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ABSTRACT

Recent self-rewarding large language models (LLM) have successfully applied
LLM-as-a-Judge to iteratively improve the alignment performance without the
need of human annotations for preference data. These methods commonly utilize
the same LLM to act as both the policy model (which generates responses) and the
reward model (which scores and ranks those responses). The ranked responses are
then used as preference pairs to train the LLM via direct alignment technologies
(e.g. DPO). However, it is noteworthy that throughout this process, there is no
guarantee on the accuraty of the rewarding and ranking, which is critical for en-
suring accurate rewards and high-quality preference data. Empirical results from
relatively small LLMs (e.g., 7B parameters) also indicate that improvements from
self-rewarding may diminish after several iterations in certain situations, which
we hypothesize is due to accumulated bias in the reward system. This bias can
lead to unreliable preference data for training the LLM. To address this issue, we
first formulate and analyze the generalized iterative preference fine-tuning frame-
work for self-rewarding language model. We then introduce the regularization
to this generalized framework to mitigate the overconfident preference labeling
in the self-rewarding process. Based on this theoretical insight, we propose a
Consistency Regularized sElf-rewarding lAnguage Model (CREAM) that lever-
ages the consistency of rewards across different iterations to regularize the self-
rewarding training, helping the model to learn from more reliable preference data.
With this explicit regularization, our empirical results demonstrate the superiority
of CREAM in improving both reward consistency and alignment performance.

1 INTRODUCTION

Large language models (LLMs) have shown impressive capabilities across various tasks, including
natural language understanding and generation (Radford et al., 2019). At the same time, LLMs also
face alignment challenges such as generating hallucinations and harmful outputs (Ji et al., 2023). To
address these issues, a series of research works have explored preference learning methods such as
Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017) and direct align-
ment techniques such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) to align the
LLMs with human values and preferences. These alignment methods often require a large amount
of preference pairs which are indispensable in both RLHF and direct alignment training. However,
collecting human-annotated preference pairs is time-consuming and labor-intensive, which seriously
limits the scalability and efficiency of these alignment methods.

Recent advancements in self-rewarding language models (SRLMs) (Yuan et al., 2024) have gained
increasing attention in the field of LLM alignment, which can efficiently synthesize preference data
for iterative preference training. In this method, the single LLM is required to act as two roles,
the policy model and the reward model. Given unlabeled prompt data, the LLM first acts as the
policy model generating several response candidates. Then, the same LLM acts as the reward model,
scoring and ranking these responses. These ranked responses are used as preference pairs to train the
LLM with DPO, significantly reducing the reliance on human-annotated data. The above steps can
be iteratively repeated to further enhance the performance. However, SRLMs still face challenges
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in generating reliable and accurate rewards for annotating the preference pairs, which is critical for
ensuring the quality of preference data and the alignment performance of LLMs.

To address these challenges, we first formulate a generalized iterative preference fine-tuning frame-
work to analyze the self-rewarding training, where this framework can also be adapted to other
iterative preference tuning methods. Through this theoretical framework, we find that the reward-
ing bias issue in SRLMs comes from the overconfident preference labeling, which enforces the
model to distinguish between responses with similar quality. For example, both two responses in
Figure 1 have high quality judgments from the human. The SRLM enforces the reward model
to make a preference judgment, resulting in noisy and unreliable preference labeling. This can
lead to negative impacts on preference tuning the model. Additionally, the iterative training man-
ner can also accumulate the rewarding bias, further diminishing the benefits of self-improvement.

Q: Can you recommend a fun DIY project that can be accomplished in a weekend?

Here are some fun DIY projects that can be completed in a weekend:
1. Macrame Plant Hanger: Create a bohemian-inspired plant hanger
using macrame cord, wooden dowels, and a few basic knots. You can
customize it with different color…….

I'd be happy to suggest some fun DIY projects that can be completed
over a weekend: 
1. DIY Photo Display: Create a unique photo display using
reclaimed wood, string, and clothespins. This project is perfect for
showcasing your favorite memories.…....

A

B
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Figure 1: An example of both two responses are
of high quality, which is hard for human to distin-
guish the preference. While the same model from
different iterations have inconsistent rewarding.

From the insights of theoretical analysis,
we propose Consistency Regularized sElf-
rewarding lAnguage Model (CREAM) to mit-
igate the rewarding bias issue in SRLMs, par-
ticularly for broadly accessible 7B-size LLMs.
The core idea behind CREAM is that we should
not force the model to be overly confident in
distinguishing between responses with similar
quality. But how to tell the preference labeling
is reliable or not? Out of the self-rewarding sce-
nario, we may employ a pool of external reward
models to assist in ranking preferences. When
two responses are of similar quality, these exter-
nal models often produce inconsistent rankings.
This inconsistency serves as a signal to indicate the level of confidence in the preference labeling.
In self-rewarding scenarios, however, integrating such external reward models is not feasible. For-
tunately, due to the iterative nature of self-rewarding training, we can use the reward model from
the previous iteration to rank preferences and then compare these rankings with those produced by
the current model. This comparison provides an estimate of such consistency rate. With this consis-
tency rate, we can regularize the preference training to prevent the model from learning unreliable
preference data, thereby mitigating the rewarding bias issue in SRLMs.

In summary, we first formulates a generalized iterative preference fine-tuning framework to analyze
the rewarding bias issue in SRLMs. From the insights of theoretical analysis, we propose CREAM as
the primary contribution of this paper. CREAM leverages the consistency of rewards across different
iterations for regularized preference training, which can effectively mitigate the rewarding bias issue
in SRLMs. Empirical results on a series of natural language benchmarks validate the effectiveness of
CREAM in mitigating the rewarding bias issue and enhancing the alignment performance of LLMs.

Notations. Vectors are denoted by lowercase boldface letters, such as x, and matrices by uppercase
boldface letters, such as A. For any positive integer k, the set 1, 2, . . . , k is denoted by [k]. Sets
are denoted by calligraphic uppercase letters, such as D, with the cardinality of the set represented
as |D|. Without ambiguity, we denote πθ as the language model parameterized by θ, x as the input
prompt, and y as the output response from the language model. All other notations are defined prior
to their first usage. We denote 1[·] as the indicator function.

2 METHODOLOGY

In this section, we first formulate the generalized iterative preference fine-tuning framework for self-
rewarding, RL with AI feedback, and other iterative preference tuning methods. Next, we introduce
the motivation behind the proposed consistency regularized self-rewarding method. Finally, we
present the practical implementation algorithm of CREAM in details.

2.1 GENERALIZED ITERATIVE PREFERENCE FINE-TUNING FRAMEWORK

We assume that we can access to the dataset with response DS and the prompt dataset without
response DU. The objective is to iteratively minimize the following loss with respect to the neural
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network parameter θ and a label function z as

L(θ, z) = LSFT(θ;DS) + Ex∼DU;y,y′∼πθt (·|x)[LDPO(θ;y,y
′,x, z)]. (2.1)

where the first term LSFT(θ;DS) aligns the model πθ to the SFT data. We note here that any potential
SFT methods (Ouyang et al., 2022b; Yuan et al., 2023; Dong et al., 2023; Chen et al., 2024), or the
methods without SFT data (LSFT = 0) can be adapted in this framework. The second term E[LDPO]
corresponds to learning from the preference data pair {y,y′} generated by the current model θt.
The labeling function z(y,y′,x) ∈ {0, 1} provides the preference judgment between y and y′ for
the DPO loss, where z(y,y′,x) = 1 means y ≻ y′ and z(y,y′,x) = 0 means y ≺ y′. The DPO
loss LDPO is defined as follows:

LDPO(θ;y,y
′,x, z) = −z(y,y′,x) log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
− (1− z(y,y′,x)) log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))
, (2.2)

where πref is the reference model for KL divergence regularization, and σ(·) is the sigmoid function.
The proposed loss L(θ, z) in Eq. (2.1) represents all iterative preference fine-tuning algorithms.
For the reinforcement learning (RL) with human feedback (Ouyang et al., 2022b), z is the human
preference comparing y and y′. For the RL with AI feedback, z is the oracle reward model like GPT-
4 (Achiam et al., 2023). For the self-rewarding language model (Chen et al., 2024), z is given by
comparing the reward score generated from the language model itself, often with LLM-as-a-Judge
prompting. However, as aforementioned, we note that such prompt rewarding method may only
be feasible for larger and advanced LLMs such as Llama-70B (Touvron et al., 2023). For smaller
models such as Llama-7B that do not have complex instruction following and reasoning abilities,
we instead propose to leverage the intrinsic reward model (Rafailov et al., 2023)

rθ(x,y) ∝ [log πθ(y|x)− log πref(y|x)]

to reward and rank the responses for annotating preference pairs. Therefore, the choice of preference
labeling function z is closely connected with the language model parameter θ. Then, we introduce
the following two-step optimization algorithm to solve Eq. (2.1).

Step 1. (Preference-labeling step) Keep θ = θt fixed, select function z to minimize LDPO. In
particular, letting θ = θt in Eq. (2.2), solution for z(y,y′,x) = argminz LDPO(θt;y,y

′,x, z) is

zt+1(y,y
′,x) = 1 [log πθt

(y|x)− log πref(y|x) ≥ log πθt
(y′|x)− log πref(y

′|x)] . (2.3)

Step 2. (Learning step) Keep z as of Eq. (2.3), minimize loss function L(θ, zt+1) with respect to θ
and get θt+1 = argminθ L(θ, zt+1).

Different from existing methods, the proposed two-step optimization method directly uses the intrin-
sic reward model to generate the preference data. This approach is particularly feasible for smaller
LLMs, which lack the capacity to effectively use LLM-as-a-Judge prompts (Zheng et al., 2023) for
rewarding and ranking. We note that the proposed two-step method is similar to the Expectation-
Maximization algorithm and self-training paradigm (Zou et al., 2019). This similarity is supported
by the following theorem, which suggests the convergence of the proposed two-step algorithm.
Theorem 2.1. Suppose the optimization θt+1 = argminθ L(θ, zt+1) is solvable and the SFT loss
LSFT(θ;DS) ≥ 0 for all θ and DS, the proposed two-step optimization method converges.

2.2 CONSISTENCY REGULARIZED SELF-REWARDING

The generalized framework presented in Eq. (2.1) assumes the human feedback or GPT-4 are all
reliable so that the preference labeling function z is trustworthy. However, for SRLMs, the accuracy
of preference labeling is not always guaranteed. Therefore, treating all selected preference labels
as “ground truth” by encoding them as hard labels can lead to overconfident mistakes, potentially
propagating biases and inaccuracies from the LLMs. Taking Figure 1 as an example, both the two
responses y and y′ are judged by humans to be of high quality. Forcing the model to be overly
confident in distinguishing between these two responses {y,y′} with similar quality can negatively
impact the performance of SRLMs during training.

3



NeurIPS Safe Generative AI Workshop 2024

This rewarding bias issue motivates us to mitigate such ambiguity by introducing a consistency-
regularized self-rewarding language model, CREAM. Specifically, for a pair of responses with very
similar quality, their oracle reward scores should ideally be very close to each other. Particularly,
when multiple reward models are available, it is likely that some models will rank one response
as superior, while others may rank the opposite response as better, resulting in high ranking in-
consistency (i.e., low ranking consistency) among these models. Based on this, CREAM aims to
prevent the model from learning from preference pairs with low consistency. Instead, it focuses
solely on preference pairs with high consistency across different reward models, thereby mitigat-
ing the rewarding bias issue and stabilize the learning process to some extent. From the theoretical
perceptive, we can introduce a regularization term to Eq. (2.1) as

L(θ, z) = LSFT(θ;DS) + Ex∼DU;y,y′∼πθt (·|x)[LDPO(θ;y,y
′,x, z) + λLReg(θ;y,y

′,x)], (2.4)

where the regularization term LReg(θ;y,y
′,x) prevents the model πθ from overconfidence in distin-

guishing the preference of {y,y′} with similar quality, which is quantified in the following lemma.
Lemma 2.2. Let the random variable z = z(y,y′,x) be defined as z(y,y′,x) = 1[y ≻ y′|x]. The
Bradley-Terry model (Bradley & Terry, 1952) for the probability of z under parameter θ is given by

Pθ(z) = Pθ(1[y ≻ y′|x]) = σ (log(πθ(y|x)/πref(y|x))− log(πθ(y
′|x)/πref(y

′|x))) ,

Letting the regularization LReg be defined by

LReg(θ;y,y
′,x) = − log σ (log(πθ(y|x)/πref(y|x))− log(πθ(y

′|x)/πref(y
′|x)))

− log σ ((log πθ(y
′|x)/πref(y

′|x))− (log πθ(y|x)/πref(y|x))) . (2.5)

Then the expected regularized loss under the model θt is given by:

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = 2KL(u(·) ∥ Pθ(·)), (2.6)

where u(z) is the uniform binary distribution, i.e., u(z = 0) = u(z = 1) = 0.5.

As Lemma 2.2 suggests, the LReg will regularize the preference between {y,y′} that has similar
quality to a uniform distribution. Then the following theorem suggests that using LDPO + λLReg
corresponds to the soft-labeled DPO which we implemented in CREAM.
Theorem 2.3. For all y,y′,x, z, minimizing

L(θ, z) = LSFT(θ;DSFT) + Ex∼DU;y,y′∼πθt (·|x) [LDPO(θ;y,y
′,x, z) + λLReg(θ;y,y

′,x)]

is equivariant with minimizing

L(θ, z) = 1

1 + 2λ
LSFT(θ;DS)

+ Ex∼DU ;y,y′∼πθt (·|x)[CλLDPO(θ;y,y
′,x, z) + (1− Cλ)LDPO(θ;y,y

′,x, 1− z)],

(2.7)

where the 1− z reverses the preference order of z(y,y′,x) and Cλ = (1 + λ)/(1 + 2λ).

Theorem 2.3 suggests that instead of calculating the regularization term LReg, we can use the soft-
labeled DPO to train Eq. (2.7). In particular, when λ = 0, Cλ = 0 and Eq. (2.7) degenerates
to Eq. (2.1). This represents the case where the preference label z is trustworthy from human or
some oracle reward models (e.g., GPT-4). In other words, λ represents the confidence of the label
function z. Specially, since in our two-step optimization paradigm, the label function z is directly
derived from the previous model πθt

, we can measure the performance of πθt
using the consistency

between model θt and the baseline model (e.g., external reward model) θ′
t, defined by

λ(x) = 2Ey,y′∼πθt (·|x) 1[y ≻ y′|x,θt]1[y ≻ y′|x,θ′
t], (2.8)

and when λ → 0, Cλ ≈ 1 − λ representing the consistency of model θt and θ′
t. 1[y ≻ y′|x,θt]

means the response y is better than y′ given the prompt x and language model parameter θt, i.e.,

1[log(πθt(y|x)/πref(y|x))− log(πθt(y
′|x)/πref(y

′|x))],

and similar definition applies to 1[y ≻ y′|x,θ′
t].
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Algorithm 1 Consistency-Regularized Self-Rewarding Language Model
Input: seed SFT dataset DS; unlabeled prompt dataset DU; initial model parameter θ0;
Input: number of iterations T ; learning rate η
1: /* SFT training */
2: Obtain θ1 by taking the gradient steps over loss L1(θ) =

∑
(x,y)∈DS

log πθ(y|x) from θ0

3: /* Iterative Preference Training training */
4: for t = 1 to T do
5: Sample {yij}Ni=1 ∼ πθt(·|xj) for all xj ∈ DU // Response Sampling
6: Compute reward rij = log πθt(yij |xi)− log πθ0(yij |xi) for all i ∈ [N ], j ∈ [|DU|]
7: Obtain rank Jij for all yij using reward rij // Rank on model θt

8: Compute reward r′ij = log πθt−1(yij |xi)− log πθ0(yij |xi) for all i ∈ [N ], j ∈ [|DU|]
9: Obtain rank Kij for all yij using reward r′ij // Rank on model θt−1

10: Compute τj = τ({Jij}i, {Kij}i) according to Eq. (2.10) for all j ∈ [|DU|]
11: Compute consistency rate C = |DU|−1 ∑

j(τj + 1)/2 // Adaptive consistency regularization
12: Compose preference dataset DDPO using pairs {xj ,y

+
j ,y

−
j }j according to Eq. (2.11)

13: Compose preference dataset DRDPO using pairs {xj ,y
−
j ,y+

j }j according to Eq. (2.12)
14: Update θt+1 by minimizing loss L(θ) = CLDPO(πθt ,DDPO) + (1− C)LDPO(πθt ,DRDPO)
15: end for
Output: aligned policy model πθT

2.3 PROPOSED ALGORITHM

Equipped with the above two-stage optimization and the consistency-regularized self-rewarding,
we are ready to present the implementation of CREAM in Algorithm 1. The whole framework of
CREAM is also illustrated in Figure 2. The algorithm starts from the SFT training to obtain the
first model parameter θ1 in Line 2. A similar approach is applied in Yuan et al. (2024) for avoid
calculating the LSFT in the future optimization steps. Then for each xj in the unlabeled prompt
set DU, N response candidates {yi}Ni=1 are sampled in Line 5. Then reward scores of these N
candidates can be calculated according to Rafailov et al. (2023) by

rij = β[log πθt
(yij |xj)− log πθ0

(yij |xj)] + β logZ(xj), (2.9)

where we use the initial model parameter θ0 as the reference policy πref. Since β ≥ 0 and logZ(xj)
is a constant across different response yi for the same input prompt xj , we can drop these factors
and calculate rewards in Line 6. Specially, when t = 1, the rank Kij is calculated based on the
reference policy θ0 itself. Thus we instead use the likelihood rij = log πθ0

(yij |xj) as the reward
for this edge case. The rank for these N candidates are therefore obtained in Line 7, where Jij
means response yij is in the Jij-th best in the preference list of xj .

Consistency-Regularized Self-Rewarding. As discussed in Eq. (2.8), a baseline model is re-
quired to measure the consistency. In the self-rewarding scenario, it is infeasible to add an external
reward model as the baseline model. Fortunately, we can employ the model before last update θt−1

as the baseline model θ′
t (i.e., last iteration’s model) for evaluating the consistency of the model θ,

thanks to chances provided by iterative training manner. Such a procedure helps mitigate the train-
ing error introduced in t − 1-th step before obtaining θt. Considering a pair of tied preference pair
y,y′ both performing well, as demonstrated in Figure 1. P [y ≻ y′|x,θt] will be oscillating around
0.5 when t grows due to the random noise. Otherwise P [y ≻ y′|x,θt] might consistently converge
to 0 or 1. Due to this oscillation, the consistency between θt−1 and θt on this specific preference
pair would be low, and the algorithm will learn less from this noninformative preference pair thus
stabilize this oscillation.

Specifically, we calculate the rank of these N candidates using θt−1 in Line 9 and then use the
Kendall’s Tau coefficient (Kendall, 1938) denoted by

τj =
2

N(N − 1)

∑
1≤i<i′≤N

[1 [(Jij − Ji′j)(Kij −Ki′j) > 0]− 1 [(Jij − Ji′j)(Kij −Ki′j) < 0]] .

(2.10)

Kendall’s Tau coefficient is a widely used coefficient (McLeod, 2005; Abdi, 2007) to measure the
consistency of two ranking sequences. Basically, when two sequences perfectly aligns, τj = 1 and
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when two sequence never aligns, τj = −1. The following lemma draws the further connection
between the Kendall’s Tau and the regularization parameter λ proposed in Section 2.2.
Lemma 2.4. Suppose the N response candidate {yij}i is i.i.d. given the prompt xj , then

E[τj ] = 1− 4Ey,y′∼πθt (·|xj) 1[y ≻ y′|xj ,θt]1[y ≺ y′|xj ,θt−1] = 1− 2λ,

where the expectation is taken over the randomness of sampling the N candidate set.

Given Lemma 2.4, we can recover Cλ ≈ 1 − λ = (1 + τj)/2 and we use average all τj for all
xj ∈ DU in Line 11. Finally, in Line 12, we compose the preference dataset by selecting the best
response y+

j = yi+j and the worst response y−
j = yi−j which is similar with (Yuan et al., 2024).

DDPO = {(xj ,yi+j ,yi−j)|xj ∈ DU, i
+ = argmin

i
Jij , i

− = argmin
i

Jij} (2.11)

Following Theorem 2.3, we also prepare the reverse DPO dataset by switching the best response and
the worst response by

DRDPO = {(xj ,yi−j ,yi+j)|xj ∈ DU, i
+ = argmin

i
Jij , i

− = argmin
i

Jij} (2.12)

and update θt+1 by minimizing the empirical loss of Eq. (2.7) in Line 14. The detailed proof of
theorems and lemmas are provided in the Appendix B.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Data. In our experiments, we use Open Assistant dataset (Köpf et al., 2024) and only reserve about
3.4K human-annotated examples as the seed SFT data DS. To construct the unlabeled prompt dataset
DU, we mix prompts of DS with the train split of each downstream task (only reserve the prompts)
including (1) ARC-Easy/Challenge (Clark et al., 2018), (2) OpenBookQA (Mihaylov et al., 2018),
(3) SIQA (Sap et al., 2019), and (4) GSM8K (Cobbe et al., 2021). Finally, this process results in a
total of 21K prompts in DU, which we distribute equally across iterative self-rewarding trainings.

Models. Due to limited computational resources, we mainly conduct experiments with two LLMs
with about 7B parameters, including Llama-3 (Dubey et al., 2024) and Llama-2 (Touvron et al.,
2023).

Baseline Methods. To validate our findings, we mainly compare our method with SRLM (Yuan
et al., 2024) which uses the same LLM to serve as both the policy and reward model to generated
preference data for iterative training. Additionally, we introduce a variant of RL with AI feed-
back (Guo et al., 2024a), referred to as “Oracle”. In this variant, the reward model in SRLM is
replaced with an external reward model to demonstrate the upper bound performance of SRLM.
Specifically, we use InternLM2 (Cai et al., 2024), a specialized trained reward model, to provide the
reward scores for the generated responses. We further enhance Oracle’s rewarding by leveraging the
labels from downstream tasks to improve the rewarding accuracy.

Implementation Details. In our experiments, we fine-tune the initial model (M0) on the seed SFT
data for 3 epochs with a learning rate of 1e− 6, resulting in model M1. Following SRLM approach,
we then iteratively fine-tune the model using the preference learning objective two additional itera-
tions, producing models M2 and M3. In the preference training of each iteration, we set β = 0.1 of
DPO loss, and fine-tune the model for 1 epoch with a learning rate of 1e− 6.

3.2 MAIN RESULTS

The main results are shown in Table 1 which also report the performance of GPT-4o for reference.
From these results, we observe the following: (1) The Standard SRLM fails to achieve satisfactory
performance, particularly with Llama2 which has relatively weaker foundation performance even
after SFT fine-tuning (M0 → M1), which indicates its limitations for 7B-level LLMs. (2) Compared
to SRLM, CREAM achieves a significant improvement across almost all downstream tasks, showing
the advantage of introducing the proposed regularization method. (3) SRLM equipped with an
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Table 1: Main results of each method on test sets of downstream tasks. The exact match accuracies
are reported. The “↑” and “↓” indicate the performance improvement and degradation compared to
the method’s last iteration (e.g., M1 → M2 and M2 → M3), respectively. The best performance
between SRLMs and CREAM is highlighted in bold.

Model Method Arc-Easy Arc-Challenge OpenBookQA SIQA GSM8K

GPT-4o CoT 94.57 94.71 96.60 79.63 92.27

Llama-3

M0 86.29 80.37 86.00 68.58 78.01
M1 86.78 80.14 86.40 69.50 78.39

Oracle M2 89.60 ↑ 82.17 ↑ 90.00 ↑ 72.88 ↑ 80.82 ↑
Oracle M3 89.31 ↓ 81.31 ↓ 90.20 ↑ 73.75 ↑ 76.04 ↓

SRLM M2 87.79 ↑ 80.38 ↑ 87.80 ↑ 70.95 ↑ 78.01 ↓
SRLM M3 87.17 ↓ 81.23 ↑ 87.30 ↓ 70.37 ↓ 77.48 ↓

CREAM M2 88.89 ↑ 80.89 ↑ 88.00 ↑ 69.79 ↑ 81.04 ↑
CREAM M3 89.52 ↑ 83.36 ↑ 90.20 ↑ 72.06 ↑ 81.73 ↑

Llama-2

M0 61.07 48.98 62.20 50.36 23.65
M1 60.44 48.46 63.20 50.77 23.88

Oracle M2 70.20 ↑ 55.03 ↑ 75.40 ↑ 63.66 ↑ 30.02 ↑
Oracle M3 71.72 ↑ 55.80 ↑ 77.20 ↑ 62.44 ↓ 29.57 ↓

SRLM M2 58.67 ↓ 46.67 ↓ 59.80 ↑ 49.69 ↓ 25.17 ↑
SRLM M3 46.55 ↓ 34.47 ↓ 49.20 ↓ 48.06 ↓ 22.14 ↓

CREAM M2 58.97 ↓ 47.53 ↓ 62.80 ↓ 50.43 ↓ 24.41 ↑
CREAM M3 62.08 ↑ 48.81 ↑ 64.60 ↑ 51.22 ↑ 25.85 ↑

oracle reward model (Oracle) can ensure high rewarding accuracy for annotations of self-generated
preference data, thereby achieving the best performance overall. Notably, for Llama3, CREAM even
outperforms Oracle except on SIQA dataset, showcasing the superior performance of CREAM. This
superiority underlines the success of the proposed method in mitigating the rewarding bias issue. (4)
The consistent performance improvements of CREAM across iterations validate the effectiveness of
the proposed regularization method in mitigating the rewarding bias issue.

3.3 ANALYSIS

3.3.1 ANALYSIS OF REWARDING

Rewarding Consistency. We first examine the consistency of rewards of different methods using
their corresponding models from the last iteration in Table 2. Here, we use the proposed Consistency
Rate C, Kendall correlation coefficient τ , Spearman correlation coefficient, and TopOrder metrics to
measure the consistency, where the TopOrder metric evaluates whether the final paired preference
data remains the same, calculated as follows:

TopOrderj = 1 [argminJj = argminKj ] · 1 [argmaxJj = argmaxKj ] ,

where Jj and Kj are the rankings of the responses provided by current model and the last itera-
tion’s model, respectively. This metric assesses whether both the least preferred and most preferred
responses are consistently ranked across iterations. The results confirm that SRLMs exhibit a re-
warding consistency issue. In contrast, our method CREAM can keep the ranking consistency across
iterations thanks to the explicit regularization in the training.

Table 2: Ranking consistency of CREAM and SRLM on M2
and M3 using Llama3.

Method Iteration Consistency C↑ Kendall τ ↑ Spearman ↑ TopOrder ↑

SRLM M2 0.39 ± 0.21 -0.22 ± 0.41 0.36 ± 0.24 0.03 ± 0.18
CREAM M2 0.73 ± 0.18 0.46 ± 0.35 0.77 ± 0.19 0.19 ± 0.39

SRLM M3 0.46 ± 0.19 -0.08 ± 0.38 0.50 ± 0.22 0.12 ± 0.33
CREAM M3 0.92 ± 0.09 0.84 ± 0.19 0.95 ± 0.07 0.59 ± 0.49

Prompt Rewarding v.s. DPO Re-
warding. As aforementioned, 7B
level LLMs struggle with generating
accurate rewards when using LLM-
as-a-Judge prompting due to their
limited capacity. Both Table 5 and
Figure 3 clearly show that the SRLM
with prompt rewarding is not effective
for smaller LLMs, as the performance
starts to decrease at the first iteration (M1 → M2) when trained on the self-rewarded preference data.
In contrast, the adopted DPO rewarding method can be more suitable for such small LLMs. This is
primarily because DPO rewarding is intrinsically aligned with the model’s learning objective.
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Ranking Accuracy. We present the ranking accuracy in Figure 3 to provide an intuitive comparison
the performance of the rewarding performance across different methods. The results include the
ranking accuracy on self-generated preference data and the RewardBench (Lambert et al.) dataset,
both of which is formulated as a ranking task to predict the preferred one between two responses. We
use the self-generated preference data obtained by self-rewarding with ground truth ranking labels,
for testing the model’s in-domain ranking performance. The RewardBench dataset is used to assess
the generalizability of the models beyond the training domain. CREAM consistently achieves higher
ranking accuracy than baseline methods, which promises more reliable preference data for training.

3.3.2 RELIABILITY OF SELF-CONSISTENCY

Table 3: Comparison of CREAM with oracle re-
ward model and last iteration’s model.

Method Arc-E Arc-C OBQA SIQA GSM8K

Llama3 M1 86.78 80.14 86.40 69.50 78.39
CREAM 88.89 80.89 88.00 69.79 81.04
CREAM + Oracle 88.51 81.06 86.20 72.21 79.91

Llama2 M1 60.44 48.46 63.20 50.77 23.88
CREAM 58.97 47.53 62.80 50.43 24.41
CREAM + Oracle 62.42 48.72 66.00 51.13 22.52

The most straightforward way to enhance the re-
warding and ranking accuracy is by incorporat-
ing external reward models, such as the SRLM
variant “Oracle” used in our experiments. The
theoretical analysis in Eq. (2.8) suggests that we
can mitigate the rewarding bias issue by calcu-
lating the ranking consistency between current
model and other available reward models. How-
ever, it is not always feasible to have access to
such external reward models in practice, such as
the self-rewarding scenario. Thus, we instead propose to use the last iteration’s model as the refer-
ence reward model to measure the consistency of rewards. To test this approach, we fine-tune the
same M1 model using CREAM with two different reference reward models: the rewarding function
of Oracle and ours model from the last iteration. As shown in Table 3, using a strong reward model
as the consistency model can bring better regularization effect, especially for Llama2. However, we
find that the last iteration’s model also provides a reasonably reliable consistency signal for Llama3.

3.3.3 CONSISTENCY MEASUREMENT

Table 4: Performance of CREAM with different
consistency measurements.

Method Arc-E Arc-C OBQA SIQA GSM8K

Spearman M2 86.95 82.00 85.40 70.05 78.77
TopOrder M2 87.25 80.12 86.88 70.83 79.75
Kendall M2 88.89 80.89 88.00 69.79 81.04
Spearman M3 88.76 81.83 90.00 70.98 79.15
TopOrder M3 88.51 80.37 87.40 71.03 79.76
Kendall M3 89.52 83.36 90.20 72.06 81.73

Besides the adopted Kendall τ coefficient, other
metrics can also be used to measure the con-
sistency between two preference ranking lists,
such as Spearman coefficient (Spearman, 1904)
and the aforementioned TopOrder method. We
conduct a comparison experiments of using dif-
ferent consistency measurement methods in Ta-
ble 4. We can observe that: (1) All these mea-
surements are effective with CREAM, indicat-
ing the generalization and applicability of our
regularized training approach. (2) Kendall correlation coefficient generally yields higher scores
across various datasets compared to Spearman and TopOrder methods.

4 CONCLUSION

In this paper, we first formulate a generalized iterative preference fine-tuning framework for self-
rewarding language models (SRLMs), which is also applicable to other iterative preference training
methods. Then, we highlight the rewarding bias that emerges from overconfident preference label-
ing, which is particularly problematic for smaller LLMs, such as those with 7B parameters. This
rewarding bias results in the accumulation of noisy and unreliable preference data, harming the pref-
erence training and hindering alignment performance of LLMs. To address this issue, we proposed
the Consistency Regularized sElf-Rewarding lAnguage Model (CREAM), which leverages the con-
sistency of rewards across different iterations as a regularization signal. This approach allows the
model to learn more selectively, emphasizing reliable preference data and avoiding overconfidence
in preference labeling. Our experimental results on various natural language benchmarks demon-
strate the effectiveness of the proposed method in mitigating the rewarding bias issue and improving
the performance of SRLMs. We believe that these findings can provide valuable insights for future
research on self-improvement methods of LLM alignment.
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dre Ramé, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct
language model alignment from online AI feedback. CoRR, abs/2402.04792, 2024a.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
online ai feedback. arXiv preprint arXiv:2402.04792, 2024b.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM Comput.
Surv., 55:248:1–248:38, 2023.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.
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A RELATED WORKS

This paper mainly focuses on mitigating the rewarding bias issue in self-rewarding language models
(SRLMs) (Yuan et al., 2024), which is a type of self-improvement method for LLM alignment. In
this section, we introduce the progresses in LLM alignment and discuss the SRLMs in detail.

LLM Alignment. Alignment lies at the core of LLM research and applications, aiming to ensure
that LLMs adhere to human values and preferences. RLHF established the foundational alignment
training paradigm (Leike et al., 2018; Ziegler et al., 2019; Ouyang et al., 2022a), where it lever-
ages human preference feedback to train a reward model, and then use this reward model to guide
the LLM via reinforcement learning algorithms (Schulman et al., 2017). Recent efforts have been
made to develop direct alignment methods (Rafailov et al., 2023; Dong et al., 2023; Azar et al.,
2023; Ethayarajh et al., 2024; Meng et al., 2024; Hong et al., 2024), in order to reduce the costs and
complexity of RLHF and make it more efficient and accessible. Representatively, DPO (Rafailov
et al., 2023) as a representative direct alignment method, optimizes the LLM with annotated pref-
erence pairs, eliminating the need of training an additional reward model. However, most RLHF
and direct alignment methods heavily rely on human-annotated preference data, where the data col-
lection commonly involves human to distinguish the “good” responses from the “bad” ones, which
is time-consuming and labor-intensive (Ouyang et al., 2022a; Bai et al., 2022). Thus, synthesizing
preference data with minimal human efforts has become a valuable research direction.

Self-Rewarding Language Model. SRLM (Yuan et al., 2024) has emerged as a promising approach
to address the challenge of preference data synthesis in a self-improvement manner. This method
leverages the LLM itself to act as both the policy model and the reward model. The policy model
can generate response candidates for unlabeled prompts, while the reward model uses LLM-as-A-
Judge (Zheng et al., 2023; Bai et al., 2023; Dubois et al., 2024) prompting to reward and rank these
responses based on their quality. The ranked responses are then used as preference pairs to train
the LLM via DPO (Rafailov et al., 2023). And this process can be iteratively repeated to improve
the alignment performance without human intervention. However, having the same LLM serve as
both the policy and reward model, without any regularization, presents challenges in guaranteeing
accurate rewards. This can lead to accumulated bias and noisy preference data, which ultimately
harms the training. Other similar self-improvement methods (Huang et al., 2022; Zelikman et al.,
2022; Chen et al., 2024; Guo et al., 2024b; Zhou et al., 2024) often either use the ground truth
response to avoid annotation bias, or introduce an additional reward model to reduce the noise in
annotations. In contrast, our work neither requires labeled data nor relies on external LLMs. Instead,
we propose to use the consistency of rewards to mitigate the rewarding bias in SRLMs.

Consistency Regularized TrainingSampling Self Rewarding

Consistency Estimation

... ...
Next IterationLast Iteration

Figure 2: The flow of CREAM. In the response sampling stage, the policy model πθt
generates N

responses. After that, CREAM uses the reward model Rθt−1
from the previous iteration to reward

and rank these responses. Then, the rankings are compared with those generated by current reward
model Rθt

to estimate the consistency rate. Finally, the policy model πθt
is fine-tuned with consis-

tency regularized preference training objective, resulting in the model πθt+1
for next iteration.
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Table 5: Results for SRLM with prompt rewarding method using Llama3. The dataset names are
abbreviated.

Dataset M1 M2 M3

Arc-E 86.78 84.64↓ 83.75↓
Arc-C 80.14 76.79↓ 76.28↓
OBQA 86.40 80.40↓ 80.20↓
SIQA 69.50 67.81↓ 66.63↓
GSM8K 78.39 78.47↑ 78.99↑

Figure 3: Ranking accuracy on RewardBench (left) and self-generated preference data (right). P-
SRLM is SRLM with prompt rewarding.

B PROOF OF THE THEOREMS AND LEMMAS

B.1 PROOF OF THEOREM 2.1

Proof of Theorem 2.1. We denote iteration of the two-step algorithm as t. The algorithm starts from
(θt, zt), and obtains zt+1 = zθt

according to Eq. (2.3) in the preference-labeling step and then
obtains θt+1 through the learning step. Since zt+1 = argminz LDPO(θt;y,y

′,x, z) for any y,y′,x
according to Eq. (2.3), we have that

L(θt, zt+1) ≤ L(θt, zt). (B.1)

And the learning step suggests that θt+1 = argminθ L(θ, zt+1), yielding that

L(θt+1, zt+1) ≤ L(θt, zt+1). (B.2)

Connecting Eq. (B.1) with Eq. (B.2) yields that the loss function L(θ, z) is monotonically decreas-
ing, i.e.

· · · ≤ L(θt+1, zt+1) ≤ L(θt, zt+1) ≤ L(θt, zt) ≤ · · · . (B.3)

Since L(θ, z) is upper bounded by 0, it suggests that the sequence of L(θt, zt) will converge w.r.t.
the growth of t.
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B.2 PROOF OF LEMMA 2.2

Proof of Lemma 2.2. We start by expanding Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) as

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = Ey,y′∼πθt (·|x) [logPθ(z = 1) + logPθ(z = 0)]

= Ey,y′∼πθt (·|x),y≺y′ [logPθ(z = 1) + logPθ(z = 0)]

+ Ey,y′∼πθt (·|x),y⪰y′ [logPθ(z = 1) + logPθ(z = 0)]

= Ey,y′∼πθt (·|x)Pθt
(z = 0) [logPθ(z = 1) + logPθ(z = 0)]

+ Ey,y′∼πθt (·|x)Pθt(z = 1) [logPθ(z = 1) + logPθ(z = 0)] ,

(B.4)
where the second equation decompose the expectation Ey,y′∼πθt (·|x) into two expectation
Ey,y′∼πθt (·|x) + Ey,y′∼πθt (·|x), the third equation extract the event y ≥ y′ as distribution Pθt

(z).
Then Eq. (B.4) can be further written by

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = Pθt

(z = 1) [logPθ(z = 1) + logPθ(z = 0)]

+ Pθt(z = 0) [logPθ(z = 1) + logPθ(z = 0)] , (B.5)
since both y,y′ are generated from πθt

(·|x), Pθt
(z = 0) = Pθt

(z = 1) = 0.5. Thus Eq. (B.5)
becomes

Ey,y′∼πθt (·|x)Lreg(θ;y,y
′,x) = 2KL(Pθ(z) ∥ Pθt

(z)) = 2KL(Pθ(z) ∥ u(z)), (B.6)
where u(z) is the uniform binary distribution with u(z = 0) = u(z = 1) = 0.5.

B.3 PROOF THEOREM 2.3

Proof of Theorem 2.3. We start by writing down each components in L(θ, z) defined in Eq. (2.1) by
L(θ, z) = LSFT(θ;DS) + Ex∼D′;y,y′∼πθt

(·|x)[LDPO(θ;y,y
′,x, z) + λLReg(θ;y,y

′,x)]

= LSFT(θ;DS)

+ Ex∼D′;y,y′∼πθt
(·|x)

[
−z(y,y′,x) log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−(1− z(y,y′,x)) log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))
−λ log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−λ log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))]
= LSFT(θ;DS)

+ Ex∼D′;y,y′∼πθt
(·|x)

[
−(λ+ z(y,y′,x)) log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−(1 + λ− z(y,y′,x)) log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))]
where the third equation absorbs the regularization into the DPO loss. Noticing that λ+z(y,y′,x)+
(1 + λ− z(y,y′,x)) = 1 + 2λ, by dividing (1 + 2λ) we have
L(θ, z)
1 + 2λ

=
LSFT(θ;DSFT)

1 + 2λ

+ Ex∼D′;y,y′∼πθt
(·|x)

[
−λ+ z(y,y′,x)

1 + 2λ
log σ

(
log

(
πθ(y|x)
πref(y|x)

)
− log

(
πθ(y

′|x)
πref(y′|x)

))
−1 + λ− z(y,y′,x)

1 + 2λ
log σ

(
log

(
πθ(y

′|x)
πref(y′|x)

)
− log

(
πθ(y|x)
πref(y|x)

))]
.

When z(y,y′x) = 1, (λ+z(y,y′,x))/(1+2λ) = 1−λ/(1+2λ) and (1+λ−z(y,y′,x))(1+2λ) =
λ/(1 + 2λ). Therefore, letting Cλ = λ/(1 + 2λ) yields that

L(θ, z)
1 + 2λ

=
LSFT(θ;DSFT)

1 + 2λ

+ Ex∼D′;y,y′∼πθt (·|x)[(1− Cλ)LDPO(θ;y,y
′,x, z) + CλLDPO(θ;y,y

′,x, 1− z)],
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which completes the proof since minimizing L(θ, z)/(1+λ) is equivalent with minimizing L(θ, z)
itself.

B.4 PROOF OF LEMMA 2.4

Proof of Lemma 2.4. To begin with, according to the ranking of Jij , the sufficient and necessary
condition for Jij − Ji′j > 0 is that rij < ri′j . Similarly, the sufficient and necessary condition for
Kij > Ki′j is that r′ij < r′i′j . As a result, the indicator becomes

1[(Jij − Ji′j)(Kij −Ki′j) > 0] = 1[(rij − ri′j)(r
′
ij − r′i′j) > 0] (B.7)

1[(Jij − Ji′j)(Kij −Ki′j) < 0] = 1[(rij − rij′)(r
′
ij − r′i′j) < 0]. (B.8)

Since rij > ri′j yields yij ≻ yi′j under the input prompt xbj and language model θt, Eq. (B.7)
becomes

1[(Jij − Ji′j)(Kij −Ki′j) > 0] = 1[rij > ri′j ]1[r
′
ij > r′i′j ] + 1[rij < ri′j ]1[r

′
ij < r′i′j ]

= 1[yij ≻ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]

+ 1[yij ≺ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]. (B.9)

As a result, since yij are i.i.d. given xj , the expectation of first part of the Kendall’s Tau coefficient
is

E[1[(Jij − Ji′j)(Kij −Ki′j) > 0]]− E[1[(Jij − Ji′j)(Kij −Ki′j) < 0]]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]]

+ Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]]

− Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]]

− Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt](1[yij ≻ yi′j |xj ,θt−1]− 1[yij ≺ yi′j |xj ,θt−1])]

+ Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt](1[yij ≺ yi′j |xj ,θt−1]− 1[yij ≻ yi′j |xj ,θt−1])]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt](1− 21[yij ≺ yi′j |xj ,θt−1])]

− Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt](1− 21[yij ≺ yi′j |xj ,θt−1])]

= Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]− 1[yij ≺ yi′j |xj ,θt]]

+ 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt−1](1[yij ≺ yi′j |xj ,θt]− 1[yij ≻ yi′j |xj ,θt])]

= 0 + 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt−1](1− 21[yij ≻ yi′j |xj ,θt])] (B.10)

where the second equation merge the terms together, and the third equation is due to the fact 1[yij ≺
yi′j ] + 1[yij ≻ yi′j ] = 1, the forth equation reorganize the term and the fifth equation is due to
the fact that Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt] − 1[yij ≺ yi′j |xj ,θt]] = 0 due to symmetry.
Similarly by reversing the ≺ and ≻, we can write Eq. (B.10) by

E[1[(Jij − Ji′j)(Kij −Ki′j) > 0]]− E[1[(Jij − Ji′j)(Kij −Ki′j) < 0]]

= 0 + 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt−1](1− 21[yij ≺ yi′j |xj ,θt])]. (B.11)

Adding Eq. (B.10) and Eq. (B.11) together yields

2E[1[(Jij − Ji′j)(Kij −Ki′j) > 0]]− E[1[(Jij − Ji′j)(Kij −Ki′j) < 0]]

= 2Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt−1] + 1[yij ≺ yi′j |xj ,θt−1]]

− 4Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]]

− 4Eyij ,yi′j∼πθt (·|xj)[1[yij ≺ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]]

= 2− 8Eyij ,yi′j∼πθt (·|xj)[1[yij ≻ yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1]], (B.12)

where the final equation is because E[1[yij ≺ yi′j |xj ,θt]1[yij ≻ yi′j |xj ,θt−1]] = E[1[yij ≻
yi′j |xj ,θt]1[yij ≺ yi′j |xj ,θt−1] due to symmetry. Divide Eq. (B.12) by 2 yields the claimed
result.
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