
Proceedings of Machine Learning Research 1–17, 2025 TerraBytes: Towards global datasets and models for Earth ObservationWorkshopat the 42nd International Conference on Machine Learning

The Cloud-Based Geospatial Benchmark: Challenges and
LLM Evaluation

Jeffrey A. Cardille∗1,2 Renee Johnston1 Subhashini Venugopalan1

Simon Ilyushchenko1 Zahra Shamsi1 Johan Kartiwa1 Matthew Abraham1

Khashayar Azad4 Nuala Caughie2 Emma Bergeron Quick2 Karen Dyson5

Andrea Puzzi Nicolau5 Fernanda Lopez Ornelas6 David Saah6

Michael Brenner1,3 Sameera Ponda1
1Google Research 2McGill University 3Harvard University 4Concordia University
5Spatial Informatics Group 6University of San Francisco

Abstract
With the increasing skill and adoption of
Large Language Models (LLMs) in the
sciences, evaluating their capability in
a wide variety of application domains is
crucial. This work focuses on evaluating
LLM-based agents on Earth Observation
tasks, particularly those involving the
analysis of satellite imagery and geospa-
tial data. We introduce the Cloud-Based
Geospatial Benchmark (CBGB), a set of
challenges designed to measure how well
LLMs can generate code to provide short
numerical answers to 45 practical sce-
narios in geography and environmental
science. While the benchmark questions
are framed to assess broadly applicable
geospatial data analysis skills, their im-
plementation is most readily achieved
using the extensive data catalogs and
powerful APIs of platforms like Earth
Engine. The questions and reference
solutions in CBGB were curated from
experts with both domain familiarity in
Earth Observation and programming ex-
pertise. We also estimate and include
the difficulty of each problem. We eval-
uate the performance of frontier LLMs
on these tasks with and without access
to an execution environment for error-
correction based feedback. Using the
benchmark we assess how LLMs oper-

∗ jeffrey.cardille@mcgill.ca

ate on practical Earth Observation ques-
tions across a range of difficulty lev-
els. We find that models with the error-
correction feedback, which mirrors the it-
erative development process common in
geospatial analyses, tend to perform con-
sistently better with the highest perfor-
mance at 71%; the reasoning variants of
models outperformed the non-thinking
versions. We also share detailed guide-
lines on curating such practical scenarios
and assessing their ability to evaluate
agents in the geospatial domain. The
benchmark and evaluation code are avail-
able on Github1.
Keywords: Geospatial, earth engine,
LLM, evaluation, benchmark

1. Introduction

The rapid proliferation and increasing sophis-
tication of Large Language Models (LLMs)
have catalyzed transformative shifts across
numerous scientific disciplines Zhang et al.
(2024b). Initially demonstrating remarkable
proficiency in natural language understand-
ing and generation, the capabilities of these
models are now being extended and evaluated
for more specialized, complex tasks central to
scientific inquiry. Among these are code gen-

1. https://github.com/google/earthengine-
community/tree/master/experimental/cbgb_benchmark

c© 2025 J.A. Cardille1,2 et al.

https://github.com/google/earthengine-community/tree/master/experimental/cbgb_benchmark
https://github.com/google/earthengine-community/tree/master/experimental/cbgb_benchmark


CBGB Benchmark

eration, where LLMs show promise in trans-
lating natural language instructions into exe-
cutable programs Li et al. (2022), and scien-
tific problem-solving Cui et al. (2025), encom-
passing domains like mathematics, physics,
and chemistry Arora et al. (2023). This expan-
sion necessitates rigorous evaluation method-
ologies and benchmarks to accurately gauge
LLM capabilities, identify limitations, and
guide future development, particularly for ap-
plications in scientific domains where reliabil-
ity and precision are paramount Zhang et al.
(2024b). The evaluation landscape itself is
evolving. Early benchmarks often focused
on static, single-turn interactions, assessing
performance on discrete tasks. However, rec-
ognizing that real-world problem-solving fre-
quently involves iterative refinement, inter-
action with external tools, and multi-step
reasoning, newer evaluation paradigms em-
phasize LLM-based agents operating within
interactive environments Carta et al. (2023).
These agents leverage LLMs for planning and
reasoning, interacting with tools like code
interpreters or APIs, and adapting based on
feedback or environmental state changes Yehu-
dai et al. (2025).

Within this context, Geospatial Artifi-
cial Intelligence (GeoAI) Janowicz et al.
(2020) represents a burgeoning interdisci-
plinary field that integrates AI and Machine
Learning (ML) techniques, including LLMs,
with geospatial data and methods to address
complex environmental and societal questions.
The application of AI, and specifically LLMs,
to geospatial problems presents unique chal-
lenges stemming from the nature of the data
– often multimodal (e.g., satellite imagery,
vector data, sensor readings, textual descrip-
tions) Lacoste et al. (2023), inherently spa-
tial, requiring specialized libraries and ana-
lytical techniques, and frequently massive in
scale Wu et al. (2024). While LLMs and re-
lated Vision-Language Models (VLMs) are
being explored for various GeoAI tasks Chen

et al. (2024b), a significant gap exists in eval-
uating their proficiency in generating correct
and efficient geospatial code specifically for
satellite-driven analytical tasks.
The Cloud-Based Geospatial Benchmark

(CBGB) is introduced to address this gap,
and is intended to provide a set of novel chal-
lenges that represent practical scenarios for
doing cloud-based geospatial analyses (Fig. 1).
The curated problems are designed to mea-
sure LLM and agent performance in generat-
ing geospatial code for satellite data analysis
with particular focus on Google Earth Engine.
Each problem focuses on achieving specific
numerical outputs and the dataset incorpo-
rates expert knowledge, difficulty estimation,
and interactive refinement capabilities. We
evaluate the performance of several frontier
LLMs including their reasoning variants with
and without access to execution feedback with
an error-correcting loop. The best performing
agents achieve an accuracy of 71%. Further,
we find that agents with access to the execu-
tion environment consistently outperform the
base LLM solution indicating that even the
best reasoning agents have room for improve-
ment and underscores the challenging nature
of the benchmark.

2. Related Works
Benchmarking and Improving Geospa-
tial Code Generation. Generating code for
geospatial tasks poses specific challenges for
LLMs. These models often lack the deep, spe-
cialized knowledge required to effectively use
common geospatial libraries (e.g., GeoPan-
das, platform-specific APIs like Google Earth
Engine or ArcGIS). The use of fundamen-
tal geospatial concepts like map projections,
coordinate reference systems, and spatial op-
erations defining adjacency, containment, and
proximity Ahearn et al. (2013) appear to be
rare in model training data. This has the
potential to lead to substantial “code halluci-
nation”, where models generate syntactically

2



CBGB Benchmark

Intermediate : Agricultural Land Use Analysis in California’s Central Valley

Objective : Use Landsat and USDA datasets to calculate the total area of
almond-growing fields in California’s Central Valley that exhibit healthy
vegetation.

• You are given the following datasets:

– Landsat 8 Surface Reflectance: "LANDSAT/LC08/C02/T1_L2" Precise Date
Range: Analyze imagery from all of 2021, removing images of more than
5% cloud cover.

– USDA National Agricultural Statistics Service (NASS) Cropland Data
Layer (CDL): "USDA/NASS/CDL", also for 2021.

• Geographic Scope: Focus on California’s Central Valley. Define the
region using the following bounding box coordinates: ([-121.7, 37.1],
[-120.0, 37.1], [-120.0, 36.0], [-121.7, 36.0]) Analysis Task:

• Filter the Landsat 8 ImageCollection for the specified date range and
geographic area.

• Calculate the median Normalized Difference Vegetation Index (NDVI) among
those images.

• Identify almond-growing fields (NASS CDL code 75) within the specified
Central Valley region using the 2021 CDL data.

• Calculate the area (in hectares) of almond-growing fields (pixels
identified as Almonds) where the NDVI within almond-growing fields is
greater than 0.25. Round your answer to the nearest 1000 hectares.

Notes: Ensure band values (e.g., radiance, temperature) are scaled to their
proper units prior to use. Reflectance values should be scaled to between 0
and 1 prior to use.

Figure 1: An example challenge of intermediate difficulty from the CBGB benchmark.

plausible but functionally incorrect or non-
executable code.

To explore the capacity of models to demon-
strate spatial awareness and capability, a num-
ber of benchmark approaches have emerged.
GeoCode-Eval / GeoCode-Bench Hou et al.
(2025) introduces a comprehensive framework
and a large-scale dataset featuring simple
question formats (multiple-choice, fill-in-the-
blank, etc.) generated via self-instruct and
expert review, assessing LLMs across cog-
nition, application, and innovation dimen-
sions. GeoLLM-Engine Singh et al. (2024)
proposes several small tasks routinely exe-
cuted for geospatial analysis for “tool-use”
agents. These tasks focus more on the LLM

being able to call geospatial APIs for the right
tools including maps, web UIs, and multi-
modal knowledge bases to evaluate if natu-
ral language instructions are translated into
correct functional invocations for task com-
pletion. GeoLLM-Squad Lee et al. (2025)
builds on GeoLLM-Engine to orchestrate mul-
tiple agents to perform some geo-spatial tasks.
However their focus is more on developing
subagents for specific tasks and creating an
orchestrator to effectively compose multiple
smaller components, and not directly focused
on code generation. Closer to our work is
Gramacki et. al. Gramacki et al. (2024),
which categorize geospatial tasks based on
their complexity and required tools and cre-

3



CBGB Benchmark

ate tasks that test model capabilities in spa-
tial reasoning, spatial data processing, and
geospatial tools usage. Their dataset con-
sists of manually created coding problems
and they propose a set of test cases to enable
automatic verification of code correctness. A
key difference is that their tasks are more
focused simpler components of a geoanalyst
workflow such as calculating areas etc. as
opposed to a full fledged problem like ours.
Similarly, GeoAgent Chen et al. (2024b) intro-
duces a framework for geospatial data process-
ing that integrates a code interpreter, static
analysis, and retrieval-augmented-generation
(RAG) within a Monte Carlo Tree Search al-
gorithm, as well as a benchmark dataset to
evaluate LLM-based agents in this domain.
The GeoAgent coding environment leverages
many geospatial libraries including the Google
Earth Engine API, but, in contrast to CBGB,
the GeoAgent Chen et al. (2024b) framework
evaluates LLM performance by comparing
how closely the function signatures within
the generated code match the ground truth
code, effectively treating the function signa-
tures as "labels" rather than comparing the
expected code output directly. GEE-OPs Hou
et al. (2024) focuses specifically on the Earth
Engine JavaScript API, building a structured
knowledge base using over 185,000 Earth En-
gine scripts and documentation. RAG sys-
tems on these scripts improve performance on
geospatial code generation by 20-30%. A key
difference between existing benchmarks and
our work is that our benchmark evaluates the
end-to-end problem-solving capability start-
ing with a natural language description of
the geospatial problem and resulting in a spe-
cific analytical outcome, rather than solely
focusing on intermediate code artifacts.

Autonomous Geospatial Agents and
Systems. Beyond generating static code
snippets, there is research exploring the devel-
opment of autonomous geospatial agents and
integrated systems capable of performing com-

plex analysis workflows based on high-level
user instructions. GIS Copilot Akinboyewa
et al. (2025) is designed as an autonomous
agent integrated within existing GIS plat-
forms like QGIS. It leverages LLMs to inter-
pret natural language commands, decompose
requests into analysis steps, and intelligently
select appropriate geospatial tools to gener-
ate code. GeoGPT Zhang et al. (2024a) takes
natural language requests, and autonomously
plans and executes sequences of GIS tools to
accomplish tasks such as geospatial data col-
lection, spatial querying, and analysis, aiming
to lower the barrier for users without deep
GIS expertise. Geo-OLM Stamoulis and Mar-
culescu (2025) explores using smaller, open-
source language models for geospatial agent
tasks by employing state-driven reasoning to
decouple planning from tool execution. Com-
plementary to agent development, frameworks
have been created to extract and reuse knowl-
edge embedded in existing geospatial work-
flows (e.g., Chen et al. (2024a)). These works
shift focus from generating isolated code seg-
ments to creating integrated systems. This
practical consideration suggests that bench-
marks aiming for real-world relevance should
ideally evaluate interactions with standard
tools and environments, a principle reflected
in our benchmark’s use of a sandbox environ-
ment.

3. Creating the questions and
solutions dataset

The benchmark challenge set is designed to
present practical, recognizable problems en-
countered in remote sensing analyses in stud-
ies around the world, span a large amount of
conceptual space, and build credibility for the
problems and provide answers. Using a vari-
ety of combinations of human expertise and
LLM suggestions, we produced and answered
a set of 45 challenge cases (in the supplement
zip, Appendix A). Challenges are categorized

4



CBGB Benchmark

into three difficulty levels (Easy, Intermediate,
Difficult) reflecting an estimate of the com-
plexity of geospatial/programming knowledge
required, as well as a time estimate of how
long it would take an inexperienced and an ex-
perienced human to solve the challenge. They
span a range of scales (local to regional), sen-
sors (optical and SAR), techniques (e.g., area
summary, time-series analysis, cloud treat-
ment, vector analysis, etc.) and topics (e.g.,
forest change, land-cover classification, road
analysis, rainfall calculations, etc.).

3.1. Distinguishing features

Numerical Output A distinguishing fea-
ture of the CBGB benchmark is that chal-
lenge responses exclusively require a numeri-
cal nonzero output. Although each challenge
is presented as a real-world problem that ac-
cesses and interprets known data to produce
maps and related visual artifacts, the solu-
tions require a single quantity to be presented
as the challenge answer. This can take the
form of, for example, the value of an index at
a single point in space, the slope of a line in
a time series, or a calculation averaged over
a region.
Single Answer Through iterative testing

and analysis of draft challenges and analysis
of the results, we constrained the freedom
within each challenge so that any two agents
or people doing the challenge should neces-
sarily arrive at the same, intercomparable
answer. The focus on a single numerical an-
swer allowed problems to be potentially quite
complex, with multiple maps made, without
needing to assess the quality of maps that
could contain millions or billions of pixels and
resampled for viewing at a particular dpi.
Language- and Platform-

independent There was no code evaluation
in assessing an answer, which allowed answers
to be independent of the language that
might be chosen– in particular, the Earth
Engine API supports both JavaScript and

Python approaches. This had the additional
advantage of allowing evaluation to be fully
independent of programming style, which can
be highly subjective. To the greatest extent
possible, we made the challenges independent
of the Earth Engine platform. This meant
that while Earth Engine might well be the
most straightforward place for solving a
problem, it was not strictly necessary to
use. Challenges do not make explicit appeals
to use particular Earth Engine calls, and
users can potentially solve problems on
other platforms. For several challenges, we
developed answers on both Earth Engine and
on ArcGIS to confirm platform independence.
Exact Match Challenges were constrained

in such a way that only exact matches could
count as correct. Most problems specify that
three digits to the right of the decimal point
should be included in the answer. For the few
challenges that allowed a tolerance around a
value- for example, a specification to create
a buffer to within a certain percentage of
the size of the original area- we rounded the
expected answer to encompass the range of
valid values. In that situation, models that
operated correctly within the tolerance of the
problem would print the same, appropriately
rounded answer.

3.2. LLM assistance to create
candidate benchmark challenges
("Challenge Builder")

Book-inspired cases The book Cloud-based
Remote Sensing with Google Earth Engine:
Fundamentals and Applications Cardille et al.
(2023) provided a domain-relevant template
for creating and sequencing challenges within
this domain. We generated draft challenges by
loading each of that book’s "Fundamentals"
chapters into NotebookLM. Then, to derive
a challenge driven by a given chapter, we
toggled on all chapters prior to and including
a given chapter of interest, to better target the

5



CBGB Benchmark

knowledge acquired by having done a given
chapter and its preceding ones.
Because the book builds knowledge

throughout the chapters, introducing new top-
ics in each, it was feasible to develop varied
real-world challenges demanding increasingly
sophisticated knowledge of remote sensing
techniques. The earliest chapters were more
suitable for Easy challenges, while more ad-
vanced chapters could accommodate Interme-
diate and Difficult challenges. The draft chal-
lenges proposed by NotebookLM exercised its
ability to work within a given context while
also creatively envisioning distinctive chal-
lenge settings. As an example, topics include
“Land Cover Classification of Milan”, “Burn
Severity Change Detection in the Amazon
Rainforest”, and “NDVI Harmonic Modeling
for Cropland Phenology”.
Unrestricted challenges In addition to

33 draft challenges inspired by the book, we
drafted 12 challenges without reference to
any specific chapter. These Unrestricted chal-
lenges were devised freely from human imagi-
nation. As an example, topics include "Com-
bining Watersheds for Area Calculation" and
"Analyzing Long-Term Land Surface Temper-
ature Trends in an Urban Area". Drafts were
shaped like those proposed by LLMs, as de-
scribed below.

3.3. Shaping draft challenges for
inclusion

During the challenge creation process, draft
cases were seldom, if ever, sufficiently concise,
challenging, and clear enough to be used with-
out substantial modification. Draft challenges
were shaped through an iterative process to
be suitable for use, which typically further
arrange their structure, precision, and goals
to imply unambiguous processing and out-
comes. This was done in two phases: the
“Challenge Checker” and “Uncertainty Diver-
gence” checks, as described below.

3.3.1. Enumerated basic checks:
"Challenge Checker"

We used human judgement with LLM assis-
tance to identify and remove any elements
of a draft challenge that caused it to be un-
derspecified. Each draft case was inspected
by eye with respect to 31 criteria that we de-
vised for producing well-constrained and well-
presented challenges. To supplement human
judgement of these criteria, a separate LLM
instance (Gemini, chatGPT, or NotebookLM)
was tasked with considering the same criteria.
This process was intended to identify phras-
ing in the draft that, unless made more clear,
could cause agents or humans to complete a
problem while arriving at a different answer
than the expected right answer. An example
is a draft challenge that might have asked
to “combine images from summer 2017” for
a particular purpose. The meaning of “sum-
mer”, however, is imprecise: the term could
be interpreted by one model as astronomical
summer, and by another as a particular set
of months. In that situation, we would re-
vise the problem to ask for images between
two specific dates, further specifying whether
the date endpoints were inclusive or exclusive.
Similarly, direction to simply “combine” im-
ages is imprecise; in that situation, we would
revise the problem to request the mean, me-
dian, or some other way of creating a single
image from a set.

Challenge Checker criteria occurred in four
main groups; the groups and a representative
criterion are given below.
(a) Dataset Existence, Specificity,

and Accuracy. Check 4 “Data needed”.
Each data set given in the problem must con-
tain information that is necessary to solve the
problem. Data that is “of interest” but not
necessary to solve the problem should not be
included.
(b) Reproducibility. Check 18 “Pixel

masking”. If pixel masking is needed to consti-
tute a reproducible problem, it must be stated

6



CBGB Benchmark

explicitly. If pixel-level masking is used, the
threshold or method must be clearly stated
in a reproducible manner.
(c) Clarity and completeness. Check

25 “No slang”. There should be no English
slang in the problem that could confuse.
(d) Clearly defined outputs. Check 29

“Clear answer”. The problem should neces-
sarily lead to a numerical or Boolean output.
If a map is made, a single point should be
specified in the problem statement to inspect
its value. If a chart is implied, a single value
should be requested.

3.3.2. Cross-agent comparisons:
"Uncertainty Divergence"

Despite the careful criteria of the Challenge
Checker, there still remained noticeable im-
precision in early drafts of each case. We
then subjected each challenge to an agent-
agnostic test, meant to assess whether it was
yet unambiguously interpretable. Because our
requirement for an effective challenge was to
have only a single correct answer, the agent-
agnostic test ingested the agent code outputs
on a given draft. An LLM instance looked
for situations in which difficult-to-detect el-
ements of uncertainty could produce more
than one viable answer to a draft challenge.
An example of the prompt and a report used
during the Uncertainty Divergence detection
process can be seen in Appendix B.
For draft challenges in which Uncertainty-

derived Divergence was detected, the anal-
ysis report offered a substantive explana-
tion of the imprecision and proposed an
amended challenge formulation. We consid-
ered those amendments, adjusted wording,
and re-assessed subsequent drafts of each chal-
lenge. (It is important to emphasize that this
assessment was done without regard to which
particular model or models were divergent.)
As we shaped challenges, where analysis re-
ports and agent behavior indicated that our
human interpretation of a problem under de-

velopment was flawed or needed to change,
we further constrained or clarified a problem
or our approach as needed. The process of
isolating and excising uncertainty to remove
divergent answers for a challenge continued
until three conditions applied: (1) at least
one model agreed with our answer; (2) there
were no clusters of agent answers indicating
lingering uncertainty; and (3) the reports for
a draft challenge stated that there was no
lingering uncertainty in the revised problem
statement.

3.4. Checks for challenge existence
and topic plagiarism

As models proposed cases, we explored
whether the settings and problem statements
already appeared in some form online. For
each challenge, we looked for similar phras-
ing both online and within Google Scholar.
In our search, no challenge appeared directly
as part of any benchmark, tutorial, or writ-
ten source that models could potentially have
been trained on. Only a few of the proposed
challenges appeared to us to overlap substan-
tively during this verification stage; those
were either modified to a new location or time
frame. To address any overlap that might be
perceived by others, or for authors to link a
benchmark to their similar work, we created
a form (bit.ly/CBGB-overlap) that will allow
an interested party to suggest an information
source as a possible "For Further Reading"
link, to associate with a challenge that they
judge to be similar or of interest.

After shaping through iteration with the
Challenge Checker and the Uncertainty Diver-
gence tests, challenges were clear enough to
produce unique results. An example Interme-
diate Challenge is shown in Fig. 1; example
Beginner and Difficult challenges can be seen
in Appendix C.

7



CBGB Benchmark

4. Experiments

Experimental Setup To enable code exe-
cution, we set up a colab-based sandbox envi-
ronment including access to standard Python
libraries and network access to the Google
Earth Engine Python API. We ran the experi-
ment against the following 10 models: Claude
3.5 Haiku; Claude 3.5 Sonnet; Claude 3.7
Sonnet; DeepSeek-VL Chat; DeepSeek-R1;
Gemini 2.5 Pro; Gemini 2.5 Flash; Gemini
2.0 Flash; OpenAI o3; and OpenAI o4-mini.
(Full versioning information is in Appendix
E). For each challenge, we prompted each of
the models in an isolated zero-shot manner,
without any reliance on a model’s notion of
"chat history." We evaluated models under
two execution workflows:

• Base model: In this case we used a sin-
gle prompt (Appendix D.1) to each LLM
to generate Earth Engine Python code to
solve the problem. We sampled a single
solution from the model with tempera-
ture 0, and evaluated performance.

• Error-correction: In this workflow, if
an error occurred while executing the
LLM’s initial code, a new instance of the
same LLM (with no prior chat history)
was prompted with the original problem,
the failing Python code, the correspond-
ing error message, and was instructed to
generate a working version of the code.
This error correction prompt cycle was
permitted up to 3 times (Appendix D.2).

5. Results

Distinct performance tiers are observable
among the models (Figure ??), where "rea-
soning" models such as o3, Gemini 2.5 Pro,
Claude Sonnet, and Deepseek R1 demonstrate
superior baseline performance over the base-
line performance of "lighter" models such as
Gemini 2.5 Flash, o4-mini, and Claude Haiku.

The range of overall model success contains
distinctive patterns on Easy, Medium, and
Difficult problems. In considering the error-
correcting runs of the highest-performing,
fifth-best (near the median performance), and
lowest-performing models, there are impor-
tant similarities beyond the top-line difference.
Easy problems require one or two spatial oper-
ations, and often involve establishing a study
area over which to calculate and summarize
an index. We estimate that a beginner could
solve a typical Easy problem in around 15-
30 minutes; an Advanced user would need
about 5-10 minutes. Even Easy problems
(Appendix C, Figure ??) demand sophistica-
tion and multi-step thinking: to be successful
on an Easy problem, a model must properly
parse a problem, prepare to sequence several
steps, consult the Earth Engine API, and
access and present the answer precisely as
specified. Models succeeded similarly on the
15 questions labeled “Easy”, correctly answer-
ing 12, 13, and 8 correctly among the highest-,
median-, and lowest-performing models. The
similarity in model success suggests a very
substantial baseline competence in LLMs for
reliably solving this class of problem.
For Intermediate problems, the models di-

verged in their capacity somewhat more than
on Easy problems. We estimate that this
class of problem would require about 1 hour
for a Beginner, and about 20-30 minutes for
an Advanced user. The highest-, middle-,
and lowest-performing models answered 15,
15, and 5 of the 20 questions correctly. That
the middle-performing model got about half
of the Intermediate questions right suggests
that an LLM user looking for help on such
a problem might benefit from presenting the
problem in parts.

Models diverged considerably in their abil-
ity to answer a given Difficult problem. We
estimate that this class of problem would re-
quire 3 hours or more for an Advanced user,
likely demanding that they have command

8



CBGB Benchmark

of sophisticated techniques for which there
are limited worked examples online. We esti-
mate that Beginner users would not be able
to answer a Difficult problem. The highest-
, middle-, and lowest-performing models an-
swered 5, 1, and 1 of the 10 problems correctly.
In the model space, the lowest-performing
models were, in general, unable to correctly
answer a given Difficult problem. It is worth
noting that for a given Difficult problem, it
was answered by fewer than 3 of the mod-
els. For a typical Difficult challenge, one or
two of the high-performing models answered
correctly, plus perhaps one of the median-
performing models. Given that the Difficult
problems were sometimes composed of multi-
ple smaller steps, this suggests strongly that
an LLM user could benefit greatly from break-
ing a Difficult problem into several compo-
nents, then working interactively toward the
answer over an extended period. For Begin-
ner and Intermediate users, this could help
them to work through the logic and learn any
techniques currently outside their skill set; for
Advanced users, this could help to increase
the credibility of an LLM’s answer.

6. Discussion

The benchmark is not saturated. This
CBGB test set is not saturated, particularly
on Difficult questions. Models in this space
are rapidly improving; when we began ex-
ploring geospatial code generation in early
2024, few models could succeed on all but the
easiest problems. This placed them around
the position of the lowest-performing mod-
els today. In the intervening months, models
have improved considerably, yet are substan-
tially challenged to reliably solve more com-
plex cases. Difficult problems, however, are
not entirely out of reach, nor purposely con-
fusing. At least one model was able to solve
each of the Difficult problems, a fact we used
to identify candidate problems that were Dif-

ficult but demonstrably solvable. Taken as
a whole, the benchmark state suggests that
models can be extremely helpful for solving
everyday problems and to aid in coding- and,
that additional meaningful progress is attain-
able.

A benchmark of realistic, scaled chal-
lenges is constructable. Other published
benchmarks to date have mostly focused on
building blocks of geospatial analysis, and
have limited resemblance to the challenges
presented here. This benchmark set presents
problems meant to sound like what users
would ask for in a real-world setting- though
with the important caveat of having removed
as much ambiguity as possible in the problem
presentation. Challenges can be reasonably
partitioned into broad categories, which illus-
trate a near-universal basic agent competence
on "Easy" problems involving a few steps and
commonly seen approaches.

Error correction is effective across mod-
els. Error correction consistently improved
model performance. The performance of
"lightweight" models such as o4-mini and
Gemini 2.5 Flash with error correction ex-
ceeds the baseline results of most reasoning
models without error correction, particularly
on Easy and Intermediate questions. For ex-
ample, in many cases, Gemini 2.5 Flash with
error correction appears to be just as effec-
tive at solving problems as Gemini 2.5 Pro
without error correction. This suggests that
many of the remaining unsolved problems
(perhaps especially in the Easy and Interme-
diate ranks) could be improved even further
by more permissive and targeted error correc-
tion protocols. Exploring the precise behavior,
optimal strategies and upper limits of error
correction was outside the scope of this work,
but could be a fruitful additional study to im-
prove overall model performance, as could the
exploration of other agentic reasoning struc-
tures.

9



CBGB Benchmark

The benchmark process can inform
domain-specific improvements. Through
the iterative effort to remove uncertainty-
derived divergence from draft challenges, we
learned that errors tended to be due to a
mix of incorrect decision-making, poor data
awareness, and syntax errors. In our expe-
rience, incorrect decision-making often took
the form of improper ordering of steps, or
making choices that may be wise scientifi-
cally but that nevertheless were counter to
the problem statement (for example, deciding
that it would be good to remove both cloud
*and* shadow from an image when only re-
moving clouds was requested). The nature of
these limitations suggests that improvement
on some of the Difficult challenges can be
achieved.

Uncertainty comes in different flavors.
Friction points were uncovered that were both
general and specific, and are tied to this
geospatial domain. High-level questions of
general interest (e.g., "How much reforesta-
tion was there recently around Bolivia") are
reasonable for informal scoping and discus-
sion, but are too imprecise for any two mod-
els (or humans) to be expected to arrive at
the same answer without very substantial ad-
ditional shaping. The simple clarity of, for
example, an algebra problem is not commonly
encountered; rather, users should be guided in
some way (through an interface or a checklist
such as that produced here) so that results
are maximally reproducible and better un-
derstood. A second type of uncertainty is
when necessary details of repeatability are
missing but not easily recognized by all but
expert users. For example, cloud masking is
a persistent challenge in most of the world’s
ecosystems, but the details of cloud bits on
each sensor platform are not widely known by
Beginner and Intermediate users. To use the
benchmark set as a guide for shaping the expe-
rience of a user in this domain (notably, future
users of a bespoke interface to aid in geospa-

tial queries), overcoming these two types of
uncertainty should be understood closely to
aid users.

Lessons on uncertainty-derived diver-
gence should be transferable to real
problem-solving settings. As we created prob-
lems, we were surprised at how precise a prob-
lem needed to be in order to be led unam-
biguously to a single answer among a set of
independently operating agents, and at how
many iterations it took to properly constrain
problems for this benchmark. The 31 charac-
teristics of the Challenge Builder grew itera-
tively, as we learned that not being precise
on each one would produce important uncer-
tainty for zero-shot problem-solving. More
broadly, in a real-world setting where a user
would like an answer to a problem in this do-
main, the credibility of agent responses can
be enhanced by guiding them through these
issues, to confirm that a user will ultimately
understand and be able to reproduce the anal-
ysis.

Limitations

Despite the success of this work, there are
several limitations that must be considered.

First, although there are a substantial num-
ber of cases, small distinctions among the
models cannot be seen as statistically signifi-
cant. Rather, results should be taken as an
indication of model success and growth, and
not as a leaderboard.

Second, because models can and do produce
different code on different runs, there are some
cases for which a model was able to produce
correct code on one day, and incorrect code
on the next. As a result, we believe it is not
warranted to propose blanket statements such
as "Model X fails on Y percent of Intermediate
cases, and fails on most Difficult cases." We
see the model performance summarized here
as a baseline against which future models can
be compared against earlier versions.

10



CBGB Benchmark

Third, it is worth noting that Google Earth
Engine is only one platform for doing cloud-
based geospatial computation. Our intention
was to create a benchmark that would give
consistent results on any platform. We en-
deavored to limit the dependence of cases on
Earth Engine, so that they can also be con-
sidered as challenges for LLMs operating in
other environments. In cases where we think
platform-specific calculations might cause dif-
ferent results (such as summarizing over an
area), we requested a rounded answer to pro-
vide cushion for implementation differences.

Fourth, despite our efforts to excise un-
certainty, there may ultimately prove to be
undetected uncertainty in some of the prob-
lem statements. Since we inspected the model
results for clustering of answers (for example,
some models getting ‘8’ and others getting
‘6’), any lingering uncertainty should not have
had an effect on the model runs shown here.
If additional uncertainty is detected, we ex-
pect to release enhanced versions of CBGB
with any needed amendments.

7. Conclusion

This paper introduces the Cloud-Based
Geospatial Benchmark (CBGB), a set of 45
challenges designed to evaluate the capabil-
ities of Large Language Models and LLM-
based agents in generating executable code
for Earth Observation tasks. CBGB distin-
guishes itself by focusing on practical, real-
world problems requiring numerical answers,
curated by domain experts, and categorized
by difficulty, thereby providing a structured
framework for assessing geospatial code gen-
eration, particularly for platforms like Google
Earth Engine.

Experiments with ten diverse LLMs, evalu-
ated both in a base configuration and with an
error-correction loop, revealed distinct perfor-
mance tiers among models, in favor of more
sophisticated “reasoning” models relative to
‘non-thinking” counterparts. Critically, the

error-correction mechanism proved quite effec-
tive, improving performance across all mod-
els and often elevating non-thinking models
to the level of more powerful ones operating
without correction. With accuracy at 71%,
the benchmark is not saturated, particularly
for “Difficult” problems, indicating substan-
tial headroom for future LLM advancements
in this complex domain. The process of de-
veloping CBGB also illuminated the critical
importance of precise problem specification
in avoiding ambiguity and ensuring repro-
ducible results, offering valuable lessons for
both benchmark design and practical LLM
application in geospatial science.

The findings underscore the growing poten-
tial of LLMs as assistants in geospatial analy-
sis, while also highlighting current limitations
in areas like complex multi-step reasoning, nu-
anced understanding of geospatial data intri-
cacies, and consistent generation of error-free
code for specialized APIs. CBGB serves as a
valuable tool for tracking progress and identi-
fying areas for improvement in LLMs tailored
for scientific, code-intensive domains. Fu-
ture work could expand CBGB with a greater
diversity of tasks, including different sensor
types, analytical techniques, and even other
cloud-based geospatial platforms. Investigat-
ing more sophisticated agentic frameworks
beyond simple error correction, such as those
incorporating RAG with geospatial knowledge
bases or iterative planning, could further en-
hance LLM performance. Additionally, the
insights gained from the “Challenge Checker”
and “Uncertainty Divergence” processes could
inform the development of interactive tools
that guide users in formulating clearer, less
ambiguous geospatial queries for LLMs.
As LLMs continue their rapid evolution,

rigorous and domain-specific benchmarks like
CBGB will be essential in guiding their de-
velopment towards becoming helpful tools for
geospatial analysts and remote sensing scien-
tists, thereby accelerating scientific discovery.

11



CBGB Benchmark

References

S. C. Ahearn, I. Icke, R. Datta, M. N. DeMers,
B. Plewe, and A. Skupin. Re-engineering
the GIS&T body of knowledge. Inter-
national Journal of Geographical Informa-
tion Science, 27(11):2227–2245, 2013. doi:
10.1080/13658816.2013.802324.

Temitope Akinboyewa, Zhenlong Li, Huan
Ning, and M Naser Lessani. Gis copilot:
towards an autonomous gis agent for spatial
analysis. International Journal of Digital
Earth, 18(1):2497489, 2025.

Daman Arora, Himanshu Gaurav Singh, et al.
Have llms advanced enough? a chal-
lenging problem solving benchmark for
large language models. arXiv preprint
arXiv:2305.15074, 2023.

J.A. Cardille, M.A. Crowley, D. Saah, and
N.E. Clinton, editors. Cloud-Based Remote
Sensing with Google Earth Engine: Funda-
mentals and Applications. Springer Nature,
2023.

Thomas Carta, Clément Romac, Thomas
Wolf, Sylvain Lamprier, Olivier Sigaud, and
Pierre-Yves Oudeyer. Grounding large lan-
guage models in interactive environments
with online reinforcement learning. In Inter-
national Conference on Machine Learning,
pages 3676–3713. PMLR, 2023.

Yansong Chen, Ziyuan Wang, Guishan Li,
Yixuan Liu, Mengke Zhu, Rong Wang,
Qianli Chen, Jing Cao, and Chen Liu.
Gpt-enhanced framework for gee knowledge
extraction and reuse. International Journal
of Digital Earth, 17(1):2398063, 2024a.
doi: 10.1080/17538947.2024.2398063. URL
https://www.tandfonline.com/doi/
full/10.1080/17538947.2024.2398063.

Yuxing Chen, Weijie Wang, Sylvain Lobry,
and Camille Kurtz. An llm agent for au-

tomatic geospatial data analysis. arXiv
preprint arXiv:2410.18792, 2024b.

Hao Cui, Zahra Shamsi, Gowoon Cheon, Xue-
jian Ma, Shutong Li, Maria Tikhanovskaya,
Peter Norgaard, Nayantara Mudur, Mar-
tyna Plomecka, Paul Raccuglia, et al. Curie:
Evaluating llms on multitask scientific
long context understanding and reasoning.
ICLR, 2025.

Piotr Gramacki, Bruno Martins, and Piotr
Szymański. Evaluation of code llms on
geospatial code generation. In Proceedings
of the 7th ACM SIGSPATIAL International
Workshop on AI for Geographic Knowledge
Discovery, pages 54–62, 2024.

Shuyang Hou, Jianyuan Liang, Anqi Zhao,
and Huayi Wu. Gee-ops: An operator
knowledge base for geospatial code gener-
ation on the google earth engine platform
powered by large language models. arXiv
preprint arXiv:2412.05587, 2024.

Shuyang Hou, Zhangxiao Shen, Anqi Zhao,
Jianyuan Liang, Zhipeng Gui, Xuefeng
Guan, Rui Li, and Huayi Wu. Geocode-
gpt: A large language model for geospatial
code generation. International Journal of
Applied Earth Observation and Geoinfor-
mation, page 104456, 2025.

Krzysztof Janowicz, Song Gao, Grant McKen-
zie, Yingjie Hu, and Budhendra Bhaduri.
Geoai: spatially explicit artificial intelli-
gence techniques for geographic knowledge
discovery and beyond, 2020.

Alexandre Lacoste, Nils Lehmann, Pau Ro-
driguez, Evan Sherwin, Hannah Kerner,
Björn Lütjens, Jeremy Irvin, David Dao,
Hamed Alemohammad, Alexandre Drouin,
et al. Geo-bench: Toward foundation mod-
els for earth monitoring. Advances in Neu-
ral Information Processing Systems, 36:
51080–51093, 2023.

12

https://www.tandfonline.com/doi/full/10.1080/17538947.2024.2398063
https://www.tandfonline.com/doi/full/10.1080/17538947.2024.2398063


CBGB Benchmark

Chaehong Lee, Varatheepan Paramanayakam,
Andreas Karatzas, Yanan Jian, Michael
Fore, Heming Liao, Fuxun Yu, Ruopu Li,
Iraklis Anagnostopoulos, and Dimitrios Sta-
moulis. Multi-agent geospatial copilots for
remote sensing workflows. arXiv preprint
arXiv:2501.16254, 2025.

Yujia Li, David Choi, Junyoung Chung,
Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Fe-
lix Gimeno, Agustin Dal Lago, et al.
Competition-level code generation with al-
phacode. Science, 378(6624):1092–1097,
2022.

Simranjit Singh, Michael Fore, and Dimitrios
Stamoulis. Geollm-engine: A realistic envi-
ronment for building geospatial copilots. In
Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recogni-
tion, pages 585–594, 2024.

Dimitrios Stamoulis and Diana Marculescu.
Geo-olm: Enabling sustainable earth ob-
servation studies with cost-efficient open
language models & state-driven workflows.
arXiv preprint arXiv:2504.04319, 2025.

Jiayang Wu, Wensheng Gan, Han-Chieh
Chao, and Philip S Yu. Geospatial big data:
Survey and challenges. IEEE Journal of Se-
lected Topics in Applied Earth Observations
and Remote Sensing, 2024.

Asaf Yehudai, Lilach Eden, Alan Li, Guy
Uziel, Yilun Zhao, Roy Bar-Haim, Ar-
man Cohan, and Michal Shmueli-Scheuer.
Survey on evaluation of llm-based agents.
arXiv preprint arXiv:2503.16416, 2025.

Yifan Zhang, Cheng Wei, Zhengting He, and
Wenhao Yu. Geogpt: An assistant for un-
derstanding and processing geospatial tasks.
International Journal of Applied Earth Ob-
servation and Geoinformation, 131:103976,
2024a.

Yu Zhang, Xiusi Chen, Bowen Jin, Sheng
Wang, Shuiwang Ji, Wei Wang, and Jiawei
Han. A comprehensive survey of scientific
large language models and their applica-
tions in scientific discovery. arXiv preprint
arXiv:2406.10833, 2024b.

13



CBGB Benchmark

Appendix A. Appendix: CBGB Problem Statements

A link to the full text of problem statements is contained in the zip file for this submission.

Appendix B. Appendix: Divergence/Error Classification and Summary

Distinguishing Error Types: A key part of your analysis is to differentiate between divergences
caused by genuine uncertainty stemming from the problem description versus mistakes made
during execution.
Define these as:

• Uncertainty-Driven Divergence: A divergence occurring because the problem state-
ment lacked sufficient specificity, forcing variants to make different assumptions or
choices.

• Execution Mistake: A divergence occurring because an agent or person made an error
while attempting to execute a step correctly.

Output: Summary Table: Present your findings in a table with the following columns:

Divergence Point / Error Leading To Result(s) / Error Divergence Type Reasoning
Example Entry Example Result Example Type Example Text
... ... ... | ...

Table 1: Example structure for Divergence/Error Summary Table.

Table Content Details:

• Divergence Type Column: Entries must be one of: "Uncertainty Divergence",
"Potential Divergence", or "Execution Mistake".

• Potential Divergence: This type applies when you identify ambiguity in the prob-
lem statement that would likely cause divergence, even if the current set of variants
failed to produce answers (e.g., all encountered errors before reaching the ambiguous
point). Analyze and document this potential future divergence based on the problem’s
characteristics. Note it in the table as "Potential Divergence".

• Sorting Order: Present the rows in the table sorted according to the "Divergence
Type" column in the following specific order:

– Items classified as "Uncertainty Divergence".

– Items classified as "Potential Divergence".

– Items classified as "Execution Mistake".

14



CBGB Benchmark

Appendix C. Appendix: Example Easy and Difficult Challenges

C.1. Example Challenge (Easy)

Easy: Calculating Iron Oxide Ratio (IOR) for Hydrothermal Rock Detection

Objective : You are tasked with calculating the Iron Oxide Ratio (IOR), which is
the ratio of the red band reflectance to the blue band reflectance. This ratio can
help detect hydrothermally altered rocks that contain oxidized iron-bearing sulfides.
Complete the following steps:

• Focus on this point in Seattle, WA, USA: (-122.2040, 47.6221).

• Access the COPERNICUS/S2_HARMONIZED ImageCollection and select images that:

– Cover the Seattle point,
– Are from 2020-08-15 to 2020-10-01, and
– Have less than 10% cloud coverage.

• Select the earliest image from that set.

• Identify the red band and blue band that surround the following wavelengths: Red
band, 665 nm; Blue band, 490 nm.

• Compute the IOR. Extract the calculated IOR value at the given Seattle point. Print
the IOR value to the console.

Notes: Ensure band values (e.g., radiance, temperature) are scaled to their proper
units prior to use. Reflectance values should be scaled to between 0 and 1 prior
to use. Retrieve values at the native scale of the imagery. Write the answer to 3
decimal points of precision (e.g, 12345.678)

15



CBGB Benchmark

C.2. Example Challenge (Difficult)

Difficult: Deforestation Rate Comparison in Colombian Amazon Protected Areas

Objective : This problem will compare the total deforestation assessed to have
occurred within and around two protected areas in the Colombian Amazon: La Paya and
Tinigua.

• Use the "WCMC/WDPA/current/polygons" data set to identify the boundaries of the La
Paya and Tinigua protected areas. Add a 1000m buffer around each protected area’s
geometry.

• Calculate the forest loss within each protected area using the lossyear band of the
GFC dataset, where each pixel indicates the year of deforestation. Use the Global
Forest Change dataset (UMD/hansen/global_forest_change_2023_v1_11). Consider areas
with tree cover greater than 30% in the year 2000.

• Determine the absolute value of the difference in total deforestation amounts (in
hectares) between the area within La Paya and the area within Tinigua between 2001
and 2023. Provide the answer in hectares.

Notes: Unless directed otherwise, retrieve or summarize value(s) at the native
resolution of the image band(s). If multiple bands or sensors are used with
different resolutions, retrieve or summarize values using the finest resolution
among the inputs unless directed otherwise. Unless directed otherwise, write the
answer to 3 decimal points of precision (e.g, 12345.678).

Appendix D. Appendix: Prompts

D.1. Main code generation prompt

You are an expert Earth Engine developer. Write Earth Engine Python code to answer
the following question. No extra explanation is needed. ONLY return the Earth
Engine Python code in a “‘Python section.

Call getInfo() when you need to get the value of the final computation. The answer
must be printed to stdout. In cases where the answer is a number, print ONLY the
number corresponding to the answer, no other explanatory text.

For example, don’t do this: ‘print(’here is my answer: ’ + x)‘

Just do: ‘print(x)‘

16



CBGB Benchmark

D.2. Error correction prompt

Here is the question: {question}
You previously wrote this code which had an error: {bad_code}
This was the error: {error_msg}
Please try again and rewrite the code.

Appendix E. Appendix: Agent Versions and Challenge Results

Model Overall Difficult Intermediate Easy

base ec base ec base ec base ec

o3-2025-04-16 29 32 4 5 14 15 11 12
gemini-2.5-pro-preview-05-06 25 32 1 5 12 15 12 12
claude-3-7-sonnet-20250219 23 31 1 4 9 14 13 13
claude-3-5-sonnet-20241022 26 31 2 3 13 14 11 14
deepseek-reasoner 22 29 1 1 9 15 12 13
gemini-2.5-flash-preview-04-17 19 27 0 0 8 14 11 13
o4-mini-2025-04-16 22 27 2 2 9 11 11 14
claude-3-5-haiku-20241022 15 22 0 1 5 8 10 13
deepseek-chat 20 21 1 0 8 8 11 13
gemini-2.0-flash 8 14 0 1 3 5 5 8

TOTAL QUESTIONS 45 45 10 10 20 20 15 15

Table 2: Total correct answers of base models and error-correction (ec) agents, from a single
run of the evaluation pipeline.

17


	Introduction
	Related Works
	Creating the questions and solutions dataset
	Distinguishing features
	LLM assistance to create candidate benchmark challenges ("Challenge Builder")
	Shaping draft challenges for inclusion
	Enumerated basic checks: "Challenge Checker"
	Cross-agent comparisons: "Uncertainty Divergence"

	Checks for challenge existence and topic plagiarism

	Experiments
	Results
	Discussion
	Conclusion
	Appendix: CBGB Problem Statements 
	Appendix: Divergence/Error Classification and Summary
	Appendix: Example Easy and Difficult Challenges
	Example Challenge (Easy)
	Example Challenge (Difficult)

	Appendix: Prompts 
	Main code generation prompt
	Error correction prompt

	Appendix: Agent Versions and Challenge Results

