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ABSTRACT

Effective reasoning over complex visual data and medical knowledge is critical for
medical Visual Question Answering (VQA). While multimodal large language
models (MLLMs) show promise, their reasoning capabilities remain fundamen-
tally capped by the static nature of current training paradigms. Existing reinforce-
ment learning (RL) methods act as fixed tutors, providing unchanging guidance
that often optimizes output format without explicit medical expertise, leading to
performance plateaus and reward hacking. Drawing inspiration from how human
experts continuously refine clinical principles, we introduce Evo-PI, a framework
that operationalizes a synergistic loop of evolving principle-guided learning. Evo-
PI generates, applies, and iteratively refines abstract medical principles, which
serve as dynamic rewards. This co-evolution of the reasoning model and its guid-
ing principles enables MLLMs to develop more robust and clinically aligned rea-
soning. Across eight medical VQA benchmarks, Evo-PI consistently improves
performance over diverse backbones and RL algorithms, achieving up to 24.6%
accuracy gains. Our results establish evolving principle scaling as a scalable and
generalizable paradigm for aligning MLLMs with expert-like reasoning, advanc-
ing the path toward trustworthy medical AI.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) have demonstrated significant potential for medical
applications, particularly in Visual Question Answering (VQA) tasks Yin et al. (2023); Xiao et al.
(2025). For instance, MLLMs can analyze X-ray images to aid clinicians in the rapid screening
of potential cases, as seen during the COVID-19 pandemic. Such models not only assist with pre-
liminary diagnostic tasks but also help analyze and infer underlying pathologies, enabling clinical
workflows to fully leverage the knowledge embedded within MLLMs Ye & Tang (2025).

The capacity of existing MLLMs to perform specialized medical tasks is driven by their sophisti-
cated reasoning capabilities. Echoing the development of general-purpose models Comanici et al.
(2025); Team (2023); Bai et al. (2025), these reasoning abilities are primarily honed through large-
scale pre-training and subsequent fine-tuning on domain-specific data Chen et al. (2024); Wu et al.
(2025); Pan et al. (2025); Lai et al. (2025).

A predominant strategy for enhancing the reasoning capabilities of medical MLLMs is to expand
the training dataset with more medical VQA samples, following established scaling laws Chen et al.
(2024). However, this approach faces a significant bottleneck, as acquiring accurately annotated
medical data requires labor-intensive review by clinical experts. Consequently, the cost of curating
high-quality training data for medical MLLMs is exceptionally high compared to other specialized
domains Wang et al. (2024); Liu et al. (2024).

Recent methods using reinforcement learning (RL) have proved effective in enhancing the reason-
ing capabilities of MLLMs beyond what is achieved with Supervised Fine-Tuning (SFT) Lai et al.
(2025); Chen et al. (2024). Compared to SFT, RL-based methods can improve the generalization
performance of medical MLLMs Lai et al. (2025); Pan et al. (2025); Wu et al. (2025). Many of these
techniques are inspired by Group Relative Policy Optimization (GRPO) Shao et al. (2024), which
employs both accuracy and format compliance as reward signals to constrain the model’s output to
a structured response, such as a chain of thought followed by a final answer Guo et al. (2025).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Despite this progress, existing medical MLLMs still falter on complex clinical reasoning. We argue
this stems from a fundamental limitation in current RL paradigms: they focus on refining reasoning
format without explicitly enhancing the model’s underlying medical knowledge. A paradigm that
merely constrains reasoning paths to fit a desired structure is unlikely to replicate the rapid capability
scaling observed in general-purpose models Lockyer et al. (2017). While advanced RL techniques
(e.g., clip-higher, GSPO Yu et al. (2025); Chen et al. (2025); Zheng et al. (2025)) can yield marginal
improvements, these optimizations alone are insufficient for models to approach the upper bounds
of their reasoning potential in medicine.

This paradigm starkly contrasts with how human experts learn. Medical students first acquire basic
clinical principles, then continuously refine them by generalizing from diverse case studies, enabling
transfer to complex and unfamiliar situations Issa et al. (2011). Inspired by this dynamic and scalable
learning process, we propose a novel framework that operationalizes this principle of co-evolution.

This evolving guidance mechanism offers two key advantages: (1) it applies the principles of scal-
ing laws directly to the reward model, providing theoretical grounding for its efficacy Kaplan et al.
(2020); and (2) it establishes a synergistic process, where evolving principles deepen medical knowl-
edge integration while simultaneously mitigating reward hacking Skalse et al. (2022). Figure 1
illustrates the key insights of our idea.

Principle-Guided Medical VQA

What modality is used 
to capture this image?
A)CT 
B)PET 
C)Nuclear medicine scan 
D)Mammogram

Typical Medical VQA

What modality is used 
to capture this image?
A)CT 
B)PET 
C)Nuclear medicine scan 
D)Mammogram

Evolving 
updates

Medical
Principles

Guide

Figure 1: Comparison of typical Medical VQA with our Principle-Guided framework. (Left)
Without explicit guidance, a standard MLLM makes a superficial guess based on visual similarity,
resulting in a reasoning failure. (Right) Our framework equips the MLLM with evolving medical
principles as a clinical guide, fostering a robust reasoning process that correctly identifies the modal-
ity, systematically checks for abnormalities, and arrives at the correct answer through a transparent
and clinically aligned pathway.

To this end, we introduce Evo-PI, an Evolving Principle-guided reinforcement learning framework
for medical reasoning. Evo-PI operationalizes this synergistic loop through three phases: (1) Prin-
ciple bank initialization, where a knowledgeable LLM distills an initial set of principles from case
examples; (2) Principle-Guided RL, where a backbone MLLM is trained with dynamic rewards de-
rived from these principles, as evaluated by a frozen judge LLM; and (3) Principle Evolution, where
the knowledgeable LLM refines and expands the principle set based on training dynamics, preparing
a more sophisticated guide for the next iteration.

In summary, our contributions are:

• We propose Evo-PI, the first framework to our knowledge that enables co-evolution be-
tween a reasoning model and its guiding medical principles, moving beyond the fixed
paradigms of existing RL methods.

• Evo-PI mimics principles learning in medical training, enhancing and stimulating the in-
trinsic knowledge of medical MLLMs.

• We introduce evolving principle scaling, where abstract medical knowledge is progres-
sively refined and expanded to serve as a dynamic and scalable reward signal, effectively
mitigating reward hacking.
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• Through extensive experiments across eight medical VQA benchmarks, we show that Evo-
PI delivers consistent and significant performance gains across diverse MLLM backbones.

2 RELATED WORK

General MLLMs and Medical MLLMs Recent years have seen the emergence of large-scale
MLLMs, such as GPT-4o Team (2023) and the Gemini series Comanici et al. (2025). These models
acquire strong cross-modal reasoning by leveraging vast data collections, but consistently under-
perform on tasks requiring deep domain expertise. Medical MLLMs address this gap, typically
through SFT on expert-annotated datasets like PubMedVision Chen et al. (2024). While effective,
such approaches incur substantial annotation costs, creating a major scaling bottleneck. To mitigate
data scarcity, recent works have explored RL for post-training alignment Pan et al. (2025); Lai et al.
(2025); Wu et al. (2025). However, these methods generally treat medical knowledge as static re-
sources for fine-tuning rather than as dynamic, guiding components of the learning process. As a
result, they rely on fixed reward heuristics and largely overlook explicit medical knowledge, even
though knowledge-aware judging has proven effective in general LLM settings Zheng et al. (2023).
This gap highlights a critical need to rethink how medical expertise is integrated into the alignment
process.

Reinforcement Learning Algorithms for Post-Training State-of-the-art alignment commonly
employs RL algorithms such as PPO Schulman et al. (2017) and GRPO Shao et al. (2024), with
subsequent variants like GSPO Zheng et al. (2025) addressing challenges including training insta-
bility and entropy collapse Cui et al. (2025). A common limitation across these techniques is their
reliance on reward functions with fixed, pre-defined strategies. Such rigidity leaves models sus-
ceptible to reward hacking Skalse et al. (2022), particularly in knowledge-intensive domains like
medicine, where they may exploit surface-level heuristics of the reward scheme rather than acquir-
ing deeper, clinically aligned reasoning skills. These limitations motivate the central hypothesis
of our work: to foster robust medical reasoning, the reward mechanism itself must be dynamic,
knowledge-driven, and co-evolve with the model being trained.

3 EVO-PI

Current training paradigms lack a mechanism to transform medical principles into dynamic guidance
and reward signals that evolve with the model. To address this gap, we introduce Evo-PI, an iter-
ative framework that generates, applies, and refines domain principles to strengthen the reasoning
capabilities of MLLMs on complex medical VQA tasks.

3.1 PROBLEM DEFINITION

In medical VQA, a MLLM answers text questions about a medical image. Formally, given a medical
MLLM Mθ with its parameters θ, the input is a set of medical VQA questions. Each medical VQA
question q consists of a medical image I and a textual question T , which can be represented as:

q = (I, T ), I ∈ RH×W×C , T = (w1, w2, . . . , wn), wi ∈ V, (1)

where the textual question T is represented as a sequence of n tokens, with each token wi drawn
from the vocabulary V . H , W , and C represent the height, width, and channel dimension of the
image, respectively.

The model predicts a textual answer â to the medical question, represented as a sequence of tokens:
â = (y1, y2, . . . , ym), yj ∈ V , where the answer â consists of m tokens, and each token yj is drawn
from the same vocabulary V . The training objective is to maximize the conditional likelihood of the
answer given the input, defined as follows:

max
θ

logMθ(â | I, t) = max
θ

m∑
j=1

logMθ(yj | y<j , I, t). (2)
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Phase 1: Raw Principles Generation

Knowledgeable LLM

Medical
Category

Name

Few Medical Cases

General 
Principles 

Phase 3: Principles Scaling and refine

Good/bad cases

Avoid reward hacking

Phase 2: Guided Reinforcement Learning

Medical Visual Questions

RLVR
algorithm
 trainer

Principles Judge
Reasoning checker

Principles reward

Thinking Point reward

RL 
Algorithm 

reward

Update
?

No

Yes

prompting 
Scaling 

and refine
iteration

Medical MLLM 

reasoning process 
and answer 

Medical
MLLM 

Hyperparameters
or metrics of

Judge Rollout

Figure 2: Overview of the Evoving Principle-guided Iterative framework (Evo-PI).

3.2 OVERALL FRAMEWORK

Our proposed framework, Evo-PI, directly addresses the gaps in existing work by externalizing med-
ical knowledge into editable principles, optimizing these principles as learning time signals rather
than a fixed knowledge set, and continuously revising them to balance exploration and exploitation
during principle scaling and refinement. As illustrated in Figure 2, Med PI runs a three-stage loop.
(1) Principle bank initialization: We begin by creating a set of fundamental principles for the
medical VQA task. This is achieved by prompting a frozen knowledgeable LLM with a few-shot
medical cases and category names to distill an initial set of general principles that capture clinically
grounded heuristics for image and text reasoning. (2) Guided Reinforcement Learning: A back-
bone MLLM is trained with RL to answer medical visual questions. For each instance, the model
generates an answer and a corresponding reasoning chain in a process known as a rollout. A sepa-
rate, frozen judge LLM evaluates adherence to the relevant principles, yielding a principle reward
and a thinking point reward. These are combined with the base RL environment reward to update
the parameters of the MLLM backbone. (3) Principle Evolution: At the end of each iteration, if
the stopping criteria are not met, the Knowledgeable LLM from the first stage is prompted to scale
and refine the set of principles, guided by the current MLLM’s performance. The next iteration then
proceeds with the updated principles. The process terminates once a stopping condition is satisfied.

3.3 PRINCIPLE BANK INITIALIZATION

Unlike prior work that scales data or fixes heuristic rewards without updating knowledge, Evo-
PI externalizes clinical knowledge and initializes an editable principle bank. Inspired by clinical
training, where protocols are distilled and revised through repeated case review, this stage converts
tacit medical knowledge into editable rules that supervise learning. Specifically, given a medical
VQA dataset with type annotations C, we sample a small anchor set of question-answer pairs QC

for each medical type c ∈ C. Next, Evo-PI deployed a frozen Knowledgeable LLM(MK) first to
generate a set of candidate principles Pc conditioned on a medical type name c ∈ C (e.g., MR, CT) ,
for all c ∈ C. Subsequently, MK is then prompted with a small random set of question–answer pairs
QC drawn for type c as context, and refines the principles P for coverage and specificity. The initial
principle bank is denoted as P =

⋃
c∈C Pc. The resulting principles are stored for downstream use.

Prompt templates for both initial generation and iterative evolution are provided in Appendix A.5.
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We use a text LLM rather than an MLLM at this stage because the goal is medical plausibility, rather
than visual grounding. This decouples principle creation from the backbone and modality, requires
no shared architecture or pre-training corpus, and avoids alignment constraints.

3.4 GUIDED REINFORCEMENT LEARNING

The objective of this stage is to train the medical MLLM to answer visual questions by converting
editable principles into reward signals, overcoming fixed heuristic rewards and the lack of knowl-
edge updates in prior work. For each medical VQA instance, the backbone MLLM performs a
rollout to produce a reasoning trace and an answer. A frozen judge LLM (MJ ) evaluates adherence
to the current principle set and returns principle based rewards. These are merged with the base RL
reward, and the composite signal is used to update the parameters of this medical MLLM (Mθ).

Specifically, given a medical VQA input q = (I, T ), Evo-PI prompts the learnable medical MLLM
Mθ with an answer format that first elicits a step-wise reasoning trace rt and then a final answer
â based on this reasoning trace rt. The medical MLLM (Mθ) completes one rollout o = (rt, â)
or more {oi}Gi=1, depending on the chosen RL algorithm. The LLM judge (MJ ) scores o against
the principles to produce a reward for the principles and a reward for the point of thought, which is
combined with the environment reward to update θ. The detailed prompt templates can be found in
the Appendix A.7.

Principles Judge and Principle Rewards Med PI concatenates the principles P from the previous
stage into a description paragraph D =

⊕n
i=1 Pi, where ⊕ denotes the concatenation operation. A

frozen principles judge LLM (MJ ) compares the description paragraph D with the reasoning trace
rt, and returns a count c of satisfied principles. The principle reward can be formally defined as:

RewardP =


c

|P |
, 0 ≤ c ≤ |P |,

0, c < 0 or c > |P |,
(3)

where the constraint c > 0 is designed to prevent MLLM from engaging in reward hacking by
releasing large amounts of repetitive content in the reasoning traces rt. In contrast, c < 0 reflects
the error of the judge from MJ and is neutralized by clipping. The principle rewards are normalized
by P and clip out-of-range values. Simultaneously, the same frozen judge (MJ ) verifies, step by
step, that the reasoning trace rt supports the final answer â, analogous to a clinician-style verification
workflow.

Thinking Point Reward In this step, Evo-PI extracts the reasoning trace enclosed by the
<think> </think> tags from each model response and checks whether the trace satisfies the
enumerated points of reasoning. A reasoning checker parses the trace, identifies bullet indicators
using regular expressions, and counts the number bullet points b that are correctly addressed. The
thinking point reward is then RewardT defined as follows:

RewardT =


b

|P |
, 0 ≤ b ≤ |P |,

0, b > |P |,
(4)

where RewardT is normalized by the number of listed points and the condition b > 0 is also used to
prevent reward hacking.

RLVR Training Procedure After obtaining reward signals from the Principles Reward
(RewardP ) and Thinking Point Reward (RewardT ), Evo-PI treats the backbone MLLM as a policy
and optimizes it with Reinforcement Learning with Verifiable Rewards (RLVR) Wen et al. (2025).
Specifically, Evo-PI adopts GRPO Shao et al. (2024) and GSPO Zheng et al. (2025) as the RLVR
trainer. For example, In GRPO, the per-sample scalar return ri, is formed from the verifiable rewards
and the environment signal. The normalized per-token advantage is defined as follows:

Âi,t =
ri − µ({RewardP ,RewardT ,RewardRLV R})

σ(RewardP ,RewardT ,RewardRLV R)
. (5)
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where RewardRLV R is the original reward defined by the RLVR algorithm (e.g., format reward and
accuracy reward in GPRO). Accordingly, the policy ratio is defined as follows:

ri,t(θ) =
Mθ

(
oi,t | q, oi,<t

)
Mθold

(
oi,t | q, oi,<t

) . (6)

where oi ∈ denotes the i-th rollout (i.e., reasoning trace rti and answer sequence âi) generated by the
medical MLLM Mθ for query q, with G total rollouts sampled per query. The final GRPO objective
used to update the θ combines the principle and thinking point signals with the environment reward
to promote stable policy improvement, and is given by:

JEvo-PI(θ) = E (q,A)∼D
{oi}G

i=1∼Mθold (·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1+ ε

)
Âi,t

)]
.

(7)

3.5 PRINCIPLE EVOLUTION

Phase three consists of three core components to adapt the principle set by controlling the iteration,
scaling the principles, and refining them, rather than relying on fixed rewards or static knowledge
during training.

Iteration and Generalization Control To prevent overfitting to cases produced during training and
limit drift from medical knowledge, we cap the number of loop passes and apply early stopping on
a held-out validation set.

Balance of Exploitation and Exploration We track token-level policy entropy during the process
of reinforcement learning. Training terminates typically under two conditions: Entropy Collapse Cui
et al. (2025) and Abnormal Entropy Increase. Entropy collapse is a common phenomenon indicating
a reduction in the MLLM’s exploration space, as the model tends to become more certain of its own
inferences, also known as exploitation over exploration. High entropy indicates that the policy
prioritizes exploration to discover solutions, whereas low entropy signifies a focus on consistently
exploiting optimal actions. In Evo-PI, medical MLLMs serve as policy models that are updated
by the RLVR trainer, where the balance of exploring diverse case patterns with reliably solving
individual cases makes entropy a suitable stopping signal. Because principles are embedded in the
judge and never exposed to the MLLM, reward hacking is curtailed, though mild entropy rises can
occur. In practice, Evo-PI terminates training if entropy falls to a collapse threshold or exceeds the
baseline recorded after the first MLLM update.

Scaling and Refinement of Principles If termination criteria are not met, a frozen Knowledgeable
LLM receives the current principles from the latest round and prompts it to scale and refine these
principles. The update increases coverage while keeping rules abstract, concise, and compositional,
where redundant rules are merged, low utility rules are pruned, and new numbered rules are added
only for recurring failure modes. Prompts for this step are given in Appendix A.6.

4 EXPERIMENTS

We conduct quantitative and qualitative experiments to evaluate Evo-PI.

4.1 EXPERIMENTAL SETTING

Datasets We conduct experiments on the OmniMedVQA dataset Hu et al. (2024), which is used in
Med-R1 and designed for the medical VQA task. OmniMedVQA spans eight imaging modalities:
Computed tomography (CT), dermoscopy (DER), fundus photography (FP), microscopy images
(MI), magnetic resonance imaging (MR), optical coherence tomography (OCT), ultrasound (US),
and X-ray. After removing duplicate cases, we split the data into training, testing, and validation
sets in an 8:1:1 ratio. Table 1 summarizes the statistics of these eight benchmark datasets.

Hyperparameter Settings Evo-PI employs a consistent set of hyperparameters across all eight
datasets. The default iteration number is three, with one training epoch in each iteration. The batch
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Table 1: Statistics of the datasets.
Dataset CT DER FP MI MR OCT US X-ray

Training 12,647 5,343 4,318 4,544 25,501 3,716 8,792 6,332
Validation 1,581 668 540 568 3,188 465 1,099 792
Test 1,581 668 540 568 3,188 465 1,100 792
Total 15,809 6,679 5,398 5,680 31,877 4,646 10,991 7,916

size is 256 for all backbone medical MLLMs. For group-based RL algorithms (such as GRPO),
the rollout number defaults to 8. For RL algorithms using cilp-higher (e.g., GSPO), Evo-PI set the
clip ratio low=0.0003 and clip ratio high=0.0004.

We recommend knowledgeable and judge LLMs with at least 7B parameters. In our setup, GPT-
4o-mini1 serves as the knowledgeable LLM for principle generation, scaling, and refinement, and
Qwen2.5-7B-Instruct2 serves as the judge LLM to evaluate the responses from medical MLLM. We
implemented parallelism using FSDP on the Verl training framework. All backbone models are
trained on 4×H100 80GB SXM GPUs, and the judge LLM runs on a separate H100 80GB GPU.

Baselines and Evaluation Metrics We evaluate Evo-PI against two strong medical VQA back-
bones, HuatuoGPT-Vision Chen et al. (2024) and Med-R1 Lai et al. (2025), both state-of-the-art
on medical VQA. For each backbone, we report Accuracy before and after applying Evo-PI under
identical decoding and data splits. We also conduct a horizontal comparison across base MLLM
variants of varying sizes corresponding to the backbones’ underlying models.

Table 2: Overall comparison on the medical visual question answering task. Bold indicates the
best results. HuatuoGPT-Vision is based on Qwen 2.5-VL-7B. Med-R1 comprises eight modality-
specific submodels for the eight medical modalities, each based on Qwen 2-VL-2B.
Dataset CT DER FP MI MR OCT US X-ray Average

Qwen 2-VL-2B [1] 0.4023 0.4177 0.4685 0.4208 0.4410 0.3828 0.3864 0.4823 0.4252
Qwen 2-VL-7B [2] 0.6818 0.5719 0.7444 0.6250 0.5452 0.6323 0.3827 0.7197 0.6129
Qwen 2-VL-72B [3] 0.6797 0.6531 0.7258 0.6784 0.6939 0.7276 0.5139 0.7211 0.6805
Qwen 2.5-VL-3B [4] 0.7103 0.6078 0.6981 0.5986 0.5364 0.6839 0.4409 0.7462 0.6278
Qwen 2.5-VL-7B [5] 0.6736 0.7006 0.7056 0.6004 0.5533 0.5570 0.3355 0.7563 0.6103
Qwen 2.5-VL-72B [6] 0.6618 0.6975 0.7104 0.6937 0.6364 0.6922 0.6985 0.7981 0.6771

LLaVA-Med [7] 0.1869 0.4495 0.3903 0.3329 0.2747 0.3461 0.2988 0.3068 0.3233
RadFM [8] 0.2756 0.3921 0.3686 0.2797 0.2406 0.3280 0.1657 0.3095 0.2950
Med-Flamingo [9] 0.3128 0.4856 0.4126 0.3003 0.2634 0.2516 0.3169 0.4401 0.3429
MedVInT [10] 0.4074 0.2911 0.3184 0.3202 0.4310 0.2326 0.4126 0.5510 0.3705

HuatuoGPT-Vision [11] (Base [5]) 0.6534 0.6841 0.7630 0.7130 0.6866 0.7763 0.4818 0.8005 0.6948
Evo-PI (Base [11] + GSPO) 0.8797 0.9021 0.9369 0.9580 0.9138 0.9824 0.9109 0.9367 0.9295
Evo-PI (Base [11] + GRPO) 0.8797 0.9021 0.9369 0.9580 0.9418 0.9824 0.9109 0.9367 0.9295
Relative Gains (%) 22.63%↑ 23.70%↑ 18.91%↑ 24.50%↑ 25.52%↑ 20.61%↑ 47.28%↑ 13.62%↑ 24.59%↑
Med-R1 [12] (Base [1]) 0.7160 0.8338 0.9019 0.7447 0.5144 0.8946 0.7773 0.7854 0.7710
Evo-PI (Base [12] + GSPO) 0.9628 0.9334 0.9081 0.8739 0.9298 0.9934 0.9982 0.9038 0.9391
Evo-PI (Base [12] + GRPO) 0.9676 0.9319 0.9195 0.8720 0.9462 0.9890 0.9982 0.9101 0.9412
Relative Gains (%) 25.16%↑ 9.96%↑ 1.76%↑ 12.92%↑ 43.18%↑ 9.88%↑ 22.09%↑ 12.47%↑ 17.18%↑
Relative Gains (Task) 23.89%↑ 16.83%↑ 10.34%↑ 18.71%↑ 34.35%↑ 15.24%↑ 34.68%↑ 13.05%↑ 20.88%↑

4.2 OVERALL PERFORMANCE COMPARISON

The main quantitative results for the Medical VQA task are presented in Table 3, from which sev-
eral key observations can be drawn. First, our proposed framework, Evo-PI, consistently and sig-
nificantly improves the backbone MLLMs across datasets and RL algorithms. Specifically, Evo-PI
yields improvements of 23.89%, 16.83%, 10.34% 18.71%, 34.35%, 15.24%, 34.68%, and 13.05%
in accuracy over the respective tasks, demonstrating its robustness and effectiveness in medical VQA

1https://platform.openai.com/docs/models/gpt-4o-mini
2https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
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task. On the HuatuoGPT-Vision model at level 7B, using Evo-PI can improve the accuracy of the
backbone model by an average of 24.59%. In particular, even in the Med-r1 serious models trained
using GRPO, our Evo-PI achieves an average 17.18% boosted using the same GRPO trainer.

Finally, on OCT and ultrasound, the Evo PI enhanced backbones exceeded 99.3% for the first time,
indicating that principled guidance can push task performance toward clinical utility.

4.3 IMPACT OF ITERATION DESIGN.

In Evo-PI, the guiding principles are updated at each iteration. We investigate the respective effects
of each factor under an iterative mechanism.

Figure 3: Entropy dynamics for eight independent training runs, each with its own step axis. Each
subplot corresponds to a modality: CT, DER, FP, MI, MR, OCT, US, and X-ray. All backbones are
from the Med-R1 series, and all runs use GRPO.

Principles Cases in Iteration At each iteration, the knowledgeable LLM initializes or updates the
current set of principles, enabling direct observation of how they evolve.

We observe two general phenomena. (i) When the initial set is incomplete, the knowledgeable LLM
refines or decomposes existing principles while introducing additional ones that better meet the task
requirements. (ii) When the initial set is already reasonably comprehensive, the knowledgeable
LLM performs fine-grained edits, improving individual principles one by one.

Taking the principles for X-ray as an example, we demonstrate how they are generated and how they
are iteratively scaled and refined in Appendices A.5 and A.6, respectively.

Entropy Analysis in Iteration Entropy quantifies the exploration–exploitation balance of a pol-
icy, offering an interpretable lens on learning dynamics Sutton (1988); Cui et al. (2025). High
entropy typically signals exploratory behavior to discover new solutions, whereas low entropy indi-
cates confident, exploitative behavior with more consistent action selection.

In Evo-PI, medical MLLMs are optimized as policies under an RLVR trainer. They must balance
exploring diverse case patterns with reliably solving individual cases. This motivates using entropy-
based stopping: we terminate an iteration when entropy evidences either collapse (i.e., over ex-
ploitation) or abnormal increase (i.e., unstable exploration), marking ineffective learning progress.
As shown in Figure 3, entropy decreases across all modalities, with low amplitude fluctuations near
the end of training that reflect the evolving exploration–exploitation balance under Evo-PI.

Ablation on Principles Gains and Iteration Gains The gains derived from principles and iter-
ation demonstrate how the principles within iterative process exert their influence in Evo-PI. We
conducted ablation experiments on the results for Med-R1 when using GRPO as the RLVR algo-
rithm.

8
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We find that applying the principles yields an average improvement of 13.48%. On top of this,
introducing iteration provides an additional performance boost of around 3.7%. Detailed ablations
are provided in Appendix A.9.

4.4 QUALITATIVE STUDIES

We conducted tests using Evo-PI across all modalities and observed marked improvements in rea-
soning quality: post-training traces become more coherent, clinically grounded, and logically or-
dered. We attribute the performance gains primarily to this enhancement in stepwise reasoning
rather than superficial answer heuristics. A representative CT case is shown below:

Case Study: CT Scan

Problem: Is there any perceptible anomaly present in this picture?
A)No B)Yes

Ground Truth: A

Med-R1’s answer:
<think> The image description A grayscale image of a cross-sectional view of a human
head, showing the brain, skull, and surrounding tissues. The image appears to be a medical
scan, possibly an MRI or CT scan, with various shades of gray representing different tissue
densities. </think> <answer>B</answer>
Evo-PI’s answer (evolved):
<think> 1. The image provided is a CT scan of the neck, which is typically used to
visualize soft tissues and structures within the neck.
2. The scan shows a cross-sectional view of the neck, including the thyroid gland, which is
a critical structure in the neck.
3. The thyroid gland appears to be in its normal position, with no visible signs of
enlargement or abnormal shape.
4. There are no visible masses, calcifications, or other abnormalities that would suggest a
pathological condition.
5. The surrounding structures, such as the trachea and carotid arteries, appear to be in their
normal anatomical positions.
6. The image does not show any signs of inflammation, infection, or other conditions that
would typically be indicated by abnormal findings on a CT scan.
Based on the above observations, there does not appear to be any perceptible anomaly
present in the image.
</think> <answer>A</answer>

From this example, the Evo-PI enhanced answer exhibits stronger logical coherence and makes
fuller use of CT-specific knowledge than the original Med R1 output, leading to the correct solution.
Additional case studies are provided in Appendix A.8.

5 CONCLUSION

We propose Evo-PI, a framework that enhances reasoning in medical VQA by iteratively generating
and refining guiding principles. Our approach uses a judge model to convert these principles into a
dynamic reward signal, which integrates deep medical knowledge while mitigating reward hacking.
Experiments show Evo-PI robustly boosts performance and produces more transparent reasoning,
advancing the development of trustworthy medical AI.

9
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A APPENDIX

A.1 THE GUIDELINE OF APPENDIX

The appendix is organized as follows:

• In section A.2, we introduce Ethics Statement of our paper.

• In section A.3, we introduce Reprodicibility Statement of our paper.

• In section A.4, we introduce how we use the LLM in our work as required.

• In section A.5, we introduce how we generate and scaling principles for each sub-modality
of medical questions.

• In section A.6, we introduce how these principles are scaling and refined.

• In section A.7, we introduce the post-training prompt to control the rollout process.

• In section A.8, we introduce the case study across different datasets.

• In section A.9, we further introduce some ablation study about the impact of the iterations
and the principles.

A.2 ETHICS STATEMENT

All datasets used in this research are publicly available and were sourced from previous studies that
have undergone appropriate ethical review. Our work did not involve the collection of any new data
from human subjects. We have adhered to all data usage agreements and licenses associated with
these pre-existing datasets.
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A.3 REPRODICIBILITY STATEMENT

We are committed to making our research reproducible. All datasets used in this study are publicly
available, and we provide detailed descriptions and sources in our experimental setup section. The
source code for our proposed framework, Evo-PI, including all scripts required to reproduce the
experiments and analyses presented in this paper, is available at an anonymized code repository:
https://anonymous.4open.science/r/Evo-PI-ECB4.

A.4 USAGE OF LLM

This paper primarily employs large language models (LLMs) to refine the overall quality of writing,
with a particular focus on eliminating incorrect expressions, minimizing grammatical errors, and
enhancing clarity, coherence, and readability to ensure the text meets standards of ICLR.

A.5 THE PROMPT OF GENERATE AND SCALING RAW PRINCIPLES

In this section, we demonstrate how we generate and update principles. Using the principles cor-
responding to X-ray cases as an example, Evo-PI utilizes five cases from the training set and then
instructs the knowledgeable LLM to complete the generation of the principles.

When principles are updated, Evo-PI will provide the previously used principles and streamline and
scale them.

Listing 1: Raw Principles Gereration Prompt
1 list some principles for these key medical reasoning tasks "X-Ray"
2

3 Here are the sample questions and answers:
4 {
5 "image": "Images/RadImageNet/bladder_pathology/abd132420.png",
6 "problem": "What is the abnormality present in the image? A)

Spinal cord injury B)Ovarian cyst C)Bladder pathology D)Liver
cirrhosis",

7 "solution": "<answer> C </answer>"
8 },
9 {

10 "image": "Images/RadImageNet/normal/abd-normal028416.png",
11 "problem": "Is there any deviation or anomaly observed in this

image? A)No B)Yes.",
12 "solution": "<answer> A </answer>"
13 },
14 {
15 "image": "Images/RadImageNet/post_op/abd000807.png",
16 "problem": "What type of abnormality is present in this image? A)

Foreign body reaction B)Post-operative changes C)Infection D)
Fracture site healing",

17 "solution": "<answer> B </answer>"
18 },
19 {
20 "image": "Images/RadImageNet/normal/abd-normal056990.png",
21 "problem": "Is anything out of the ordinary evident in this image

? A)No B)Yes.",
22 "solution": "<answer> A </answer>"
23 },
24 {
25 "image": "Images/RadImageNet/interstitial_lung_disease/lung044245

.png",
26 "problem": "What type of abnormality is present in this image? A)

Interstitial lung disease B)Pulmonary hypertension C)Asthma D
)Pleural effusion",

27 "solution": "<answer> A </answer>"
28 },
29 and save it as a string list in Python.
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Listing 2: Principles Updating Prompt
1 principles_prompt = [
2 {"role": "system", "content": "You are helpful AI system in medical.\

n\n"},
3 {"role": "user", "content": f"Here are some key general principles

for medical reasoning tasks involving {question_type}:\n\n"},
4 {"role": "user", "content": f"{principles}\n\n"},
5 {"role": "user", "content": "The principles should keep general and

abstract, and as short as possible. If necessary, extend and
merge the list of principles with new numbered principles;
otherwise keep current principles unchanged. The listed
principles should not exceed ten points The merged principles
list:"}

6 ]

A.6 THE PROMPT OF GENERATE RAW PRINCIPLES

In this section, we will use the principles of X-ray as an example to demonstrate how these principles
are specifically updated.

Principles for X-ray in iteration 1

1. Recognize common imaging signatures. X-rays typically show high-contrast grayscale
images. Bone appears white, air (such as in the lungs) appears dark, and soft tissue is various
shades of gray. Look for clear bony landmarks like ribs, spine, and clavicles.

2.Identify typical anatomical projections. Chest X-rays are often captured in posteroanterior
(PA) or anteroposterior (AP) views. These images generally show the patient in an upright
posture with visible lungs, diaphragm, and heart shadow.

3.Use process of elimination. Eliminate options that do not involve imaging (e.g., blood test,
EKG). MRI images typically show high soft tissue contrast but have less visible bone detail.
Ultrasound images have a grainy texture and do not show bones clearly. PET scans often
include colorful overlays or are fused with CT, and do not resemble plain grayscale images.

4.Integrate clinical context. X-rays are commonly used as a first-line imaging tool for
evaluating chest-related symptoms or conditions such as pneumonia, pneumothorax, or
congestive heart failure.

5.Pay attention to image characteristics. X-rays are uniform grayscale images without the
detailed cross-sectional anatomy seen in CT or MRI. They do not include high-resolution
soft tissue differentiation or 3D rendering.

6.Rely on pattern recognition rather than memorization. Become familiar with the visual fea-
tures that distinguish different imaging modalities. Recognize typical X-ray features through
exposure to many examples.

Principles for X-ray in iteration 2

1. **Recognize Imaging Signatures:** Understand the high-contrast nature of X-rays,
where bones appear white, air is dark, and soft tissues are gray.

2. **Understand Anatomical Projections:** Be familiar with common X-ray views like
posteroanterior (PA) and anteroposterior (AP) to properly interpret anatomical structures.

3. **Differentiate Imaging Modalities:** Identify X-rays by their grayscale images and lack
of high-resolution soft tissue contrast.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

4. **Integrate Clinical Context:** Use X-rays in the context of clinical presentation to
assess conditions like pneumonia, pneumothorax, and heart failure.

5. **Acknowledge Limitations:** Be aware that X-rays do not provide detailed cross-
sectional or 3D images.

6. **Employ Pattern Recognition:** Develop proficiency through practice and focus on
identifying typical X-ray patterns.

7. **Enhance Diagnostic Accuracy:** Combine X-ray findings with clinical information for
a comprehensive evaluation.

Principles for X-ray in iteration 3

1. **Recognize Imaging Patterns:** Identify distinctive grayscale patterns for bones, air
spaces, and soft tissues in X-rays.

2. **Understand Projections:** Be aware of common anatomical projections like PA and
AP views for accurate image assessment.

3. **Differentiate Modalities:** Distinguish features of X-rays from those of MRI, CT, and
ultrasound.

4. **Contextualize Clinically:** Integrate clinical data to enhance X-ray interpretation,
aiding in diagnosis of conditions like pneumonia.

5. **Acknowledge Limitations:** Recognize the limitations of X-rays, such as limited soft
tissue detail and no 3D rendering.

6. **Apply Pattern Recognition:** Develop the skill to efficiently recognize and interpret
common X-ray findings.

7. **Ensure Systematic Approach:** Adopt a systematic approach to evaluating X-rays to
ensure comprehensive analysis.

8. **Correlate with Findings:** Relate X-ray observations with clinical examination and
laboratory results for a holistic view.

9. **Prioritize Safety:** Maintain awareness of radiation exposure and ensure justified use
of X-ray imaging.

10. **Stay Informed:** Keep updated with evolving X-ray technology and guidelines for
best practices.

A.7 THE PROMPT OF GENERATE RESPONSES FORM MEDICAL MLLMS

For this section, we directly adopted the prompt provided on med-r1, thereby eliminating any sensi-
tivity associated with the prompt.

rollout prompt

QUESTION TEMPLATE = ”Question First output the thinking process in
<think>B</think> and final choice (A, B, C, D ...) in <answer></answer>
tags.”
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A.8 ADDITIONAL CASE STUDIES

For this section, we present case studies of different cases across various sub-datasets.

Sample of CT case

Problem: Is there any perceptible anomaly present in this picture?
A)No B)Yes

Ground Truth: A

Med-r1’s answer:
<think> The image description A grayscale image of a cross-sectional view of a human
head, showing the brain, skull, and surrounding tissues. The image appears to be a medical
scan, possibly an MRI or CT scan, with various shades of gray representing different tissue
densities. </think> <answer>B</answer>

Evo-PI’s answer (during iteration):
<think> The image provided is a CT scan of the neck, which is typically used to
visualize the soft tissues and structures within the neck region. In a CT scan, different
tissues appear in varying shades of gray, with bone appearing white, air appearing black,
and soft tissues appearing in various shades of gray.
In this CT scan, the structures appear to be normal. The soft tissues around the neck,
including the muscles and fat, appear to be in their expected positions and densities. There
are no obvious signs of abnormal masses, calcifications, or other anomalies that would
suggest a pathological condition.
Therefore, based on the visual inspection of the CT scan, there does not appear to be any
perceptible anomaly present.
</think>
<answer>A</answer>
Evo-PI’s answer (evolved):
<think> 1. The image provided is a CT scan of the neck, which is typically used to
visualize soft tissues and structures within the neck.

2. The scan shows a cross-sectional view of the neck, including the thyroid gland, which is
a critical structure in the neck.

3. The thyroid gland appears to be in its normal position, with no visible signs of
enlargement or abnormal shape.

4. There are no visible masses, calcifications, or other abnormalities that would suggest a
pathological condition.

5. The surrounding structures, such as the trachea and carotid arteries, appear to be in their
normal anatomical positions.

6. The image does not show any signs of inflammation, infection, or other conditions that
would typically be indicated by abnormal findings on a CT scan.

Based on the above observations, there does not appear to be any perceptible anomaly
present in the image.
</think>
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<answer>A</answer>

Sample of MI case

Problem: What is the name of the tissue shown in the picture?
A)Nervous tissue B)Cardiac muscle C)Bone tissue D)Smooth muscle

Ground Truth: D

Huatuo-vision’s answer:
<think> TheThe image shows a histological section with elongated cells arranged in
parallel bundles, which is characteristic of cardiac muscle tissue. The cells have striations
and are organized in a way that suggests they are part of the heart’s muscular structure.
</think> <answer>B</answer>

Evo-PI’s answer::
<think> The image shows a microscopic view of tissue with distinct characteristics. The
tissue appears to have elongated, striated fibers, which are typical of muscle tissue. The
fibers are arranged in parallel bundles, and there are visible nuclei within the fibers, which is
a common feature of muscle cells.
Let’s analyze the options:
A) Nervous tissue: Nervous tissue typically consists of neurons and glial cells, which do not
have the striated appearance seen in the image.
B) Cardiac muscle: Cardiac muscle is found in the heart and has a distinctive striated
pattern, but it also has a different arrangement and structure compared to the tissue in the
image.
C) Bone tissue: Bone tissue is composed of osteocytes embedded in a matrix of bone,
which does not match the appearance of the tissue in the image.
D) Smooth muscle: Smooth muscle is found in the walls of blood vessels, the digestive
tract, and other organs and has a different appearance compared to the tissue in the image.
Given the striated appearance and the parallel arrangement of fibers, the tissue in the image
is most consistent with smooth muscle.
</think>
<answer>A</answer>

Sample of MR case

Problem: Is there anything unusual or irregular visible in this image?
A)It’s difficult to determine if there is an abnormality based on this image.
B)There is a possibility of abnormality, but further tests are needed for confirmation.
C)I’m not sure, but there might be a slight abnormality.
D)No, It’s normal.

Ground Truth: A
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Huatuo-vision’s answer:
<think> The image provided appears to be a brain MRI scan. In MRI scans, variations in
signal intensity can indicate different tissue types or abnormalities. The bright areas could
represent regions with increased water content, which may suggest edema or inflammation.
However, without additional clinical context or comparative images, it is challenging to
definitively state whether these findings are abnormal.
Given the options:
- A) It’s difficult to determine if there is an abnormality based on this image.
- B) There is a possibility of abnormality, but further tests are needed for confirmation.
- C) I’m not sure, but there might be a slight abnormality.
- D) No, It’s normal.

The most appropriate answer would be B) There is a possibility of abnormality, but further
tests are needed for confirmation. This is because while the image shows some variations
that could be indicative of an abnormality, a definitive diagnosis cannot be made solely from
this single image without additional information and possibly further imaging or clinical
correlation.
</think>
<answer>B</answer>

Evo-PI’s answer:
<think> 1. Identify the Image Type and Purpose: The image is an MRI (Magnetic
Resonance Imaging) scan of the brain, specifically an axial view (horizontal cross-section).
This type of imaging is commonly used to visualize the brain’s structures and detect
abnormalities.

2. Analyze the Image Content:
- The image shows a clear, well-defined brain structure with no apparent distortions or
irregularities.
- The white matter and gray matter are distinguishable, and there are no signs of abnormal
hyperintensities (bright areas) or hypointensities (dark areas) that would suggest pathology.
- The ventricles and sulci (grooves) are visible and appear normal in size and shape.
- The skull and surrounding tissues are also clearly visible without any signs of abnormal
thickening or thinning.

3. Consider the Context and Medical Knowledge:
- MRI scans are highly sensitive and specific for detecting
abnormalities in the brain, including tumors, lesions, and structural anomalies.
- The absence of any abnormal signals or changes in the brain’s structure in this image
suggests that there are no immediate signs of pathology.
- The clarity and detail of the image indicate that it is a high-quality scan, which further
supports the absence of any abnormalities.

4. Evaluate the Options:
- Option A: ”It’s difficult to determine if there is an abnormality based on this image.” This
option suggests uncertainty, which is not supported by the clear and detailed nature of the
image.
- Option B: ”There is a possibility of abnormality, but further tests are needed for
confirmation.” This option implies a need for additional testing, which is not indicated by
the image alone.
- Option C: ”I’m not sure, but there might be a slight abnormality.” This option suggests
uncertainty, which is not supported by the clear and detailed nature of the image.
- Option D: ”No, It’s normal.” This option aligns with the clear and detailed nature of the
image, indicating that there are no signs of abnormality.

5. Conclusion:
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- The MRI scan of the brain shows no signs of abnormality, as evidenced by the clear and
detailed structure of the brain, the absence of any hyperintensities or hypointensities, and
the normal appearance of the ventricles and sulci.
- The high quality and clarity of the image further support the conclusion that there are no
abnormalities present.

6. Final Analysis:
- The image does not show any signs of abnormality, and the clear and detailed structure of
the brain suggests that the scan is normal.
- The options provided do not align with the clear and detailed nature of the image, which
supports the conclusion that the scan is normal.

7. Final Decision:
- Based on the detailed analysis and the clear nature of the image, the correct answer is that
there is no abnormality present, and the scan is normal.

Therefore, the final decision is that the image is normal, and no further tests are needed for
confirmation.

</think> <answer>D</answer>

A.9 DETAILED ABLATION EXPERIMENT

In this section, we present the results of ablation experiments using Med-R1 as the backbone MLLM.
We observe that the average gain achieved by applying the principles reaches 13.48%. Building upon
this foundation, incorporating iteration can further enhance performance by approximately 3.7%.
On datasets like DER and US, which are relatively principle-dependent, the gains from starting with
good initial principles are the greatest.

Table 3: Overall ablation study
Dataset CT DER FP MI MR OCT US X-ray Average

Med-R1 [12] (Base [1]) 0.7160 0.8338 0.9019 0.7447 0.5144 0.8946 0.7773 0.7854 0.7710
Evo-PI (Fix principles) 0.9278 0.9243 0.9140 0.8343 0.8174 0.9505 0.9955 0.8747 0.9048
Evo-PI (Iteration principles) 0.9676 0.9319 0.9195 0.8720 0.9462 0.9890 0.9982 0.9101 0.9412

Relative Gains from principles only (%) 21.18%↑ 9.21%↑ 1.21%↑ 9.14%↑ 30.30%↑ 6.03%↑ 21.82%↑ 8.93%↑ 13.48%↑
Relative Gains from iteration only (%) 3.98%↑ 0.76%↑ 0.55%↑ 3.77%↑ 12.88%↑ 3.85%↑ 0.27%↑ 3.54%↑ 3.70%↑
Relative Gains total (%) 25.16%↑ 9.96%↑ 1.76%↑ 12.92%↑ 43.18%↑ 9.88%↑ 22.09%↑ 12.47%↑ 17.18%↑
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