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ABSTRACT

Trilevel learning (TLL) found diverse applications in numerous machine learning
applications, ranging from robust hyperparameter optimization to domain adapta-
tion. However, existing researches primarily focus on scenarios where TLL can
be addressed with first order information available at each level, which is inade-
quate in many situations involving zeroth order constraints, such as when black-
box models are employed. Moreover, in trilevel learning, data may be distributed
across various nodes, necessitating strategies to address TLL problems without
centralizing data on servers to uphold data privacy. To this end, an effective dis-
tributed trilevel zeroth order learning framework DTZO is proposed in this work to
address the TLL problems with level-wise zeroth order constraints in a distributed
manner. The proposed DTZO is versatile and can be adapted to a wide range of
(grey-box) TLL problems with partial zeroth order constraints. In DTZO, the cas-
caded polynomial approximation can be constructed without relying on gradients
or sub-gradients, leveraging a novel cut, i.e., zeroth order cut. Furthermore, we
theoretically carry out the non-asymptotic convergence rate analysis for the pro-
posed DTZO in achieving the e-stationary point. Extensive experiments have been
conducted to demonstrate and validate the superior performance of the proposed
DTZO, e.g., it approximately achieves up to a 40% improvement in performance.

1 INTRODUCTION

Trilevel learning (TLL), also known as trilevel optimization, pertains to nested optimization prob-
lems involving three levels of optimization, thus exhibiting a trilevel hierarchical structure. Trilevel
learning has been widely used in many machine learning applications, such as robust hyperparame-
ter optimization (Sato et al.,|2021)), domain adaptation (Choe et al.,[2023)), robust neural architecture
search (Guo et al.,[2020; Jiao et al.|[2024), and so on. The general form of a trilevel learning problem
can be expressed as,

min  fi(z1, T2, T3)

s.t. o = argmin fo(x1, x2', x3)

e ey
s.t. 3 = argmin f3(x1, o', x3')
a3’

var. ry1,xy, X3,
where f1, f2, f3 denote the first, second, and third level objectives, and x; € R4, xy € R% g4 €
R% are variables. Existing trilevel learning approaches focus on scenarios where TLL problems
can be addressed with first order information available at each level. However, situations where
first order information is unavailable (i.e., V f1, V f2, V f3 are non-available), such as when black-
box models are employed, remain under-explored. Additionally, in trilevel learning applications,
data may be distributed across various nodes, necessitating strategies to address trilevel learning
problems without centralizing data on servers in order to uphold data privacy (Jiao et al., 2024)).

Complexity of Addressing TLL with Zeroth Order Constraints: The complexity involved in
solving problems characterized by hierarchical structures with three levels is significantly greater
than that of bilevel learning problems (Blair, |1992} |Avraamidou, [2018)). It is worth mentioning that
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even finding a feasible solution in TLL problem is NP-hard since it necessitates addressing the inner
bilevel learning problem, which is NP-hard (Ben-Ayed and Blair, {1990; Sinha et al.,[2017)). Existing
approaches are not applicable for addressing TLL with zeroth order constraints, as they either rely
on the first order information to solve the TLL problems (Jiao et al.||2024; [Sato et al.,[2021) or focus
on single-level and bilevel zeroth order learning problems (Fang et al., 20225 |Q1u et al.| [2023)).

To this end, an effective Distributed Trilevel Zeroth Order learning (DTZO) framework is proposed
in this work. Specifically, we first introduce the cascaded zeroth order polynomial approximation for
the trilevel learning problems, which consists of the inner layer and outer layer polynomial approx-
imation. Next, how to generate the novel zeroth order cuts without using gradients or sub-gradients
to gradually refine the cascaded polynomial approximation is discussed. Zeroth order cut is a type of
cutting plane that does not rely on first order information during generation. Finally, the distributed
zeroth order algorithm is developed to address trilevel zeroth order learning problems (i.e., TLL
with level-wise zeroth order constraints) in a distributed manner. Theoretically, we demonstrate that
the proposed zeroth order cuts can construct a polynomial relaxation for TLL problems, and this re-
laxation will be gradually tightened with zeroth order cuts added. Additionally, we also analyze the
non-asymptotic convergence rate, i.e., iteration and communication complexities, for the proposed
DTZO to achieve the e-stationary point. The contributions of this work are summarized as follows.

1. Different from the existing works on single-level and bilevel zeroth order learning, this work
takes an initial step towards addressing trilevel zeroth order learning. To the best of our knowledge,
this is the first work to address the trilevel zeroth order learning problems.

2. An effective framework DTZO with novel zeroth order cuts is proposed for tackling trilevel zeroth
order learning problems in a distributed manner. Different from the existing methods, the proposed
DTZO is capable of constructing the cascaded zeroth order polynomial approximation without using
gradients or sub-gradients.

3. Extensive experiments on black-box large language models (LLMs) trilevel learning and robust
hyperparameter optimization substantiate the superior performance of the proposed DTZO.

2 RELATED WORK
2.1 DISTRIBUTED ZEROTH ORDER OPTIMIZATION

Zeroth order optimization is widely-used for addressing machine learning problems where obtaining
explicit gradient expressions is challenging or impractical (Liu et al.| 2018c;|Chen et al.,[2019; Wang
et al.,|2018b;|Chen et al.,|2017;|Héliou et al., 2021} |Cai et al.,|2021;|Gao and Huang] [2020; |Yue et al.,
20235 |L1 et al.l 2022; Ren et al., [2023}; Nikolakakis et al., [2022; Tu et al., 2019; |Rando et al., 2024).
In practical applications of zeroth order optimization, data may be distributed across different nodes.
To address zeroth order optimization problems in a distributed manner, the distributed zeroth order
optimization methods have recently garnered significant attention, e.g., [Lian et al.| (2016)); [Tang
et al.| (2020); Fang et al.|(2022); (Chen et al.| (2024a)); Akhavan et al.|(2021); Sahu et al.| (2018)); |Shu
et al.|(2023)). Furthermore, to tackle the bilevel zeroth order optimization problems in a distributed
manner, the federated bilevel zeroth order optimization method FedRZOy, (Qiu et al.| 2023) has
been proposed. However, how to address the higher-nested zeroth order optimization problems,
e.g., trilevel, in a distributed manner remains under-explored. To the best of our knowledge, this is
the first work that considers how to address the trilevel zeroth order optimization problems.

2.2 TRILEVEL LEARNING

Trilevel learning has found applications in various fields within machine learning. A robust neural
architecture search (NAS) approach that integrates adversarial learning with NAS is introduced in
Guo et al.[(2020). The robust NAS can be viewed as a trilevel learning problem, as discussed in
Jiao et al.| (2024). A trilevel learning problem comprising two levels pretraining, fine-tuning and
hyperparameter optimization, is explored in [Raghu et al.| (2021). In Garg et al.| (2022)), the trilevel
learning problem involves data reweight, architecture search, and model training is investigated. In
Sato et al.|(2021)), the robust hyperparameter optimization is framed as a trilevel learning problem,
and a hypergradient-based method is proposed to address such problems. In|Choe et al.| (2023), a
general automatic differentiation technique is proposed, which can be applied to trilevel learning
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problems. Additionally, a cutting plane based distributed algorithm is proposed in Jiao et al.| (2024)
for trilevel learning problems. Nevertheless, existing methods predominantly rely on first order
information to solve trilevel learning problems. This is the first framework that can be used to
solve trilevel learning problems without relying on first order information.

2.3 CUTTING PLANE METHOD

Cutting plane methods are widely used in convex optimization (Bertsekas| [2015}; [Franc et al.l[2011),
robust optimization (Yang et al., 2014} Biirger et al.,[2013)), and so on. Recently, there has been no-
table interest in leveraging cutting plane methods to tackle distributed nested optimization problems.
It is shown in Jiao et al.|(2023)) that the nested optimization problem can be transformed into a de-
composable optimization problem by utilizing cutting plane method, which significantly facilitates
the design of distributed algorithms for nested optimization. InJiao et al.[(2023), the cutting plane
method is employed to tackle bilevel optimization problems in a distributed manner. Similarly, Chen
et al.[(2024c¢) utilizes the cutting plane method to address distributed bilevel optimization problems
within downlink multi-cell systems. Furthermore, Jiao et al.|(2024) applies the cutting plane method
to solve distributed trilevel optimization problems. However, the existing cutting plane methods for
nested optimization rely on the gradients or the sub-gradients to generate cutting planes, which is not
available in zeroth order optimization. In this work, the proposed framework is capable of generating
zeroth order cuts for nested optimization problems without using gradients or sub-gradients.

3 DISTRIBUTED TRILEVEL ZEROTH ORDER LEARNING

In the practical applications of trilevel zeroth order learning, data may be distributed across multiple
nodes (Jiao et all 2024). Aggregating data on central servers may pose significant privacy risks
(Subramanya and Riggio,[2021)). Therefore, it is crucial to develop an effective framework to address
trilevel zeroth order learning problems in a distributed manner. The distributed trilevel zeroth order
learning problem can be expressed as,

. N
min Zj:l fri(@1, T2, T3)
. =N
s.t. o = arg min ijl fa,j(®1, 22, @3)
2! N (2)
s.t. £3 = argmin ijl fs,j(@1, ', x3")
2113/
var. r1,T2, I3,

where f1;, f2,5, f3,; respectively denote the first, second, and third level objectives in 4t worker,
x; €RY x5 € R%, 3 € R% are variables. The first order information of functions f1.5 f2.5, f3.5,
ie., Vfij,Vfa;, Vfs;, is not available in Eq. , corresponding to the level-wise zeroth order
constraints. To facilitate the development of distributed algorithms in parameter-server architecture
(J1a0 et al., [2023} |Assran et al., [2020), the distributed TLL with zeroth order constraints in Eq. @])
is equivalently reformulated as a consensus trilevel zeroth order learning problem as follows.

. N
min} .7y f1,(T1,5, T2, T3,5)
s.t. L1,5 = Zl,Vj = 1,"' ,N

(@25}, 22 = argmin 3.1 fo (21,22, @3,5)

{®2,;'},22’
s.t. m27j/ = ZQ/,Vj = 1, ce ,N (3)
. N
{23}, 3= argmin 377, f3;(21, 22, 23,)
x3,;'},z3’
st.xg ;' =23 ,Vj=1,--- | N
var. {z1 i} {2} {23 5}, 21, 22, 23,

where x; ; € R, Ty € R%, T3 € R% denote the local variables in j** worker, z; € R%, 2z, €
Rdﬂ, z5 € R% denote the consensus variables in the master, N denotes the number of workers.

Overview of the proposed framework. In Sec. [3.1] the construction of cascaded zeroth order
polynomial approximation for the trilevel zeroth order learning problem is proposed, which consists
of the inner layer and outer layer polynomial approximation. Then, how to gradually update zeroth
order cuts to refine the cascaded polynomial approximation is discussed in Sec. [3.2] Finally, a dis-
tributed zeroth order algorithm is developed to effectively address the trilevel zeroth order learning
problem in a distributed manner in Sec. To improve the readability of this work, The notations
used in this work and their corresponding definitions are summarized in Table[2]
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3.1 CASCADED ZEROTH ORDER POLYNOMIAL APPROXIMATION

In this section, how to construct the cascaded zeroth order polynomial approximation for trilevel
zeroth order learning is introduced. The proposed cascaded zeroth order polynomial approxima-
tion consists of two key parts: 1) the inner layer polynomial approximation and 2) the outer layer
polynomial approximation, which will be discussed in detail below.

3.1.1 INNER LAYER POLYNOMIAL APPROXIMATION

In trilevel learning, the third-level optimization problem can be viewed as the constraint to the
second-level optimization problem (Jiao et al., |2024; [Pan et al., |2024; Kwon et al., 2023} Jiang
et al., 2023), it equals the constraint ¢in ({3 ;}, 21, 22’, 23) = 0, where ¢i, ({23}, 21, 22", 23) =

Il [ (@55} ] — argmin ), f3 (21, 22", @3 ;") s.b. x5 ;' = 23, Vj||2. In many bilevel and trilevel
{®3,;'},23’

machine learning applications, e.g., neural architecture search in |Liu et al.| (2018a)), robust hyper-
parameter optimization in Jiao et al. (2024), the lower-level optimization problem serves as a soft
constraint (Kautz et al., [1996)) to the upper-level optimization problem, i.e., this constraint (con-
straint ¢, ({@3; }, 21, 22, 2z3) = 0 in our problem) can be violated to a certain extent while still
yielding a feasible and meaningful solution, more discussions are provided in Appendix [E] Inspired
by Jiao et al.|(2023);|Chen et al.|(2024c), the cutting plane based method is utilized to construct a de-
composable polynomial relaxation for this constraint, which significantly facilitates the development
of distributed algorithms. Specifically, the inner layer zeroth order cuts are utilized to approximate
the feasible region with respect to constraint ¢i, ({3 ;}, 21, 22", 23) = 0. Zeroth order cuts refer to
the cutting planes that do not rely on first order information during generation. In this section, we
focus on the construction of cascaded polynomial approximation, and how to generate the zeroth
order cuts is discussed in detail in the next section[3.2] Consequently, the feasible region formed by
inner layer zeroth order cuts in ¢ iteration can be expressed as,

: T o1 T ;
in 1n 2 in in 2 in / in
P {E a]l :c3j i m37]+§ e, 3} zi+di7l zitey z3 +dy; z2'+e gein,Vl},

@)
whereva:ij = [xf.,j’l, S ’x%,j,d_,:] eRY, 27 = [27,, - 2] € RY% i =1,2,3, al’y € R, bl% €

R, it eRY, diY € R% | and el € R are the parameters of [*" inner layer zeroth order cut, €y 2 0
is a constant. By using the inner layer polynomial approximation according to Eq. (@), the resulting

problem can be written as,
. N
min} .-y f15(21, 2.4 T3,;)
st.xy1;=2,Y5=1,---,N
{z2,;}, 22 = argmin ZJ 1 f2i(z1, @25, ®3,5)
{wz ]'} za! (5)
st.@o ;' =2/ ,Vj=1,--- N
({m3aj}’ 21, Zg/, z3) € Pltn
var. {1 {z2,5} {z3,5}, 21, 22, 2.

3.1.2 OUTER LAYER POLYNOMIAL APPROXIMATION

Likewise, the lower-level optimization problem in Eq. (3) can be regarded as the

constraint to the upper—level optimization problem.  Defining hl"({z3;}, 21,22, 23) =

nT inT_ 2, ginT in T2 gin T 7, i . .
ajl a:dj bln m37j+zie{1,3}c§"‘l z; +d zi+ecy) 2z +dy) z'+e". This constraint

equals gbout({ccgd}, {3}, 21, 22,23) = 0, where
bous ({25} {35}, 21, 22, 23)
- PUEEFCIL NS . ©

{zm2,;},22’ )

st ;' =20", V), " ({®s,;}, 21, 22/, 23) <é€in, VI
The constraint ¢ou ({x2,;}, {@3,;}, 21, 22, 23) =0 also serves as a soft constraint to the upper-level
optimization problem, more discussions about the soft constraint are provided in Appendix [E] Outer
layer zeroth order cuts are utilized to construct the polynomial approximation for the feasible region
with respect to the constraint ¢ou ({22}, {@3,;}, 21, 22, 23) = 0, that is,

Plo={{zm2;} {zs,;},21, 22, 23| h{" ({@2,;} {23, }.21, 22, 23) <eour, I} (7N
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out _ 3 N out T .2 out 1 3 out 1 2
where 7" ({@2,;} {@3,;}.21, 22,23) = 321, Zj:lai,j,l x;; + 07w + Zi:lci,l z +
T . .
d2V z; + ep™, and e,y > 0 is a pre-set constant. Based on Eq. , the resulting cascaded zeroth
order polynomial approximation problem can be written as,

N

min Y f1;(21,5, 2,5, %3,5)
i=1

s.t. L1, = Zl,Vj = 1,- e 7Z\/v

SRl 6 T2 6 T 3 T2 6T t
ou ou o ou ou . ou
2221‘11',3',1 x; ;+b7) wz,ﬁZlci,z z; +di" zite)" <eout, Vi
i=2j= 1=

var. {@1;} {mo,;}, {35}, 21, 22, 23,
where ag!’, e R%, b2ul) e RY, eyt € RY, d9y* € R%, and e € R! are the parameters of I™" outer
layer zeroth order cut.

(®)

3.2 REFINING THE CASCADED POLYNOMIAL APPROXIMATION

For every T iteration, the zeroth order cuts will be updated to refine the proposed cascaded polyno-
mial approximation when ¢ < T7. Different from the existing cutting plane methods for nested opti-
mization, the proposed zeroth order cuts can be generated without using gradients or sub-gradients,
which is why we refer to them as zeroth order cuts. Specifically, in t* iteration, the zeroth order cuts
will be updated by three key steps: 1) generating inner layer zeroth order cut; 2) generating outer
layer zeroth order cut; 3) removing inactive zeroth order cuts, which will be discussed as follows. In
addition, we demonstrate the proposed zeroth order cuts can construct a relaxation for the original
feasible regions in Proposition [T]and [2]

3.2.1 GENERATING INNER LAYER ZEROTH ORDER CUT

At t*™ iteration, based on point ({x} ;}, 2}, 2}, 2}), the new inner layer zeroth order cut will be

generated to refine the inner layer polynomial approximation, i.e., Eq. (), as follows.

{zs,;} {ch,j}
i z z
¢ill({$§7j},zi,25/,25) + Ggl({mg,j}7z§7zélvz§)T Z;/ - Z%/ 9
2
= = ©)

/ 2
< 5L (5, w2 12— 1Pt 22 =24 [P+ 20— 24 )+ L2
where di,, = (dy+do+(N+1)d3+3)3 and

Gi?({mgd}, Z{ 7 Zé/, Zé) _ ¢ih({wg,j +/Ll"'w3,j }7zi+/1'l"'zl 7zé,+“l;22 7z§+“l/'zg)_¢in({mg,j }7z§ 1zé,7zé) Min’

‘ (10)
where pu'" = [{ s, ; }5 Mz, 5 B2y, B2, ] iS a standard Gaussian random vector, L > 0 is a constant, and
> 0 is the smoothing parameter (Kornowski and Shamir, 2024} |Ghadimi and Lan, [2013)). Then,
the new generated zeroth order cut cp!'®¥ will be added into P!, i.e., Pt = Add(P. ", cpiev).

in® in

Proposition 1 The original feasible region of constraint ¢in({s;}, z1,22',23) = 0 is
a subset of the feasible region formed by inner layer zeroth order cuts, i.e., Pi’ij'l
{hi*({®s;}, 21, 22", 23) < €in, VI} when ¢y, has L-Lipschitz continuous gradient. The proof is
provided in Appendix[C]

3.2.2 GENERATING OUTER LAYER ZEROTH ORDER CUT

At t*" iteration, according to point ({x} ;}, {5 ;}, 2}, 25, 25), the new outer layer zeroth order cut
will be generated to refine the outer layer polynomial approximation in Eq. (7)) as follows.

{z2,;} {thj}

{zs,5} {=5 ;}

¢Out({mg,j}7{w§,j}aziazéazit’y)+qut({mt2,j}7{$§,j}azi7zé:zé)T 21 - Zi
z2 2t
23 zL
2
<A (Zf’:2 >l —f |2+Zi||zi—zf”2)+%L2(d1+(N+1)(d2+d3)+3)3+€out~
(11)
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In Eq. (TI), we have that,
t(f ot t t ot Lt
qu ({w2,j}v{w3,j}vzlvz2az3)
o (i’ouc({w;,j'f‘ﬂﬂmrz’j}»{wg,j+ﬂﬂm3)j}azi+ﬂﬂzlaz;'ﬂl«ﬂzgaz:t:.""/l«l"'zg)—¢out({w;,]‘}:{wg,j}vz§»z§7z§)uout
= . ;
(12)
where " = [{po,  }, {las, }s Moy Hays pzy] is a standard Gaussian random vector. Sub-
sequently, the new generated outer layer zeroth order cut cp¢¥ will be added into P}, i.
Pl = Add(Po’, cpbiy).-

out

Proposition 2 The original feasible region of constraint ¢out({T2,;}, {®3;}, 21,22,23) = 0

is a subset of the feasible region formed by outer layer zeroth order cuts, i.e., Pgi‘t

{2, }.{®s,;},21,22,23] Z Z a?lgltz 7 +boutl T+ Zcom 2+d0ut zi+e" <egut, Vi
i= j_
when ¢out has L-Lipschitz continuous gradient. Proofs are pr0vzded in Appendix|C}

3.2.3 REMOVING INACTIVE ZEROTH ORDER CUTS

To improve the effectiveness and reduce the complexity (Yang et al.| [2014; [Jiao et al [2023), the
inactive zeroth order cuts will be removed during the iteration process. The corresponding inner
layer P! and outer layer P!, will be updated as follows.

out
Pt — RemOVG(Rn,Cpan),if h%n({mg,j}7zivz§/7z§)<€in7VZ (13)
m P! otherwise ’
Pt { Remove(PL ., cpout,1),if ho" ({xh b {a}, ih 2t 28 2L) <eout, VI ’ (14)

¢
P ., otherwise

where Remove( P , cpiy.;) and Remove(PL,, cpout.1) respectively represent that the I*" inner layer

and outer layer zeroth order cuts will be removed from P{ and P! ,.

3.3 ZEROTH ORDER DISTRIBUTED ALGORITHM

In this section, a distributed zeroth order algorithm is proposed. First, defining function
0({:1327]'}, {$3,j}7 21,22, Z3) = Zl)‘l[max{h?m({wlj}a {m37j}7 21,22, ZS) — Eout) O}]Q’ where
A; > 0 is a penalty parameter. The constrained optimization problem described in Eq. is re-
formulated as an unconstrained optimization problem by using the exterior penalty method (Shen
and Chenl |2023;|Shi and Gu}, 2021 Boyd and Vandenberghe| 2004) as follows.

N
F({z1j} {22} {®s,5}21,20,23) =300 f1(@15, T2 5, T3,5) + billx1,;— 21|
+o({x2;}, {35}, 21, 22, 23),

where ¢; > 0 is a penalty parameter. It is worth noting that the proposed DTZO is an expandable
framework, allowing the incorporation of approaches beyond exterior penalty method, e.g., gradient
projection based approaches (Xu et al.l [2020) and Frank-Wolfe based methods (Shen et al., 2019).
We chose exterior penalty method because the lower-level problem often serves as a soft constraint
(as discussed in Sec. [3.1]and Appendix [E) and using exterior penalty method offers comparatively
lower complexity. In addition, we demonstrate that the optimal solution to problem in Eq. (I3) is
a feasible solution to the original constrained problem; 2) the gap between the problem in Eq. (I5)
and original constrained problem will continuously decrease as \;, ¢; increase. Detailed discussions
are provided in Appendix |H| In (¢ + 1)*" iteration, the proposed algorithm proceeds as follows.

15)

In Worker j. After receiving the updated parameters zj and Vg, jo({z5 ;}, {z5;}, 21, 25, 25),
worker j updates the local variables as follows,

@il =l e, Ga, (]}, {wh ;) {h 5}, 21, 25, 20), (16)
33;—;1 - $2 .7 = Ny ngﬁj ({.’Bi]}, {xg,j}v {x§73}7 Zi, 257 zé)a (17)
xé"';l - $3J anGwa,j({mi,j}’{xé,j}v{xg,j}vzivzévzé)a (18)

we have that,
Gml J({ml J} {m2j} {.’133 j} z13z2523)

_ gl e es el )= fug (@] e b ) t t
= 4 e Ry + 205 (2 — 21),

19)
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Algorithm 1 DTZO: Distributed Trilevel Zeroth Order Learning
0 .0

Initialization: master iteration ¢ = 0, variables {x ;}, {3 ;}, {x3 ,}, 27, 29, 25.
repeat
for local worker j do
updates the local variables x} !, 5", 2! according to Eq. —;
end for
local workers transmit the updated variables to the master;
for master do
updates consensus variables z{!, 2571, 24" according to Eq. (22)-(24);
computes Vo({x} jl} {a:?;l} P E'H 2y,
end for
master broadcasts the updated parameters and gradients to workers;
if (1t +1)mod 7 == 0and ¢ < T} then
new inner layer zeroth order cuts are generated by Eq. (9) and (10);
new outer layer zeroth order cuts are generated by Eq. (L)) and (12));
inactive zeroth order cuts are deleted by and (T4);
end if
t=t+1;
until termination.

Gwz,j ({wg,j}ﬂ {wg,j}v {5337]‘}7 Ziv Z§7 zé)

fr,i (@) el pue ezl )—f1 (2 xh Ll ) (20)
= L Lo 2od k2 2:] L Lo 2ud 2o uk72+vm2,]0({wt2,]}7{mg.]}7z§7z§7z§)7
Gm37({$1 j} {$2]} {mSJ}vzlv‘szzS) (21)

(@ ;@ @l Fpues)—fi (@@ @l )
_ f1.5 1,j0%2,50%3,j I;% 1,5\*F1,5:%2,5.%3,5 Uk,sJrvmg,j0({$§}j},{$§7j},zf,Zé,Zé),

where uy, ; € R% Vi are standard Gaussian random vectors, > 0 is smoothing parameter, 7, , Vi

are step-sizes. Then, the updated variables mﬁ'gl, :c;tl, a:?;l will be transmitted to the master.

In Master. After receiving updated variables from workers, the master performs the following steps,
1. Updating consensus variables,

z?—l = zjlffnzl (Z 2¢J( :131 j)+vzl ({m2]} {.’I}3 j}v zla z2a Z3)> (22)
t+1 = 22 — Nz, VZQO({$2J’}7 {wS’j}a Z17 22, z3>7 (23)
zé—H - Zé - nZ3VZ3O({w§,j}’ {wg,j}a zia Z%, Zé)v (24)

where 7)., , 7, and 1, are step-sizes.

2. Computing gradient of o({a'}, {@fh'}, 21, 2571, 25*"). Broadcasting the updated parame-
ters 2,7, i = 1,2,3 and Vg, o({a '}, {x5h, zt“,zé+1 25 i = 2,3 to workers.

Discussion: TLL with level-wise zeroth order constraints is considered in this work, where first
order information at each level is unavailable. Note that the proposed DTZO is versatile and can be
adapted to a wide range of TLL, e.g., grey-box TLL (gradients at some levels in TLL are available
(Huang et al.l [2024b))), with slight adjustments. For instance, if gradients at first-level in TLL are
accessible, we can use gradient descent steps to replace Eq. (I6)-(I8). Similarly, if the second or
third-level gradients are available, first order based cuts, e.g., (Jiao et al.,2024), can be employed to
construct the cascaded polynomial approximation. Detailed discussions are offered in Appendix|[I]

4 THEORETICAL ANALYSIS

Definition 1 (Stationarity Gap) Following Xu et al.|(2020); Jiao et al.|(2023)), the stationarity gap
at t*™ iteration in this problem can be expressed as,

{lejF({iﬂlj} {wzg} {wsj} 21, 25, 25)}
{szjF({wl J} {$2 J} {w3]} zl,zé,zf_ﬁ,)}
Gt = {Vmst({“h ]} {z} J} {m3g} 21,25, 25)}
Vle({wlj} {wzj} {wsj} 21, 25, 25)
VZ2F({w1 ]} {$2 7} {w373}az1az27z3)
Ve, F({@ )} {2} {2}, 2, 2L, 21)

(25)
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It is seen from Eq. (23)) that,

3 N
||gt|‘2 = Zz:gl ijl ||vxi,jF({mi7j}7 {3357]‘}7 {J:é,j},zf,zé,zé)HQ (26)
+Zi:1 HinF({mﬁ,j}v{wg,j}a{xg,j}’ziazéazé)HQ'

Definition 2 (e-Stationary Point) ({x} ;},{x} ;},{x} ;}, 21, 25, 2%) is the stationary point when
[1Gt|? = 0. ({1 ;3 {=xh ;1. {xh ), 21, 25, 25) is the e-stationary point when [|G||? < e. Defining
T (€) as the first iteration when ||Gt||? < ¢, i.e., T'(€) = min{¢t| ||G!||* < €}.

Definition 3 (u-Smooth Approximation) Following |Ghadimi and Lan|(2013); |Fang et al.| (2022));

Nesterov and Spokoiny| (2017); |Kornilov et al.|(2024); |Rando et al.| (2024), the u-smooth approxi-
mation of a function F(w) : RY — R is given by,

Fu(w) =

y /F(w + ,uu)e—%”"szu =E, [F(w + pu)], 27
(2m)7

where u € R? is a standard Gaussian random vector and ;1 > 0 is the smoothing parameter.

Assumption 1 (Boundedness) Following many works in machine learning, e.g.,\Deng et al.|(2020);
Jiao et al.|(2023); |Qian et al.|(2019); |Lei and Tang|(2018), Zheng et al.|(2017), the bounded domain
is assumed, i.e., ||x; j—x} ||* < a;, Vx5, ||zi—2F|[* < o, Vzi, where @}, z¥ denote the optimal

solution. Following |Cutkosky and Orabona|(2019); Liu et al.|(2021a), |Fang et al.| (2022); \Shaban
et al.|(2019), we assume the optimal value FH* > —o0.

Assumption 2 (L-smoothness) Following many work in nested optimization and zeroth order learn-
ing, e.g.,|Chen et al.|(2023al); |Lin et al.|(2024); \Ghadimi and Lan|(2013)), we assume the gradient of
function F' is Lipschitz continuous with constant L < 0o, that is, for any point w,w’, we have that,

IVF(w) = VF(w)]| < Lljw — w'||. (28)
It is worth noting that both Assumptions|l|and|2|are mild and commonly used in machine learning.
Detailed discussions of these assumptions are provided in Appendix|G}

Theorem 1 (Iteration Complexity) Under Assumption|l|and|2| by setting step-sizes Ny, = Nz, =

; 1 1 1 3 1 . . .
min { SL(d1+4)’ BL(d>+4)’ BL{ds+4) LD’ \ /T (o) -1y @ =1,2,3 and letting smoothing param-

1
T(E) 7T1

2
7(0)~ 0 ((Z;led (e Fttat ) o) - 17 ) ) o+ T1> .

eter)0 < pu < , we have that,

where constants d = 4(1 + max{8L(d1 +4),8L(d2—|—4),8L(d3+4),@}), ¢ =

Lol + L2(di+3) +4L(N+1)d; (max {SL(dy +4), 8L(d + 4),8L(d3 + 4), "ﬂ*”}ﬁ

Ty > 0is a constant that controls the cascaded polynomial approximation, as discussed in Sec.
Detailed proofs of Theorem([l|are provided in Appendix|[A| with further discussions offered below.

Theorem 2 (Communication Complexity) The overall communication complexity of the proposed
DTZO can be divided into the communication complexity at every iteration (C1) and the commu-
nication complexity of updating zeroth order cuts (C3). Specifically, the overall communication
complexity can be expressed as Cy + Cy = T'(€)(2dy + 3dz + 3d3)N + ZNL%JT(dg +ds3). The
detailed proofs are provided in Appendix[B) with further discussions offered as follows.

Discussion: It is seen from Theorem [I] and [2] that the proposed framework DTZO can flexibly con-
trol the trade-off between the performance of cascaded polynomial approximation and the iteration
complexity (i.e., T'(¢) in Theorem [I) and communication complexity (i.e., C; + C5 in Theorem
[2) by adjusting a single parameter T}. Specifically, a larger 77 corresponds to a better cascaded
polynomial approximation, but it also entails higher iteration and communication complexity. Con-
sequently, if the distributed system has limited computational and communication capabilities, a
smaller value of 7 can be selected. Conversely, if a higher quality of cascaded polynomial ap-
proximation is desired, a larger value of 73 can be chosen, which demonstrates the flexibility in the
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Figure 1: Comparisons about ASR and ACC between the proposed DTZO and the state-of-the-art
distributed bilevel zeroth order learning method FedRZ Oy, 2023).

proposed framework. In addition, as shown in Theorem|[T] the iteration complex1ty of the proposed
distributed trilevel zeroth order learning framework can be written as O(3_; d¢/€?). It is worth men-
tioning that the dimension-dependent iteration complexity is common in zeroth order optimization,
as discussed in various works (Zhang et al., [2024bfa; [Duchi et all, 2015} [Sun et al.} 2022} [Qiu et al.}
[2023)). For instance, the 1terat10n complex1ty of the state-of-the-art distributed zeroth order bilevel
learning method (Qiu et al. m is given by O(d®/€?), where d denotes the dimension of variables.

5 EXPERIMENTS

In the experiment, two distributed trilevel zeroth order learning scenarios, i.e., black-box trilevel
learning on large language models (LLMs) and robust hyperparameter optimization are used to
evaluate the performance of the proposed DTZO. In the zeroth order setting, the existing distributed
nested optimization algorithms based on first order information, e.g., [2024), are not
available in the experiment. The proposed DTZO is compared with the state-of-the-art distributed
zeroth order learning method FedZOO and distributed bilevel zeroth order learn-
ing method FedRZOy, [2023). In the experiment, all the models are implemented using
PyTorch, and the experiments are conducted on a server equipped with two NVIDIA RTX 4090
GPUs. More experimental details are provided in Appendix [f|

5.1 BLACK-BOX TRILEVEL LEARNING

Prompt learning is a key technique for enabling LLMs to efficiently and effectively adapt to various
downstream tasks (Ma et al., 2024; [Wang et al.,[2024). In many practical scenarios involving LLMs,
access to first-order information is restricted due to the proprietary nature of these models or API
constraints. For instance, commercial LLM APIs only allow input-output interactions and do not
provide visibility into gradients. Inspired by the black-box prompt learning and
backdoor attack on prompt-based LLMs [2024), the backdoor attack on black-box LLMs
is considered in the experiment, which can be expressed as a black-box trilevel learning problem,
min PO o o LG, [k p, sil i)
7 (sayi)~DY
s.t. ktri - argminZ;‘vzl ﬁ Z L(ga [k:trilap7 Si]7yi) + A||ktri/||2
o’ M (sigeny (30)

. =N
st.p=argmin) ;_, ﬁ > LG, [kui' D', s, i)
P ! (siyamDt

var. >\; ktriapv

where G denotes the black-box LLM. A, ky,;, p respectively denote the hyperparameter, backdoor
trigger, and prompt. D;-r and DJVal denote the training and validation dataset in j*" worker, and N

denotes the number of workers. s;,y; denote the ith input sentence and label. In the experiment,
Qwen 1.8B-Chat is utilized as the black-box LLM. The General Language Un-
derstanding Evaluation (GLUE) benchmark (Wang et al., [2018a)) is used to evaluate the proposed
DTZO. Specifically, the experiments are carried out on: 1) SST-2 for sentiment analysis; 2) COLA
for linguistic acceptability; and 3) MRPC for semantic equivalence of sentences. In this task, we
aim to obtain the effective backdoor triggers while ensuring the model performance on clean in-
puts (i.e., inputs without triggers). Therefore, following (2024), the Attack Success Rate
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Table 1: Comparisons between the proposed DTZO and the state-of-the-art methods. Experiments
are repeated five times and higher scores represent better performance.

Dataset | FedZOO (Fang et al.| 2022) FedRZOy, (Qiu et al.|[2023) | DTZO

MNIST 52.89+0.49 % 54.05+0.81 % 79.27 +0.19 %
QMNIST 52.45+0.88 % 54.67 +0.65 % 78.04 + 0.37 %
F-MNIST 48.74 +0.61 % 50.23 +0.49 % 70.07 + 0.45 %
USPS 7277 +0.43 % 73.79 +0.56 % 85.13+0.14 %

(ASR) when the triggers are activated and the Accuracy (ACC) on clean samples are utilized as the
metrics in the experiments. The comparisons between the proposed DTZO and the state-of-the-art
distributed bilevel zeroth order learning method FedRZO, are illustrated in Figure[T] It is seen from
Figure and[I(b)|that the proposed DTZO can effectively tackle the distributed trilevel zeroth or-
der learning problem and achieve superior performance than FedRZOy, since the proposed DTZO
is capable of addressing higher-nested zeroth order learning problems compared to FedRZOy,;.

5.2 ROBUST HYPERPARAMETER OPTIMIZATION

Inspired by [Sato et al| (2021); Jiao et al.| (2024) in trilevel learning, the robust hyperparameter
optimization is considered in the experiment, which can be formulated as follows.

. N )
msom Zj:l fj (X]ydra yj\']ar7 'w)

) N
s.t.w = argmmzj=1 fj(X;‘r +Pj,y§r7wl) + | [w'|[?
w/

(31
N
s.t. p = arg max ijl fj(X]t"r +p;’, y§»r, w’)
p/
var. ®, w,p,
where N represents the number of workers in a distributed system, ¢, w, and p’ = [p;/, -+ ,pn’]

denote the regularization coefficient, model parameter, and adversarial noise, respectively. X;?l' and

y?r represent the training data and labels, while X" and y;*" represent the validation data and
labels, respectively. Following the setting for nondifferentiable functions as described in |Qiu et al.
(2023), ReLU neural networks are employed in the experiments. The digits recognition tasks in
Qian et al.| (2019); [Wang et al.| (2021)) with four benchmark datasets, i.e., MNIST (LeCun et al.,
1998)), USPS, Fashion MNIST (Xiao et al., [2017), and QMNIST (Yadav and Bottoul [2019), are
utilized to assess the performance of the proposed DTZO. The average across accuracy on clean
samples and robustness against adversarial samples is used as the metric, more details about the
experimental setting are provided in Appendix [} We compare the proposed DTZO with the state-
of-the-art methods FedZOO (Fang et al.| [2022)) and FedRZOy, (Q1u et al., 2023) in Table [1} It is
seen from Table [T] that the proposed DTZO can effectively tackle the trilevel zeroth order learning
problem in a distributed manner. The superior performance of DTZO, as compared to state-of-the-
art methods, can be attributed to its ability to address higher-nested zeroth order learning problems.

Within the proposed framework, the trade-off between complexity and performance can be flexibly
controlled by adjusting 77, as discussed in Sec. 4} As shown in Figure 2] in Appendix [F] the
performance of DTZO improves as 7T increases, we can flexibly adjust 7} based on the distributed
system requirements. Removing inactive cuts can significantly improve the effectiveness of cutting
plane method, as discussed in [Jiao et al. (2024); |Yang et al.| (2014). In the experiment, we also
investigate the effect of removing inactive cuts within the proposed DTZO. It is seen from Figure[3]in
Appendix [F] that pruning inactive cuts significantly reduces training time, indicating the importance
of this procedure.

6 CONCLUSION

In this work, a distributed trilevel zeroth order learning (DTZO) framework is proposed to address
the trilevel learning problems in a distributed manner without using first order information. To our
best knowledge, this is the first work that considers how to tackle the trilevel zeroth order learning
problems. The proposed DTZO is capable of constructing the cascaded polynomial approximation
for trilevel zeroth order learning problems without using gradients or sub-gradients by utilizing the
novel zeroth order cuts. Additionally, we theoretically analyze the non-asymptotic convergence rate
for the proposed DTZO to achieve the e-stationary point. Experiments on black-box LLMs trilevel
learning and robust hyperparameter optimization demonstrate the superior performance of DTZO.

10
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Appendix

To improve the readability of the Appendix, we have organized its contents as follows: In Appendix
[Aland [B] we delve into the comprehensive proofs of Theorem [I] (Iteration Complexity) and The-
orem [2| (Communication Complexity). In Appendix [C} the detailed proofs of Propositions [I] and
(2] are provided. Furthermore, we offer the theoretical analyses about the cascaded polynomial ap-
proximation in Appendix [D] Additionally, detailed discussions about the soft constraint are given in
Appendix [E] and the discussions about ¢, and ¢y are also conducted in this part. In Appendix [F
details of the experimental setting and additional experimental results are provided. The discussions
about Assumptions [T]and 2] are offered in Appendix [G we show that both Assumptions [I]and 2] are
mild and widely-used in machine learning. In Appendix [H] the reasons why we choose the exterior
penalty method in the proposed framework are discussed, and we demonstrate the close relationship
between the original constrained optimization problem and the unconstrained optimization problem.
In Appendix [} we show that the proposed framework can be applied to a wide range of TLL prob-
lems, e.g., (grey-box) TLL with partial zeroth order constraints. More discussions about the cutting
plane method and the choice of gradient estimator are provided in Appendix [J] Lastly, the future
work is discussed in Appendix

Furthermore, to enhance the readability of this work, the notations used in this work and their cor-
responding meanings are summarized in Table [2]

Table of Contents
[Al Proof of Theorem [I] (Iteration Complexity)
[B] Proof of Theorem 2] (Communication Complexity)
[C] Proofs of Proposition[Tjand 2]
Theoretical Analyses about the Cascaded Polynomial Approximation
@, Discussion about Soft Constraint and ¢;,, out
[Fl Experiments
[G] Discussion about Assumption T]and 2]
Hl Exterior Penalty Method
I TLL with Partial Zeroth Order Constraints
[0 Discussions

[Kl Future Work
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Table 2: Notations used in this work and the corresponding meanings.

Notation Meaning

Ji(),¥Vi=1,2,3 i*" level objective.

x;,Vi=1,2,3 it" level variable.

fii(),¥i=1,2,3,j=1,-- N i*h level local objective in worker j.

x5, Vi=1,2,3,j=1,--N i'h level local variable in worker j.

z;,Vi=1,2,3 i*" level global variable in master.

Pi, Pout feasible regions formed by inner and outer layer zeroth order cuts.

CPin, 15 CPout,l I*M inner layer and outer layer zeroth order cuts.
;“l, b}"l, ;“l, d;"l, I*M inner layer zeroth order cut’s parameters.

agt, by, ey, d"“t eput I*h outer layer zeroth order cut’s parameters.

F() penalty function.

F.() smooth approximation of F'(-).

1 smoothing parameter.

F.* optimal objective value of F,(-).

Aty &5 penalty parameters.

®in(+); Pout () functions used in third level and second level constraint.

Ga, ;,Vi=1,2,3,j =1, N gradient estimator for i*" level variable in worker j

7]w1777z17v'i = 17273

out

RN
gi
T(e)
T

.

N

L

y U1, Uk, 2, Uk, 3

d;,Vi=1,2,3

step sizes for variables x;, z;.

stationarity gap.

parameter in L-smoothness.

standard Gaussian random vectors.

the dimension of i*? level variable.

iteration complexity to achieve e-stationary point.

parameter controls the trade-off between complexity and performance.
zeroth order cuts will be updated every 7 iteration.
the number of workers in distributed systems.

A PROOF OF THEOREM 1]

In this section, the detailed proofs of Theorem ] i.e., iteration complexity of the proposed DTZO,
are offered. The iteration complexity refers to the number of iterations for the proposed algorithm

to obtain the e-stationary point (Jiao et al.

2023)).

According to |Ghadimi and Lan| (2013)), the

gradient of the smooth approximation of F, i.e., F,, (which is given in Definition[3)), is also Lipschitz
continuous with constant L, (0 < L, < L), thus, we have that when ¢t > T,

Fu({=i5' ), {=1))

Fu({ei b Az )+

{$t+1_w§,j}

{5 —=b ;)
{5 —=h ;3

{le,j F#({mg,j}a {zzt})
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+3l

}
}
}

{1} —wi gt

{z
{x

t+1
2,5
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L 50X 2
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{77562 Gwz,]‘ ({mg,j}’ {Zzt})
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G, ({2 ;1 Az

19
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7:1:2 g}
_5‘33 3

(32)
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According to Assumption 2] (i.e., function F' has L-Lipschitz continuous gradient) and combining it

with Cauchy-Schwarz inequality, we have that,

F({i 5y =)

[ 22t T [ VL, P({at ) {20) 2
Fat i (o) + | 2t =2t || Ve Rl ) gzl |+ L)l | 2t 2
ozt at || Ve P () 2
- - T —_
. S V., F({l,}, {=])
F{ali (=) + | 247 =2 | | Vo, F({al, )} {2
Aoz || Ve P(al ) {2
202t 17T VL F({a ), {24)) - Ve, F({at ), {21) A gt
w2 oz || Ve Eet ) gzl - Ve Pty L2 |+ LI | 2 -2
Z§+1 - zfti VZ3F({wt+1} {Zt}) vst({wt' ‘}7 {Zt}) zt+1 - Z§
3 L )
Pl (=)~ L (s, T TV F({! }{zt}>||2+zl z Li[att -
1= 1 j—

Combining Eq. (33) with the Eq. (3.5) in[Ghadimi and Lan| (2013), we have that,

1 LN+ S, ds
T R i e
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Combining Eq. (32) with Eq. (34), we can obtain that,
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Taking expectation on the both sides of Eq. (32), we can obtain that,

BIF (o), (=471))
<ER (it} A=) - 2 3 eIV Fullal g L=DIP + w22V + 1)

N

£S5 L2 Bl (b A=) = 3 (e, —
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Combining the definition of G
have that,

Ell|Ga,, ({2} ;}, {2 DIP] < 2(dy +4)|| Ve, , F({z] ;3 {z DI + (d1 +6)°,
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2L2
“2 (ds +6)°.
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By combining Eq. (36) with Eq. (37)), (38), and (39), we can get that,
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Combining Eq. (@) with Eq. (3.8) in[Ghadimi and Lan| (2013), we can obtain that,
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that is,
5N e 2 t £11]]2
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According to the setting of 1,7 = 1,2, 3,1.e.,, 0 < 7, < m,i = 1,2, 3, we have that,
Mo oL(d; + 42, > 0,i =1,2,3. (44)

2

Likewise, according to the setting of 77,7 = 1,2,3,1.e.,0 < 1,, < ﬁ,i =1,2,3, we have
that,

(L+1)n2,

Nz — 9 ->0,t=1,2,3. (45)

Combining Eq. @3) with Eq. (#4) and @3], we can obtain that,
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Summing up the inequality in Eq. fromt = T} tot = T(e) — 1, we have that,
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T(e)—1 3 N
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According to the setting of 15,,7.,,% = 1,2, 3, we can obtain that,
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Thus, we have that,
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we have that,
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Since 7, < m,i = 1,2, 3, we can obtain that,
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Because of T'(¢) — T7 > 1, we have that

T(e)lle < \/T(:)—Tl' Combining with the setting of p,
i.e., ;ﬂ < ﬁ, we can obtain that,
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+Z; di+4 \/T(i L22d+3 ()—T1
3
i=1 (54)

Combining the definition of stationarity gap and e-stationary point in Definition [I] 2] with Eq. (54),
we have that,

1672

3 N
=3 > IIVa, Pl RPN ||2+Z|\vzl (&Y, {2712
T(e)—1

STO-T > (ZZI\Vwi,jF({wE,jL{ZS})IIQ+ZHV%F({%?J},{Z?})\F)

t=T, i=1j=1

IN

4(1 + max {8L(d1 +4),8L(dy + 4),8L(d3 + 4), @}) (trg[%x F({al )}, {=1}) - >

T(E) - T1
L2 3 3

(d; +6) 1 , s 1
— L di +3) —
4; b4 JTO-T Z( MR o

3

2L +1 1
+y (max {8L (dy +4),8L(dy +4),8L(d3 + 4), (;)} + 1> AL(N + 1)d;

1=1

Thus, we can conclude that, when

2
70> (@ (s Fullet,) (=) - ) ) F 471 (56)
i=1 SIVAY ’

(2

we have that HQT(E) ||? < €, where constants

d = 4(1 + max {8L(d1 +4),8L(dy + 4),8L(d3 + 4), 2<L3+1)}) (57)
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o = i + i+ 3)’

(58)
HAL(N + 1)d; (max {SL(dy +4), 8L(d5 +4), 8L(d3 +4), 250} 1)

B COMMUNICATION COMPLEXITY

The overall communication complexity of the proposed DTZO can be divided into 1) the communi-
cation complexity at every communication round and 2) the communication complexity of updating
zeroth order cuts, which is discussed as follows.

1) The communication complexity at each iteration.

At each iteration, e.g., (¢t + 1)'® iteration, the workers transmit the updated variables

t+1 _t+1 41 : : s ats : N 3 )
x|, @y, Ly, to the master, resulting in a communication complexity of ijl Y oiq di
Upon receiving these updated local variables, the master proceeds to u{)date the global vari-
ables.  Then, the master broadcasts the updated variables z!™' 21 2I*! and gradients
Va, ot} {@fh} 27 257 2571), i = 2,3 to worker j. Therefore, the cumulative com-

munication complexity from ¢t = 1 tot = T'(¢) is

Cl == T(E)(2d1 + 3d2 + 3d3)N (59)

2) The communication complexity of updating zeroth order cuts.

During every iteration 7 (¢t < T7), the cutting planes are updated to refine the cascaded polynomial
approximation, involving two main steps:

E+1
3.7
mitted from worker j, while global variables z5 " are sent from the master in the (k+1)*" iteration.
The communication complexity associated with updating the inner layer polynomial approximation
can be expressed as follows:

2a) Updating the inner layer polynomial approximation: In this phase, local variables =, " are trans-

k+1
3

N T,
ZFI 2| = |TKds. (60)

2b) Updating the outer layer polynomial approximation: During the (k + 1) iteration when up-

dating the outer layer approximation, the worker j transmits the updated variables zcg';l, to the

master. Subsequently, the master broadcasts the updated global variables z§+1 to worker j. The

communication complexity involved in this process can be expressed as,
N T
2| =|TKds. 61
> 2AFITEd 1)

Combining Eq. with (61)), and considering utilizing one communication round to approximate
the ¢in({@s,;}, 21, 22, 23) and dout ({25}, {235}, 21, 22, 23), i.e., K = 1, we have that the com-
munication complexity of updating cascaded polynomial approximation is,

Cy = 2NL%JT(CI2 + d3). (62)

Consequently, the overall communication of the proposed method is Cy + Ca, which can be ex-
pressed as,

3T(6)(d1 +dy + dg)N + 2N|_%JT(CZ2 + d3) (63)
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C PROOF OF PROPOSITION [I]AND 2]

C.1 PROOF OF PROPOSITION[I]

For any point ({3 ;}, 21, 22’, z3) in the original feasible region, i.e., ¢in({x3,}, 21, 22", 23) = 0,
according to the properties of L-smoothness, we have that,

din({xs3,}, 21, 227, 23)

T
3¢in({w§,j},z§%£/»z§) Z1 Zl

/
> b t Y Lttt _
_¢1n({m3,j}7z1?z2 7z3)+ 0({z3,) }.21,22",23) z2/ zé’
z3 z%

{zs;} {=5;}

10 I e 2
2 29 P
z3 z%
{ws,;} {5}
t
. z1 z (64)
= ¢in({wg,j}7zivz§/7zit’>) +G;?({wg,j}7z7iﬂz§/7z:§)—r z2/ - zi’
2
z3 z%
{xs,5} {5}
B(z)in({(l:f_.},zt,zt/}zf) i t t t! t T Z1 Z{
+(fm¢£im;£%; ’qummﬁzhz%z9> " s
z3 z%

{3} {5}

~L - % 2
2 2z 2t
z3 z%

According to E[G* ({x} ;},21, 2t 2t)] = Gpin({2h 5}, 21, 2t z1), taking expectation on both
sides of Eq. (64), we have that,

E[¢in({m3¢j}7 21, z2/7 ZS)]
{35} {x5;}

zZ1 z
2 ]E[(bin({wg,j}vz{vzé/vzé)] +¢u,in({wg,j}7zivz§/7z§)T 2o/ - zi/
2
z3 z4
{zs;} {5}
0¢; ({wt, -}7zt»z“7zt) t t _t! _t T Z1 Zi
+( 6?{903?]?,21;2’2,23)3 - ¢Hain({w3,j}ﬂ 21,29 zd)) 2:2/ - Zél
z3 z%
{35} {=5 ;}
S TH P I s A N
2 z2/ Zé
z3 2%

(65)
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Combining with the Cauchy-Schwarz inequality, we have that,
E[¢in({$3,j}7 21, z2/7 ZS)]

> Blon({#h,) 2428 20+ gt hat 2 20T || 2L |- | T
z3 zz
{35} {=} ;}
Ik e SR G TN ) R B 1.
z3 zz

(66)
And according to Eq. (3.6) in|Ghadimi and Lan|(2013)), we can obtain that,

8¢i11({m§1j}7 Z%a Zélv zé)

2
t t ot _t 2 H 2 3
w{@h ), 2t st 2ty — < P L2(dy +do+ (N +1)d3+3)°.
||¢ﬂ, ({w&j} 21,29 Z3) 8({$37j},z1,z2,z;),) H 4 ( 1+ 2+( + ) 3+ )
(67)
By combining Eq. (66) with Eq. (67), we have that,
Elgin({@s,5}, 21, 22", 23)]
{ms,;} {z5,}
t
zZ1 z
> Bl ({eh ) 21,25 2] + sl o2t 22T | 70 | = | D
2
z3 z%
{z3,;} {z5,}
B2 3 L+l 21 21 2
— e L3 (di+da+(N+1)d3+3)° — == || / - ¢ I
zZ9 Z9
z3 z4
(68)

For any point belongs to the original feasible region, i.e., ¢in ({23 ;}, 21, 22’, 23) = 0, according to
€in = 0, we can obtain that it also satisfies that,

{x3;} {$§]}

Blom({ah, 1 21, 2.2 + BIGR (e hat 0 | [ 2 | =[5 |
z3 zz
@) ] [l
< L) 2 - 2 12 + 2 L2(dy +do + (N +1)d3+3)% + 3.
z3 z%

(69)

According to Eq. (@), we can conclude that for any point belongs to the original feasible region
of constraint ¢, ({x3,;}, 21, 22’, 2z3) = 0, it also belongs to the Pi’ij'l, that is, the original feasible
region is a subset of the feasible region formed by inner layer zeroth order cuts. Let Sj, denote the
original feasible region of constraint ¢i, ({3}, 21, 22, 2z3) = 0, we can obtain that the feasible
region formed by inner layer zeroth order cuts will be gradually tightened with zeroth order cuts
added according to Eq. @I), that is,

SmC P CPLC-C P (70)

C.2 PROOF OF PROPOSITION[2]

For any point ({x2,},{®s,;},21,22,23) in the original feasible region, i.e.,
dout ({25}, {®s,;}, 21, 22,23) = 0, according to the properties of L-smoothness, we have
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that,

bout({T2,5}: {®s,5}, 21, 22, 23)
{z2,;} {z5 ;}
{3} {5}

3 3 T
8¢out({m;,_7‘}»{z§3,j}72172572;?)

> Qsout({xé,j}a {mtS,j}v ziv z%v Zé) +

O({z2 5} {ms,;},21,22,23) 1 !
29 z%
z3 z%
{z2,;} {=5 ;}
{zs,;} {5 ;}
=5l | = — | 2 I?
2z z%
z3 z%
{25} {x5,}
{1} {x5;}
NI R T W Ser [ I ) e’
29 24
z3 zL

T
ad)out({m;’j}7{133,]‘}72172;72;) out t
+( O({@2,5}.{®s,5},21,22,23) _GN (t) Z1 I !
2z z%

z3 z%

{z2,;} {=5 ;}
{3} {fég}

=3l | = —| # 1%,
2o zh
z3 z%

(71

where G0 (t) is the simplified form of G9™({x} ;},{x} },2i,25,25). According to
E[GO(t)] = ¢pou({2h ;}, {xh ;}, 21, 23, 25), taking expectation on both sides of Eq. , we
have that, '
Elpout({Z2,5}, {z3,}, 21, 22, 23)]
{z2,} {z5,}
{35} {z5;}

> E[¢out({w§7j}a {m§7j}v 21, 25, Zé)] + P out (t)T 21 —| 2
t

) Z9

z3 z%

{z2,5} {=5 ;}
{35} {=5 ;}

Opous({@h ;Y {1l )2t 2h,2L) T ’ (72)
+< 3({932,]'2}{{503,3'3}{—317;2,;3)3 _(bu,out(t)) Z1 - zitl
2 2%
z3 zL

{z2,;} {5}
{3} {féd}

=3l | = - = 1%,
z2 2%
z3 z%
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where ¢, out(t) is the simplified form of ¢, out ({5 ;}, {2} ;}, 21, 23, 25). Combining with the
Cauchy-Schwarz inequality, we have that,

E[ébout({wz,j}, {5'33,3'}7 z1,22,23))

{@2,5} {=5 ;}
{xs;} {=5 ;}

2 E[ﬁbout({mé,g‘}a {xg,j}7 21,25, 25)] + ¢u,0ut(t)T 21 —| =
22 2%
23 z%
7l||8¢out({a’;,j}a{mg,]’}’zivzérzzg) o ¢ (t)H2 (73)
2 O({z2,5},{®3,;},21,22,23) H,out
{z2,;} {5}
{z3,5} {5}
L
| z — | 2 I
29 2%
PR z%

And according to Eq. (3.6) in|Ghadimi and Lan/(2013)), we can obtain that,
o (t) — D0ornhd (b} 24 24, 20)
’ O({m2,5}, {3}, 21, 22, 23)
By combining Eq. with Eq. (74), we have that,
E[¢out ({225}, {35}, 21, 22, 23)]

2
12 < %LQ(d1+(N+1)(d2+d3)+3)3. (74)

2 E[qbout({mé,j}v {mé,j}v Z{, Z;, Zé)] + ¢/L,0ut (t)T Z] - Z{
t
) Z9

z3 24 (75)

{z2,;} {5 ;}
{zs,;} {z5 ;}

2
— L L2 (dy+ (N +1)(da+d3)+3)* — L2 | | = — | = I
z2 Zé
z3 Z§

For any point belongs to the original feasible region, i.e., ¢out ({2}, {®3;}, 21, 22,23) = 0,
according to €;;, > 0, we can obtain that it also satisfies that,

{z2,5} {5}
{xs;} {=f ;}

¢Out({m§,j}v{a’g,j}vziazéaZita)+qut({wt2,j}v{wg7j}az§7Zévz};)—r 21 - zi
29 24
z3 z%
2
< A (Z§:2 >ojllwi g |2+Zi||zi—zf”2>+%L2(d1+(N+l)(d2+d3)+3)3+€out~
(76)

According to Eq. (TI)), we can conclude that for any point belongs to the original feasible region
of constraint oy ({x2,;}, {x3,;}, 21, 22, 23) = 0, it also belongs to the P(ffftl, that is, the original
feasible region is a subset of the feasible region formed by outer layer zeroth order cuts. In addition,
let Sout denote the original feasible region of constraint ¢oue ({€2,;}, {23, }, 21, 22, 23) = 0, based

on Eq. (76), we can obtain that the feasible region formed by outer layer zeroth order cuts will be
gradually tightened with zeroth order cuts added, that is,

Sout C PIXIC P C ... CPY.. (77)
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D THEORETICAL ANALYSES ABOUT THE CASCADED POLYNOMIAL
APPROXIMATION PROBLEM

In this section, we theoretically analyze the connections between the original distributed trilevel
zeroth order optimization problem in Eq. and the cascaded polynomial approximation problem
in Eq. (). To facilitate this discussion, we start by examining the distributed bilevel zeroth order
optimization problem, which can be expressed as follows,

N
min Z fl,j(wh w2)
=1

j
N

s.t. @y = argmin ) fo ;(x1,x2") (78)
@’ j=1

var. r1,ITy.

The optimization problem in Eq. can be equivalently reformulated as,

N
min »° f1,;(@1,5, 2,5)
j=1
s.t. 1,5 = Zl,Vj = 1, s ,N
N 79
{za,;}, 20 = argmin ) fo;(z1,22,") (79)
{x2,;'},22" j=1

s.t. mQ_’j/ = Z2/7Vj = 1, e ,N

var. {wl,j}a{wQ,j}azlazQ'

By utilizing the proposed polynomial approximation with zeroth order cut, we can obtain the fol-
lowing zeroth order polynomial approximation problem,

N
min Y f1 (21, ®2,5)
j=1
s.t. x17j:z1,Vj:1,--~ 7]\/v (80)

N 2
T2 T T.,2 T

Zla2,j,l x5 ;+by 5, wzﬁZlci,z zi+d;; zite <e,Vi

Jj= 1=

var. {z1,}, {22}, 21, 22.

According to Proposition[I]and [2] we can obtain the feasible region of the problem in Eq. (79) is
a subset of the feasible region of the problem in Eq. (80). Thus, we can conclude that the zeroth
order polynomial approximation optimization problem in Eq. is the relaxed problem of the
distributed bilevel zeroth order optimization problem in Eq. (78).

For the distributed trilevel zeroth order optimization problem, we first define the following feasible
regions.

9"t ({@a,5} {3 11,21, 22, 23) < Eout, VI
S: 7,7 S\~ ! g J WJ I ? — <outy VO ’ 81
1 {{11? ,J} {Z }| Z1:331,]‘,Vj (81)
So =
N
(@2} {argn}[}in Zl Faj(z1, 225, 5.5)
2,7 @ ;' },22 j= ) _
{ww},{zi}\ || l zZ2 ‘| s.t. $27j/ = 2;2/’vj7 || = Eouts : (82)

hi*({zs,;}, 21, 22", 23) <€in, VI

z1=x1,VYj
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Sy =
N
argmin f2,j(zlyw2,j7w3,j)
{z2,;'},22" j=1
I {w2;} | stowyy/ =2 Vj=1,-- N I?
{zi;}{z} 29 (3}, 24— Y Vo
’ IE37]},Z3— arg min Z f3,](z1az2 , L35 )
{xs3,;'},23" j=1

s.t. 11237j/ = Z3/,Vj = 1, s 7]\f

z1=x1,,Yj
(83)

It is seen from Eq. (8I) and Eq. (83) that S; and S; respectively represent the feasible region of
optimization problems in Eq. (8) and Eq. . For any feasible solution {&; ; },{2;} of optimization
problem in Eq. (3),, it satisfies that,

N
argmin Y fa (21,2, T35)
{®2,;'},22" j=1
T, j st.xo =2,Vj=1,--- ,N
| [ i 24} ] — 2T N 12 =o. (84)
: {@5,;}, 23= argmin ) f3;(21, 22", @3;")
{®3,;'},23" j=1

s.t. wg,j/ = Zgl,Vj =1, ,N

Based on Proposition |1} we have that the feasible region of constraint ¢;,({x3 ;}, 21,22, 23) =
0 is a subset of the feasible region formed by inner layer zeroth order cuts, i.e.,
{{:c37j}, 21,29, z3| hi" ({3}, z1, 22", 23) gsin,VZ}. Moreover, the feasible region formed by
inner layer zeroth order cuts will be continuously tightened with zeroth order cuts added. Thus, let
£ > 0 satisfy that,

N
N arg min Z fa,j(21, 2, &3 5)
argmin Y fo (21,22, &3,;) {w2’j/}’zi/j:1 L.
I {mz,j'},zz/f:l o _ostomoy =2 Vi=1,- ~]-V,N 2
s.t. T2 =22,V], A s . (3 / N
h*({#3,5}, 21, 20", 23) <éin, VI {wg’j}’zg_{ii,gjglylzr;’g; fos(21, 2 w5
S.t. 11337j/ = 253/,Vj =1,--- ,N
<p.
(35)

By combining Proposition [T] with Eq. (83), we can obtain that 3 will continuously decrease with
inner layer zeroth order cuts added. By combining Eq. (84) with Cauchy-Schwarz inequality, we
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can obtain that,

N
. argmin ) fa (21,22, T3,5)
I {225} _ Az 'z g=1 2
22 s.t. $2,j/222/avj7
h2n<{i3,j}’21az2/723)§5in7VZ
N

argmin Y fa (21,22, Z3,;)
{®2,;'},22" j=1

_ || [ {Zf)lj} ‘| . s.t. m27jlzz2/7vj:17"' , N

N
{3}, 23= argmin ) f3 (21,22, @3,;)
{z3,;'},23" j=1

s.t. $37j/ = Zg’,Vj = ]., ce ,N

argmin Y fa (21,22, , &3 )

N

@2 '}z’ =1 i 2 "
{z2,;'} : D argmin » f2,j(21»$2,j ,Z35)
s.t. Lo = 2z ,VJ = 1’ . 7]\/v B {z2,;'},22" j=1

+ |I?

N / / -
T 5 ; s s.t. xa i =22",V
{@5,;}, 23= argmin _ f3;(21, 22", @3,5") o e .
{®s,;'},23" j=1 hin({&s ;}, 21, 22, 23) <€in, VI
s.t. (1337_7'/ = z3,7vj = 17 e 7]\[
N
. . ;.
N {arggnn/ 21 fa,j(21, 22, , &3 ;)
argmin Y. fo (21, @2, &3.;) ®3,j ,zi i= .
<9 {z2,;'},22" j=1 s.t. T2 = Z2 ,Vj =1,---,N
= || s.t. T '/:ZQI Vj - N
inJ ~ ,A ’ S {m3,j}7z3: arg min Z f3,j(21,22/,.’.v3,j/)
hl ({m&j}’zhz? ’z3)§5ianI {®3,;'},z3" j=1
st.xs ;' =23',Vj=1,--- N
< 28.
(36)

By combining the definition of Sy in Eq. (83) with Eq. (86), we can get that S5 is a subset of
Ss, i.e., S3 € Sy when we set ¢;, > 0 and £,,¢ > 2(3. Based on Proposition we have that Sy
is a subset of S, i.e., So € S7. Consequently, we can get S3 € S, indicating that the cascaded
polynomial approximation problem is the relaxed problem of the original distributed trilevel zeroth
order optimization problem. Moreover, this relaxation will be gradually tightened with the addition
of zeroth order cuts based on Proposition[T]and [2]

E DISCUSSION ABOUT SOFT CONSTRAINT AND ¢in, @out

Soft constraint. A soft constraint refers to a constraint that can be partially violated without render-
ing the optimization problem meaningless (Kautz et al.,|{1996; Régin,[2011; Wilson et al.,2022). It is
shown in many bilevel and trilevel learning works that the lower-optimization problem often serves
as a soft constraint to the upper-level optimization problem. Examples are provided as follows.

* In bilevel neural architecture search (Liu et al.| 2018a), rather than computing the optimal
solution for the lower-level optimization problem, the result obtained after a single gradient
descent step can be used as an approximation of the optimal solution.

* In bilevel meta-learning (Ji et al.,[2021}; [Finn et al.| | 2017)), instead of solving the lower-level
optimization problem to optimality, the results obtained after multiple gradient descent
steps can serve as an approximation.

* In bilevel adversarial learning (Madry et al., 2018} Zhang et al.| 2022, which is a min-max
optimization problem, instead of solving the maximization problem to obtain the optimal
solution, the results after several projected gradient descent steps are used as the approxi-
mation.
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* Intrilevel learning, AFTO (Jiao et al.,|2024) used the results after K communication rounds
to replace the optimal solution to the lower-level optimization problem in federated trilevel
optimization problems.

It is seen from din({@s 5}, 21, 20, 23) — I [ {3} ]
z3
arg min Zj f3.(z1, 22/, 35" ) s.t. w3 )/ = z3',Vj||* that a distributed optimization problem

{ws,;'},25’
needs to be solved if an exact ¢in ({23}, 21, 22, 23) is required. The lower-level optimization

3,5} = argmin Zj fs,(21, 22", @3 ;") s.t. @3 ;' = z3', Vj) can be regarded
z3 {x3,;'},23'
as a soft constraint to the upper-level optimization problem. Inspired by many works in bilevel
optimization and trilevel optimization, e.g. Ji et al.|(2021); Jiao et al.| (2022a)); |[Yang et al.[(2021);
Franceschi et al.| (2018); [Liu et al.| (2021b); Mackay et al.| (2018)); |(Choe et al.| (2023), that utilize
K steps gradient descent steps to approximate the optimal solution to the lower-level optimization
problem, function ¢i, ({3 ;}, 21,22, z3) in this work can also be approximated based on the
solution after ' communication rounds following [Jiao et al.| (2024). Specifically, we have the
following steps in (k + 1) iteration,

problem (i.e.,

Local worker j update the local variables as,

k+1 k k k
5133,,-; =T3; — N Gin,j (21, 22, T3 55 23), (87)

where 7),, denotes the step-size, and

k k
Bk _ fag(®ig®e g @y jtpuns)—fi (@225 ;) k k
Ginj(21, 22, %5 5, 25) = S s+ 29525 — 25)

(33)
where wuy, 3 is a standard Gaussian random vector, v; > 0 is a constant. Then, workers transmit the

updated local variables, i.e., wlgyl, to the master.

After receiving the updated variables, the master updates the consensus variables as follows.
N
k+1 _ _k k k+1
Z3 =237 E =1 vi(z5 — x5, (89)

where 7, represents the step-size. Subsequently, the master broadcasts the updated variables z§+1

to workers. Thus, the approximated ¢in ({23 ;}, 21, 22, 23) can be expressed as,

K—1 ko ok
{@s; — 28+ 2k Ginj(21, 22,28, 25)}
in({xs,5}s 21, 22, 23) = ’ ! g ’ 7 (90)
e 25— 2§+ 0 g Xn (2 — w5 )
Likewise, constraint ¢out({@2,;}, {®3,;}, 21, 22,23) = 0 also serves as a soft constraint to the

upper-level optimization problem. According to the definition of ¢out ({2}, {x3,;}, 21, 22, 23),
that is,

¢out({x2,j}a {wl’),j}v 21,22, 23)
N

| l {@s;} ] ?rgl?in > f2(z1,22,5, 23,5) E 1)
= = A=z2,}hz25=1 )
= st o j=20,Vj, hi* ({23}, 21, 22, 23) <&in, Vi

the results after K communication rounds can also be utilized to compute the estimate of
dout({@2,;}, {®s,;}, 21, 22, 23) following previous works (Liu et al.| 2018a; Jiao et all 2024). In
(k + 1)™ iteration, we have that,

Local worker j updates the local variables as follows,

k+1 _ .k k k
@y =) — NG, (21,25 5, @35, 25, 23), 92)

where we have,
k Lk
ngvj (Zlv wQ,ja T3.5,22, ZS)

_ faj(z@h tpuk 2, ) f2,5(z1,28 @3 5)
= -

93)

wp 2 + 20 (x5 ; — 25),
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where wuy, 2 is the standard Gaussian random vector, ¢; > 0 is a constant. Then, worker j transmits

the updated ™" to the master.

After receiving the updated parameters from workers, the master updates the consensus variables as,
25t =2k, (Q@j(zg - :c’;J;l) + V.. Zl[max{h}n({m&j}, 21,25, 23) — e, 0}}2) . (94)

Next, the master broadcasts the updated variables z§+1

dout ({25}, {3}, 21, 22, 23) can be written as,

to workers. Consequently, the approximated

Gout ({25}, {®3,5}, 21, 22, 23)
K—
_ {:132,]‘ - mg,j};" Ek:ol anwz,j (21, wg,j’ 3,55 ZS, Z3)}
- ¥ ,
20— 294 ko 1= (205 (25 —5 )+ Vo, 3 max{hi® ({@3 5}, 21, 25, 23) —€in, 0}]?)
95)

F EXPERIMENTAL SETTING

In this section, we provide the details of the experimental setting. In the experiment, all the models
are implemented using PyTorch, and the experiments are conducted on a server equipped with two
NVIDIA RTX 4090 GPUs.

In the experiment, we compare the proposed method with the state-of-the-art distributed zeroth order
learning method FedZOO (Fang et al., 2022) and state-of-the-art distributed bilevel zeroth order
learning method FedRZOy, (Qiu et al., [2023), which are introduced as follows. FedZOO (Fang
et al., 2022) is a derivative-free federated zeroth-order optimization method, which can be applied
to solve the single-level optimization problems in a distributed manner. In FedZOO, clients perform
several local updates based on gradient estimators in each communication round. After receiving
local updates, the servers will perform the aggregation and update the global parameters. FedRZOy,;
(Qiu et al.;, 2023)) is designed for zeroth order bilevel optimization problems. In each communication
round, FedRZOy, involves the following steps: clients first compute the estimated optimal solution
to the lower-level optimization problem and the inexact implicit zeroth-order gradient. They then
update the local parameters and transmit them to the server. Upon receiving the updates, the server
aggregates them to obtain the global parameters.

F.1 BLACK-BOX TRILEVEL LEARNING

In this section, the details of the experimental setting in black-box trilevel learning are provided.
Prompt learning is a key technique for enabling LLMs to efficiently and effectively adapt to various
downstream tasks (Ma et al., [2024; Wang et al., 2024)). Inspired by the black-box prompt learning
(Diao et al. 2022)) and the backdoor attack on prompt-based LLMs (Yao et al.,[2024), the backdoor
attack on black-box LLMs is considered with hyperparameter optimization in the experiment. In
the experiment, Qwen 1.8B-Chat (Bai et al.| 2023) is utilized as the black-box LLM. The General
Language Understanding Evaluation (GLUE) benchmark (Wang et al.,[2018al) is used to evaluate the
proposed DTZO. Specifically, the experiments are carried out on: 1) SST-2 for sentiment analysis;
2) COLA for linguistic acceptability; and 3) MRPC for semantic equivalence of sentences. In the
black-box trilevel learning problem, we compare the proposed DTZO with the state-of-the-art dis-
tributed bilevel zeroth order learning method FedRZOy,; (Q1u et al., 2023)), which is used to address
the following distributed bilevel zeroth order learning problem,

. N
min ijl ‘Dilt_rl > L(G, [kui, p, sil, vi)
7! (1) Dl
s.t. p = arg min Z;\le ﬁ > LG, [kui, P sil, vi) (96)
P’ 7 (siyi)~ DY
var. ki, D,

where G denotes the black-box LLM. ky; and p respectively denote the backdoor trigger and

prompt. D;r represents the training dataset in 5" worker, |D;r| represents the number of data in

training dataset, and N denotes the number of workers. s;,y; denote the ith input sentence and

label.
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Table 3: Experimental details.

Dataset MNay Ny Nxs M )\l ¢j
SST-2 0.01 0.001 0.001 0.001 1 0.5
COLA 0.01 0.001 0.001 0.001 1 0.5
MRPC 0.01 0.001 0.001 0.001 1 0.5
MNIST 0.01 0.05 0.1 0.001 1 0.5
QMNIST 0.01 0.05 0.1 0.001 1 0.5
F-MNIST 0.01 0.05 0.1 0.001 1 0.5
USPS 0.01 0.5 0.1 0.001 1 0.5

F.2 ROBUST HYPERPARAMETER OPTIMIZATION

Robust hyperparameter optimization is a widely used trilevel learning application (Jiao et al., 2024;
Sato et al.2021), aiming to optimize hyperparameters (Ji et al., 2021} [Franceschi et al., [2018; Jiao
et al.| [2022b} Yang et al.,2021)) and train a machine learning model that is robust against adversarial
attacks (Han et al.||2024). In this work, we consider the robust hyperparameter optimization, which
can be viewed as a trilevel zeroth order learning problem. In this task, compared to single-level
optimization, bilevel optimization considers the hyperparameter optimization, which can enhance
the generalization ability of the machine learning model. Compared to bilevel optimization, trilevel
optimization incorporates min-max robust training, which can improve the adversarial robustness of
ML model. In the experiments, the digits recognition tasks in|Qian et al.| (2019); [Wang et al.| (2021}
with four benchmark datasets, i.e., MNIST (LeCun et al.,{1998)), USPS, Fashion MNIST (Xi1ao et al.,
2017), KMNIST (Clanuwat et al., [2018), and QMNIST (Yadav and Bottou, [2019), are utilized to
assess the performance of the proposed DTZO. To evaluate the robustness of each method, the PGD-
7 attack (Madry et al.l 2018) with ¢ = 0.05 is utilized. For the state-of-the-art distributed zeroth
order learning method FedZOO (Fang et al., [2022)), it is used to address the following distributed
zeroth order learning problem in this task,

M N r r
mlnzj:l fj(th 7?/5 ,’lU) (97)
var. w,

where NNV represents the number of workers in a distributed system, w denotes the model parameter.
th-r and y' represent the training data and labels, respectively. For the state-of-the-art distributed
bilevel zeroth order learning method FedRZOy,; (Qiu et al., 2023)), the following distributed bilevel
zeroth order learning problem is considered in this task,

min Zjvzl £ (X0 gy )

s.t. w = argmin Zszl [i(XFyf, w') + ol [w'|? ©8)
w/

var. », W,

where ¢ and w denote the regularization coefficient and model parameter, respectively. X;r and y*"
represent the training data and labels, while X7*" and y7*" represent the validation data and labels,
respectively.
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Within the proposed framework, the trade-off between complexity and performance can be flexibly
controlled by adjusting T3, as discussed in Sec. ] Specifically, if the distributed system has limited
computational and communication capabilities, a smaller 77 can be selected. Conversely, if higher
performance is required, a larger 7 can be chosen. As shown in Figure [2] the performance of the
proposed framework improves with increasing 71, allowing for flexible adjustments based on system
requirements. Removing inactive cuts can significantly improve the effectiveness of cutting plane
method, as discussed in Jiao et al.|(2024); [Yang et al| (2014). In the experiment, we also investigate
the effect of removing inactive cuts within the proposed DTZO. It is seen from Figure 3 that pruning
inactive cuts significantly reduces training time, indicating the importance of this procedure.

Following (2023)), the robustness in the proposed framework with respect to the choice of
smoothing parameter y is evaluated. The experiments are conducted on the robust hyperparameter
optimization task under various setting of smoothing parameter, € {0.01,0.001,0.0001}. It is
seen from Figure [ and [3] that the proposed DTZO is robust to the choice of smoothing parameter
1. In addition, we also note that the proposed DTZO has faster convergence rate with a relatively
smaller p, because the gradient estimate improves when p becomes relatively smaller, as discussed

in|Liu et al.| (2020).

In addition, the impact of different choices of 77 on the convergence rate within the proposed frame-
work is evaluated. As illustrated in Figures [ and [7} a smaller 7} leads to faster convergence but
affects the method’s performance, resulting in a higher test loss. Conversely, if a better performance
is required, a larger 7} can be selected, corresponding to a more refined polynomial relaxation. In
the proposed framework, we can flexibly adjust T based on distributed system requirements. The
results in Figures [f] and [7] are consistent with our theoretical analyses presented under Theorems []
and[2

G DISCUSSION ABOUT ASSUMPTION [I] AND

The assumption that the domains of optimization variables are bounded is mild and widely used in
the theoretical analyses in machine learning, e.g., Assumption 3 in[Deng et al| (2020), Assumption

2.3 in[Sra et al|(2016), Assumption A2 in[Li and Assaad|(2021), Assumption 2.1 in|Cao et al|(2024)

and so on.

Let ({z7;},{®5;},{®5 },27,25,23) represent the optimal solution of minimizing
F.({x1;} {2} {3, },21,22,23), ({wf]},{:c;]},{w;]}) denote the optimal solution of

N
minimizing ) f1,;(21,5, 2,5, 3,5), and x| ;, T, ;, T ; denote the optimal solution of minimizing
F=4 ; ,
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fi,5(x1,j, 22,5, 3 ;). Thus, we have that,

N N
- = = + gt ot
E :f17j(m1,j’x2,j7m3,j) < E :fl,j(w1,j,$2,jam3,j) < E 1,5 (T 45 3 5, X3 ). 99)
Jj=1 Jj=1 Jj=

Combining the definition of F({x1 ;}.{x2 ;}.{®s,},21,22,23) in Eq with the fact that
¢j|\a:*1"jfzf||2 > 0, y[max{h{"* ({z3 ;}, {3 ;}, 27, 23, 23) — Eout }]% > O we can obtain that,

N _ B _ 2
Zlfl,j(ah,j;mz,ja x3,j) - %L(N +1) Zi d;
j=
N 2
S Zlfl,j(a:ii:ja m;ja m;]) - %L(N + 1) Zz dl
j=
N 2
< DS s el ) — LN +1) 3, ds (100)
j=1

2
< F({a:’{,j}v{wg,j}7{m§,j}7'zf7z§’z§) - %L(N + 1) Zz di
< FM({mijh{w;,j}ﬂ{w;,j}vzf7Z§vz;’:)

=Fy.

By combining Eq. (100) with the fact that w 5 L(N + 1) >, d; is a constant, we can obtain that the
Assumption|l| (i.e., F}; is lower-bounded) is m11d since the assumption that f1 ;(x; ., 2, ;, T3 ;) is

lower-bounded is w1dely used and mild (Liu et al., 2021a} [2018Db} [2022 |;|Fang et al 2022 2} |Li and|
[Assaad, 2021}, [Liang et all 2024} [Tang et al., 2020; [Shaban et al., [2019).

According to the definition of F({azl,j},{m]\%j},{w&j},zl ,29,23), 1.€.,

F({m1} {@2 i} {@s i} 21,22,28) = 3 f1(205, T25, T3.5) + &5l |1, — 212
j=1
+Zl>\l [maX{h?Ut({wQ,j}’{mS,j}vzl7z2az3) _Sout}]z,
(101)
we have that 1) term ¢;||@1 ; —21||? satisfies the L-smoothness because the domains of variables
x1,; and z; are bounded; 2) term >, N\ [max{h{"* ({z2,;},{x3;},21,22,23) —out }|? satisfies the
L-smoothness because the domains of variables are bounded and there are at most | £t | zeroth

. . T4
order cuts. Moreover, the assumption that f; ; (ml, j> X2 4, T3 J) satisfies the L-smoothness is mild

and widely-used (Ji et al., 2021} |Gaol 2024; |Gao et al.| [2022; |C ,[2023D; m 2024;
Wu et al, 2024} [Huang et al.| 20244} Jing et al.| 2024} [Chen et al., 2024b |; Xiao et al., [2023} [Hong

et al., [2023). Consequently, we can obtain that F'({z1 ; },{x2 ; }.{x3,},21,22,23) satisfies the L-
smoothness, i.€., Assumptionis mild.

H EXTERIOR PENALTY METHOD

Exterior penalty methods are widely-used when dealing with constrained optimization problems
(Boyd and Vandenberghel, 2004; Bertsekas| [2015). In this work, the exterior penalty method is
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utilized based on the following key reasons. 1) The lower-level optimization problem often serves
as a soft constraint to the upper-level optimization problem, as discussed in Sec. and Appendix
which can be partially violated without rendering the optimization problem meaningless. We
can flexibly control the importance in the upper-level and lower-level problems through adjusting
the penalty parameters. For example, if the importance of the lower-level optimization problem is
required to be high within the nested optimization problem, we can raise the penalty parameters.
2) The complexity of using the exterior penalty method is relatively lower. For example, if we
utilize the gradient projection method, which is also widely-used in constrained optimization (Jiao
et al.} 2023 |Xu et al., 2020), we need to solve additional one constrained optimization problem with
non-convex feasible regions at each iteration when performing projection, i.e.,

3

min Z Z lzitt — @i jl12+ 3 |20 — 2|2
i=17=1 i=1

st il!lj—Zl,Vj—l' N

(102)
Z Z a?‘;tl x? erf‘j‘tl x; i+ Zco‘“ 2+d°“t zi+ed" <egug, VI
1=2j=
var. {wlyj}’ {wQ,j}7 {w37]}5z17z27z37

where ({th} {th}) denotes the points in (¢ + 1)'" iteration after performing zeroth order gra-
dient descent. Thus, it is seen from Eq. (I02) that the complex1ty of utilizing gradient projection
descent method is higher than using the penalty method since it requires addressing the constrained
non-convex optimization problem in Eq. (I02)) at each iteration. Likewise, utilizing the Frank-Wolfe
based methods (Shen et al., 2019} |Garber and Hazan| 2015} |[Zhang et al., 2020; Xian et al.| |2021}
Wang et al., 2016; Balashov et al., 2020) may also lead to relatively more computational complexity
since it also needs to solve one additional constrained non-convex optimization problem, i.e.,

min Z Z Vw”f1 J(mﬁ‘zl7mgﬁ;1’m§-§1) (:1}1-7]- — ;1;715:‘51)

i=1j=
st ZBlj—Zl,V]—]. , N (103)
Z Z a’?‘;tl b;njltl x; _/+ Zcout 2_|_d0ut zi+e?ut SgoutaVZ
1=2j=
var. {:BLJ}7 {2}, {$37J},Z1,22,Z3.

Thus, as indicated by Eq. (TI03), the complexity of using the Frank-Wolfe based method is higher
than that of the exterior penalty method, as it requires solving an additional constrained non-convex
optimization problem in Eq. (103)) at each iteration. Based on the aforementioned reasons, we chose
to use the exterior penalty method in this work.

In addition, we demonstrate the close relationship between the original constrained optimization
problem (P1) in Eq. and the unconstrained optimization problem (P2) in Eq. in this
work. That is, 1) the optimal solution to P2 is also a feasible solution to the relaxed original prob-
lem P1; 2) the gap between the optimal objective value by utilizing the exterior penalty method (
ie., Z;»V:Ifljj(xij, x5 ;,x3 ;) in P2) and the optimal objective value in original problem P1 (i.e.,

Z;\/:l f1,;({®1;}.{=F2,; }.{®s,;})) will continuously decrease with penalty parameters increased.
To enhance the readability of this discussion, the constrained optimization problem and uncon-
strained optimization problem are presented as follows.

Constrained cascaded polynomial approximation problem (P1):

N
min Y f15(21,5, 2,5, %3,5)
j=1
t = Vi=1,---,N
S. wlg Z1,V] (104)
EZaz“;‘v @} +b0 @it Zc"“t Z+dP zit e Seou, VI
i=2j5=1
var. {331.,]‘}7{wz,j},{ws,;},z1,z2,z3~
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Unconstrained optimization problem based on exterior penalty method (P2):

N
min F({z1;},{z2; }{®s,;},21,22,23) 1= D f1 (21,5, T2, T3 5) + &jl|T1,— 21|
=
+Zl/\l [max{h?ut({w27j}){x37j}7z17 22, Z3) —Eout; O}]27
var. {z1} {z2},{z3,}, 21, 22, 23,

(105)

3 N 3
T T T T

where 2" ({25}, {x3,}, 21, 22, 23) = 22 Zla?f}tz @} 005 iyt Zlc?ﬁ‘t z izt

i=2j= i=
e?Ut. We first show that the optimal solution to P2 is also a feasible solution to the relaxed original
problem P1, and this relaxation will be gradually tightened with penalty parameters increased. Let
({z7 ;=5 ;{3 ;},27,25,23) denote the optimal solution to P2 in Eq. (105). For any point
({:131_]}, {x2_,]}7 {513?:]}7 zl_v Z2_a ZS_) satisfies h?ut({mij}a {x2_,3}7 {113?:]}7 zl_a z2_a ZS_) S 50ut7VZ
and x1 ; — z; = 0, V7, since it is also the feasible solution to P2, we have that,

N

_Zlfl,j(wijawg,jvw;,j)"‘%uwij_zﬂp
J:
+3 - Mimax{pP™ ({a5 ), {x5 ;}, 21, 23, 25) —€our, 0}
N (106)
< _Zlfl,j(w;j,w;j,w;j)wjllwij—zﬂl?
J:
+ o imax{ P ({z, ;1 {®5 ;) 21 5 255 25) —Eous, O}
According to (Shen et al., 2024), let C' = 2max | f1 ;|, we can obtain that,
N
Zl¢j\|w’{,j—zi‘ll2+zl>\z [max{h" ({z5;}, {x5 ;}, 21, 23, 23) —out, 0}]?
j=
N N
_ _ _ " " " 107
< ‘21 fl,j(%,ja%,jv%,j) - ‘21 fl,j(ij’wQ,j’mS,j) 1on
j= J=
< NC.

Because of z7 —2f||> > 0 and [max{h?ut({mz}j}, {mg’j},zf,zg,zg‘)fsout,O}]Z > 0,V! and
according to Eq. (T07), we can obtain that,
1275211 < =¥ (108)
j

h?ut({$2,j}7 {$3¢j}7 27, 25,25) — out < ”TI’VL (109)

According to Eq.  (I08) and Eq. (I09), we can conclude that the optimal solution
({z7 ;{5 ;1 {25 ; },21,23,23) to P2 is a feasible solution to the relaxed problem of the origi-
nal constrained problem P1, that is,

N
min Y f1,;(z1,5, T2,5,%3,5)
j=1
S,t_HQZLj—ZlHQS%,Vj:ly'”;N (110)
Wt ({s ;) (o3 3, 21, 25, 25) < €out + 1/ BE, VI
var.  {x1;}, {®2;}, {x3,5}, 21, 22, 23.

Let ({Z1,;},{®2,;}.{T3,;}.Z1,22,23) and ({gl’j}7{§2,j},{§37j},§1,§2,53) respectively denote the
optimal solutions to P1 and the relaxed problem of P1 (i.e., Eq. (T10)), and let gap

N N
Bek AN =D fil@ b @b (®s,)) = D e iz b zs ;)). 1D

j=1 j=1
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It is seen from Eq. (110) that this relaxation will be tightened with penalty parameter ¢;, A;, V7, VI
increased. Combining with Eq. (111), we can obtain that 3({¢;}, {\;}) > 0 will decrease when
@, A1, V3,V increase. Next, we will demonstrate the gap between the optimal objective value by

utilizing the exterior penalty method (i.e., Zjvzl f1i(27 ;, x5 ;, @5 ;) in P2) and the optimal objec-
tive value in original problem P1 (i.e., Zjvzl f1,;({®1,;}.{=F2,;}.{%3 ;})) will continuously decrease
with ¢;, A, V3, Vi increased.

Because ({Z1;},{T2,;}.{T3,;},Z1,22,23) is also the feasible solution to P2, and according to

Zj ¢j||51,j — Eluz = O, ElAl[maX{h?Ut({ng},{f&j},fl,zg,zzﬁ)—&‘Out,O}]Q = 0, we have
that,

N N
Zlfl,j(w’f,j»wij’fﬂ?,,j) - Zlfu({51,j},{§2,j},{fs,j})
j= j=
N * *|]2 out * * * * * 2 (112)
< - 21 ¢j||x1,j_z1|| — 2 Ai[max{h; ({:BQ,j}?{$3,j}7z1’z2>z3)_50uta0”
J=
<0.

According to ({x7 ;},{=5 ;}.{z3 ;},21,23,23) is a feasible solution to problem in Eq. (110), we
can obtain that,

N N
Zfl,j(wik,j’ 333,]‘7 w;g) > Zfl,j({Qm}v{@zg}a{@&j})- (113)
j=1

j=1

By combining Eq. (113) with Eq. (I111), we can obtain that,

N N
Zlij({Tla}a{@,j}v{fs,j}) - Zlij(w’{,ij,jvw%,j)
J= J=

S W MNCHECRIES NI REME I o

= 8o} AN}

By combining Eq. (114) with Eq. (112), we can obtain that,

N N
—B({ei . AND <D _fi@t . as s ) — Y AiE T b Es ) <00 (115)
j=1

j=1

Based on Eq. (115) and 3({¢;},{\:}) > 0, we can get that,
N

N
1> fs(@ a5 ) - Zfl,j({fl,j},{fz,j}»{@,j})| < B} AN (116)

=1

By combining Eq. (I16) with Eq. (II0) and Eq. (III), we can conclude the gap between the
optimal objective value by utilizing the exterior penalty method (i.e., Zjvzl f15(27, L5 5 X, j) in
P2) and the optimal objective value in original problem P1 (i.e., Z;\;l f1,; (@11 F2, 1T, 1))
is bounded and will decrease with penalty parameter ¢;, A;, Vj, VI increased.

I TLL WITH PARTIAL ZEROTH ORDER CONSTRAINTS

In this work, TLL with level-wise zeroth order constraints is considered, where first order informa-
tion at each level is unavailable. In addition, it is worth mentioning that the proposed framework is
versatile and can be adapted to a wide range of TLL problems with partial zeroth order constraints,
i.e., grey-box TLL, through slight adjustments. The reason we refer to it as grey-box TLL is that the
first order information for some levels in TLL is available, while for others it is not (Huang et al.,
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Table 4: Comparisons between the proposed DTZO with the state-of-the-art TLL methods based on
the applicability to different TLL problems. v* represents that the method can be applied to this TLL
problem. The proposed DTZO is versatile and can be adapted to a wide range of TLL problems. We
use ZOC as an abbreviation for zeroth order constraints.

Betty Hypergradient AFTO DTZO
Non-distributed TLL without ZOC v v v v
Distributed TLL without ZOC v v
TLL with partial ZOC v
TLL with level-wise ZOC v

2024b; Beykal et al.l |2020; |Astudillo and Frazier, [2021; Bajaj et all 2018). To further show the
superiority of the proposed DTZO, we compare it with the state-of-the-art TLL methods (i.e., Betty
(Choe et al.l [2023), Hypergradient based method (Sato et al., 2021), and AFTO Jiao et al.[ (2024)))
based on their applicability to TLL problems in Table[4] In DTZO, the zeroth order cut takes center
stage, driving the construction of cascaded polynomial approximations without the need for gradi-
ents or sub-gradients. Notably, zeroth order cut is not only the backbone of DTZO but also opens the
door to tackling grey-box TLL problems, seamlessly handling nested functions that combine both
black-box and white-box elements. Discussions are provided as follows.

I.1 TLL WITH SECOND AND THIRD-LEVEL ZEROTH ORDER CONSTRAINTS

In this situation, the first order information at the first-level in TLL problems is accessible. Thus, we
can use the exact gradients to replace the zeroth order gradient estimator, i.e., Eq. (I6)-(I9) can be
replaced by,

it =2l e, (Vau, fri(@hj,ah k) + 20,2 — 21)) (117)
t+1

Loy = xé,j - nwszzj flaj (m§7j7 mg,ja mt&j) - nwsz2,j 0({x§,j}a{wg,j}7ziv Zg, Zé), (118)

mgtl = xé,j - nwsvwzs,j flaj (m§7j7 wg,ja mt&j) - stvwa,j 0({x§,j}a{wg,j}7ziv Zg, Zé) (119)
By using the gradient descent steps in Eq. (IT7)-(I19), the TLL problems with second and third-
level zeroth order constraints can be effectively by the proposed framework.

1.2 TLL WITH FIRST AND THIRD-LEVEL ZEROTH ORDER CONSTRAINTS

In this situation, the first order information at the second-level in TLL problems is available. Thus,
we can use the first order information to generate outer layer cutting plane, e.g., p-cut (Jiao et al.,
2024). By combining the outer layer first order cutting plane with the inner layer zeroth order cut,
the proposed framework is capable of constructing the cascaded polynomial approximation. The
generated outer layer p-cut can be expressed as,

{zo;} | [{=xh,} ]
{3} {5}

V(rbout({mg,j}v{mg,j}vz%’ Zév Zé)—r Z1 - z{
2z z} (120)
Lz | [z

+¢)Out({mé7j}a{m§,j}aziv Zéa z:ts)

< Courtp (a1 + (N +1)(az +ag) + X0 XL it 112 + 5, [124112) -
In Eq. (120), p > 0 is a parameter in p-weakly convex function, and a;,7 = 1, 2, 3 is the boundness
of variable x; ;, z;, as discussed in Jiao et al.[(2024). By using the outer layer first order cutting

plane, the TLL problems with first and third-level zeroth order constraints can be addressed by the
proposed framework.
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1.3 TLL WITH FIRST AND SECOND-LEVEL ZEROTH ORDER CONSTRAINTS

In this situation, the first order information at the third-level in TLL problems is accessible. Simi-
larly, we can utilize the first order information to generate the inner layer cutting plane, e.g., p-cut.
Through combining the inner layer first order cutting plane with the outer layer zeroth order cut,
the proposed framework is capable of constructing the cascaded polynomial approximation. The
generated inner layer p-cut can be expressed as,

{zs,;} {5}

v¢in({mg,j}aziazéaz§)—r - +¢in({m§,j}’z§7zévz§)
2 2L (121)

N 3
e+ p ((V+Dar +az+ a5 + S |2 5117 + S0, [12112)

By using the inner layer first order cutting plane in Eq. (IZI)), the TLL problems with second and
third-level zeroth order constraints can be addressed by the proposed framework.

J DISCUSSIONS

J.1 CUTTING PLANE METHOD

Cutting plane method, also called polyhedral approximation 2013), is widely used in
convex optimization (Franc et al [2011; Boyd and Vandenberghel [2007) and distributed optimiza-

tion (Biirger et al., 2013} |Yang et al., 2014). The rationale behind cutting plane method is to use
the intersection of a finite number of half-spaces (e.g., P = {z|a]x < b;,l = 1,---, L}, where
{z|alz < b} represent a half-space (Boyd and Vandenberghe, [2004)) to approximate the feasible
region of the original optimization problem (e.g., z € X’) . The approximation can be gradually re-
fined by generating additional half-spaces [2015). Recently, cutting plane methods have
proven effective in tackling distributed multilevel optimization problems. By leveraging these meth-
ods, such problems can be transformed into decomposable optimization problems, which greatly
simplifies the design of distributed algorithms for nested optimization, as discussed in
2023} 2024). In (Jiao et all}, [2023), cutting plane methods are applied to solve bilevel optimization
problems within a distributed framework. Likewise, (Chen et al., [2024c) utilize the cutting plane
method to tackle distributed bilevel optimization challenges in downlink multi-cell systems. Build-
ing on this, further extend the approach to address distributed trilevel optimization
problems. However, existing cutting plane methods for multilevel optimization rely on the first-order
information to generate cutting planes, which are not available in zeroth-order optimization. In this
work, we propose a framework capable of generating zeroth-order cuts for multilevel optimization
problems without the use of first-order information.

J.2 THE CHOICE OF GRADIENT ESTIMATOR

It is worth noting that the proposed framework is versatile, allowing for the integration of various
gradient estimators. For instance, the mini-batch sampling-based gradient estimator (Liu et al., 20205
Duchi et al, 2015)) can be employed to replace the two-point gradient estimator, reducing variance.

Specifically, with mini-batch sampling, Eq. (I0), (I2) (I9), (20), and ZI) can be replaced by the
following multi-point gradient estimators.

G;?({ng}? ZL zéla Zg)

b
! / H
O (i ({ah j+pl, Y 2i+pp?, 25 +ppl,, 25+ ppl) — o ({2}, 21, 25, 25) ™7,

1
I =1 J
(122)
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GZUt({xZ j} {mSJ} zlv 2.‘2, 23)

b
O [Gous ({25 ; + ppd, o Axh ; + ol b 20+ ppl, 25 + ppk, 25 + ppk,) o (123)

1
m

(b ) (2. 2 24 ),

Ga , ({215} {25 3. {5 5}, 21, 25, 25)

b (124)
i Z [f1,j(2f ; + u%,pwé,j»ws,j) — frj(xl jxh wéj)“fﬁ +2¢;(x] ; — 2i),
chz,j({mfi,j}v {mg g} {w:t%j} z{’ Zé, Zit%) = sz j ({.’I)% j}’{mg,j}7z§:’ zév Z;’))
(125)
+ Z [f1,3($1 17932J + puy, 2>‘”3 J) fl,j(‘”ﬁ,jvwé,j»wé,j)ui,z]a
p_
Gﬂ:s,j ({xi,j}v {mg,j}7 {wé,j}v Z{, Zé, zit%) = vms,‘jo({wg,j}’{mé,j}vzi7 Z%, Zé)
b (126)

+i Z_: [fld(wi,j’ xg,jvwg,j + Mui,:}) - fl’j(xﬁ,jv w%,jvwg,j)ui,:s]’

where p™P = [{pf 3 pl pl, pl ] pot P = [{pd, b A{uE, Y BE s 2] ug s ug s,
uk,g, p = 1,---b are drawn from N(0,I), and b represents the number of samples used in the
multi-point gradient estimator.

K FUTURE WORK

This study is the first work that considers how to address the trilevel zeroth order optimization
problems. The proposed framework is not only capable of addressing the single-level and bilevel
zeroth order learning problems but can also be applied to a broad class of TLL problems, e.g., TLL
with partial zeroth order constraints. However, higher-level nested learning problems, specifically
those with more than three levels, are not considered in this work and will be addressed in future
research.

44



	Introduction
	Related Work
	Distributed Zeroth Order Optimization
	Trilevel Learning
	Cutting Plane Method

	Distributed Trilevel Zeroth Order Learning
	Cascaded Zeroth Order Polynomial Approximation
	Inner Layer Polynomial Approximation
	Outer Layer Polynomial Approximation

	Refining the Cascaded Polynomial Approximation
	Generating Inner Layer Zeroth Order Cut
	Generating Outer Layer Zeroth Order Cut
	Removing Inactive Zeroth Order Cuts

	Zeroth Order Distributed Algorithm

	Theoretical Analysis
	Experiments
	Black-Box Trilevel Learning
	Robust Hyperparameter Optimization

	Conclusion
	Proof of Theorem 1
	Communication Complexity
	Proof of Proposition 1 and 2
	Proof of Proposition 1
	Proof of Proposition 2

	Theoretical Analyses about the Cascaded Polynomial Approximation Problem
	Discussion about Soft Constraint and in, out
	Experimental Setting
	Black-box Trilevel Learning
	Robust Hyperparameter Optimization

	Discussion about Assumption 1 and 2
	Exterior Penalty Method
	TLL with Partial Zeroth Order Constraints
	TLL with second and third-level zeroth order constraints
	TLL with first and third-level zeroth order constraints
	TLL with first and second-level zeroth order constraints

	Discussions
	Cutting Plane Method
	The Choice of Gradient Estimator

	Future Work

