
Steering semantic search with interpretable features
from sparse autoencoders

Anonymous Author(s)
Affiliation
Address
email

Abstract

Modern information retrieval systems increasingly rely on dense neural vector1

embeddings, but dense embeddings of text are inherently difficult to interpret and2

steer, leading to opaque and potentially biased results. Sparse autoencoders (SAEs)3

have previously shown promise in extracting interpretable features from complex4

neural networks. In this work, we present the application of SAEs to dense text5

embeddings from large language models, demonstrating their effectiveness in6

disentangling document-level semantic concepts. By training SAEs on embeddings7

of over 420,000 scientific paper abstracts from computer science and astronomy,8

we show that the resulting sparse representations maintain semantic fidelity while9

offering high levels of interpretability. In the context of a semantic search system10

for scientific literature, we demonstrate that interpretable SAE features can be used11

to precisely steer information retrieval, allowing for fine-grained modifications of12

queries. At a given fidelity level to the original query, SAE feature interventions13

can be interpreted with ∼10% higher accuracy, while maintaining overall quality of14

information retrieval. We open source our embeddings, trained sparse autoencoders,15

and interpreted features, as well as a web app for exploring them.16

1 Introduction17

Dense vector embeddings capture nuanced semantic relationships, enabling powerful semantic search18

(Reimers et al., 2019; Gao et al., 2022; Wang et al., 2024; Devlin et al., 2018; Brown et al., 2020).19

However, the power of these representations comes at a cost: reduced interpretability and limited20

user control, presenting significant challenges for fine-tuning and explaining search results (Liu21

et al., 2019; Turian et al., 2010; Cao et al., 2023). Interpretability and intervention methods are thus22

unable to fully address the societal biases exhibited in the generations and representations of modern23

language models (Hofmann et al., 2024; Bolukbasi et al., 2016).24

Sparse autoencoders (SAEs) have emerged as a promising solution for extracting interpretable features25

from high-dimensional representations (Ng et al., 2011; Makhzani et al., 2013). SAEs have shown26

success in interpreting and steering the generation outputs of diffusion models and decoder-only27

transformers (Conmy et al., 2024; Lee, 2024; Cunningham et al., 2023b; Elhage et al., 2022b;28

Daujotas, 2024), but their application to dense text embeddings remains unexplored.29

In this work, we demonstrate how SAE features derived from dense text embeddings can be used30

to steer semantic search. By causally manipulating features in the SAE hidden dimension, we can31

precisely adjust the semantic meaning of queries. Our research makes the following key contributions:32

1. We train varying-size SAEs on embeddings from a large corpus of scientific papers, demon-33

strating their effectiveness in learning interpretable features from dense text representations.34

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Interpreter LLM

Trained decoderDecoder

...

Encoder

Embedding

...

Latents

...

Reconstruction

Activating text Non-activating text

"Arithmetic
operations in
transformers"

Predictor LLM

Feature Label

1 1 0 0

"0.8" "0.9" "-0.2" "-0.5"

Feature Score

Correlation: 0.8

0

2000

4000
astroPH

SAE16
SAE32
SAE64

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.000

2000

4000
csLG

Pearson Correlation

Figure 1: Left: sparse autoencoder training and labelling process. Right: interpretability of features.

2. We demonstrate the practical utility of interpretable features in enhancing semantic search,35

allowing fine-grained control over query semantics. We develop and open-source a tool that36

implements our SAE-enhanced semantic search system, as well as the underlying models.37

2 Related work38

Dense embeddings for text The evolution from simple one-hot encodings to sophisticated dense39

vector embeddings has offered substantial improvements in semantic expressiveness and contextual40

understanding, from Word2Vec (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014), to ELMo41

(Peters et al., 2018) and BERT (Devlin et al., 2018), and most recently sentence-level embeddings42

such as Sentence-BERT (Reimers et al., 2019). Semantic search with dense embeddings has largely43

replaced traditional keyword search (Gao et al., 2021; Manning et al., 2008; Baeza-Yates et al., 1999;44

Furnas et al., 1987; Mikolov et al., 2013b; Devlin et al., 2018; Reimers et al., 2019). However, the45

opacity of dense embeddings can be particularly problematic in applications where explainability or46

precise semantic control is critical, particularly in search results.47

Sparse autoencoders Sparse representations of text are often more interpretable (Trifonov et al.,48

2018). However, in large language models, the superposition hypothesis suggests that dense neural49

networks are highly underparameterised, and perform computations involving many more concepts50

than neurons by representing many sparse concepts, or features, in dense superposition (Elhage51

et al., 2022a). Distributed representations allows models to efficiently encode a large number of52

features in a relatively low-dimensional space, but it also makes model layers challenging to interpret53

directly. Sparse autoencoders (SAEs) address this by learning to reconstruct inputs using a sparse set54

of features in a higher-dimensional space, encouraging disentanglement of distributed representations55

(Elhage et al., 2022b; Donoho, 2006; Olshausen et al., 1997). When applied to language model56

activations, SAEs recover semantically meaningful and human-interpretable sparse features (Gao57

et al., 2024; Bricken et al., 2023; Cunningham et al., 2023b). A number of approaches for automated58

feature interpretation have been proposed, such as Bills et al. (2023) and Foote et al. (2023).59

Activation Steering and Causal Intervention Activation steering – modifying model activations to60

influence downstream behavior – has emerged as a promising approach to enhance the controllability61

of semantic search (Li et al., 2024; Turner et al., 2023; Radford et al., 2015). Recent advancements62

have leveraged sparse autoencoders to identify interpretable features for precise semantic edits (Lee,63

2024; Conmy et al., 2024). The field has expanded to include concept scrubbing (Belrose et al.,64

2024) and broader representation engineering (Zhao et al., 2024), underpinned by theoretical work65

on activation space geometry (Marks et al., 2023) and superposition in neural networks (Elhage et al.,66

2022a). Recent studies (Chan et al., 2022; Hase et al., 2023) have empirically analyzed the efficacy67

of causal interventions.68

3 Training SAEs and automated labelling69

Architecture and objective: Let x ∈ Rd be an input vector, and h ∈ Rn be the hidden70

representation, where typically n ≫ d. The encoder and decoder functions are defined as71

2

Encoder : h = fθ(x) = σ(Wex+ be) and Decoder : x̂ = gϕ(h) = Wdh+ bd where We ∈ Rn×d72

and Wd ∈ Rd×n are the encoding and decoding weight matrices, be ∈ Rk and bd ∈ Rd are bias vec-73

tors, and σ(·) is a non-linear activation function. We minimize L(θ, ϕ) = 1
d∥x− x̂∥22 + αLaux(x, x̂).74

Instead of an L1 penalty, we use a k-sparse constraint (Makhzani et al., 2013; Gao et al., 2024).75

We employ an auxiliary loss inspired by "ghost grads" (Jermyn et al., 2023) to revive dead latents76

(inactive for ≥ 1 epoch) and enhance model capacity; Laux(x, x̂) = |e− ê|22 where e = x− x̂ is the77

model residual, and ê = Wdz is a reconstruction using dead latents; more details in Appendix A.78

Training: We train two sets of SAEs on abstract embeddings from arXiv’s astro-ph (astrophysics,79

272,000), and cs.LG tag (computer science, 153,000). Embeddings are generated from OpenAI’s80

text-embedding-3-small model and normalized zero mean and unit variance. We evaluate trained81

SAEs using both dead latents and normalized reconstruction MSE.82

Hyperparameters: We consider the active latents k, total latents n, auxiliary latents kaux, learning83

rate, and aux-loss coefficient α. Learning rate (set to 1e-4) and α (set to 1/32) had minimal impact on84

reconstruction loss. We vary k (16-128) and n (2-9 times dinput), training models for ∼13.2k steps.85

Automated interpretability: To interpret features, we use two LLM instances: the Interpreter and86

Predictor. The Interpreter generates feature labels based on top-activating and non-activating abstracts.87

The Predictor uses the label to predicting activation likelihood on new abstracts, from -1 to +1. We88

measure the Pearson correlation between this score and true activation, and calculate the F1 score for89

binary classification. We use gpt-4o as the Interpreter and gpt-4o-mini as the Predictor, predicting90

each abstract separately; see Appendix B for more details.91

4 Evaluating effectiveness of search interventions92

Intervening on embeddings with SAE features SAEs are inherently correlational; however,93

Bricken et al. (2023), Cunningham et al. (2023a) and others demonstrate that many SAE features also94

have downstream causal effects. To intervene on an embedding along an SAE feature direction, we95

directly manipulate features in the SAE hidden dimension, and decode the result. As an implementa-96

tion detail, we note that intervening on a feature by up- or down-weighting its hidden representation97

and then decoding is equivalent to directly adding the scaled feature vector to the final embedding.98

This capability is demonstrated in our open-source semantic search tool (see Appendix D). We also99

explore an alternative process in Appendix C where we iteratively optimise the encoded decoded100

latents to minimise the difference between the desired feature activations and the actual activations.101

Experiment setup We incorporate SAE-based embedding interventions into a literature retrieval102

system for cs.LG and astro-ph. To assess the effectiveness of SAE feature intervention on semantic103

search, we evaluate the specificity and interpretability of feature-centric query modifications. We104

select random samples (N = 50 each) real literature retrieval queries relevant to machine learning105

and astronomy, which are answerable with information in papers from cs.LG and astro-ph. For106

each query, we return the top k = 10 most relevant papers using embedding cosine similarity, making107

up the original retrieval results R. We then select a random feature i in the top-k from the query’s108

hidden representation hq, and another orthogonal feature j that has no overlap with the top-k; we109

limit our selection only to features that are highly interpretable (F1 > 0.9, Pearson > 0.9). Given110

these features, we create a modified query embedding with h′
q,i = λ− and h′

q,j = λ+, letting λ− = 0111

and sampling λ+ ∈ [0, 5]. This effectively “down-weights” and “up-weights” the importance of i112

and j, respectively, in the modified query, which is used to generate new retrieval results R′.113

To the effect of up-weighting and down-weighting query modifications on the end retrieval results,114

we provide both R and R′ to an external LLM instance. The external LLM then compares R and R′115

and determines which features, out of a multiple-choice subset of 5 options, have been up-weighted116

or down-weighted; we use this to compute the intervention accuracy, which measures the precision117

and efficacy of causal query interventions. As a baseline, we compare our SAE-based method against118

traditional query rewriting, by using another LLM instance to re-write the original query such that it119

up-weights j and down-weights i entirely using natural language.120

Intervention results Our results are shown in Figure 2. We find that SAE feature interventions121

consistently outperform traditional query rewriting across various levels of query fidelity. This122

Pareto improvement demonstrates that our method can achieve higher intervention accuracy while123

3

0.2 0.4 0.6 0.8 1.0
Average Cosine Similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Up (Rewrite)
Down (Rewrite)
Up (Intervention)
Down (Intervention)

Figure 2: Relationship between intervention accuracy and query fidelity for SAE-based embedding
interventions versus traditional query rewriting in literature retrieval for cs.LG and astro-ph
domains. Intervention accuracy measures the precision of causal query modifications, while query
fidelity is quantified by cosine similarity between original and modified query embeddings.

maintaining greater similarity to the original query. For instance, at a cosine similarity of 0.75, SAE124

interventions achieve approximately 10% higher accuracy compared to query rewriting.125

5 Discussion126

In this work, we have presented the first application of sparse autoencoders (SAEs) to semantic search127

using dense text embeddings. By training SAEs on embeddings of scientific paper abstracts, we128

have shown their effectiveness in disentangling interpretable semantic concepts in document-level129

embeddings. We also designed and performed a causal intervention experiment to compare the130

efficacy of SAE feature manipulations and direct query rewriting, demonstrating that SAE-based131

manipulation can precisely and interpretably steer semantic search.132

While our current SAEs are trained on narrow scientific domains, extending this to the entirety of133

arXiv or even internet-scale text corpora could yield general-purpose SAEs with exceptionally rich134

feature spaces. By providing a proof-of-concept for extracting interpretable features from dense135

embeddings, and using features to precisely steer semantic search, our work opens several promising136

research directions and applications across various NLP tasks. In classification tasks, extracting137

interpretable and sparse features could offer fine-grained insights into model decision boundaries138

with global features. For machine translation, causal interventions along gender-based features could139

enable targeted semantic manipulations, potentially addressing issues like gender bias in translations140

(Stanovsky et al., 2019; Bolukbasi et al., 2016). Similar interventions could be applied to decrease141

bias and toxicity in the outputs of semantic search systems or generative models. Beyond these142

applications, our work supports the broader goal of making language models more transparent and143

controllable, which is crucial for building trust in AI systems as they become more integrated into144

critical decision-making processes (Doshi-Velez et al., 2017).145

Limitations Our work focused on relatively small datasets from specific scientific domains. Al-146

though this specificity allowed us to demonstrate the effectiveness of our steering approach in targeted147

search domains, future work should investigate generalization to larger, more diverse corpora; SAEs148

for general text embeddings would also need to be scaled up by at least 2-3 the total number of latents.149

Of particular interest would be corpora and intervention experiments focused on debiasing results150

or decreasing toxicity in information retrieval. It would also be extremely useful to have human151

evaluations, in order to evaluate the end-user interpretability of our steering approach. Additionally,152

our automated interpretability process is correlational and does not a priori guarantee that direct ma-153

nipulation of the feature aligns with the interpretation. We would also suggest future work evaluating154

performance of reconstructed embeddings on benchmarks like MTEB (Muennighoff et al., 2022),155

and comparing learned dictionaries to some proxy of ground-truth features (Makelov et al., 2024;156

Olah et al., 2024), in order to understand the completeness of recovered features.157

4

References158

Baeza-Yates, Ricardo, Berthier Ribeiro-Neto, et al. (1999). Modern information retrieval. Vol. 463.159

ACM press New York.160

Belrose, Nora, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and Stella161

Biderman (2024). “Leace: Perfect linear concept erasure in closed form”. In: Advances in Neural162

Information Processing Systems 36.163

Bills, Steven, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya164

Sutskever, Jan Leike, Jeff Wu, and William Saunders (2023). “Language models can explain165

neurons in language models”. In: URL https://openaipublic. blob. core. windows. net/neuron-166

explainer/paper/index. html.(Date accessed: 14.05. 2023) 2.167

Bolukbasi, Tolga, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai (2016).168

“Man is to computer programmer as woman is to homemaker? debiasing word embeddings”. In:169

Advances in neural information processing systems, pp. 4349–4357.170

Bricken, Trenton, Catherine Olsson, and Neel Nanda (2023). “Towards Monosemanticity: Decompos-171

ing Language Models With Dictionary Learning”. In: arXiv preprint arXiv:2301.05498.172

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,173

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. (2020). “Language174

Models are Few-Shot Learners”. In: Advances in neural information processing systems 33,175

pp. 1877–1901.176

Cao, Wenqiang, Qing Li, Siying Zhang, Rixin Xu, and Youqi Li (2023). “STEP: Generating Semantic177

Text Embeddings with Prompt”. In: 2023 Eleventh International Conference on Advanced Cloud178

and Big Data (CBD), pp. 180–185. URL: https://api.semanticscholar.org/CorpusID:179

269628678.180

Chan, Lawrence, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny Nitishin-181

skaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas (2022). “Causal scrubbing: A182

method for rigorously testing interpretability hypotheses”. In: AI Alignment Forum, p. 10.183

Conmy, Arthur and Neel Nanda (2024). Activation Steering with SAEs. Accessed 16-07-2024. URL:184

https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full- post- progress-185

update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs.186

Cunningham, Hoagy, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey (2023a). Sparse187

Autoencoders Find Highly Interpretable Features in Language Models. arXiv: 2309.08600188

[cs.LG]. URL: https://arxiv.org/abs/2309.08600.189

– (2023b). “Sparse autoencoders find highly interpretable features in language models”. In: arXiv190

preprint arXiv:2309.08600.191

Daujotas, Gytis (2024). Interpreting and Steering Features in Images. https://www.lesswrong.192

com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images.193

[Accessed 16-07-2024].194

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). “BERT: Pre-195

training of Deep Bidirectional Transformers for Language Understanding”. In: arXiv preprint196

arXiv:1810.04805.197

Donoho, David L (2006). “Compressed sensing”. In: IEEE Transactions on Information Theory 52.4,198

pp. 1289–1306.199

Doshi-Velez, Finale and Been Kim (2017). Towards A Rigorous Science of Interpretable Machine200

Learning. arXiv: 1702.08608 [stat.ML]. URL: https://arxiv.org/abs/1702.08608.201

Elhage, Nelson, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,202

Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,203

Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah (2022a). Toy Models of204

Superposition. arXiv: 2209.10652 [cs.LG]. URL: https://arxiv.org/abs/2209.10652.205

Elhage, Nelson, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Johnston, Ben Mann,206

Amanda Askell, Danny Hernandez, Dawn Drain, Zac Hatfield-Dodds, et al. (2022b). “Softmax207

Linear Units”. In.208

Foote, Alex, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez (2023). “Neuron209

to graph: Interpreting language model neurons at scale”. In: arXiv preprint arXiv:2305.19911.210

Furnas, George W, Thomas K Landauer, Louis M Gomez, and Susan T Dumais (1987). “The211

vocabulary problem in human-system communication”. In: Communications of the ACM 30.11,212

pp. 964–971.213

5

https://api.semanticscholar.org/CorpusID:269628678
https://api.semanticscholar.org/CorpusID:269628678
https://api.semanticscholar.org/CorpusID:269628678
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
https://www.lesswrong.com/posts/Quqekpvx8BGMMcaem/interpreting-and-steering-features-in-images
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652

Gao, Leo, John Thickstun, Anirudh Madaan, Zach Scherlis, Arush Guha, Sumanth Dathathri, Jared214

Kaplan, Azalia Mirhoseini, and Ilya Sutskever (2024). “Scaling Laws for Neurons in GPT Models”.215

In: arXiv preprint arXiv:2401.02325.216

Gao, Luyu, Xueguang Ma, Jimmy Lin, and Jamie Callan (2022). Precise Zero-Shot Dense Retrieval217

without Relevance Labels. arXiv: 2212.10496 [cs.IR]. URL: https://arxiv.org/abs/218

2212.10496.219

Gao, Tianyu, Xingcheng Yao, and Danqi Chen (2021). “SimCSE: Simple contrastive learning of220

sentence embeddings”. In: arXiv preprint arXiv:2104.08821.221

Hase, Peter, Mohit Bansal, Been Kim, and Asma Ghandeharioun (2023). Does Localization Inform222

Editing? Surprising Differences in Causality-Based Localization vs. Knowledge Editing in Lan-223

guage Models. arXiv: 2301.04213 [cs.LG]. URL: https://arxiv.org/abs/2301.04213.224

Hofmann, Valentin, Pratyusha Ria Kalluri, Dan Jurafsky, and Sharese King (2024). “AI generates225

covertly racist decisions about people based on their dialect”. In: Nature 615, pp. 78–85. DOI:226

10.1038/s41586-024-07856-5. URL: https://www.nature.com/articles/s41586-227

024-07856-5.228

Jermyn, Adam and Adly Templeton (2023). Ghost Grads: An improvement on resampling. [Accessed229

19-07-2024]. URL: https://transformer- circuits.pub/2024/jan- update/index.230

html#dict-learning-resampling.231

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv232

preprint arXiv:1412.6980.233

Lee, Linus (2024). Prism: mapping interpretable concepts and features in a latent space of language.234

Accessed 16-07-2024. URL: https://thesephist.com/posts/prism.235

Li, Kenneth, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg (2024).236

“Inference-time intervention: Eliciting truthful answers from a language model”. In: Advances in237

Neural Information Processing Systems 36.238

Liu, Nelson F, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith (2019).239

“Linguistic knowledge and transferability of contextual representations”. In: arXiv preprint240

arXiv:1903.08855.241

Makelov, Aleksandar, George Lange, and Neel Nanda (2024). “Towards principled evaluations of242

sparse autoencoders for interpretability and control”. In: arXiv preprint arXiv:2405.08366.243

Makhzani, Alireza and Brendan Frey (2013). “K-sparse autoencoders”. In: arXiv preprint244

arXiv:1312.5663.245

Manning, Christopher D, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to informa-246

tion retrieval. Cambridge university press.247

Marks, Samuel and Max Tegmark (2023). “The geometry of truth: Emergent linear structure in large248

language model representations of true/false datasets”. In: arXiv preprint arXiv:2310.06824.249

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013a). “Efficient estimation of word250

representations in vector space”. In: arXiv preprint arXiv:1301.3781.251

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean (2013b). “Distributed rep-252

resentations of words and phrases and their compositionality”. In: Advances in neural information253

processing systems 26.254

Muennighoff, Niklas, Nouamane Tazi, Loic Magne, and Nils Reimers (2022). “MTEB: Massive text255

embedding benchmark”. In: arXiv preprint arXiv:2210.07316.256

Ng, Andrew et al. (2011). “Sparse autoencoder”. In: CS294A Lecture notes. Vol. 72. 2011, pp. 1–19.257

Olah, Chris and Adam Jermyn (2024). July Update. https://transformer-circuits.pub/258

2024/july-update/. URL: https://transformer-circuits.pub/2024/july-update/.259

Olshausen, Bruno A and David J Field (1997). “Sparse coding with an overcomplete basis set: A260

strategy employed by V1?” In: Vision Research 37.23, pp. 3311–3325.261

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “Glove: Global vectors262

for word representation”. In: Proceedings of the 2014 conference on empirical methods in natural263

language processing (EMNLP), pp. 1532–1543.264

Peters, Matthew E, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,265

and Luke Zettlemoyer (2018). “Deep contextualized word representations”. In: arXiv preprint266

arXiv:1802.05365.267

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representation learning with268

deep convolutional generative adversarial networks”. In: arXiv preprint arXiv:1511.06434.269

Reimers, Nils and Iryna Gurevych (2019). “Sentence-BERT: Sentence Embeddings using Siamese270

BERT-Networks”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural271

Language Processing, pp. 3982–3992.272

6

https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2301.04213
https://arxiv.org/abs/2301.04213
https://doi.org/10.1038/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://www.nature.com/articles/s41586-024-07856-5
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://thesephist.com/posts/prism
https://transformer-circuits.pub/2024/july-update/
https://transformer-circuits.pub/2024/july-update/
https://transformer-circuits.pub/2024/july-update/
https://transformer-circuits.pub/2024/july-update/

Stanovsky, Gabriel, Noah A Smith, and Luke Zettlemoyer (2019). “Evaluating Gender Bias in273

Machine Translation”. In: Proceedings of the 57th Annual Meeting of the Association for Compu-274

tational Linguistics.275

Trifonov, Valentin, Octavian-Eugen Ganea, Anna Potapenko, and Thomas Hofmann (2018). Learning276

and Evaluating Sparse Interpretable Sentence Embeddings. arXiv: 1809.08621 [cs.CL]. URL:277

https://arxiv.org/abs/1809.08621.278

Turian, Joseph, Lev Ratinov, and Yoshua Bengio (2010). “Word representations: a simple and279

general method for semi-supervised learning”. In: Proceedings of the 48th annual meeting of the280

association for computational linguistics, pp. 384–394.281

Turner, Alex, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte MacDiarmid282

(2023). “Activation addition: Steering language models without optimization”. In: arXiv preprint283

arXiv:2308.10248.284

Wang, Liang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,285

and Furu Wei (2024). Text Embeddings by Weakly-Supervised Contrastive Pre-training. arXiv:286

2212.03533 [cs.CL]. URL: https://arxiv.org/abs/2212.03533.287

Zhao, Shuai, Meihuizi Jia, Luu Anh Tuan, Fengjun Pan, and Jinming Wen (2024). “Universal288

vulnerabilities in large language models: Backdoor attacks for in-context learning”. In: arXiv289

preprint arXiv:2401.05949.290

7

https://arxiv.org/abs/1809.08621
https://arxiv.org/abs/1809.08621
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533

Contents291

1 Introduction 1292

2 Related work 2293

3 Training SAEs and automated labelling 2294

4 Evaluating effectiveness of search interventions 3295

5 Discussion 4296

A Training details 8297

A.1 Training setup . 8298

A.2 SAE training metrics . 9299

A.3 Interpretability of SAE features . 9300

B Automated interpretability details 9301

B.1 Examples of features . 9302

B.2 Exploring the effectiveness of smaller models . 9303

C Iterative encoding optimisation 12304

D SAErch.ai 13305

D.1 Overview . 14306

D.2 Feature Visualisation Tab . 14307

D.2.1 Individual Features . 14308

D.2.2 Feature Families . 15309

A Training details310

A.1 Training setup311

Our sparse autoencoder (SAE) implementation incorporates several recent advancements in the field.312

Following Bricken et al. (2023), we initialise the bias bpre using the geometric median of a data313

point sample and set encoder directions parallel to decoder directions. Decoder latent directions are314

normalised to unit length at initialisation and after each training step. For our top-k models, based on315

Gao et al. (2024), we set initial encoder magnitudes to match input vector magnitudes, though our316

analyses indicate minimal impact from this choice.317

We augment the primary loss with an auxiliary component (AuxK), inspired by the “ghost grads”318

approach of Jermyn et al. (2023). This auxiliary term considers the top-kaux inactive latents (typically319

kaux = 2k), where inactivity is determined by a lack of activation over a full training epoch. The total320

loss is formulated as L+ αLaux, with α usually set to 1/32. This mechanism reduces the number of321

dead latents with minimal computational overhead (Gao et al., 2024). We found that dead latents322

only occurred during training the k = 16 models, and all dead latents had disappeared by the end323

of training. We show how dead latents evolved over training the k = 16 SAEs for the astro-ph324

abstracts in Figure 3.325

For optimisation, we employ Adam (Kingma et al., 2014) with β1 = 0.9 and β2 = 0.999, maintaining326

a constant learning rate. We use gradient clipping. Our training uses batches of 1024 abstracts, with327

8

0 2000 4000 6000 8000 10000
Training Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ad

 L
at

en
ts

0

2000

4000

6000

8000

10000

12000

Hi
dd

en
 D

im
en

sio
n

(n
)

Figure 3: The proportion of dead latents, defined as features that haven’t fired in the last epoch of
training, for our k = 16 SAEs on the astro-ph abstract embeddings. All dead latents were gone by
the end of training. We found that dead latents only occurred in k = 16 autoencoders.

performance metrics showing robustness to batch size variations under appropriate hyperparameter328

settings.329

The primary MSE loss uses a global normalisation factor computed at training initiation, while330

the AuxK loss employs per-batch normalisation to adapt to evolving error distributions. Following331

Bricken et al. (2023), we apply a gradient projection technique to mitigate interactions between the332

Adam optimiser and decoder normalisation.333

A.2 SAE training metrics334

Table 1 shows the final training metrics for all combinations of SAEs trained. We note clear trends in335

normalised MSE, log feature density and activation mean as we vary the number of active latents k336

and the overall number of latents n.337

A.3 Interpretability of SAE features338

The most direct way to evaluate the interpretability of features is to look at the distribution of339

automated interpretability scores, discussed above. Specifically: given a feature label from our340

interpreter model, how well can a predictor model predict the feature’s activation on unseen text?341

We show in Figure 4 that the Pearson correlation between predictor model confidence of a feature342

firing and the ground-truth firing is quite high, with median correlations ranging from 0.65 to 0.71343

for cs.LG and 0.85 to 0.98 for astro-ph. We note that Pearson correlation increases as k and n344

decrease, likely due to models learning coarser-grained features that are easier for the interpreter to345

identify.346

B Automated interpretability details347

B.1 Examples of features348

We show some examples of perfectly interpretable features (Pearson correlation > 0.99) in Table 2.349

The strength of the activation of the feature on its top 3 activating abstracts is shown in parentheses350

next to the abstract title.351

B.2 Exploring the effectiveness of smaller models352

Although we eventually used gpt-4o-mini as the Predictor model, we initially did some ablations353

to understand how effective gpt-4o and gpt-3.5-turbo would be as different combinations of the354

Interpreter and Predictor models. We measured this by randomly sampling 50 features from our355

SAE64 (trained on astro-ph abstracts) and measuring the interpretability scores of different model356

combinations, in terms of both F1 score (does the model’s binary classification of a feature firing on357

an abstract agree with the ground-truth) and the Pearson correlation (described in the main body).358

9

Table 1: Metrics for our top-k sparse autoencoders with varying k and hidden dimensions, across
both astronomy and computer science papers. MSE is normalised mean squared error, Log FD is
the mean log density of feature activations, and activation mean is the mean activation value across
non-zero features. Note that MSE is normalised.

astro.ph cs.LG

k n MSE Log FD Act Mean MSE Log FD Act Mean

16

3072 0.2264 -2.7204 0.1264 0.2284 -2.7314 0.1332
4608 0.2246 -4.7994 0.1350 0.2197 -3.0221 0.1338
6144 0.2128 -3.1962 0.1266 0.2089 -3.2299 0.1342
9216 0.1984 -3.4206 0.1264 0.1962 -3.4833 0.1343

12288 0.1957 -6.2719 0.1274 0.1897 -3.6448 0.1347

32

3072 0.1816 -2.3389 0.0847 0.1831 -2.3008 0.0885
4608 0.1691 -3.6091 0.0882 0.1697 -2.5152 0.0876
6144 0.1604 -2.7761 0.0841 0.1641 -2.6687 0.0873
9216 0.1554 -3.0227 0.0842 0.1540 -2.9031 0.0875

12288 0.1520 -4.9505 0.0843 0.1457 -3.0577 0.0877

64

3072 0.1420 -1.9538 0.0566 0.1485 -1.8875 0.0584
4608 0.1331 -2.7782 0.0622 0.1370 -2.0637 0.0570
6144 0.1262 -2.2828 0.0545 0.1310 -2.1852 0.0558
9216 0.1182 -2.4682 0.0539 0.1240 -2.3536 0.0545

12288 0.1152 -3.4787 0.0583 0.1162 -2.4847 0.0548

128

3072 0.1111 -1.8876 0.0483 0.1206 -1.5311 0.0399
4608 0.1033 -2.1392 0.0457 0.1137 -1.6948 0.0376
6144 0.1048 -2.2501 0.0438 0.1076 -1.8079 0.0366
9216 0.0975 -2.5352 0.0409 0.0999 -1.9701 0.0348

12288 0.0936 -2.7025 0.0399 0.0942 -2.0858 0.0342

0

2000

4000
astroPH

SAE16
SAE32
SAE64

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.000

2000

4000
csLG

Pearson Correlation
Figure 4: Pearson correlations between the ground-truth and
predicted feature activation, using GPT-4o as the Interpreter
and GPT-4o-mini as the Predictor.

10

Feature

Astronomy

Cosmic Microwave Background CMB map-making and power
spectrum estimation (0.1708)

How to calculate the CMB
spectrum (0.1598)

CMB data analysis and spar-
sity (0.1581)

Periodicity in astronomical data Generalized Lomb-Scargle
analysis of decay rate
measurements from the
Physikalisch-Technische
Bundesanstalt (0.1027)

Multicomponent power-
density spectra of Kepler
AGNs, an instrumental
artefact or a physical origin?
(0.0806)

RXTE observation of the X-
ray burster 1E 1724-3045. I.
Timing study of the persistent
X-ray emission with the PCA
(0.0758)

X-ray reflection spectra X-ray reflection spectra from
ionized slabs (0.3859)

The role of the reflection
fraction in constraining black
hole spin (0.3803)

Relativistic reflection: Re-
view and recent develop-
ments in modeling (0.3698)

Critique or refutation of theories What if string theory has no
de Sitter vacua? (0.2917)

No evidence of mass segrega-
tion in massive young clusters
(0.2051)

Ruling Out Initially Clustered
Primordial Black Holes as
Dark Matter (0.2029)

Computer Science

Sparsity in Neural Networks Two Sparsities Are Better
Than One: Unlocking the Per-
formance Benefits of Sparse-
Sparse Networks (0.3807)

Truly Sparse Neural Net-
works at Scale (0.3714)

Topological Insights into
Sparse Neural Networks
(0.3689)

Gibbs Sampling and Variants Herded Gibbs Sampling
(0.2990)

Characterizing the General-
ization Error of Gibbs Algo-
rithm with Symmetrized KL
information (0.2858)

A Framework for Neural Net-
work Pruning Using Gibbs
Distributions (0.2843)

Arithmetic operations in transformers Arbitrary-Length Generaliza-
tion for Addition in a Tiny
Transformer (0.1828)

Carrying over algorithm in
transformers (0.1803)

Understanding Addition in
Transformers (0.1792)

Table 2: Activation strengths and titles for abstracts related to Astronomy and Computer Science
features.

1.00 0.51 0.43

0.51 1.00 0.41

0.43 0.41 1.00

GPT-4o, GPT-4o

GPT-4o, GPT-3.5

GPT-3.5, GPT-3.5

GPT-3.5, GPT-3.5

GPT-4o, GPT-3.5

GPT-4o, GPT-4o 1.00 0.68 0.68

0.68 1.00 0.51

0.68 0.51 1.00

GPT-4o, GPT-4o

GPT-4o, GPT-3.5

GPT-3.5, GPT-3.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
F1 Score Correlation Pearson Correlation

Figure 5: Correlation between F1 scores and Pearson correlation scores of different combinations of
(labeller, predictor) models. Interestingly, using GPT-3.5 as the predictor appears to degrade
performance similarly regardless of whether the feature was labelled by GPT-4o or GPT-3.5.

Interestingly, we observe that using gpt-4o as the Interpreter and gpt-3.5-turbo as the Predictor359

leads to similar scores as using gpt-3.5-turbo for both, as shown in Figures 5 and Figures 6. This360

suggests that the challenging task in the autointerp is not necessarily labelling but rather predicting361

the activation of a feature on unseen abstracts.362

Another observation is that using gpt-3.5-turbo as the Predictor only leads to a moderate degrada-363

tion of F1 score, it leads to a significant degradation of Pearson correlation. This is likely because364

we only use 6 abstracts for each feature prediction (3 positive, 3 negative) and thus there are only a365

11

GPT-4o, GPT-4o

GPT-4o, GPT-3.5

GPT-3.5, GPT-3.5

0

0.2

0.4

0.6

0.8

1
F1 Score
Pearson Correlation

Av
er

ag
e

Sc
or

e

Figure 6: Mean F1 scores and Pearson correlations (according to ground-truth feature activations)
across 50 randomly sampled features, for different combinations of (Interpreter, Predictor)
models.

few discrete F1 scores possible. Additionally, it appeared that gpt-3.5-turbo was generally less366

likely to assign higher confidence scores in either direction, with a much lower variance in assigned367

confidence than when gpt-4o was the Predictor. This affects Pearson correlation but not F1.368

C Iterative encoding optimisation369

We noted in Section 4 that intervening on a feature by up- or down-weighting its hidden representation370

and then decoding is equivalent to directly adding the scaled feature vector to the final embedding.371

To demonstrate this equivalence, let’s consider an intervention on feature i by an amount δ. The372

modified hidden representation is h′ = h+ δei, where ei is the i-th standard basis vector. Decoding373

this modified representation gives x̂′ = Wdh
′ = Wdh + δWdei = x̂ + δwi, where wi is the i-th374

column of Wd. Thus, intervening on the hidden representation and then decoding is equivalent to375

directly adding the scaled feature vector to the original reconstruction.376

We show in Figure 9 how cosine similarity between the original query embedding and the modified377

query embedding changes as we change the upweighting and downweighting strength for different378

features. Cosine similarity drops rapidly as soon as upweight or downweight exceeds 0.1.379

There is an implicit challenge in SAE-based embedding interventions: the trade-off between steering380

strength and precision. When directly manipulating feature activations, we observed that strong381

interventions often led to unintended semantic shifts, activating correlated features and potentially382

moving the embedding far from the SAE’s learned manifold. Our goal is to achieve precise semantic383

edits that express the desired feature strongly while minimising interference with unrelated features.384

To this end, we developed an iterative optimisation approach that leverages the SAE’s learned feature385

space to find an optimal balance between these competing objectives.386

Let x ∈ Rd be the original embedding, fθ(·) the SAE encoder, and gϕ(·) the SAE decoder. We define387

a target feature vector t ∈ Rk representing the desired feature activations after intervention, where k388

is the number of active features in our SAE. The iterative latent optimisation aims to find optimised389

latents h∗ that satisfy:390

12

h∗ = argminh′

{
∥fθ(gϕ(h′))− t∥22

}
We solve this optimisation problem using gradient descent, starting from the initial latents h = fθ(x)391

and iteratively updating h′. We use the AdamW optimiser with a cosine annealing learning rate392

schedule.393

To evaluate the effectiveness of this approach, we compare it to a direct intervention method where we394

simply set the target feature to a specific value in the latent space. For each abstract in our dataset, we395

embed the abstract using an OpenAI embedding model to obtain x. We then encode the embedding396

to get initial latents h = fθ(x). We randomly select a target feature i and target value v. We then397

apply both intervention methods: our iterative optimisation of h′ as described above, with ti = v and398

tj = hj for j ̸= i, and direct intervention: setting h′
i = v and h′

j = hj for j ̸= i.399

2 4 6 8 10
Optimisation Step

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

No
rm

al
ise

d
M

SE

SAE16
SAE32
SAE64

2 4 6 8 10
Optimisation Step

0.05

0.10

0.15

0.20

0.25

No
rm

al
ise

d
M

SE

SAE16
SAE32
SAE64

Figure 7: Normalised MSE at each of 10 steps across the iterative latent optimisation process. Left:
Setting a random zero feature to active. Right: Setting a random active feature to zero.

Figure 7 (left panel) shows the trajectory of normalised MSE during the iterative optimisation process,400

when setting a random zero feature to active. Similarly, the right panel shows the optimisation when401

setting a random active feature to zero. Normalised MSE improves in the former case but not the402

latter.403

0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.2 0.4 0.6

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.2 0.4 0.6
Max Cosine Similarity Max Cosine Similarity Max Cosine Similarity

k=16, n=3072 k=16, n=6144 k=16, n=9216

k=32, n=3072 k=32, n=6144 k=32, n=9216

k=64, n=3072 k=64, n=6144 k=64, n=9216

Figure 8: Distribution of maximum cosine simi-
larity between a given feature vector and all other
feature vectors, within the same SAE.

0.01 0.1 1 10
Downweight Value (absolute)

0.01

0.1

1

10

Up
we

ig
ht

 V
al

ue

0.12
0.00
0.12
0.24
0.36
0.48
0.60
0.72
0.84
0.96

Co
sin

e
Si

m
ila

rit
y

Figure 9: Cosine similarity between the original
query embedding and the modified query em-
bedding, with different values of upweighting
random zero features and downweighting ran-
dom active features.

D SAErch.ai404

To demonstrate the practical applications of our sparse autoencoder (SAE) approach to semantic405

search and feature interpretation, we developed SAErch.ai, a web application that allows users to406

interact with the SAE models trained on arXiv paper embeddings.407

13

https://huggingface.co/spaces/charlieoneill/saerch.ai

Figure 10: The SAErch tab of our web application, demonstrating a semantic search for “measurable
signatures of stochasticity in star formation in galaxies” in the astrophysics domain. The interface
displays the top 10 search results ranked by relevance, including title, citation count, and publication
year. On the right, sliders represent the top activated SAE features for the query, allowing users
to fine-tune the search by adjusting feature weights. On the bottom we have our feature addition
interface. Users can search for specific semantic features (e.g., “black holes”) and add them to their
query. They can then adjust the strength of these features.

D.1 Overview408

SAErch.ai is built using the Gradio framework and consists of three main tabs: Home, SAErch, and409

Feature Visualisation. The application allows users to switch between the Computer Science (cs.LG)410

and Astrophysics (astro-ph) datasets.411

The SAErch tab implements the core functionality of our semantic search system, allowing users to:412

• Input a search query413

• View the top 10 search results based on embedding similarity414

• Interact with the SAE features activated by their query415

For each query, the system displays sliders corresponding to the top-k SAE features activated by the416

input. Users can adjust these sliders to modify the query embedding, effectively steering the search417

results towards or away from specific semantic concepts; see Figure 10. This directly demonstrates418

the fine-grained control over query semantics discussed in Section 4 of our paper. Users can also419

search for and add specific features not initially activated by their query.420

D.2 Feature Visualisation Tab421

The Feature Visualisation tab is divided into two sub-tabs: Individual Features and Feature Families.422

D.2.1 Individual Features423

For any selected feature, this tab displays:424

14

Figure 11: Individual feature visualisation for the “Circuit analysis in neural networks” feature in the
computer science domain. The interface displays key interpretability metrics, top activating abstracts,
correlated and co-occurring features, and an activation distribution histogram. Further information
(not shown in the image) includes co-occurring features and activation distribution.

• Top 5 activating abstracts, demonstrating the semantic content captured by the feature425

• Top and bottom 5 correlated features, illustrating the relationships between different SAE426

features427

• Top 5 co-occurring features, showing which features tend to activate together428

• A histogram of activation values, providing insight into the feature’s behavior across the429

corpus430

• The most similar features in SAE16 and SAE32431

D.2.2 Feature Families432

The Feature Families tab in our web application offers an in-depth exploration of related features433

discovered by our sparse autoencoder. We show an example feature family in Figure 12.434

The table displays the parent feature (superfeature) and its child features, along with key metrics,435

such as the name of the parent and child features, the frequency of co-occurrence between the child436

feature and the parent feature, ranging from 0 to 1, and the F1 Score and Pearson correlation.437

The interactive directed graph provides a visual representation of the feature family structure. Each438

node represents a feature. The size of the node corresponds to the feature’s density (frequency of439

activation), while the color intensity indicates the Pearson correlation (interpretability). Arrows440

between nodes show relationships between features, with the direction typically pointing from more441

general to more specific concepts. Users can hover over nodes to view detailed information about442

each feature, including its name and log density.443

15

Figure 12: Directed graph visualization of a transformer models feature family. Nodes represent
individual features, with size indicating feature density and color intensity showing Pearson correla-
tion. Edges depict relationships between features, with arrow direction pointing from more general to
more specific concepts. Users can hover over nodes to view detailed feature information.

16

	Introduction
	Related work
	Training SAEs and automated labelling
	Evaluating effectiveness of search interventions
	Discussion
	Training details
	Training setup
	SAE training metrics
	Interpretability of SAE features

	Automated interpretability details
	Examples of features
	Exploring the effectiveness of smaller models

	Iterative encoding optimisation
	SAErch.ai
	Overview
	Feature Visualisation Tab
	Individual Features
	Feature Families

