3) +
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(64)

According to E[Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)] = ϕµ,in({xt
3,j}, zt

1, z
t
2
′
, zt

3), taking expectation on both
sides of Eq. (64), we have that,
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(65)
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Combining with the Cauchy-Schwarz inequality, we have that,

E[ϕin({x3,j}, z1, z2′, z3)]

≥ E[ϕin({xt
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1, z
t
2
′
, zt
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(66)

And according to Eq. (3.6) in Ghadimi and Lan (2013), we can obtain that,

||ϕµ,in({xt
3,j}, zt

1, z
t
2
′
, zt

3)−
∂ϕin({xt

3,j}, zt
1, z

t
2
′
, zt

3)

∂({x3,j}, z1, z2, z3)
||2 ≤ µ2

4
L2(d1+d2+(N+1)d3+3)3.

(67)

By combining Eq. (66) with Eq. (67), we have that,
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(68)

For any point belongs to the original feasible region, i.e., ϕin({x3,j}, z1, z2′, z3) = 0, according to
εin ≥ 0, we can obtain that it also satisfies that,
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8 L2(d1+d2+(N+1)d3+3)3 + εin.

(69)

According to Eq. (9), we can conclude that for any point belongs to the original feasible region
of constraint ϕin({x3,j}, z1, z2′, z3) = 0, it also belongs to the P t+1

in , that is, the original feasible
region is a subset of the feasible region formed by inner layer zeroth order cuts. Let Sin denote the
original feasible region of constraint ϕin({x3,j}, z1, z2′, z3) = 0, we can obtain that the feasible
region formed by inner layer zeroth order cuts will be gradually tightened with zeroth order cuts
added according to Eq. (69), that is,

Sin ⊆ P t+1
in ⊆ P t

in ⊆ · · · ⊆ P 0
in. (70)

C.2 PROOF OF PROPOSITION 2

For any point ({x2,j}, {x3,j}, z1, z2, z3) in the original feasible region, i.e.,
ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, according to the properties of L-smoothness, we have
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that,
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(71)
where Gout

µ (t) is the simplified form of Gout
µ ({xt
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t
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3), taking expectation on both sides of Eq. (71), we

have that,
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(72)
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where ϕµ,out(t) is the simplified form of ϕµ,out({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3). Combining with the

Cauchy-Schwarz inequality, we have that,
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(73)

And according to Eq. (3.6) in Ghadimi and Lan (2013), we can obtain that,
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4
L2(d1+(N+1)(d2+d3)+3)3. (74)

By combining Eq. (73) with Eq. (74), we have that,
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(75)

For any point belongs to the original feasible region, i.e., ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0,
according to εin ≥ 0, we can obtain that it also satisfies that,
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(76)

According to Eq. (11), we can conclude that for any point belongs to the original feasible region
of constraint ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, it also belongs to the P t+1

out , that is, the original
feasible region is a subset of the feasible region formed by outer layer zeroth order cuts. In addition,
let Sout denote the original feasible region of constraint ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, based
on Eq. (76), we can obtain that the feasible region formed by outer layer zeroth order cuts will be
gradually tightened with zeroth order cuts added, that is,

Sout ⊆ P t+1
out ⊆ P t

out ⊆ · · · ⊆ P 0
out. (77)
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D THEORETICAL ANALYSES ABOUT THE CASCADED POLYNOMIAL
APPROXIMATION PROBLEM

In this section, we theoretically analyze the connections between the original distributed trilevel
zeroth order optimization problem in Eq. (2) and the cascaded polynomial approximation problem
in Eq. (8). To facilitate this discussion, we start by examining the distributed bilevel zeroth order
optimization problem, which can be expressed as follows,

min
N∑
j=1

f1,j(x1,x2)

s.t. x2 = argmin
x2

′

N∑
j=1

f2,j(x1,x2
′)

var. x1,x2.

(78)

The optimization problem in Eq. (78) can be equivalently reformulated as,

min
N∑
j=1

f1,j(x1,j ,x2,j)

s.t. x1,j = z1,∀j = 1, · · · , N

{x2,j}, z2 = argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(z1,x2,j
′)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N
var. {x1,j}, {x2,j}, z1, z2.

(79)

By utilizing the proposed polynomial approximation with zeroth order cut, we can obtain the fol-
lowing zeroth order polynomial approximation problem,

min
N∑
j=1

f1,j(x1,j ,x2,j)

s.t. x1,j = z1,∀j = 1, · · · , N
N∑
j=1

a2,j,l
⊤x2

2,j+b2,j,l
⊤x2,j+

2∑
i=1

ci,l
⊤z2

i +di,l
⊤zi+el≤ε, ∀l

var. {x1,j}, {x2,j}, z1, z2.

(80)

According to Proposition 1 and 2, we can obtain the feasible region of the problem in Eq. (79) is
a subset of the feasible region of the problem in Eq. (80). Thus, we can conclude that the zeroth
order polynomial approximation optimization problem in Eq. (80) is the relaxed problem of the
distributed bilevel zeroth order optimization problem in Eq. (78).

For the distributed trilevel zeroth order optimization problem, we first define the following feasible
regions.

S1 =

{
{xi,j},{zi}|

hout
l ({x2,j},{x3,j},z1, z2, z3) ≤ εout,∀l,

z1 = x1,j ,∀j

}
, (81)

S2 =
{xi,j},{zi}|

||

[
{x2,j}
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]
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{x2,j

′},z2
′

N∑
j=1

f2,j(z1,x2,j
′,x3,j)

s.t. x2,j
′ = z2

′,∀j,
hin
l ({x3,j}, z1, z2′, z3)≤εin,∀l

||2 ≤ εout,

z1 = x1,j ,∀j


,

(82)
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S3 =
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.

(83)

It is seen from Eq. (81) and Eq. (83) that S1 and S3 respectively represent the feasible region of
optimization problems in Eq. (8) and Eq. (3). For any feasible solution {x̂i,j},{ẑi} of optimization
problem in Eq. (3), it satisfies that,

||
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ẑ2

]
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f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

{x̂3,j}, ẑ3= argmin
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s.t. x3,j
′ = z3

′,∀j = 1, · · · , N

||2 = 0. (84)

Based on Proposition 1, we have that the feasible region of constraint ϕin({x3,j}, z1, z2′, z3) =
0 is a subset of the feasible region formed by inner layer zeroth order cuts, i.e.,{
{x3,j}, z1, z2′, z3|hin

l ({x3,j}, z1, z2′, z3)≤εin,∀l
}

. Moreover, the feasible region formed by
inner layer zeroth order cuts will be continuously tightened with zeroth order cuts added. Thus, let
β ≥ 0 satisfy that,

||
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{x2,j

′},z2
′

N∑
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||2

≤ β.
(85)

By combining Proposition 1 with Eq. (85), we can obtain that β will continuously decrease with
inner layer zeroth order cuts added. By combining Eq. (84) with Cauchy-Schwarz inequality, we
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can obtain that,
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(86)

By combining the definition of S2 in Eq. (83) with Eq. (86), we can get that S3 is a subset of
S2, i.e., S3 ∈ S2 when we set εin ≥ 0 and εout ≥ 2β. Based on Proposition 2, we have that S2

is a subset of S1, i.e., S2 ∈ S1. Consequently, we can get S3 ∈ S1, indicating that the cascaded
polynomial approximation problem is the relaxed problem of the original distributed trilevel zeroth
order optimization problem. Moreover, this relaxation will be gradually tightened with the addition
of zeroth order cuts based on Proposition 1 and 2.

E DISCUSSION ABOUT SOFT CONSTRAINT AND ϕin, ϕout

Soft constraint. A soft constraint refers to a constraint that can be partially violated without render-
ing the optimization problem meaningless (Kautz et al., 1996; Régin, 2011; Wilson et al., 2022). It is
shown in many bilevel and trilevel learning works that the lower-optimization problem often serves
as a soft constraint to the upper-level optimization problem. Examples are provided as follows.

* In bilevel neural architecture search (Liu et al., 2018a), rather than computing the optimal
solution for the lower-level optimization problem, the result obtained after a single gradient
descent step can be used as an approximation of the optimal solution.

* In bilevel meta-learning (Ji et al., 2021; Finn et al., 2017), instead of solving the lower-level
optimization problem to optimality, the results obtained after multiple gradient descent
steps can serve as an approximation.

* In bilevel adversarial learning (Madry et al., 2018; Zhang et al., 2022), which is a min-max
optimization problem, instead of solving the maximization problem to obtain the optimal
solution, the results after several projected gradient descent steps are used as the approxi-
mation.
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* In trilevel learning, AFTO (Jiao et al., 2024) used the results after K communication rounds
to replace the optimal solution to the lower-level optimization problem in federated trilevel
optimization problems.

It is seen from ϕin({x3,j}, z1, z2′, z3) = ||

[
{x3,j}
z3

]
−

argmin
{x3,j

′},z3
′

∑
j f3,j(z1, z2

′,x3,j
′) s.t.x3,j

′ = z3
′,∀j||2 that a distributed optimization problem

needs to be solved if an exact ϕin({x3,j}, z1, z2, z3) is required. The lower-level optimization

problem (i.e.,

[
{x3,j}
z3

]
= argmin

{x3,j
′},z3

′

∑
j f3,j(z1, z2

′,x3,j
′) s.t.x3,j

′ =z3
′,∀j) can be regarded

as a soft constraint to the upper-level optimization problem. Inspired by many works in bilevel
optimization and trilevel optimization, e.g. Ji et al. (2021); Jiao et al. (2022a); Yang et al. (2021);
Franceschi et al. (2018); Liu et al. (2021b); Mackay et al. (2018); Choe et al. (2023), that utilize
K steps gradient descent steps to approximate the optimal solution to the lower-level optimization
problem, function ϕin({x3,j}, z1, z2′, z3) in this work can also be approximated based on the
solution after K communication rounds following Jiao et al. (2024). Specifically, we have the
following steps in (k + 1)th iteration,

Local worker j update the local variables as,

xk+1
3,j = xk

3,j − ηxGin,j(z1, z2,x
k
3,j , z

k
3 ), (87)

where ηx denotes the step-size, and

Gin,j(z1, z2,x
k
3,j , z

k
3 ) =

f3,j(x1,j ,x2,j ,x
k
3,j+µuk,3)−f1,j(x1,j ,x2,j ,x

k
3,j)

µ uk,3 + 2γj(x
k
3,j − zk

3 ).

(88)
where uk,3 is a standard Gaussian random vector, γj > 0 is a constant. Then, workers transmit the
updated local variables, i.e., xk+1

3,j , to the master.

After receiving the updated variables, the master updates the consensus variables as follows.

zk+1
3 = zk

3 − ηz
∑N

j=1
γj(z

k
3 − xk+1

3,j ), (89)

where ηz represents the step-size. Subsequently, the master broadcasts the updated variables zk+1
3

to workers. Thus, the approximated ϕin({x3,j}, z1, z2, z3) can be expressed as,

ϕin({x3,j}, z1, z2, z3) =

[
{x3,j − x0

3,j + ηx
∑K−1

k=0 Gin,j(z1, z2,x
k
3,j , z

k
3 )}

z3 − z0
3 + ηz

∑K−1
k=0

∑N
j=1 γj(z

k
3 − xk+1

3,j )

]
. (90)

Likewise, constraint ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0 also serves as a soft constraint to the
upper-level optimization problem. According to the definition of ϕout({x2,j}, {x3,j}, z1, z2, z3),
that is,

ϕout({x2,j}, {x3,j}, z1, z2, z3)

= ||

[
{x2,j}
z2

]
−

argmin
{x2,j},z2

N∑
j=1

f2,j(z1,x2,j ,x3,j)

s.t.x2,j=z2,∀j, hin
l ({x3,j}, z1, z2, z3)≤εin,∀l

||2,
(91)

the results after K communication rounds can also be utilized to compute the estimate of
ϕout({x2,j}, {x3,j}, z1, z2, z3) following previous works (Liu et al., 2018a; Jiao et al., 2024). In
(k + 1)th iteration, we have that,

Local worker j updates the local variables as follows,

xk+1
2,j = xk

2,j − ηxGx2,j (z1,x
k
2,j ,x3,j , z

k
2 , z3), (92)

where we have,

Gx2,j (z1,x
k
2,j ,x3,j , z

k
2 , z3)

=
f2,j(z1,x

k
2,j+µuk,2,x3,j)−f2,j(z1,x

k
2,j ,x3,j)

µ uk,2 + 2φj(x
k
2,j − zk

2 ),
(93)
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where uk,2 is the standard Gaussian random vector, φj > 0 is a constant. Then, worker j transmits
the updated xk+1

2,j to the master.

After receiving the updated parameters from workers, the master updates the consensus variables as,

zk+1
2 = zk

2−ηz

(
2φj(z

k
2 − xk+1

2,j ) +∇z2
pl
∑

l
[max{hin

l ({x3,j}, z1, zk
2 , z3)− εin, 0}]2

)
. (94)

Next, the master broadcasts the updated variables zk+1
2 to workers. Consequently, the approximated

ϕout({x2,j}, {x3,j}, z1, z2, z3) can be written as,

ϕout({x2,j}, {x3,j}, z1, z2, z3)

=

[
{x2,j − x0

2,j +
∑K−1

k=0 ηxGx2,j
(z1,x

k
2,j ,x3,j , z

k
2 , z3)}

z2−z0
2+
∑K−1

k=0 ηz
(
2φj(z

k
2−xk+1

2,j )+∇z2
pl
∑

l[max{hin
l ({x3,j}, z1, zk

2 , z3)−εin, 0}]2
) ] .
(95)

F EXPERIMENTAL SETTING

In this section, we provide the details of the experimental setting. In the experiment, all the models
are implemented using PyTorch, and the experiments are conducted on a server equipped with two
NVIDIA RTX 4090 GPUs.

In the experiment, we compare the proposed method with the state-of-the-art distributed zeroth order
learning method FedZOO (Fang et al., 2022) and state-of-the-art distributed bilevel zeroth order
learning method FedRZObl (Qiu et al., 2023), which are introduced as follows. FedZOO (Fang
et al., 2022) is a derivative-free federated zeroth-order optimization method, which can be applied
to solve the single-level optimization problems in a distributed manner. In FedZOO, clients perform
several local updates based on gradient estimators in each communication round. After receiving
local updates, the servers will perform the aggregation and update the global parameters. FedRZObl

(Qiu et al., 2023) is designed for zeroth order bilevel optimization problems. In each communication
round, FedRZObl involves the following steps: clients first compute the estimated optimal solution
to the lower-level optimization problem and the inexact implicit zeroth-order gradient. They then
update the local parameters and transmit them to the server. Upon receiving the updates, the server
aggregates them to obtain the global parameters.

F.1 BLACK-BOX TRILEVEL LEARNING

In this section, the details of the experimental setting in black-box trilevel learning are provided.
Prompt learning is a key technique for enabling LLMs to efficiently and effectively adapt to various
downstream tasks (Ma et al., 2024; Wang et al., 2024). Inspired by the black-box prompt learning
(Diao et al., 2022) and the backdoor attack on prompt-based LLMs (Yao et al., 2024), the backdoor
attack on black-box LLMs is considered with hyperparameter optimization in the experiment. In
the experiment, Qwen 1.8B-Chat (Bai et al., 2023) is utilized as the black-box LLM. The General
Language Understanding Evaluation (GLUE) benchmark (Wang et al., 2018a) is used to evaluate the
proposed DTZO. Specifically, the experiments are carried out on: 1) SST-2 for sentiment analysis;
2) COLA for linguistic acceptability; and 3) MRPC for semantic equivalence of sentences. In the
black-box trilevel learning problem, we compare the proposed DTZO with the state-of-the-art dis-
tributed bilevel zeroth order learning method FedRZObl (Qiu et al., 2023), which is used to address
the following distributed bilevel zeroth order learning problem,

min
∑N

j=1
1

|Dtr
j |

∑
(si,yi)∼Dtr

j

L(G, [ktri,p, si], yi)

s.t. p = argmin
p′

∑N
j=1

1
|Dtr

j |
∑

(si,yi)∼Dtr
j

L(G, [ktri,p
′, si], yi)

var. ktri,p,

(96)

where G denotes the black-box LLM. ktri and p respectively denote the backdoor trigger and
prompt. Dtr

j represents the training dataset in jth worker, |Dtr
j | represents the number of data in

training dataset, and N denotes the number of workers. si, yi denote the ith input sentence and
label.
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Figure 2: Adjusting T1 can flexibly control the
trade-off between performance and complexity,
results on USPS dataset.
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Table 3: Experimental details.

Dataset ηx1
ηx2

ηx3
µ λl ϕj

SST-2 0.01 0.001 0.001 0.001 1 0.5
COLA 0.01 0.001 0.001 0.001 1 0.5
MRPC 0.01 0.001 0.001 0.001 1 0.5
MNIST 0.01 0.05 0.1 0.001 1 0.5
QMNIST 0.01 0.05 0.1 0.001 1 0.5
F-MNIST 0.01 0.05 0.1 0.001 1 0.5
USPS 0.01 0.5 0.1 0.001 1 0.5

F.2 ROBUST HYPERPARAMETER OPTIMIZATION

Robust hyperparameter optimization is a widely used trilevel learning application (Jiao et al., 2024;
Sato et al., 2021), aiming to optimize hyperparameters (Ji et al., 2021; Franceschi et al., 2018; Jiao
et al., 2022b; Yang et al., 2021) and train a machine learning model that is robust against adversarial
attacks (Han et al., 2024). In this work, we consider the robust hyperparameter optimization, which
can be viewed as a trilevel zeroth order learning problem. In this task, compared to single-level
optimization, bilevel optimization considers the hyperparameter optimization, which can enhance
the generalization ability of the machine learning model. Compared to bilevel optimization, trilevel
optimization incorporates min-max robust training, which can improve the adversarial robustness of
ML model. In the experiments, the digits recognition tasks in Qian et al. (2019); Wang et al. (2021)
with four benchmark datasets, i.e., MNIST (LeCun et al., 1998), USPS, Fashion MNIST (Xiao et al.,
2017), KMNIST (Clanuwat et al., 2018), and QMNIST (Yadav and Bottou, 2019), are utilized to
assess the performance of the proposed DTZO. To evaluate the robustness of each method, the PGD-
7 attack (Madry et al., 2018) with ε = 0.05 is utilized. For the state-of-the-art distributed zeroth
order learning method FedZOO (Fang et al., 2022), it is used to address the following distributed
zeroth order learning problem in this task,

min
∑N

j=1 fj(X
tr
j , ytrj ,w)

var. w,
(97)

where N represents the number of workers in a distributed system, w denotes the model parameter.
Xtr

j and ytrj represent the training data and labels, respectively. For the state-of-the-art distributed
bilevel zeroth order learning method FedRZObl (Qiu et al., 2023), the following distributed bilevel
zeroth order learning problem is considered in this task,

min
∑N

j=1 fj(X
var
j , yvarj ,w)

s.t. w = argmin
w′

∑N
j=1 fj(X

tr
j , ytrj ,w

′) + φ||w′||2

var. φ,w,

(98)

where φ and w denote the regularization coefficient and model parameter, respectively. Xtr
j and ytrj

represent the training data and labels, while Xvar
j and yvarj represent the validation data and labels,

respectively.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

1000 4000 7000 10000
Iteration

0.5

1.0

1.5

2.0

Te
st

 lo
ss

= 0.01
= 0.001
= 0.0001

Figure 4: Test loss of the proposed DTZO un-
der various setting of smoothing parameter µ,
results on USPS dataset.
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Figure 5: Test loss on AS (adversarial samples)
of DTZO under various setting of smoothing pa-
rameter µ, results on USPS dataset.

Within the proposed framework, the trade-off between complexity and performance can be flexibly
controlled by adjusting T1, as discussed in Sec. 4. Specifically, if the distributed system has limited
computational and communication capabilities, a smaller T1 can be selected. Conversely, if higher
performance is required, a larger T1 can be chosen. As shown in Figure 2, the performance of the
proposed framework improves with increasing T1, allowing for flexible adjustments based on system
requirements. Removing inactive cuts can significantly improve the effectiveness of cutting plane
method, as discussed in Jiao et al. (2024); Yang et al. (2014). In the experiment, we also investigate
the effect of removing inactive cuts within the proposed DTZO. It is seen from Figure 3 that pruning
inactive cuts significantly reduces training time, indicating the importance of this procedure.

Following Qiu et al. (2023), the robustness in the proposed framework with respect to the choice of
smoothing parameter µ is evaluated. The experiments are conducted on the robust hyperparameter
optimization task under various setting of smoothing parameter, µ ∈ {0.01, 0.001, 0.0001}. It is
seen from Figure 4 and 5 that the proposed DTZO is robust to the choice of smoothing parameter
µ. In addition, we also note that the proposed DTZO has faster convergence rate with a relatively
smaller µ, because the gradient estimate improves when µ becomes relatively smaller, as discussed
in Liu et al. (2020).

In addition, the impact of different choices of T1 on the convergence rate within the proposed frame-
work is evaluated. As illustrated in Figures 6 and 7, a smaller T1 leads to faster convergence but
affects the method’s performance, resulting in a higher test loss. Conversely, if a better performance
is required, a larger T1 can be selected, corresponding to a more refined polynomial relaxation. In
the proposed framework, we can flexibly adjust T1 based on distributed system requirements. The
results in Figures 6 and 7 are consistent with our theoretical analyses presented under Theorems 1
and 2.

G DISCUSSION ABOUT ASSUMPTION 1 AND 2

The assumption that the domains of optimization variables are bounded is mild and widely used in
the theoretical analyses in machine learning, e.g., Assumption 3 in Deng et al. (2020), Assumption
2.3 in Sra et al. (2016), Assumption A2 in Li and Assaad (2021), Assumption 2.1 in Cao et al. (2024)
and so on.

Let ({x∗
1,j}, {x∗

2,j}, {x∗
3,j}, z∗

1 , z
∗
2 , z

∗
3) represent the optimal solution of minimizing

Fµ({x1,j},{x2,j},{x3,j},z1,z2,z3), ({x+
1,j}, {x

+
2,j}, {x

+
3,j}) denote the optimal solution of

minimizing
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j), and x−
1,j ,x

−
2,j ,x

−
3,j denote the optimal solution of minimizing
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Figure 6: Test loss of the proposed DTZO under
various setting of T1, results on USPS dataset.
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Figure 7: Test loss on AS (adversarial samples)
of DTZO under various setting of T1.

f1,j(x1,j ,x2,j ,x3,j). Thus, we have that,
N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j) ≤

N∑
j=1

f1,j(x
+
1,j ,x

+
2,j ,x

+
3,j) ≤

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j). (99)

Combining the definition of F ({x1,j},{x2,j},{x3,j},z1,z2,z3) in Eq. (15) with the fact that
ϕj ||x∗

1,j−z∗
1 ||2 ≥ 0, λl[max{hout

l ({x∗
2,j}, {x∗

3,j}, z∗
1 , z

∗
2 , z

∗
3)− εout}]2 ≥ 0, we can obtain that,

N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j)−

µ2

2 L(N + 1)
∑

i di

≤
N∑
j=1

f1,j(x
+
1,j ,x

+
2,j ,x

+
3,j)−

µ2

2 L(N + 1)
∑

i di

≤
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

µ2

2 L(N + 1)
∑

i di

≤ F ({x∗
1,j},{x∗

2,j},{x∗
3,j},z∗

1 ,z
∗
2 ,z

∗
3)−

µ2

2 L(N + 1)
∑

i di

≤ Fµ({x∗
1,j},{x∗

2,j},{x∗
3,j},z∗

1 ,z
∗
2 ,z

∗
3)

= F ∗
µ .

(100)

By combining Eq. (100) with the fact that µ2

2 L(N + 1)
∑

i di is a constant, we can obtain that the
Assumption 1 (i.e., F ∗

µ is lower-bounded) is mild since the assumption that f1,j(x−
1,j ,x

−
2,j ,x

−
3,j) is

lower-bounded is widely-used and mild (Liu et al., 2021a; 2018b; 2022; Fang et al., 2022; Li and
Assaad, 2021; Liang et al., 2024; Tang et al., 2020; Shaban et al., 2019).

According to the definition of F ({x1,j},{x2,j},{x3,j},z1,z2,z3), i.e.,

F ({x1,j},{x2,j},{x3,j},z1,z2,z3)=
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j) + ϕj ||x1,j−z1||2

+
∑

lλl[max{hout
l ({x2,j},{x3,j},z1,z2,z3)−εout}]2,

(101)
we have that 1) term ϕj ||x1,j−z1||2 satisfies the L-smoothness because the domains of variables
x1,j and z1 are bounded; 2) term

∑
lλl[max{hout

l ({x2,j},{x3,j},z1,z2,z3)−εout}]2 satisfies the
L-smoothness because the domains of variables are bounded and there are at most ⌊T1

T ⌋ zeroth
order cuts. Moreover, the assumption that f1,j(x1,j ,x2,j ,x3,j) satisfies the L-smoothness is mild
and widely-used (Ji et al., 2021; Gao, 2024; Gao et al., 2022; Chen et al., 2023b; Li et al., 2024;
Wu et al., 2024; Huang et al., 2024a; Jing et al., 2024; Chen et al., 2024b; Xiao et al., 2023; Hong
et al., 2023). Consequently, we can obtain that F ({x1,j},{x2,j},{x3,j},z1,z2,z3) satisfies the L-
smoothness, i.e., Assumption 2 is mild.

H EXTERIOR PENALTY METHOD

Exterior penalty methods are widely-used when dealing with constrained optimization problems
(Boyd and Vandenberghe, 2004; Bertsekas, 2015). In this work, the exterior penalty method is
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utilized based on the following key reasons. 1) The lower-level optimization problem often serves
as a soft constraint to the upper-level optimization problem, as discussed in Sec. 3.1 and Appendix
E, which can be partially violated without rendering the optimization problem meaningless. We
can flexibly control the importance in the upper-level and lower-level problems through adjusting
the penalty parameters. For example, if the importance of the lower-level optimization problem is
required to be high within the nested optimization problem, we can raise the penalty parameters.
2) The complexity of using the exterior penalty method is relatively lower. For example, if we
utilize the gradient projection method, which is also widely-used in constrained optimization (Jiao
et al., 2023; Xu et al., 2020), we need to solve additional one constrained optimization problem with
non-convex feasible regions at each iteration when performing projection, i.e.,

min
3∑

i=1

N∑
j=1

||xt+1
i,j − xi,j ||2 +

3∑
i=1

||zt+1
i − zi||2

s.t. x1,j = z1,∀j = 1, · · · , N
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l
⊤
zi+eoutl ≤εout,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,

(102)

where ({xt+1
i,j }, {zt+1

i }) denotes the points in (t+ 1)th iteration after performing zeroth order gra-
dient descent. Thus, it is seen from Eq. (102) that the complexity of utilizing gradient projection
descent method is higher than using the penalty method since it requires addressing the constrained
non-convex optimization problem in Eq. (102) at each iteration. Likewise, utilizing the Frank-Wolfe
based methods (Shen et al., 2019; Garber and Hazan, 2015; Zhang et al., 2020; Xian et al., 2021;
Wang et al., 2016; Balashov et al., 2020) may also lead to relatively more computational complexity
since it also needs to solve one additional constrained non-convex optimization problem, i.e.,

min
3∑

i=1

N∑
j=1

∇xi,jf1,j(x
t+1
1,j ,xt+1

2,j ,xt+1
3,j )⊤(xi,j − xt+1

i,j )

s.t. x1,j = z1,∀j = 1, · · · , N
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l
⊤
zi+eoutl ≤εout,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.

(103)

Thus, as indicated by Eq. (103), the complexity of using the Frank-Wolfe based method is higher
than that of the exterior penalty method, as it requires solving an additional constrained non-convex
optimization problem in Eq. (103) at each iteration. Based on the aforementioned reasons, we chose
to use the exterior penalty method in this work.

In addition, we demonstrate the close relationship between the original constrained optimization
problem (P1) in Eq. (8) and the unconstrained optimization problem (P2) in Eq. (15) in this
work. That is, 1) the optimal solution to P2 is also a feasible solution to the relaxed original prob-
lem P1; 2) the gap between the optimal objective value by utilizing the exterior penalty method (
i.e.,

∑N
j=1f1,j(x

∗
1,j ,x

∗
2,j ,x

∗
3,j) in P2) and the optimal objective value in original problem P1 (i.e.,∑N

j=1f1,j({x1,j},{x2,j},{x3,j})) will continuously decrease with penalty parameters increased.
To enhance the readability of this discussion, the constrained optimization problem and uncon-
strained optimization problem are presented as follows.

Constrained cascaded polynomial approximation problem (P1):

min
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j)

s.t. x1,j = z1,∀j = 1, · · · , N
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l
⊤
zi+eoutl ≤εout,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.

(104)
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Unconstrained optimization problem based on exterior penalty method (P2):

minF ({x1,j},{x2,j},{x3,j},z1,z2,z3) :=
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j) + ϕj ||x1,j−z1||2

+
∑

lλl[max{hout
l ({x2,j},{x3,j},z1, z2, z3)−εout, 0}]2,

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,
(105)

where hout
l ({x2,j}, {x3,j}, z1, z2, z3) =

3∑
i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l
⊤
zi+

eoutl . We first show that the optimal solution to P2 is also a feasible solution to the relaxed original
problem P1, and this relaxation will be gradually tightened with penalty parameters increased. Let
({x∗

1,j},{x∗
2,j},{x∗

3,j},z∗
1 ,z

∗
2 ,z

∗
3) denote the optimal solution to P2 in Eq. (105). For any point

({x−
1,j}, {x

−
2,j}, {x

−
3,j}, z

−
1 , z−

2 , z−
3 ) satisfies hout

l ({x−
1,j}, {x

−
2,j}, {x

−
3,j}, z

−
1 , z−

2 , z−
3 ) ≤ εout,∀l

and x1,j − z1 = 0,∀j, since it is also the feasible solution to P2, we have that,

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)+ϕj ||x∗

1,j−z∗
1 ||2

+
∑

lλl[max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1 , z
∗
2 , z

∗
3)−εout, 0}]2

≤
N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j)+ϕj ||x−

1,j−z−
1 ||2

+
∑

lλl[max{hout
l ({x−

2,j}, {x
−
3,j}, z

−
1 , z−

2 , z−
3 )−εout, 0}]2.

(106)

According to (Shen et al., 2024), let C = 2max |f1,j |, we can obtain that,

N∑
j=1

ϕj ||x∗
1,j−z∗

1 ||2+
∑

lλl[max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1 , z
∗
2 , z

∗
3)−εout, 0}]2

≤
N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j)−

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)

≤ NC.

(107)

Because of ||x∗
1,j−z∗

1 ||2 ≥ 0 and [max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1 , z
∗
2 , z

∗
3)−εout, 0}]2 ≥ 0,∀l and

according to Eq. (107), we can obtain that,

||x∗
1,j−z∗

1 ||2 ≤ NC

ϕj
,∀j, (108)

hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1 , z
∗
2 , z

∗
3)− εout ≤

√
NC

λl
,∀l. (109)

According to Eq. (108) and Eq. (109), we can conclude that the optimal solution
({x∗

1,j},{x∗
2,j},{x∗

3,j},z∗
1 ,z

∗
2 ,z

∗
3) to P2 is a feasible solution to the relaxed problem of the origi-

nal constrained problem P1, that is,

min
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j)

s.t. ||x1,j − z1||2 ≤ NC
ϕj

,∀j = 1, · · · , N

hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1 , z
∗
2 , z

∗
3) ≤ εout +

√
NC
λl

,∀l
var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.

(110)

Let ({x1,j},{x2,j},{x3,j},z1,z2,z3) and ({x1,j},{x2,j},{x3,j},z1,z2,z3) respectively denote the
optimal solutions to P1 and the relaxed problem of P1 (i.e., Eq. (110)), and let gap

β({ϕj}, {λl}) =
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})−
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j}). (111)
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It is seen from Eq. (110) that this relaxation will be tightened with penalty parameter ϕj , λl,∀j,∀l
increased. Combining with Eq. (111), we can obtain that β({ϕj}, {λl}) ≥ 0 will decrease when
ϕj , λl,∀j,∀l increase. Next, we will demonstrate the gap between the optimal objective value by
utilizing the exterior penalty method ( i.e.,

∑N
j=1f1,j(x

∗
1,j ,x

∗
2,j ,x

∗
3,j) in P2) and the optimal objec-

tive value in original problem P1 (i.e.,
∑N

j=1f1,j({x1,j},{x2,j},{x3,j})) will continuously decrease
with ϕj , λl,∀j,∀l increased.

Because ({x1,j},{x2,j},{x3,j},z1,z2,z3) is also the feasible solution to P2, and according to∑
j ϕj ||x1,j − z1||2 = 0,

∑
lλl[max{hout

l ({x2,j}, {x3,j}, z1, z2, z3)−εout, 0}]2 = 0, we have
that,

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})

≤ −
N∑
j=1

ϕj ||x∗
1,j−z∗

1 ||2 −
∑

lλl[max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1 , z
∗
2 , z

∗
3)−εout, 0}]2

≤ 0.

(112)

According to ({x∗
1,j},{x∗

2,j},{x∗
3,j},z∗

1 ,z
∗
2 ,z

∗
3) is a feasible solution to problem in Eq. (110), we

can obtain that,
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j) ≥

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j}). (113)

By combining Eq. (113) with Eq. (111), we can obtain that,

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})−
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)

≤
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})−
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})

= β({ϕj}, {λl}).

(114)

By combining Eq. (114) with Eq. (112), we can obtain that,

−β({ϕj}, {λl}) ≤
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j}) ≤ 0. (115)

Based on Eq. (115) and β({ϕj}, {λl}) ≥ 0, we can get that,

|
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})| ≤ β({ϕj}, {λl}). (116)

By combining Eq. (116) with Eq. (110) and Eq. (111), we can conclude the gap between the
optimal objective value by utilizing the exterior penalty method (i.e.,

∑N
j=1f1,j(x

∗
1,j ,x

∗
2,j ,x

∗
3,j) in

P2) and the optimal objective value in original problem P1 (i.e.,
∑N

j=1f1,j({x1,j},{x2,j},{x3,j}))
is bounded and will decrease with penalty parameter ϕj , λl,∀j,∀l increased.

I TLL WITH PARTIAL ZEROTH ORDER CONSTRAINTS

In this work, TLL with level-wise zeroth order constraints is considered, where first order informa-
tion at each level is unavailable. In addition, it is worth mentioning that the proposed framework is
versatile and can be adapted to a wide range of TLL problems with partial zeroth order constraints,
i.e., grey-box TLL, through slight adjustments. The reason we refer to it as grey-box TLL is that the
first order information for some levels in TLL is available, while for others it is not (Huang et al.,
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Table 4: Comparisons between the proposed DTZO with the state-of-the-art TLL methods based on
the applicability to different TLL problems. ✓ represents that the method can be applied to this TLL
problem. The proposed DTZO is versatile and can be adapted to a wide range of TLL problems. We
use ZOC as an abbreviation for zeroth order constraints.

Betty Hypergradient AFTO DTZO

Non-distributed TLL without ZOC ✓ ✓ ✓ ✓

Distributed TLL without ZOC ✓ ✓

TLL with partial ZOC ✓

TLL with level-wise ZOC ✓

2024b; Beykal et al., 2020; Astudillo and Frazier, 2021; Bajaj et al., 2018). To further show the
superiority of the proposed DTZO, we compare it with the state-of-the-art TLL methods (i.e., Betty
(Choe et al., 2023), Hypergradient based method (Sato et al., 2021), and AFTO Jiao et al. (2024))
based on their applicability to TLL problems in Table 4. In DTZO, the zeroth order cut takes center
stage, driving the construction of cascaded polynomial approximations without the need for gradi-
ents or sub-gradients. Notably, zeroth order cut is not only the backbone of DTZO but also opens the
door to tackling grey-box TLL problems, seamlessly handling nested functions that combine both
black-box and white-box elements. Discussions are provided as follows.

I.1 TLL WITH SECOND AND THIRD-LEVEL ZEROTH ORDER CONSTRAINTS

In this situation, the first order information at the first-level in TLL problems is accessible. Thus, we
can use the exact gradients to replace the zeroth order gradient estimator, i.e., Eq. (16)-(19) can be
replaced by,

xt+1
1,j = xt

1,j − ηx1

(
∇x1,j

f1,j(x
t
1,j ,x

t
2,j ,x

t
3,j) + 2ϕj(x

t
1,j − zt

1)
)
, (117)

xt+1
2,j = xt

2,j − ηx2
∇x2,j

f1,j(x
t
1,j ,x

t
2,j ,x

t
3,j)− ηx2

∇x2,j
o({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3), (118)

xt+1
3,j = xt

3,j − ηx3∇x3,jf1,j(x
t
1,j ,x

t
2,j ,x

t
3,j)− ηx3

∇x3,j
o({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3). (119)

By using the gradient descent steps in Eq. (117)-(119), the TLL problems with second and third-
level zeroth order constraints can be effectively by the proposed framework.

I.2 TLL WITH FIRST AND THIRD-LEVEL ZEROTH ORDER CONSTRAINTS

In this situation, the first order information at the second-level in TLL problems is available. Thus,
we can use the first order information to generate outer layer cutting plane, e.g., ρ-cut (Jiao et al.,
2024). By combining the outer layer first order cutting plane with the inner layer zeroth order cut,
the proposed framework is capable of constructing the cascaded polynomial approximation. The
generated outer layer ρ-cut can be expressed as,

∇ϕout({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3)

⊤





{x2,j}
{x3,j}
z1

z2

z3


−



{xt
2,j}

{xt
3,j}

zt
1

zt
2

zt
3




+ϕout({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3)

≤ εout+ρ
(
a1 + (N + 1)(a2 + a3) +

∑3
i=2

∑N
j=1 ||xt

i,j ||2 +
∑3

i=1 ||zt
i ||2
)
.

(120)

In Eq. (120), ρ > 0 is a parameter in ρ-weakly convex function, and ai, i = 1, 2, 3 is the boundness
of variable xi,j , zi, as discussed in Jiao et al. (2024). By using the outer layer first order cutting
plane, the TLL problems with first and third-level zeroth order constraints can be addressed by the
proposed framework.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

I.3 TLL WITH FIRST AND SECOND-LEVEL ZEROTH ORDER CONSTRAINTS

In this situation, the first order information at the third-level in TLL problems is accessible. Simi-
larly, we can utilize the first order information to generate the inner layer cutting plane, e.g., ρ-cut.
Through combining the inner layer first order cutting plane with the outer layer zeroth order cut,
the proposed framework is capable of constructing the cascaded polynomial approximation. The
generated inner layer ρ-cut can be expressed as,

∇ϕin({xt
3,j},zt

1, z
t
2, z

t
3)

⊤




{x3,j}
z1

z2

z3

−


{xt

3,j}
zt
1

zt
2

zt
3



+ ϕin({xt
3,j},zt

1, z
t
2, z

t
3)

≤ εin + ρ
(
(N + 1)a1 + a2 + a3 +

∑N
j=1 ||xt

3,j ||2 +
∑3

i=1 ||zt
i ||2
)
.

(121)

By using the inner layer first order cutting plane in Eq. (121), the TLL problems with second and
third-level zeroth order constraints can be addressed by the proposed framework.

J DISCUSSIONS

J.1 CUTTING PLANE METHOD

Cutting plane method, also called polyhedral approximation (Bertsekas, 2015), is widely used in
convex optimization (Franc et al., 2011; Boyd and Vandenberghe, 2007) and distributed optimiza-
tion (Bürger et al., 2013; Yang et al., 2014). The rationale behind cutting plane method is to use
the intersection of a finite number of half-spaces (e.g., P = {x|aTl x ≤ bl, l = 1, · · · , L}, where
{x|aTl x ≤ bl} represent a half-space (Boyd and Vandenberghe, 2004)) to approximate the feasible
region of the original optimization problem (e.g., x ∈ X ) . The approximation can be gradually re-
fined by generating additional half-spaces (Bertsekas, 2015). Recently, cutting plane methods have
proven effective in tackling distributed multilevel optimization problems. By leveraging these meth-
ods, such problems can be transformed into decomposable optimization problems, which greatly
simplifies the design of distributed algorithms for nested optimization, as discussed in (Jiao et al.,
2023; 2024). In (Jiao et al., 2023), cutting plane methods are applied to solve bilevel optimization
problems within a distributed framework. Likewise, (Chen et al., 2024c) utilize the cutting plane
method to tackle distributed bilevel optimization challenges in downlink multi-cell systems. Build-
ing on this, (Jiao et al., 2024) further extend the approach to address distributed trilevel optimization
problems. However, existing cutting plane methods for multilevel optimization rely on the first-order
information to generate cutting planes, which are not available in zeroth-order optimization. In this
work, we propose a framework capable of generating zeroth-order cuts for multilevel optimization
problems without the use of first-order information.

J.2 THE CHOICE OF GRADIENT ESTIMATOR

It is worth noting that the proposed framework is versatile, allowing for the integration of various
gradient estimators. For instance, the mini-batch sampling-based gradient estimator (Liu et al., 2020;
Duchi et al., 2015) can be employed to replace the two-point gradient estimator, reducing variance.
Specifically, with mini-batch sampling, Eq. (10), (12) (19), (20), and (21) can be replaced by the
following multi-point gradient estimators.

Gin
µ ({xt

3,j}, zt
1, z

t
2
′
, zt

3)

= 1
µ

b∑
p=1

[ϕin({xt
3,j+µµp

x3,j
}, zt

1+µµp
z1 , z

t
2
′
+µµp

z2 , z
t
3+µµp

z3)− ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3)µ
in,p],

(122)
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Gout
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t
2, z

t
3)

= 1
µ

b∑
p=1

[ϕout({xt
2,j + µµp

x2,j
}, {xt

3,j + µµp
x3,j

}, zt
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(123)
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3,j}, zt
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t
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= 1
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(124)

Gx2,j
({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3) = ∇x2,j

o({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3)

+ 1
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t
2,j ,x

t
3,j + µup

k,3)− f1,j(x
t
1,j ,x

t
2,j ,x

t
3,j)u

p
k,3],

(126)

where µin,p = [{µp
x3,j

},µp
z1 ,µ

p
z2 ,µ

p
z3 ], µ

out,p = [{µp
x2,j

}, {µp
x3,j

},µp
z1 ,µ

p
z2 ,µ

p
z3 ], u

p
k,1, up

k,2,
up
k,3, p = 1, · · · b are drawn from N (0, I), and b represents the number of samples used in the

multi-point gradient estimator.

K FUTURE WORK

This study is the first work that considers how to address the trilevel zeroth order optimization
problems. The proposed framework is not only capable of addressing the single-level and bilevel
zeroth order learning problems but can also be applied to a broad class of TLL problems, e.g., TLL
with partial zeroth order constraints. However, higher-level nested learning problems, specifically
those with more than three levels, are not considered in this work and will be addressed in future
research.
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