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Abstract

Optical flow estimation has achieved promising results in conventional scenes
but faces challenges in high-speed and low-light scenes, which suffer from mo-
tion blur and insufficient illumination. These conditions lead to weakened tex-
ture and amplified noise and deteriorate the appearance saturation and boundary
completeness of frame cameras, which are necessary for motion feature match-
ing. In degraded scenes, the frame camera provides dense appearance saturation
but sparse boundary completeness due to its long imaging time and low dynamic
range. In contrast, the event camera offers sparse appearance saturation, while its
short imaging time and high dynamic range gives rise to dense boundary complete-
ness. Traditionally, existing methods utilize feature fusion or domain adaptation
to introduce event to improve boundary completeness. However, the appearance
features are still deteriorated, which severely affects the mostly adopted discrimi-
native models that learn the mapping from visual features to motion fields and gen-
erative models that generate motion fields based on given visual features. So we
introduce diffusion models that learn the mapping from noising flow to clear flow,
which is not affected by the deteriorated visual features. Therefore, we propose
a novel optical flow estimation framework Diff-ABFlow based on diffusion mod-
els with frame-event appearance-boundary fusion. Inspired by the appearance-
boundary complementarity of frame and event, we propose an Attention-Guided
Appearance-Boundary Fusion module to fuse frame and event. Based on diffu-
sion models, we propose a Multi-Condition Iterative Denoising Decoder. Our
proposed method can effectively utilize the respective advantages of frame and
event, and shows great robustness to degraded input. In addition, we propose a
dual-modal optical flow dataset for generalization experiments. Extensive experi-
ments have verified the superiority of our proposed method. The code is released
athttps://github.com/Haonan-Wang-aurora/Diff-ABFlow.

1 Introduction

Optical flow estimation is a visual task that models pixel-wise displacements between adjacent
frames. Existing methods [11, 17, 28] focus on conventional scenes, while challenging degraded
scenes such as high-speed and low-light scenes remain to be further explored. The motion blur
of high-speed scenes and the insufficient illumination of low-light scenes both lead to weakened
texture and amplified noise. These degradations severely deteriorate visual features and violate the
photometric consistency assumption, which further brings about invalid motion feature matching.
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Figure 1: Illustration of problem and idea. Motion blur in high-speed scenes and insufficient
illumination in low-light scenes reduce the boundary completeness of frame images, resulting in un-
clear boundary in optical flow. In this work, we explore the appearance-boundary complementarity
of frame and event to guide the fusion of these two modalities. In addition, we introduce diffusion
models to reconstruct the paradigm of optical flow estimation as a denoising process from noisy
optical flow to clear optical flow conditioned on fused visual features.

Typically, existing methods adopt either uni-modal visual enhancement or dual-modal motion fusion
to deal with high-speed and low-light conditions [8, 33, 38, 41]. The former, including deblurring
and low-light enhancement improves the apparent visual effect, but the inner features remain deteri-
orated, contributing nothing to the photometric constancy assumption and motion feature matching.
The latter utilizes event cameras to improve boundary completeness while the appearance features
are still degraded and unqualified for motion feature matching. Specifically, appearance saturation
refers to the abundance of appearance texture information within a visual modality. It reflects the de-
gree of spatial variation in pixel intensity caused by fine-grained textures, shading, and color details.
Boundary completeness denotes the continuity and integrity of object boundaries within a modality.
It evaluates how well the modality captures clear, coherent, and complete boundary structures.

To solve these problems, we mainly explore in two aspects: sensors that can improve visual features
and models that are robust to degraded input features. As shown in Fig. 1, on the one hand, we
utilize the appearance-boundary complementarity of frame and event to obtain better visual features.
The frame camera captures appearance with dense saturation, but due to its long imaging time and
low dynamic range, the boundary captured under high-speed and low-light conditions shows sparse
completeness. Thus, we introduce the event camera, a neuromorphic visual sensor [4], which offers
dense boundary completeness because of its short imaging time and high dynamic range, despite
its sparse appearance saturation. The appearance-boundary complementarity enables us to estimate
optical flow with saturated appearance and complete boundary. On the other hand, we utilize the
paradigm of diffusion models to adapt to degraded input features. Discriminative and generative
models both rely on high-quality visual feature input. The former learns the mapping from visual
features to motion fields, and the latter learns the process of generating motion fields based on given
visual features. Both are severely affected by the degradation of visual features. Different from
those two, the paradigm proposed by DDPM [9] models the denoising process from noisy data to
clear data. We apply it to optical flow estimation and learn the mapping from noisy optical flow to
clear optical flow, which demonstrates strong robustness to the degradation of visual features.



Based on these motivations, we propose Diff-ABFlow, a novel diffusion-based optical flow esti-
mation framework guided by frame and event modalities. To exploit the appearance-boundary
complementarity of frame and event, we propose an Attention-based Appearance-Boundary Fu-
sion (Attention-ABF) module, which effectively combines the appearance feature of the frame
and the boundary feature of the event to obtain fusion features with saturated appearance and
complete boundary. Based on diffusion models, we propose a Multi-Condition Iterative Denois-
ing Decoder (MC-IDD) as the optical flow backbone, including a Time-Visual-Motion Multi-way
Cross-Attention (TVM-MCA) module and a Memory-GRU Denoising Decoder (MGDD) module.
TVM-MCA integrates the fused visual feature, motion feature and temporal embedding to obtain
the comprehensive feature including information from three aspects. MGDD is an optical flow infer-
ence module that combines the denoising paradigm proposed by DDIM and the iterative refinement
method in optical flow estimation, which retains the generalization and robustness of diffusion mod-
els while improving efficiency. In summary, our contributions are as follows:

* We propose a novel framework, Diff-ABFlow, which leverages diffusion models with a
frameevent complementary fusion strategy for accurate optical flow estimation in high-speed and
low-light scenes. To the best of our knowledge, this is the first work that utilizes dual-modal data
input to guide diffusion models for optical flow estimation.

* We propose the Attention-ABF module. Attention-ABF effectively utilizes the appearance-
boundary complementarity of frame cameras and event cameras to obtain fusion features with
high-quality appearance and boundary information.

* We propose the MC-IDD module. MC-IDD is an innovative optical flow backbone based on the
DDIM paradigm and improved for optical flow estimation tasks, which combines visual features,
motion features, and temporal embeddings to guide the denoising process.

* We conduct extensive experiments on both synthetic and real-world datasets to comprehensively
demonstrate that our proposed Diff-ABFlow achieves state-of-the-art performance in optical flow
estimation under high-speed and low-light conditions.

2 Related Work

Optical Flow Estimation. Optical flow estimation methods have developed rapidly with the ad-
vancement of deep neural networks. Earlier optical flow methods used a simple U-Net structure
[3, 12]. Subsequent research gradually integrated modules such as feature pyramid and cost volume
into optical flow estimation [23, 28, 35]. In addition, powerful techniques such as GRU [14, 29]
and Transformer [1 1, 25, 34, 37] have been incorporated as the backbone for optical flow estimation.
However, these frame-based methods often suffer from the motion blur in high-speed scenes and in-
sufficient illumination in low-light scenes. In contrast, the event camera with short imaging time and
high dynamic range captures high-quality visual signals especially in boundary areas. Event-based
approaches [5, 7, 16, 21, 42] mainly follow the frame-based framework and reconstruct the event
stream into event frame as input. In this work, we utilize the appearance-boundary complementarity
of frame and event to obtain better visual features for optical flow estimation in degraded scenes.

Degraded Scenes Optical Flow. To deal with the motion blur of high-speed scenes and the insuf-
ficient illumination of low-light scenes, some researches directly perform visual enhancement such
as deblurring and low-light enhancement. However, visual enhancement destroys the visual features
and leads to invalid motion feature matching. Besides, a few methods use techniques such as feature
fusion [8, 33] and domain adaptation [38, 39, 40, 41] to introduce event cameras to improve visual
features. These approaches can indeed utilize event cameras to improve boundary completeness, but
the appearance features provided by frame cameras are still degraded and unqualified for motion
feature matching. The degradation of features severely affects discriminative models, which map
from visual features to motion fields, and generative models, which generate motion fields given
visual features. Therefore, we introduce diffusion models to reconstruct the optical flow estimation
paradigm and reduce the impact of input visual feature degradation.

Diffusion Model. Diffusion models were originally proposed for image generation [9]. In con-
trast to previous discriminative and generative models, they model the denoising process from noisy
samples to clear samples. The paradigm of diffusion models has been widely used in various fields
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Figure 2: Overall framework of Diff-ABFlow. Diff-ABFlow mainly contains two parts: Attention-
ABF for feature fusion and MC-IDD for denoising. In Attention-ABF, we utilize the appearance-
boundary complementarity to fuse frame and event. In MC-IDD, we first integrate time embedding,
visual feature and motion feature in the TVM-MCA module based on multi-way cross-attention
mechanism. Then in MGDD, we input the comprehensive feature and the optical flow of the current
time step into multiple GRUs with memory slots for iterative denoising. We repeatedly run MC-IDD
a certain number of times on the noisy optical flow to obtain the clear optical flow.

of computer vision, such as semantic segmentation [1, 22, 30, 31, 36], depth estimation [15], tra-
jectory prediction [13, 18]. The paradigm of these tasks has been reconstructed into the denoising
process from noisy information to clear information with visual conditions. The practice in these
fields has confirmed the strong robustness and generalization of diffusion models. Previous work
has used diffusion models for optical flow estimation [17, 24], which reconstructed the task into a
denoising process from noisy optical flow field to clear optical flow field, and achieved promising
results. Therefore, we combine the appearance-boundary complementarity of frame and event, and
the paradigm of diffusion models to propose a novel optical flow estimation framework that achieves
state-of-the-art performance with strong generalization and robustness in degraded scenes.

3 Our Diff-ABFlow

3.1 Overall Framework

We propose a framework based on diffusion models with frame-event appearance-boundary fusion,
which reformulates optical flow estimation as a denoising process from noisy flow to clear flow
conditioned on frame and event. As shown in Fig. 2, the whole framework can be divided into two
parts, one for feature fusion, and the other for iterative denoising based on multi-condition inputs.
Based on the image pair and event stream, we extract the frame feature x; and event feature z,
respectively, and input them into the Attention-ABF module to obtain the fused feature x fysion,
which is then used to construct a 4D cost volume z.,. The time step ¢ is encoded into the time
embedding e; through Sinusoidal Embedding [32] and MLP, and is then input into the TVM-MCA
module together with the fused visual feature « f,,;0r, and motion feature ., to obtain the enhanced
feature x 7y pr, which is finally input into the MGDD module together with the current optical flow
fi for iterative denoising. The MC-IDD module is repeatedly executed to obtain a clear optical flow.

3.2 Attention-Guided Appearance-Boundary Fusion Module

To verify the appearance-boundary complementarity of frame and event, we design an analysis
experiment to study the complementarity between frame and event at the feature level. We use the
Sobel operator to extract the boundary of frame and event respectively and use K-means clustering
to analyze the distribution of appearance and boundary features of frame and event. As shown in
Fig. 3, the frame provides dense appearance saturation and sparse boundary completeness, while the
event is the opposite. This verifies the appearance-boundary complementarity of frame and event,
which motivates us to design the Attention-Guided Appearance-Boundary Fusion Module.

In the Attention-ABF module, for the input frame features =y and event features x., we first utilize
appearance and boundary extractors to obtain appearance and boundary representations: [ ¢4, Z 1)
and [Zq, Tep). Then we obtain features with dense appearance saturation ,ppeqr and features with
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Figure 3: Appearance-boundary feature distribution of frame and event in high-speed and low-
light scenes. We use K-means clustering to analyze the distribution of appearance and boundary
features from frame and event features. The frame image has dense appearance saturation but sparse
boundary completeness due to the motion blur of high-speed scenes and the insufficient illumination
of low-light scenes. On the contrary, the event stream provides complete boundary in such degraded
scenes while its appearance saturation is sparse. This motivates us to design a feature fusion module
to fuse the two modalities utilizing the appearance-boundary complementarity.

dense boundary completeness Tpoqnq based on two cross-attention modules:
Zappear = CAtten (T 4, Tea), Toound = CAtten(x sy, Tep). (D

Subsequently, we utilize the self-attention mechanism to fuse appearance and boundary information
from two features: & fysion = SAtten(Tappear; Toound)-

3.3 Multi-Condition Iterative Denoising Decoder

To intuitively demonstrate the superiority of diffusion models with deteriorated input features, we
select a Transformer-based discriminative method and a GAN-based generative method to study the
robustness to degraded inputs. Given degraded visual inputs, we utilize t-SNE to analyze the visual
features and corresponding motion labels from three models. As shown in Fig. 4, both discriminative
models and generative models have a certain degree of deviation when accepting degraded inputs,
while the denoising process of diffusion models is almost unaffected, which motivates us to design
an optical flow estimation backbone based on diffusion models, called MC-IDD.

MC-IDD utilizes the fused visual feature x f,,5;0n, motion feature z., and time embedding e; as con-
ditions to denoise the optical flow field f; at the current time step. MC-IDD includes two main parts,
where TVM-MCA is used to integrate three conditions to obtain the feature x7y s that contains
temporal, visual, and motion information, while MGDD uses the comprehensive feature x7y ps to
guide the denoising process based on GRU with memory slot.

Time-Visual-Motion Multi-Way Cross-Attention Module. The TVM-MCA module mainly
uses two-way cross attention and gated fusion to effectively fuse time, vision, and motion features.
Based on time embedding, we split it into visual query vector (), and motion query vector Q,,,
each of which is fused with the visual features and motion features using cross-attention, to obtain
time-visual attention features A, and time-motion attention features A,,,:

T T
Qi/g” ) Vi, A = Softmazx (Qm\/gm) Vins )

where K, V, and K,,,V,, are obtained by flattening the visual feature 40, and the motion
feature x.,, and projecting them through linear layers, respectively. d denotes the number of feature
dimensions. Then we utilize the learnable MLP to calculate the weights g of the two attention
features and perform weighted fusion to obtain x 7y zr:

rrvm =g A+ (1—g) - Am, €))

A, = Softmax <

which will be used to guide optical flow denoising later.

Memory-GRU Denoising Decoder Based on the paradigm of diffusion models, we first perform
a forward diffusion process on the ground truth to obtain noisy optical flow, which gradually adds



Discriminative models Generative models Diffusion models

o®

,‘Jé\/lisclassiﬁcation

. J
@®

T4

]

>

\
X

Figure 4: t-SNE of visual features and corresponding motion labels from three different models.
Obviously, when inputting degraded features into those models, there exist misclassifications in
discriminative models and missamplings in traditional generative models, while diffusion models
demonstrate strong robustness to degraded inputs. This motivates us to introduce the paradigm of
diffusion models and design a denoising decoding module for optical flow estimation.

Gaussian noise to the flow 7" times using a Markovian chain. The process is formulated as:
Q(ft | fo) :N(ft | \/dtfo,(l—&t)I) 5 te {0,1,...,7"}7 (4)
where fj indicates the ground truth of optical flow and f; denotes the noisy flow. @; is defined as

ar = [I'_pas = [15_o(1 — Bs), where f3; is the pre-defined noise variance schedule, indicating
the degree of Gaussian noise applied at each step.

When it comes to the reverse denoising process, our proposed MGDD module utilizes Gated Recur-
rent Unit (GRU) with a memory slot to iteratively denoise the optical flow f;. First, x7y s and the
stored memory are jointly input into GRU as conditions and are encoded into latent features together
with the optical flow. The latent features are then used to update the memory slot and input into the
flow head to obtain the coarse flow prediction f5'. The memory slot is used to store hidden features
in the current iteration, which helps retain feature details at each noise level. Then we follow the
DDIM [26] paradigm to calculate the denoised optical flow as Eq. 5. After N iterations, the optical
flow f;_; of the next time step is obtained as:

N ~
fi1 = o_ify + /1 — 16, @)
- . . . P e TS . .
where €; denotes the predicted noise at time step ¢: €; = e For the noisy optical flow fr,
— &t

we run the MGDD module K times to obtain the denoising sequence {fr, fr_1,,fr_x}.

3.4 Optimization

For each prediction of optical flow in the denoising sequence {fr, f7_1,, fr_k }, we introduce three
loss functions to supervise the learning of the network. To supervise the optical flow prediction with

the ground-truth data, we adopt an L1 loss between the predicted flow f and the ground-truth flow
fy, which is formulated as:
‘Cflow = ||f0 - f”v (6)

which directly minimizes the endpoint displacement error. Then we utilize the frame to add a
smoothness loss with a boundary-aware term, which encourages the predicted optical flow to be
spatially smooth while preserving the boundary of optical flow:

Lsmooth = Z (’sz(l', y)‘ el Val(@y)l + ‘Vyf(x7y)‘ . e_“|vy1(937y)|> (7)
x,Y

where I(x,y) denotes the first input frame and « is the weight of boundary-aware term. Finally we
utilize event data F;(z, y) to introduce an event consistency loss, which encourages the consistency
between flow and event thus improving the accuracy of optical flow in the boundary area:

£event = Z ||Et(x,y) - Et-&-l(x + fu(x’y)7y + fv(%y))n (8)
z,Y



Table 1: Quantitative results on synthetic and real datasets, where VE denotes Visual Enhancement.

Discriminative model Generative model
Method GMA [14] FF [25]E-RAFT [7] BFlow [8] ABDA-Flow [38]FD [17]  Ours
w/o VEW/.VE - - w/0 VE w/.VE - - -
Input Frame Frame Event  Frame-event Frame-event Frame Frame-event
HS-KITTI EPE| 171 1.73 0.69 249 0.55 0.53 1.02 0.62 0.46
Fl-all | 11.44 12.08 2.18 16.99 1.90 1.81 3.27 1.94 1.12
LL-KITTI EPE| 198 183 0.71 3.08 0.68 0.69 0.64 0.67 0.59
Fl-all | 12.36 11.76 2.85 19.21 254 2.53 2.46 243 2.23
HS-DSEC EPE| 221 225 1.61 2.72 1.15 1.25 1.85 1.17 1.09
Fl-all | 9.65 1045 7.32 13.87 4.13 493 10.43 4.78 3.83
LL-DSEC EPE| 243 241 1.70 3.49 1.73 1.76 1.62 1.69 1.50
Fl-all | 12.78 12.02 9.65 18.56 6.48 6.97 5.69 6.03 4.39
el
i B B 0 i
2

.- - ; =
B

=
=y
o
z
5
—

(a) Frames (c) FlowFormer++ (d) BFlow (e) FlowDiffuser (e) Ours

Figure 5: Visualization results on real high-speed and nighttime images of HS-DSEC and LL-DSEC.

where f, (x,) and f, (z, y) respectively denotes the horizontal and vertical components of the flow.
In summary, the total loss function is formulated as:

L= »Cflow + )\smooth . ['smooth + )\euent ! »Ceventa (9)
where Agmooth and Aeyent are the weights for corresponding losses.

4 Experiments

4.1 Experiment Setup

Dataset We conducted extensive experiments on both synthetic and real datasets. The synthetic
datasets, HS-KITTI and LL-KITTI, are derived from the KITTI2015 dataset [20] by applying mo-
tion blur and low-light processing, respectively, where the v2e model [10] is used to generate corre-
sponding event streams. The real datasets include HS-DSEC, obtained by applying motion blur to
the DSEC dataset [6], and LL-DSEC, which consists of nighttime segments from the original DSEC
dataset. In addition, we propose a High-Speed Frame-Event Flow Dataset (HS-FEFD) and a Low-
Light Frame-Event Flow Dataset (LL-FEFD), which are collected by our custom-built frame-event
co-optical axis imaging device in various scenes. Note that our proposed datasets are intended for
generalization evaluation and are not used for training.

Implementation Details For model parameters, we set the diffusion step number 7" as 50 for
forward diffusion following DDIM [26], the iterative decoding number N in the MGDD module as 6,
and the denoising step number K as 4 for reverse denoising. During the training phase, we first pre-
train the model on AutoFlow [27], FlyingChairs [3], FlyingThings [19], and MPI-Sintel [2]. Then
we fine-tune it on the training sets of HS-KITTI, LL-KITTI, HS-DSEC, and LL-DSEC respectively.
Finally, we conduct comparison and generalization experiments with the trained models on these
datasets. All training and evaluation are performed on a single RTX 3090 GPU.



Table 2: Quantitative results on the proposed unseen HS-FEFD and LL-FEFD datasets.

Discriminative model Generative model

Method GMA [14] FF [25] E-RAFT [7] BFlow [8] ABDA-Flow [38]FD [17]  Ours
Input Frame Frame  Event Frame-event Frame-event Frame Frame-event
HS-FEED EPE| 899 7.82 16.85 6.18 8.35 6.72 4.69
Fl-all | 58.11 57.24 72.35 45.84 57.96 49.51 28.77
LL-FEFD EPE| 11.07 9.41 15.79 7.53 6.90 7.45 5.23
Fl-all | 65.82  59.36 75.89 55.73 43.31 52.04 31.49
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Figure 6: Visualization results on the proposed unseen HS-FEFD and LL-FEFD datasets.

Comparison Methods We select multiple methods with different input settings and paradigms
for comparison. For methods based on frame, we choose GMA [14] and FlowFormer++ (FF) [25]
that use discriminative models and FlowDiffuser (FD) [17] that uses generative models. For meth-
ods based on event, we choose E-RAFT [7] and for methods based on frame-event, BFlow [&] is
chosen. These methods all use the same training process as ours to ensure fairness. In addition,
we add deblurring and low-light enhancement to some of these methods to test the impact of visual
enhancement methods on optical flow estimation. For evaluation, we choose End-Point-Error (EPE)
and the percentage of erroneous pixels (Fl-all) as metrics for quantitative evaluation.

4.2 Comparison Experiments

Comparison on Synthetic Datasets. In Table 1, we list the evaluation metrics of the proposed
method and all the comparison methods on synthetic datasets. Obviously, our proposed method
significantly outperforms all competing methods with different input data and different paradigms.
In addition, the visual enhancement method does not significantly improve the metrics of optical
flow estimation, and sometimes even makes the results worse.

Comparison on Real Datasets. In Table 1 and Fig. 5, we compare the proposed method with
competing methods in real high-speed and nighttime scenes. First, we can conclude that the method
with frame-event input performs much better than those with only frame or event input, which con-
firms that the complementarity of frame and event is beneficial for optical flow estimation. Second,
for the methods with the same frame input, the method using diffusion models is significantly bet-
ter than those using discriminative models, which verifies the excellent performance of diffusion
models. Finally, the metrics and the visualization results have demonstrated the superiority of our
proposed method based on diffusion models with frame-event complementarity fusion.

Generalization for Unseen Datasets. In Fig. 6, we compare the generalization on our proposed
datasets. Under unseen real high-speed and low-light conditions, the discriminative method with
frame input fails to estimate optical flow while the frame-event method performs slightly better. The
generative method performs well overall, but the blurry boundary still exist. On the contrary, our
proposed method works well for both appearance and boundary, reflecting strong generalization.

4.3 Ablation Study

Effectiveness of Input Modality. In Table 3, we conduct an ablation study on the input modalities.
Obviously, utilizing the complementarity of frame and event data significantly improves the accuracy



Table 3: Ablation study on modalities. ~ Table 4: Discussion on fusion strategies. Table 5: Discussion on flow estimation backbones.

Modality EPE | Fl-all | Fusion Strategy EPE | Fl-all | Flow Backbone EPE | Fl-all |
Frame 0.58 1.93 w/ Concatenating 0.57 1.84 Discriminative ~ FlowFormer 0.59 1.89
Event 0.65 2.13 w/ Weighting 0.55 1.79 . GAN 0.65 297

Generative
Frame+Event 0.46 1.12 w/ Attention Guided  0.46 1.12 Diffusion Models 0.46 1.12
Table 6: Ablation experiments on proposed modules. Table 7: Discussion on diffusion settings.
Attention-ABF TVM-MCA Memory Slot EPE | Fl-all | Method EPE | Fl-all | Inference Time/ms .
X X X 093 4.73 U-Net 0.63 275 97.5
X v X 0.65 2.59 Diffusion Module Conditional-RDD 0.57 1.74 63.2
X X v 0.78 3.87 MGDD 046 1.12 64.6
X v v 0.59  2.09 1 0.61 2.05 37.5
v X X 0.73 298 2 052 161 46.4
v v X 0.54 1.63 Denoising Steps K 3 049 135 55.6
v X v 0.61 2.07 4 046 1.12 64.6
v v v 046 1.12 5 046 1.13 73.9

of the flow estimation results, achieving much better performance than using a single modality alone.
This demonstrates that the two modalities provide mutually beneficial information and lead to more
robust and precise flow estimation under challenging scenes.

Influence of Proposed Modules. In Table 6, we conduct ablation experiments on the proposed
modules to reveal the effects of each module. The frame-event fusion module Attention-ABF plays
the most important role in improving the results and TVM-MCA follows closely behind. The mem-
ory slot of GRU also makes a positive contribution.

4.4 Discussion

How does Feature Fusion Module work? In Fig. 7, in order to reveal the role of the feature
fusion module Attention-ABF, we construct 4D cost volumes from frame features, event features,
and fusion features respectively and analyze the response intensity histograms corresponding to
different gradients to reflect the feature distribution in appearance and boundary areas. Moreover,
we provide the flow results from the three cost volumes. On the one hand, the responses of the cost
volumes from frame and event are concentrated in low-gradient and high-gradient intervals, i.e., the
appearance and boundary regions, respectively, while the cost volume from the fusion features is
evenly distributed in different gradient intervals. On the other hand, the flow inferred from frame
has dense appearance saturation but sparse boundary completeness, and the flow inferred from event
is the opposite, while the flow obtained by the fusion cost volume has dense appearance saturation
and boundary completeness.This shows that our proposed fusion module effectively combines the
appearance saturation and boundary completeness from frame and event.

Impact of Feature Fusion Strategies. In Table 4, we discuss the impact of various feature fu-
sion strategies, including simple concatenation, weighted fusion, and our proposed attention-guided
fusion. The results clearly demonstrate that the attention-guided fusion strategy significantly outper-
forms the other two. This superiority arises from its ability to effectively utilize the characteristics
of frame and event features in appearance and boundary respectively.

Analysis on Optical Flow Backbone. In Table 5, we analyze the impact of different optical
flow backbone architectures, including discriminative models (e.g., FlowFormer), traditional gen-
erative models (e.g., GAN-based methods), and the diffusion-based models adopted in our frame-
work. From the results, we observe that discriminative and traditional generative models exhibit
comparable performance, showing no significant differences. In contrast, diffusion models achieve
substantially better accuracy and generalization in optical flow estimation.

Choices of Diffusion Settings. In Table 7, we conduct experiments to select the best diffusion
module and denoising step. The results demonstrate that our proposed module MGDD outperforms
other modules with similar inference time. In addition, the inference time increases linearly with
the number of denoising steps. Thus, we set the denoising step number K to 4 to achieve the best
possible results without causing excessively long inference time.



Table 8: Discussion on computational efficency.

Methods Modules  Parameters(M) Memory Consumption (GB) Inference Time (ms)
FlowFormer++ [25] Overall 17.6 13.2 141.2
BFlow [8] Overall 5.9 10.9 148.7
FlowDiffuser [17] Overall 16.3 154 186.9
Attention-ABF 4.5 3.9 52.3
TVM-MCA 3.8 3.5 46.8
Ours
MGDD 8.9 8.4 99.4
Overall 17.2 15.8 198.5
Frame-cost volume Event-cost volume Fusion-cost volume
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Figure 7: Analysis on feature fusion module. To analyze the role of the feature fusion module,
we count the response intensity at different gradients of three cost volumes constructed from frame,
event, and fusion features and compare the flow results from those cost volumes. The results demon-

strate that the Attention-ABF module effectively utilizes the appearance-boundary complementarity
of frame and event, and obtains fusion features with saturated appearance and complete boundary.

Flow results

Discussion on Computational efficiency. For the purpose of verifying the computational effi-
ciency of each module in our proposed method, we conduct some additional experiments on images
from HS-DSEC and LL-DSEC with a resolution of 640 x 480 to test the number of parameters,
memory consumption, and inference time of the modules and other optical flow methods, using a
single RTX 3090 GPU as the inference platform. As shown in Table 8, the computational cost of
each module in our proposed method remains within a reasonable range. Moreover, our approach
achieves substantial performance gains with only a minor increase in computational cost.

Limitations Our proposed model performs well under both high-speed and low-light conditions,
but fails to estimate optical flow when facing textureless planes. Neither frame nor event cameras can
capture discriminative visual signals for the textureless planes since there exist no spatial brightness
changes. In future work, we plan to incorporate another visual sensor, LiDAR, to perceive the
distance from sensors to the planes thus obtaining the optical flow.

5 Conclusion

In this work, we propose a novel diffusion-based framework with event-frame appearance-boundary
fusion for optical flow under both high-speed and low-light conditions. We are the first to utilize
the paradigm of diffusion models with fused frame and event to solve the problem of optical flow
in degraded scenes. We design the effective appearance-boundary fusion module Attention-ABF to
lead the fusion of frame and event, taking advantage of their respective characteristics. In addition,
we propose the innovative diffusion-based optical flow backbone MC-IDD, which aggregates infor-
mation from multi-aspects including time step, visual features, and motion features, to guide the
denoising process. Ours proposed method Diff-ABFlow achieves state-of-the-art performance far
ahead previous methods. I believe that the multi-condition guided denoising diffusion paradigm we
proposed can be used not only in the field of optical flow estimation, but also in many other fields of
computer vision such as depth estimation and semantic segmentation.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim the contributions of this work at the end of the Introduction and
elaborate how we achieve them in the Method section. Moreover, we provide sufficient
experimental results in the Experiments section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the 9th page.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the full set of assumptions and proof for each theoretical result in
the Method section.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete model implementation details, experimental settings,
and training data description in Experiments section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will provide the code project once the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have presented the detailed experimental settings in the Experiments sec-
tion.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We use the statistical significance in the evaluation metrics.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We describe the computer resources in the Experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There is no concern about ethics involved in this work.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|
Justification: There is no concern about broader impacts involved in this work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: There is no concern about safeguards involved in this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credit all works cited including dataset, code and model in the references.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The paper does not involve the usage of LLMs in the core methods
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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