
Efficient Curvature-Aware Hypergradient Approximation for Bilevel
Optimization

Youran Dong 1 Junfeng Yang 1 Wei Yao 2 3 Jin Zhang 3 2 4

Abstract
Bilevel optimization is a powerful tool for many
machine learning problems, such as hyperparam-
eter optimization and meta-learning. Estimating
hypergradients (also known as implicit gradients)
is crucial for developing gradient-based methods
for bilevel optimization. In this work, we propose
a computationally efficient technique for incor-
porating curvature information into the approx-
imation of hypergradients and present a novel
algorithmic framework based on the resulting
enhanced hypergradient computation. We pro-
vide convergence rate guarantees for the proposed
framework in both deterministic and stochastic
scenarios, particularly showing improved compu-
tational complexity over popular gradient-based
methods in the deterministic setting. This im-
provement in complexity arises from a careful
exploitation of the hypergradient structure and the
inexact Newton method. In addition to the theoret-
ical speedup, numerical experiments demonstrate
the significant practical performance benefits of
incorporating curvature information.

1. Introduction
Bilevel optimization has been widely applied to solve enor-
mous machine learning problems, such as hyperparameter
optimization (Pedregosa, 2016; Franceschi et al., 2018),
meta-learning (Franceschi et al., 2018; Rajeswaran et al.,
2019; Ji et al., 2020), adversarial training (Bishop et al.,
2020; Wang et al., 2021; Zhang et al., 2022), reinforcement
learning (Yang et al., 2019; Liu et al., 2021), and neural

1School of Mathematics, Nanjing University, Nanjing, China
2National Center for Applied Mathematics Shenzhen, South-
ern University of Science and Technology, Shenzhen, China
3Department of Mathematics, Southern University of Science and
Technology, Shenzhen, China 4Detection Institute for Advanced
Technology Longhua-Shenzhen (DIATLHSZ), Shenzhen, China.
Correspondence to: Jin Zhang <zhangj9@sustech.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

architecture search (Liu et al., 2018; Liang et al., 2019).

Bilevel optimization amounts to solving an optimization
problem with a constraint defined by another optimization
problem. In this work, we focus on the following bilevel
optimization problem:

min
x∈Rm

Φ(x) := f(x, y∗(x))

s.t. y∗(x) = argmin
y∈Rn

g(x, y),
(1)

where the upper- and lower-level objective functions f and g
are real-valued functions defined on Rm × Rn. We assume
that g is strongly convex w.r.t the lower-level variable y,
which guarantees the uniqueness of the lower-level solution.
However, solving this bilevel optimization problem remains
challenging, as y∗(x) can typically only be approximated
through iterative schemes (Pedregosa, 2016; Grazzi et al.,
2020; Dagréou et al., 2022; Chu et al., 2024).

In large-scale scenarios, gradient-based bilevel optimization
methods have gained popularity due to their effectiveness
(Ghadimi & Wang, 2018; Ji et al., 2021). When solving the
bilevel problem (1), it is essential to estimate the hypergra-
dient (also known as implicit gradient), which represents
the gradient of Φ(x). By the implicit function theorem, the
hypergradient can be expressed as:

∇Φ(x) = ∇1f(x, y
∗(x))−∇2

12g(x, y
∗(x))u∗(x), (2)

where u∗(x) := [∇2
22g(x, y

∗(x))]−1∇2f(x, y
∗(x)). Based

on the structure in (2), estimating hypergradients requires
solving lower-level problems and computing the Hessian
inverse-vector products. Several studies have emerged to
effectively address this challenge, such as those by Ghadimi
& Wang (2018); Ji et al. (2021; 2022); Arbel & Mairal
(2022a); Dagréou et al. (2022). However, most existing
studies primarily focus on estimating the Hessian inverse-
vector products, including Neumann series approximations
(Chen et al., 2021; Hong et al., 2023), conjugate gradient
descent (Pedregosa, 2016; Ji et al., 2021; Arbel & Mairal,
2022a), gradient descent (Arbel & Mairal, 2022a; Dagréou
et al., 2022), and subspace techniques (Yang et al., 2025).
In approximating y∗(xk), Pedregosa (2016) employs the
L-BFGS method to solve the lower-level problem up to

1

Efficient Curvature-Aware Hypergradient Approximation

a specified tolerance. Recently, two commonly used ap-
proaches have emerged. The first approach involves per-
forming a single (stochastic) gradient descent step (Ji et al.,
2022; Dagréou et al., 2022; Hong et al., 2023). The second
approach entails executing multiple (stochastic) gradient
descent steps (Ghadimi & Wang, 2018; Chen et al., 2021; Ji
et al., 2021; 2022; Arbel & Mairal, 2022a).

From the above, it is clear that solving lower-level problems
and computing Hessian inverse-vector products are typically
treated as separate tasks. However, it is important to note
that the Hessian ∇2

22g in Hessian inverse-vector products
originates from the lower-level objective function. Hence,
hypergradient approximation has an intrinsic structure in
which solving lower-level problems and computing Hes-
sian inverse-vector products share the same Hessian. This
intuitive structure just described has been demonstrated
in Ramzi et al. (2022), which introduces SHINE, a novel
method that solves the lower-level problem using quasi-
Newton (qN) methods and employs the associated qN ma-
trices, along with refinement strategies, to compute Hessian
inverse-vector products.

However, the theoretical analysis of SHINE is hindered by
the mixing of quasi-Newton recursion schemes and com-
plex refinement strategies. As a result, Ramzi et al. (2022)
focuses on the asymptotic convergence analysis of hyper-
gradient approximation in a deterministic setting. The con-
vergence rate and computational complexity are lacking.
Therefore, the intuitive benefit of the intrinsic hypergradient
structure has not been fully realized in Ramzi et al. (2022)
or in the existing literature.

1.1. Contributions

This paper aims to explore and exploit the benefits of lever-
aging the hypergradient structure. Our contributions are
summarized below.

• We propose a simple Newton-based framework, NBO,
for bilevel optimization that integrates solving the
lower-level problems with computing Hessian inverse-
vector products. This framework is built on a new
curvature-aware hypergradient approximation, which
utilizes the hypergradient structure and inexact Newton
methods. When each subproblem in NBO is approx-
imately solved using a single gradient descent step
initialized at zero, NBO simplifies to the well-known
single-loop algorithm framework presented in Dagréou
et al. (2022).

• We establish the convergence rate and computational
complexity for two specific instances of NBO in both
deterministic and stochastic scenarios. In particular,
we demonstrate improved computational complexity
compared to popular gradient-based methods in the

deterministic setting.

• We conduct numerical experiments to compare the pro-
posed algorithms with popular gradient-based methods,
demonstrating the significant practical performance
benefits of incorporating curvature information.

1.2. Notation

We refer to the optimal value of problem (1) as Φ∗. The
gradient of g w.r.t the variables x and y are denoted by
∇1g(x, y) and ∇2g(x, y), respectively. The Jacobian ma-
trix of ∇1g and the Hessian matrix of g w.r.t y are denoted
by ∇2

12g(x, y) and ∇2
22g(x, y), respectively. Unless other-

wise specified, the notation ∥ · ∥ denotes the ℓ2 norm for
vectors and the Frobenius norm for matrices. Furthermore,
the operator norm of a matrix Z is denoted by ∥Z∥op.

2. Curvature-Aware Bilevel Optimization
Framework

2.1. Hypergradient Approximation

The hypergradient given by (2) is intractable in practice
because it requires knowing y∗(x). To address this, the
seminal work (Ghadimi & Wang, 2018) approximates the
hypergradient by

∇̂Φ(x, y) := ∇1f(x, y)−∇2
12g(x, y)u

∗(x, y),

where y is an approximation of y∗(x) and u∗(x, y) :=
[∇2

22g(x, y)]
−1∇2f(x, y). Under appropriate hypotheses,

Lemma 2.2 of Ghadimi & Wang (2018) provides an error
bound:

∥∇̂Φ(x, y)−∇Φ(x)∥ ≤ C∥y∗(x)− y∥, (3)

where C is a constant. Observe that ∇2
22g in u∗(x, y) is

the Hessian of g. Hypergradient approximation has a struc-
ture in which solving lower-level problems and computing
Hessian inverse-vector products share the same Hessian.

To exploit the hypergradient structure, it is natural to utilize
the Hessian ∇2

22g, which provides curvature information,
in solving the lower-level problem. The canonical second-
order optimization scheme for this purpose is Newton’s
method. However, Newton’s method is impractical for large-
scale problems; thus, we instead consider inexact Newton
methods and propose a new technique for hypergradient
approximation, consisting of two steps:

(i) Given x and y, compute an inexact solution (v, u) of
the linear system:

[∇2
22g(x, y)](v, u) = (∇2g(x, y),∇2f(x, y)); (4)

(ii) Compute the approximated hypergradient:

dx := ∇1f(x, y − v)−∇2
12g(x, y − v)u. (5)

2

Efficient Curvature-Aware Hypergradient Approximation

One can easily observe that v is an inexact ap-
proximation of the Newton direction v∗(x, y) :=
[∇2

22g(x, y)]
−1∇2g(x, y), just as u is an inexact approx-

imation of u∗(x, y).

The motivation is twofold: (1) Denote y+ := y −
[∇2

22g(x, y)]
−1∇2g(x, y) as a single Newton step. Since

∇2g(x, y
∗(x)) = 0, and assuming that ∇2

22g(x, ·) is Lg,2-
Lipschitz continuous, by Lemma 1.2.4 in Nesterov (2018),∥∥y − [∇2

22g(x, y)]
−1∇2g(x, y)− y∗(x)

∥∥
≤ 1

µ

∥∥∇2g(x, y
∗)−∇2g(x, y)− [∇2

22g(x, y)](y
∗ − y)

∥∥
≤Lg,2

2µ
∥y∗(x)− y∥2, (6)

where we denote y∗ := y∗(x) to save space when there is
no ambiguity. Hence, we obtain:

∥∇̂Φ(x, y+)−∇Φ(x)∥ ≤ CLg,2

2µ
∥y∗(x)− y∥2. (7)

This inequality shows that a single classical Newton step
can accelerate the hypergradient estimation, leading to a
quadratic decay. (2) Observe that v∗(x, y) and u∗(x, y)
share the same Hessian inverse.

2.2. Description of the Algorithmic Framework

Building on the new hypergradient approximation, we in-
troduce our algorithmic framework for solving the bilevel
optimization problem in (1).

First, motivated by Arbel & Mairal (2022a); Dagréou et al.
(2022), solving the linear system (4) at (xk, yk) is reformu-
lated as minimizing the following two quadratic problems,
which share the same Hessian Hk := ∇2

22g(x
k, yk):

min
v

1

2
⟨∇2

22g(x
k, yk)v, v⟩ − ⟨∇2g(x

k, yk), v⟩, (8)

min
u

1

2
⟨∇2

22g(x
k, yk)u, u⟩ − ⟨∇2f(x

k, yk), u⟩. (9)

Second, using a warm-start procedure to initialize the solver
for u, we write u = uk − w, where uk is the current iterate
of u. Then w minimizes the following quadratic function:

1

2
∥w∥2Hk

− ⟨∇2
22g(x

k, yk)uk −∇2f(x
k, yk), w⟩, (10)

where ∥w∥2Hk
:= ⟨Hkw,w⟩. Since computing the exact

minimizers may be computationally demanding, we instead
seek inexact solutions. We denote these inexact solutions
by vk and wk for the quadratic problems (8) and (10).

Third, we compute the approximated hypergradient and
update x using an inexact hypergradient descent step. The
overall procedure is summarized in Algorithm 1. Here,

Algorithm 1 Newton-based framework for Bilevel Opti-
mization (NBO)

1: Input: Initialize y0, u0, x0; step size αk.
2: for k = 0, 1, · · · ,K − 1 do
3: Compute inexact Newton directions vk, wk by mini-

mizing the quadratic functions in (8) and (10).
4: Update yk+1 and uk+1:

yk+1 = yk − vk; uk+1 = uk − wk.

5: Compute the approximated hypergradient:

dkx = ∇1f(x
k, yk)−∇2

12g(x
k, yk)uk.

6: Update xk+1:

xk+1 = xk − αkd
k
x.

7: end for

slightly different from (5), we use yk and uk instead of yk+1

and uk+1 in dkx to facilitate potential parallel computation.
We can also update these variables in an alternating manner.

Since the subproblems are strongly convex quadratic pro-
gramming problems, the proposed NBO has the potential
to adapt to stochastic scenarios and be implemented using
various techniques from both deterministic and stochastic
optimization, similar to the frameworks outlined in Arbel &
Mairal (2022a); Dagréou et al. (2022). In the following, we
study two specific examples.

2.3. Examples

Deterministic Setting: the NBO-GD algorithm. In the
first example, we compute inexact Newton directions in
NBO using gradient descent (GD) steps with a pre-defined
number of iterations T+1. The resulting algorithm, referred
to as NBO-GD, is detailed in Algorithm 2, with its subrou-
tine GD(xk, yk, uk;T) outlined in Algorithm 3, where

dky := ∇2g(x
k, yk),

dku := ∇2
22g(x

k, yk)uk −∇2f(x
k, yk).

Remark 2.1. (i) When T = 0, that is, when each subprob-
lem in NBO is approximately solved using a single GD
step initialized at zero, NBO-GD reduces to the single-loop
algorithm framework in Dagréou et al. (2022).

(ii) The subproblems in NBO can also be approximately
solved using the conjugate gradient method (Nocedal &
Wright, 2006), gradient descent with a Chebyshev step size
(Young, 1953), or subspace techniques (Yang et al., 2025).

(iii) It is worth noting that for a fixed k, the subroutine
GD(xk, yk, uk;T) does not involve gradient computations

3

Efficient Curvature-Aware Hypergradient Approximation

Algorithm 2 NBO-GD
1: Input: Initialize y0, u0, x0; number of iterations K, T ;

step size αk.
2: for k = 0, 1, · · · ,K − 1 do
3: Compute inexact Newton directions:

vk, wk = GD(xk, yk, uk;T).

4: Update yk+1 and uk+1:

yk+1 = yk − vk; uk+1 = uk − wk.

5: Compute the approximated hypergradient:

dkx = ∇1f(x
k, yk)−∇2

12g(x
k, yk)uk.

6: Update xk+1:

xk+1 = xk − αkd
k
x.

7: end for

Algorithm 3 GD(xk, yk, uk;T)

1: Initialize v−1,k = 0 and w−1,k = 0; step size γk.
2: for t = −1, 0, · · · , T − 1 do
3: Update

[vt+1,k, wt+1,k] (11)

=[I − γk∇2
22g(x

k, yk)]
[
vt,k, wt,k

]
+ γk[d

k
y , d

k
u].

4: end for
5: Return vk = vT,k, wk = wT,k.

but relies solely on Hessian-vector product computations,
sharing the same Hessian ∇2

22g(x
k, yk).

Stochastic Setting: the NSBO-SGD algorithm. We con-
sider our framework in the stochastic setting, where

f(x, y) = Eξ[F (x, y; ξ)], g(x, y) = Eζ [G(x, y; ζ)]. (12)

For simplicity, we focus on basic stochastic gradient descent
(SGD) algorithms. In Algorithm 4, NSBO-SGD, an adapta-
tion of SGD to the Newton-based framework for Stochastic
Bilevel Optimization (NSBO), is presented, with its sub-
routine SGD(xk, yk, uk;T) outlined in Algorithm 5. The
descent directions Dk

y , D
k
u, D

k
x are unbiased estimators of

dky , d
k
u, d

k
x, given by

Dk
y := ∇2G(x

k, yk;Bk
2), (13)

Dk
u := ∇2

22G(x
k, yk;Bk

1)u
k −∇2F (x

k, yk;Bk
3), (14)

Dk
x := ∇1F (x

k, yk;Bk
3)−∇2

12G(x
k, yk;Bk

4)u
k. (15)

Algorithm 4 NSBO-SGD
1: Input: Initialize y0, u0, x0; number of iterations K, T ;

step size αk.
2: for k = 0, 1, · · · ,K − 1 do
3: Compute the inexact subsampled Newton directions:

vk, wk = SGD(xk, yk, uk;T).

4: Update yk+1 and uk+1:

yk+1 = yk − vk; uk+1 = uk − wk.

5: Update xk+1:

xk+1 = xk − αkD
k
x,

where Dk
x is unbiased estimator of dkx in (15).

6: end for

Algorithm 5 SGD(xk, yk, uk;T)

1: Initialize v−1,k = 0 and w−1,k = 0; step size γk.
2: Sample batches Bk

1 , Bk
2 , Bk

3 , and compute Dk
y , Dk

u

using (13) and (14), respectively.
3: for t = −1, 0, · · · , T − 1 do
4: Sample batch Bt,k

1 and update

[vt+1,k, wt+1,k]

=[I − γkH
t,k][vt,k, wt,k] + γk[D

k
y , D

k
u], (16)

where Ht,k := ∇2
22G(x

k, yk;Bt,k
1).

5: end for
6: Return vk = vT,k, wk = wT,k.

Remark 2.2. Inspired by recent works (Dagréou et al., 2022;
Chu et al., 2024), a broad class of stochastic gradient esti-
mation techniques, such as SAGA (Defazio et al., 2014),
STORM (Cutkosky & Orabona, 2019), and PAGE (Li et al.,
2021), can be incorporated into the NSBO framework.

3. Convergence Analysis
3.1. Assumptions

Before presenting the theoretical results, we introduce the
assumptions that will be used throughout this paper.

Assumption 3.1. (a) For any x, g(x, ·) is strongly convex
with parameter µ > 0.

(b) ∇g is Lipschitz continuous with a Lipschitz constant
Lg,1, and ∇2

22g and ∇2
12g are Lipschitz continuous

with a Lipschitz constant Lg,2.

(c) ∇f is Lipschitz continuous with a Lipschitz con-
stant Lf,1, and there exists a constant Lf,0 such that

4

Efficient Curvature-Aware Hypergradient Approximation

∥∇2f(x, y
∗(x))∥ ≤ Lf,0 for all x.

(d) There exists a constant Cf,0 such that ∥∇1f(x, y)∥ ≤
Cf,0 for all x and y.

Assumptions 3.1(a)-(c) are standard in the bilevel optimiza-
tion literature (Ghadimi & Wang, 2018; Chen et al., 2021;
Khanduri et al., 2021; Arbel & Mairal, 2022a; Dagréou
et al., 2022; Ji et al., 2022; Hong et al., 2023; Chu et al.,
2024). Under Assumptions 3.1(a)-(c), the hypergradient
∇Φ is Lipschitz continuous with a constant given by:

LΦ := Lf,1 +
2Lf,1Lg,1 + Lg,2L

2
f,0

µ
(17)

+
2Lg,1Lf,0Lg,2 + L2

g,1Lf,1

µ2
+
Lg,2L

2
g,1Lf,0

µ3
,

as established in Lemma 2.2 of Ghadimi & Wang (2018). As
in Ji et al. (2021; 2022), we define L := max{Lg,1, Lf,1}
and κ = L/µ. Then LΦ = O(κ3).

Note that Assumption 3.1(d) is not employed in the afore-
mentioned literature but has been adopted in Ji et al. (2021);
Liu et al. (2022); Kwon et al. (2023); Yang et al. (2025) for
their respective purposes. In this work, this assumption is
utilized to ensure that all iteration points yk remain within a
predefined neighborhood of y∗(xk), provided that the initial
point y0 lies within a predefined neighborhood of y∗(x0).
This condition aligns with the local quadratic convergence
rate of Newton’s method.

3.2. Convergence Analysis for NBO-GD

Under the above assumptions, we establish the conver-
gence properties of NBO-GD. The detailed proof is pro-
vided in Appendix E.1. First, we define BOX 1
to represent the set of initial points satisfying ∥y0 −
y∗(x0)∥ ≤ min

{
µ

2Lg,2
, 1
2
√
L1

}
and ∥u0 − u∗(x0)∥ ≤

min
{

5L1

2Lg,2
,
√
L1

µ

}
, where L1 := Lf,1 + Lg,2

Lf,0

µ .

Theorem 3.2. Under Assumption 3.1, choose an initial
iterate (y0, u0, x0) in BOX 1. Then, for any constant step
size γk = γ ≤ 1/Lg,1, there exists a proper constant step
size αk = α = Θ(κ−3) and T ≥ Θ(κ) such that NBO-GD
has the following properties:

(a) For all integers K ≥ 1, min0≤k≤K−1 ∥∇Φ(xk)∥2 ≤
2Φ(x0)−2Φ∗+4

αK = O(κ
3

K). That is, NBO-GD can find
an ϵ-optimal solution x̄ (i.e., ∥∇Φ(x̄)∥2 ≤ ϵ) in K =
O(κ3ϵ−1) steps.

(b) The computational complexity of NBO-GD is: O(κ3/ϵ)
gradient computations and Jacobian-vector products,
and O(κ4/ϵ) Hessian-vector products.

Remark 3.3. One can apply the gradient descent (GD)
method, as described in Appendix D, to select initial points

in BOX 1. This one-time cost requires O(κ log κ) gradient
computations and Hessian-vector products and is included
in the total computational complexity.
Remark 3.4. If we replace GD with the conjugate gradient
method (CG) in line 3 of NBO-GD for solving the sub-
problems (8) and (10), we obtain NBO-CG. Our analysis in
Appendix E.1 shows that NBO-CG requires fewer Hessian-
vector product computations than NBO-GD, specifically
O(κ3.5 log κ/ϵ) Hessian-verctor products.

Theorem 3.2 provides a theoretical complexity guarantee
for NBO-GD. As shown in Table 1, the computational com-
plexity of NBO-GD improves upon that of AID-BiO (Ji
et al., 2021) and AmIGO (Arbel & Mairal, 2022a). Specif-
ically, the gradient complexity of NBO-GD surpasses the
state-of-the-art result by an order of κ log κ.

3.3. Convergence Analysis for NSBO-SGD

The following assumptions are made regarding the stochas-
tic oracles, which will be used to analyze the convergence
rate and sample complexity of NSBO-SGD in Algorithm 4.

Assumption 3.5. There exist positive constants σf,1, σg,1,
σg,2 such that

E
[
∥∇F (x, y; ξ)−∇f(x, y)∥2

]
≤ σ2

f,1,

E
[
∥∇G(x, y; ζ)−∇g(x, y)∥2

]
≤ σ2

g,1,

E
[∥∥∇2G(x, y; ζ)−∇2g(x, y)

∥∥2] ≤ σ2
g,2.

Assumption 3.6. There is a constant r ≥ 1 such that for
any iterate (xk, yk) generated by Algorithm 4, we have

E
[
∥yk − y∗(xk)∥2

]
≤ r
(
E
[
∥yk − y∗(xk)∥

])2
. (18)

This assumption, which imposes bounded moments on iter-
ates, is commonly used in the stochastic Newton literature to
establish convergence results in expectation form (Bollapra-
gada et al., 2019; Meng et al., 2020; Berahas et al., 2020).
We now establish the convergence properties of NSBO-SGD
as follows. The proof details can be found in Appendix E.2.
Below, we define BOX 2 to represent the set of initial points
satisfying E

[
∥y0 − y∗(x0)∥2

]
≤ min

{
µ2

20rL2
g,2
, 1
4L1

}
and

E
[
∥u0 − u∗(x0)∥2

]
≤ min

{ 4L2
1

5rL2
g,2
, L1

µ2

}
.

Theorem 3.7. Under Assumptions 3.1, 3.5 and 3.6, choose
an initial iterate (y0, u0, x0) in BOX 2. Then, for any con-
stant step size γk = γ ≤ 1/Lg,1, there exists a proper
constant step size αk = α = Θ(κ−3) and T ≥ Θ(κ) such
that NSBO-SGD has the following properties:

(a) Fix K ≥ 1. For samples with batch sizes |Bt,k
1 | ≥

Θ(κ2), |Bk
1 | ≥ Θ(κK + κ2), |Bk

2 | ≥ Θ(κ3K + κ4),
|Bk

3 | ≥ Θ(κ−1K), |Bk
4 | ≥ Θ(κ−1K), it holds

5

Efficient Curvature-Aware Hypergradient Approximation

Table 1. Comparison of the computational complexities of two NBO implementations with state-of-the-art methods in the deterministic
setting, including AID-BiO (Ji et al., 2021), AmIGO (Arbel & Mairal, 2022a), No-loop AID (Ji et al., 2022), and F2SA (Kwon et al.,
2023; Chen et al., 2023a). Note that the dependence on log κ is not explicitly stated in AID-BiO and AmIGO, but it can be derived from
equation (30) in Ji et al. (2021) and Proposition 10 in Arbel & Mairal (2022a).

Algorithms Convergence Rate Gradient Computations Hessian-Vector Products

AmIGO-GD (Arbel & Mairal, 2022a) O(κ3ϵ−1) O((κ4 log κ)ϵ−1) O((κ4 log κ)ϵ−1)

AID-BiO (Ji et al., 2021)
AmIGO-CG (Arbel & Mairal, 2022a) O(κ3ϵ−1) O((κ4 log κ)ϵ−1) O((κ3.5 log κ)ϵ−1)

No-loop AID (Ji et al., 2022) O(κ6ϵ−1) O(κ6ϵ−1) O(κ6ϵ−1)

F2SA (Kwon et al., 2023; Chen et al., 2023a) O(κ3ϵ−1) O
(
κ4ϵ−1 log(κ/ϵ)

)
/

NBO-GD (this paper) O(κ3ϵ−1) O(κ3ϵ−1) O(κ4ϵ−1)

NBO-CG (this paper) O(κ3ϵ−1) O(κ3ϵ−1) O((κ3.5 log κ)ϵ−1)

that min0≤k≤K−1 E
[
∥∇Φ(xk)∥2

]
= O(κ

3

K). That is,
NSBO-SGD can find an ϵ-optimal solution in K =
O(κ3ϵ−1) steps.

(b) The computational complexity of NSBO-SGD is:
O(κ5ϵ−2) gradient complexity for F , O(κ9ϵ−2) gradi-
ent complexity for G, O

(
κ5ϵ−2

)
Jacobian-vector prod-

uct complexity, and O(κ7ϵ−2) Hessian-vector product
complexity.

Note that the number T of inner-loop steps remains at a
constant level. Moreover, as shown in Table 2, the computa-
tional complexity of our stochastic algorithm, NSBO-SGD,
improves upon the state-of-the-art result in AmIGO by a
factor of log κ; for comparison, refer to Proposition 10 and
Corollary 4 in Arbel & Mairal (2022a). Indeed, in each
outer iteration, AmIGO requires Θ(κ log κ) gradient com-
putations with a batch size of Θ(κ5ϵ−1) for each gradient,
while NSBO-SGD performs a single gradient computation
with a batch size of Θ(κ6ϵ−1). As a result, the complexity
improvement in Theorem 3.7 is not as significant as that in
Theorem 3.2.

3.4. Proof Sketch

In this section, we present a proof sketch for the determinis-
tic setting as an illustrative example. The proof strategy for
the stochastic case follows a similar approach. The detailed
proofs of Theorem 3.2, Theorem 3.7, and Remark 3.4 are
provided in Appendix E.

First, we define a Lyapunov function: Vk =
f(xk, y∗(xk))−Φ∗+by∥yk−y∗(xk)∥2+bu∥uk−u∗(xk)∥2,
where by and bu are constants that depend on κ. Then,
following a classical Lyapunov analysis, we establish the
descent of f(xk, y∗(xk)), ∥yk − y∗(xk)∥, ∥uk − u∗(xk)∥,

respectively. Unlike existing bilevel optimization literature,
by leveraging a one-step inexact Newton method, we prove
that after taking T ≥ Θ(κ) iterations in the subroutine,
∥yk − y∗(xk)∥ satisfies the descent condition:

∥yk+1 − y∗(xk+1)∥ ≤ Lg,2

2µ
∥y∗(xk)− yk∥2

+
Lg,1

µ
∥xk+1 − xk∥+ 1

4
∥yk − y∗(xk)∥.

Next, by selecting an appropriate constant step size α and
applying induction while leveraging the initialization strat-
egy, we establish that ∥y∗(xk) − yk∥ ≤ µ

2Lg,2
for all k.

Hence, it follows that

∥yk+1 − y∗(xk+1)∥

≤ 1

2
∥y∗(xk)− yk∥+ Lg,1

µ
∥xk+1 − xk∥.

Combining this with the descent properties of f(xk, y∗(xk))
and ∥uk − u∗(xk)∥, we derive the descent property of the
Lyapunov function:

Vk+1 − Vk ≤− αk

2
∥∇Φ(xk)∥2 −A1∥xk+1 − xk∥2

−A2∥yk − y∗(xk)∥2 −A3∥uk − u∗(xk)∥2,

where A1, A2, A3 are positive constants.

Finally, by summing over iterations using a telescoping
argument and estimating an upper bound for V0, we derive
the results presented in Theorem 3.2.

4. Experiments
In this section, we present experiments to evaluate the prac-
tical performance of the proposed NBO framework. Specifi-
cally, we compare our NBO-GD and NSBO-SGD methods

6

Efficient Curvature-Aware Hypergradient Approximation

Table 2. Comparison of the sample complexities of NSBO-SGD with state-of-the-art results in the stochastic setting, including those
reported in ALSET (Chen et al., 2021), SOBA (Dagréou et al., 2022; Huang et al., 2025), AmIGO (Arbel & Mairal, 2022a), FSLA (Li
et al., 2022), and F2SA (Kwon et al., 2023; Chen et al., 2024a). Note that p(κ) indicates that the explicit dependence on κ is not provided
in the corresponding references. For AmIGO, the dependence on log κ is derived from Proposition 10 in Arbel & Mairal (2022a).

Algorithm Sample Complexity Stochastic Estimators

ALSET (Chen et al., 2021) O(κ9ϵ−2 log(κ/ϵ)) SGD

SOBA (Dagréou et al., 2022; Huang et al., 2025) O(p(κ)ϵ−2) SGD

AmIGO (Arbel & Mairal, 2022a) O((κ9 log κ)ϵ−2) SGD

F2SA (Kwon et al., 2023; Chen et al., 2024a) O
(
κ11ϵ−3 log(κ/ϵ)

)
SGD

FSLA (Li et al., 2022) O(p(κ)ϵ−2) SGD+x-momentum

NSBO-SGD (this paper) O(κ9ϵ−2) SGD

with several widely used gradient-based algorithms, includ-
ing SOBA, SABA (Dagréou et al., 2022), StoBiO (Ji et al.,
2021), AmIGO (Arbel & Mairal, 2022a), SHINE (Ramzi
et al., 2022), F2SA (Kwon et al., 2023), and MA-SABA
(Chu et al., 2024). Details of the experimental setup and
additional results are provided in Appendix C.

4.1. Synthetic Problem

First, we consider a synthetic problem to study NBO in a
deterministic and controlled scenario. This problem focuses
on hyperparameter optimization, where the upper-level and
lower-level objective functions are defined as follows:

f(λ, ω) =
1

|D′|
∑

(x′
e,y

′
e)∈D′

ψ(ωx′ey
′
e),

g(λ, ω) =
1

|D|
∑

(xe,ye)∈D

ψ(ωxeye) +
1

2

p∑
i=1

eλiw2
i ,

where λ ∈ Rp represents the hyperparameter, ω ∈ R1×p

denotes the model parameter, and ψ(t) = log(1 + e−t) is
the logistic loss function. Here, D′ and D represent the
validation and training datasets, respectively. The synthetic
data is generated following a procedure similar to that de-
scribed in Chen et al. (2023b; 2024b); Dong et al. (2023).
Specifically, the distribution of xe follows a normal distribu-
tion N (0, r′

2
), and ye = wxe + 0.1z, where z is sampled

from N (0, 1). Subsequently, ye is transformed into binary
labels: if ye exceeds the median of the dataset, it is set to 1;
otherwise, it is set to −1.

The experimental results for r′ = 1 are shown in Figure
1, while the results for r′ = 0.5 and r′ = 2 are provided
in Appendix C. AmIGO is a representative method that
employs multiple (Q) (stochastic) gradient descent steps

0 10 20 30 40 50
Iteration

10 1

f(
,

* (
))

(a)

0.0 2.5 5.0 7.5 10.0 12.5
Time(s)

10 1

f(
,

* (
))

(b)

NBO-GD (T=10) NBO-GD (T=1) AmIGO (Q=10) AmIGO (Q=1)

Figure 1. Experimental results on synthetic data with r′ = 1.

to solve lower-level problems and quadratic subproblems
related to Hessian inverse-vector products. Since we will
later compare NBO-type algorithms with other gradient-
based algorithms, we restrict the comparison in the synthetic
problem to NBO-GD and AmIGO for simplicity.

As shown in Figure 1(a), our NBO-GD, which employs a
single step of the inexact Newton method, performs com-
parably to AmIGO, which uses Q = 10 steps of gradient
descent. Notably, the inner loop in NBO-GD is used to ap-
proximate the inexact Newton direction. More importantly,
Figure 1(a) demonstrates that NBO-GD maintains strong
performance even when the Newton direction is approxi-
mated with T = 1. In contrast, AmIGO’s performance
degrades significantly when only one step of gradient de-
scent is used. Finally, when running time is considered,
Figure 1(b) shows that NBO-GD (T = 1) outperforms other
methods. Based on these findings, we use T = 1 for NBO-
type algorithms in subsequent experiments.

4.2. Hyperparameter Optimization

In this section, we evaluate the empirical performance of our
NSBO-SGD algorithm on hyperparameter selection prob-

7

Efficient Curvature-Aware Hypergradient Approximation

lems, a typical bilevel optimization task (Franceschi et al.,
2018; Ji et al., 2021; Dagréou et al., 2022). The upper- and
lower-level objective functions are defined as follows:

f(λ, ω) =
1

|D′|
∑

(x′
e,y

′
e)∈D′

l (x′e, y
′
e;ω) ,

g(λ, ω) =
1

|D|
∑

(xe,ye)∈D

l (xe, ye;ω) + r(λ, ω),

where D′ and D denote the validation and training datasets,
respectively. Here, λ is the hyperparameter, ω ∈ Rc×p

denotes the model parameter, l is the loss function, and
r(λ, ω) is a regularizer.

We conduct experiments on two datasets: IJCNN1 and Cov-
type. The IJCNN1 dataset corresponds to a binary classifica-
tion problem using logistic regression, with p = 22, c = 1.
The loss function is defined as ℓ(xe, ye;ω) := ψ(ωxeye),
where ψ is the logistic function. The regularizer is given
by 1

2

∑p
i=1 e

λiw2
i . The Covtype dataset corresponds to

a multi-class classification problem using logistic regres-
sion, with p = 54, c = 17. The loss function is the cross-
entropy function, and the regularization term is given by
1
2

∑c
j=1 e

λj
∑p

i=1 w
2
ji.

0 50 100 150 200
Time(s)

10 4

10 3

10 2

10 1

f(
,

* (
))

*

0 20 40 60 80 100
Time(s)

27.0%

28.0%

29.0%

30.0%

31.0%

32.0%

33.0%

Te
st

 e
rr

or

AmIGO StocBiO SOBA F2SA SHINE NSBO-SGD

Figure 2. Comparison between NSBO-SGD and other algorithms
on hyperparameter optimization. Left: IJCNN1 dataset; Right:
Covtype dataset.

In Figure 2, we present the suboptimality gap on IJCNN1
and the test error on Covtype as functions of time. Our
first observation is that, among all methods, NSBO-SGD ex-
hibits the fastest convergence on both datasets, with its per-
formance advantage being particularly evident on IJCNN1.
Second, the gap between SOBA and AmIGO on IJCNN1
highlights the benefits of performing multiple SGD steps
when solving lower-level problems, as well as handling
quadratic subproblems involving Hessian inverse-vector
products. In comparison, NSBO-SGD highlights the practi-
cal advantages of incorporating curvature information from
the subroutine that computes an approximation of Newton
directions. Notably, in Figure 2, NSBO-SGD uses T = 1,
whereas AmIGO employs Q = 10. This demonstrates
that the inner loop for approximating Newton directions in
NSBO-SGD is more effective than the inner loop used for

solving lower-level problems and quadratic subproblems in
AmIGO.

4.3. Data Hyper-Cleaning

We also conduct data hyper-cleaning experiments
(Franceschi et al., 2017; Dagréou et al., 2022) on two
datasets: MNIST and FashionMNIST (Xiao et al., 2017).
Data hyper-cleaning involves training a multiclass classifier
while addressing training samples with noisy labels. It can
be formulated as a bilevel optimization problem with the
following objective functions:

f(λ, ω) =
1

|D′|
∑

(x′
e,y

′
e)∈D′

L(ωx′e, y′e),

g(λ, ω) =
1

|D|
∑

(xe,ye)∈D

σ(λe)L(ωxe, ye) + cr∥ω∥2,

where L denotes the cross-entropy loss, σ is the sigmoid
function, and cr is a regularization parameter. For this
experiment, we set the corruption probability to p′ = 0.5,
as in (Dagréou et al., 2022).

0 5 10 15
Time(s)

13.0%

14.0%

15.0%

16.0%

17.0%

18.0%

19.0%

20.0%

Te
st

 e
rr

or

0 5 10 15 20
Time(s)

22.0%

24.0%

26.0%

28.0%

30.0%

32.0%

Te
st

 e
rr

or

AmIGO StocBiO SOBA F2SA SHINE NSBO-SGD

Figure 3. Comparison between NSBO-SGD and other algorithms
on data hyper-cleaning. Left: MNIST dataset; Right: FashionM-
NIST dataset.

In Figure 3, we report the test errors for each method w.r.t
running time on MNIST and FashionMNIST. We observe
that both AmIGO and NSBO-SGD outperform all other
methods by reaching the smallest error. Meanwhile, NSBO-
SGD is the fastest, demonstrating the efficiency of incorpo-
rating curvature information in bilevel optimization.

4.4. Other Implementations of NBO

Variance reduction and momentum. Similar to the
gradient-based framework in (Dagréou et al., 2022), the
simplicity of our NBO approach allows us to easily incorpo-
rate variance-reduced gradient estimators and momentum
techniques (Chen et al., 2024c; Chu et al., 2024). We con-
duct numerical experiments to test the versatility of NBO by
comparing it with the framework in (Dagréou et al., 2022),
using the same variance-reduced gradient estimator and
momentum technique.

8

Efficient Curvature-Aware Hypergradient Approximation

SABA (Dagréou et al., 2022) is an adaptation of the vari-
ance reduction algorithm SAGA (Defazio et al., 2014) for
bilevel optimization. MA-SABA (Chu et al., 2024) extends
the SABA algorithm by incorporating an additional stan-
dard momentum (also referred to as a moving average) into
the update of the upper-level variable. We take a similar
approach and extend SAGA to NBO by replacing SGD in
NSBO-SGD with SAGA, resulting in a new implementation
of NBO, referred to as NSBO-SAGA. If we further incorpo-
rate an additional standard momentum into the update of the
upper-level variable, we obtain MA-NSBO-SAGA, another
new implementation of NBO.

In Figure 4, we present the comparison results between
SABA and NSBO-SAGA, as well as between MA-SABA
and MA-NSBO-SAGA. We observe that both NSBO-SAGA
and MA-NSBO-SAGA achieve better performance.

0 25 50 75 100 125
Time(s)

10 5

10 4

10 3

10 2

10 1

f(
,

* (
))

*

(a) Hyperparameter optimization

0 5 10 15
Time(s)

13.0%

13.5%

14.0%

14.5%

15.0%

15.5%

16.0%

Te
st

 e
rr

or

(b) Data hyper-cleaning

SABA NSBO-SAGA MA-SABA MA-NSBO-SAGA

Figure 4. Comparison between the NBO framework and other al-
gorithms incorporating variance reduction and the moving average
technique. Left: Hyperparameter optimization on IJCNN1; Right:
Data hyper-cleaning on MNIST.

Extension to lower-level non-strongly convex structures.
The NBO framework is primarily designed for bilevel op-
timization problems in which the lower-level objective is
strongly convex. For problems with a non-strongly convex
lower-level structure, existing methods often reformulate
the original problem to induce strong convexity. Once this
condition is met, the NBO framework can be applied. For in-
stance, in the BAMM method (Liu et al., 2023b), when g is
merely convex, an aggregation function ϕµ = µf+(1−µ)g
is introduced. This function becomes strongly convex if f
is strongly convex. An approximate hypergradient dkx can
then be computed by substituting g with ϕµ.

We compare the BAMM method and BAMM+NBO, where
the NBO framework is used to compute dkx within BAMM,
on the toy example proposed in Liu et al. (2023b). The
example is defined as follows:

min
x∈Rn

1

2
∥x− y2∥2 +

1

2
∥y1 − e∥2

s.t. y = (y1, y2) ∈ arg min
(y1,y2)∈R2n

1

2
∥y1∥2 − x⊤y1,

where e is a vector with all components equal to 1. It

is straightforward to derive that the optimal solution is
(e, e, e). The results, shown in Figure 5, demonstrate that
BAMM+NBO significantly outperforms BAMM, highlight-
ing the effectiveness of the NBO framework.

0.0 0.2 0.4 0.6 0.8 1.0
Time(s)

10 4

10 3

10 2

10 1

100

x
x

*
/x

*

BAMM BAMM+NBO

Figure 5. Performance of the NBO framework on a toy example
with a non-strongly convex lower-level problem.

5. Conclusion
In this work, we design and analyze a simple and efficient
framework (NBO) for bilevel optimization, leveraging the
hypergradient structure and inexact Newton methods. The
convergence analysis and experimental results for specific
examples of NBO demonstrate the benefits of incorporat-
ing curvature information into the optimization process for
bilevel problems. However, many additional benefits and
extensions could be explored, such as the exploitation of
parallel and distributed computation, and the integration of
noise reduction techniques.

Acknowledgements
Authors listed in alphabetical order. This work is
supported by the National Natural Science Foundation
of China (12431011, 12371301, 12371305, 12222106,
12326605), Natural Science Foundation for Distinguished
Young Scholars of Gansu Province (22JR5RA223), Guang-
dong Basic and Applied Basic Research Foundation (No.
2022B1515020082) and the Longhua District Science and
Innovation Commission Project Grants of Shenzhen (Grant
No.20250113G43468522). We thank the anonymous re-
viewers for their valuable comments and constructive sug-
gestions on this work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Arbel, M. and Mairal, J. Amortized implicit differentia-

tion for stochastic bilevel optimization. In International

9

Efficient Curvature-Aware Hypergradient Approximation

Conference on Learning Representations, 2022a.

Arbel, M. and Mairal, J. Non-convex bilevel games with
critical point selection maps. In Advances in Neural
Information Processing Systems, volume 35, pp. 8013–
8026, 2022b.

Berahas, A. S., Bollapragada, R., and Nocedal, J. An inves-
tigation of newton-sketch and subsampled newton meth-
ods. Optimization Methods and Software, 35(4):661–680,
2020.

Bishop, N., Tran-Thanh, L., and Gerding, E. Optimal learn-
ing from verified training data. In Advances in Neural
Information Processing Systems, volume 33, pp. 9520–
9529, 2020.

Bollapragada, R., Byrd, R. H., and Nocedal, J. Exact and in-
exact subsampled newton methods for optimization. IMA
Journal of Numerical Analysis, 39(2):545–578, 2019.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018.

Chen, L., Ma, Y., and Zhang, J. Near-optimal nonconvex-
strongly-convex bilevel optimization with fully first-order
oracles. arXiv:2306.14853, 2023a.

Chen, L., Xu, J., and Zhang, J. On finding small hyper-
gradients in bilevel optimization: Hardness results and
improved analysis. In Annual Conference on Learning
Theory, pp. 947–980. PMLR, 2024a.

Chen, T., Sun, Y., and Yin, W. Closing the gap: Tighter
analysis of alternating stochastic gradient methods for
bilevel problems. In Advances in Neural Information
Processing Systems, volume 34, pp. 25294–25307, 2021.

Chen, X., Huang, M., Ma, S., and Balasubramanian, K. De-
centralized stochastic bilevel optimization with improved
per-iteration complexity. In International Conference on
Machine Learning, volume 202, pp. 4641–4671, 2023b.

Chen, X., Huang, M., and Ma, S. Decentralized bilevel
optimization. Optimization Letters, pp. 1–65, 2024b.

Chen, X., Xiao, T., and Balasubramanian, K. Optimal algo-
rithms for stochastic bilevel optimization under relaxed
smoothness conditions. Journal of Machine Learning
Research, 25(151):1–51, 2024c.

Chu, T., Xu, D., Yao, W., and Zhang, J. SPABA: A single-
loop and probabilistic stochastic bilevel algorithm achiev-
ing optimal sample complexity. In International Confer-
ence on Machine Learning, 2024.

Cutkosky, A. and Orabona, F. Momentum-based variance
reduction in non-convex sgd. In Advances in Neural
Information Processing Systems, volume 32, 2019.

Dagréou, M., Ablin, P., Vaiter, S., and Moreau, T. A frame-
work for bilevel optimization that enables stochastic and
global variance reduction algorithms. In Advances in
Neural Information Processing Systems, volume 35, pp.
26698–26710, 2022.

Dagréou, M., Ablin, P., Vaiter, S., and Moreau, T. How to
compute hessian-vector products? In ICLR Blogposts,
2024.

Dagréou, M., Moreau, T., Vaiter, S., and Ablin, P. A lower
bound and a near-optimal algorithm for bilevel empiri-
cal risk minimization. In International Conference on
Artificial Intelligence and Statistics, pp. 82–90, 2024.

Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A fast in-
cremental gradient method with support for non-strongly
convex composite objectives. In Advances in Neural
Information Processing Systems, volume 27, 2014.

Dong, Y., Ma, S., Yang, J., and Yin, C. A single-
loop algorithm for decentralized bilevel optimization.
arXiv:2311.08945, 2023.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.
Forward and reverse gradient-based hyperparameter opti-
mization. In International Conference on Machine Learn-
ing, pp. 1165–1173, 2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimiza-
tion and meta-learning. In International Conference on
Machine Learning, volume 80, pp. 1568–1577, 2018.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. arXiv:1802.02246, 2018.

Grazzi, R., Franceschi, L., Pontil, M., and Salzo, S. On the
iteration complexity of hypergradient computation. In
International Conference on Machine Learning, volume
119, pp. 3748–3758, 2020.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-
timescale stochastic algorithm framework for bilevel op-
timization: Complexity analysis and application to actor-
critic. SIAM Journal on Optimization, 33(1):147–180,
2023.

Huang, F. Optimal Hessian/Jacobian-free nonconvex-PL
bilevel optimization. In International Conference on
Machine Learning, 2024.

Huang, Y., Wu, Z., Ma, S., and Ling, Q. Single-timescale
multi-sequence stochastic approximation without fixed

10

Efficient Curvature-Aware Hypergradient Approximation

point smoothness: Theories and applications. IEEE Trans-
actions on Signal Processing, 2025.

Ji, K., Lee, J. D., Liang, Y., and Poor, H. V. Convergence of
meta-learning with task-specific adaptation over partial
parameters. In Advances in Neural Information Process-
ing Systems, volume 33, pp. 11490–11500, 2020.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization: Con-
vergence analysis and enhanced design. In International
Conference on Machine Learning, pp. 4882–4892, 2021.

Ji, K., Liu, M., Liang, Y., and Ying, L. Will bilevel optimiz-
ers benefit from loops. In Advances in Neural Information
Processing Systems, volume 35, pp. 3011–3023, 2022.

Khanduri, P., Zeng, S., Hong, M., Wai, H.-T., Wang, Z.,
and Yang, Z. A near-optimal algorithm for stochastic
bilevel optimization via double-momentum. In Advances
in Neural Information Processing Systems, volume 34,
pp. 30271–30283, 2021.

Kwon, J., Kwon, D., Wright, S., and Nowak, R. D. A
fully first-order method for stochastic bilevel optimiza-
tion. In International Conference on Machine Learning,
pp. 18083–18113, 2023.

Kwon, J., Kwon, D., Wright, S., and Nowak, R. D. On
penalty methods for nonconvex bilevel optimization and
first-order stochastic approximation. In International
Conference on Learning Representations, 2024.

Lam, S., Pitrou, A., and Seibert, S. Numba: a llvm-based
python jit compiler. In Workshop on the LLVM Compiler
Infrastructure in HPC, pp. 1–6, 11 2015.

Li, J., Gu, B., and Huang, H. A fully single loop algo-
rithm for bilevel optimization without hessian inverse. In
AAAI Conference on Artificial Intelligence, volume 36,
pp. 7426–7434, 2022.

Li, Z., Bao, H., Zhang, X., and Richtárik, P. Page: A
simple and optimal probabilistic gradient estimator for
nonconvex optimization. In International Conference on
Machine Learning, pp. 6286–6295, 2021.

Liang, H., Zhang, S., Sun, J., He, X., Huang, W., Zhuang, K.,
and Li, Z. Darts+: Improved differentiable architecture
search with early stopping. arXiv:1909.06035, 2019.

Liu, B., Ye, M., Wright, S., Stone, P., and Liu, Q. Bome!
bilevel optimization made easy: A simple first-order ap-
proach. In Advances in Neural Information Processing
Systems, volume 35, pp. 17248–17262, 2022.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable ar-
chitecture search. In International Conference on Learn-
ing Representations, 2018.

Liu, R., Gao, J., Zhang, J., Meng, D., and Lin, Z. Investigat-
ing bi-level optimization for learning and vision from a
unified perspective: A survey and beyond. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2021.

Liu, R., Liu, X., Zeng, S., Zhang, J., and Zhang, Y. Value-
function-based sequential minimization for bi-level op-
timization. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023a.

Liu, R., Liu, Y., Yao, W., Zeng, S., and Zhang, J. Averaged
method of multipliers for bi-level optimization without
lower-level strong convexity. In International Conference
on Machine Learning, pp. 21839–21866, 2023b.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In International Conference on Machine Learn-
ing, 2015.

Meng, S. Y., Vaswani, S., Laradji, I. H., Schmidt, M., and
Lacoste-Julien, S. Fast and furious convergence: Stochas-
tic second order methods under interpolation. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1375–1386, 2020.

Moreau, T., Massias, M., Gramfort, A., Ablin, P., Bannier,
P.-A., Charlier, B., Dagréou, M., Dupre la Tour, T., Durif,
G., Dantas, C. F., et al. Benchopt: Reproducible, efficient
and collaborative optimization benchmarks. In Advances
in Neural Information Processing Systems, volume 35,
pp. 25404–25421, 2022.

Nesterov, Y. Lectures on convex optimization, volume 137.
Springer, Cham, 2018.

Nocedal, J. and Wright, S. J. Conjugate gradient methods.
Numerical optimization, pp. 101–134, 2006.

Pearlmutter, B. A. Fast exact multiplication by the hessian.
Neural computation, 6(1):147–160, 1994.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In International Conference on Machine
Learning, volume 48, pp. 737–746, 2016.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-learning with implicit gradients. In Advances in
Neural Information Processing Systems, volume 32, pp.
113–124, 2019.

Ramzi, Z., Mannel, F., Bai, S., Starck, J.-L., Ciuciu, P., and
Moreau, T. Shine: Sharing the inverse estimate from
the forward pass for bi-level optimization and implicit
models. In International Conference on Learning Repre-
sentations, 2022.

11

Efficient Curvature-Aware Hypergradient Approximation

Shen, H. and Chen, T. On penalty-based bilevel gradient
descent method. In International Conference on Machine
Learning, pp. 30992–31015. PMLR, 2023.

Wang, J., Chen, H., Jiang, R., Li, X., and Li, Z. Fast
algorithms for Stackelberg prediction game with least
squares loss. In International Conference on Machine
Learning, volume 139, pp. 10708–10716, 2021.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv:1708.07747, 2017.

Xiao, Q., Lu, S., and Chen, T. A generalized alternat-
ing method for bilevel optimization under the polyak-
łojasiewicz condition. In Advances in Neural Information
Processing Systems, pp. 63847–63873, 2023.

Yang, J., Ji, K., and Liang, Y. Provably faster algorithms for
bilevel optimization. In Advances in Neural Information
Processing Systems, volume 34, pp. 13670–13682, 2021.

Yang, Y., Gao, B., and Yuan, Y.-x. Lancbio: Dynamic
lanczos-aided bilevel optimization via krylov subspace.
In International Conference on Learning Representations,
2025.

Yang, Z., Chen, Y., Hong, M., and Wang, Z. Provably global
convergence of actor-critic: A case for linear quadratic
regulator with ergodic cost. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019.

Ye, J. J. and Zhu, D. Optimality conditions for bilevel
programming problems. Optimization, 33(1):9–27, 1995.

Young, D. On richardson’s method for solving linear sys-
tems with positive definite matrices. Journal of Mathe-
matics and Physics, 32(1-4):243–255, 1953.

Zhang, Y., Zhang, G., Khanduri, P., Hong, M., Chang, S.,
and Liu, S. Revisiting and advancing fast adversarial
training through the lens of bi-level optimization. In
International Conference on Machine Learning, volume
162, pp. 26693–26712, 2022.

Zhang, Y., Khanduri, P., Tsaknakis, I., Yao, Y., Hong, M.,
and Liu, S. An introduction to bilevel optimization: Foun-
dations and applications in signal processing and machine
learning. IEEE Signal Processing Magazine, 41(1):38–
59, 2024.

12

Efficient Curvature-Aware Hypergradient Approximation

A. Appendix
The appendix is organized as follows:

• More related work is provided in Section B.

• Experimental details and additional experiments are provided in Section C.

• The initialization strategy of the proposed algorithms is provided in Section D.

• Detailed proofs of the main theorems are provided in Section E.

B. More Related Works
Bilevel optimization. Bilevel optimization addresses the challenges associated with nested optimization structures
commonly encountered in various machine learning applications, as discussed in recent survey papers (Liu et al., 2021;
Zhang et al., 2024). Although numerous methods have emerged, the numerical computation of bilevel optimization remains
a significant challenge, even when the lower-level problem has a unique solution (Pedregosa, 2016; Ghadimi & Wang, 2018;
Kwon et al., 2023). Assuming further that the Hessian of the lower-level objective function w.r.t the lower-level variables
is invertible, the hypergradient is well-defined and can be derived from the implicit function theorem. Recently, several
strategies have been proposed to solve bilevel optimization. For instance, the iterative differentiation (ITD)-based approach
(Maclaurin et al., 2015; Franceschi et al., 2018; Grazzi et al., 2020; Ji et al., 2021) estimates the Jacobian of the lower-level
solution map by differentiating the steps used to compute an approximation of the lower-level solution. The approximate
implicit differentiation (AID)-based approach (Ghadimi & Wang, 2018; Chen et al., 2021; Ji et al., 2021; 2022; Arbel &
Mairal, 2022a; Dagréou et al., 2022; Hong et al., 2023) is directly based on equation (2). It performs several (stochastic)
gradient descent steps in the lower-level problem, followed by the estimation of the Hessian inverse-vector product, which
can be computed using Neumann approximations (Chen et al., 2021; Hong et al., 2023), solving a linear system (Pedregosa,
2016; Ji et al., 2021), or solving a quadratic programming problem (Arbel & Mairal, 2022a; Dagréou et al., 2022).

The ITD- and AID-based methods involve numerous Hessian- and Jacobian-vector products, which can be efficiently
computed and stored using existing automatic differentiation packages (Pearlmutter, 1994; Dagréou et al., 2024). Another
class of methods, which rely solely on the first-order gradients of the upper- and lower-level objective functions, is based on
the value function reformulation (Ye & Zhu, 1995) and is referred to as the value function-based approach (Liu et al., 2022;
Kwon et al., 2023; Chen et al., 2023a; Liu et al., 2023a; Kwon et al., 2024). From the hypergradient perspective, all of the
aforementioned gradient-based bilevel optimization algorithms are inexact hypergradient methods. The distinction between
these methods lies in whether the hypergradient approximation is directly derived from equation (2). For instance, the
AID-based approach is directly based on equation (2), whereas the ITD-based and value function-based approaches are not.
However, what these methods do is to approximate the hypergradient. For example, Proposition 2 in Ji et al. (2021) provides
the explicit form of the ITD-based hypergradient estimate, while Lemma 3.1 in Kwon et al. (2023) offers a hypergradient
estimate for the value function-based approach. In stochastic bilevel optimization, various stochastic techniques (e.g.,
momentum and variance reduction) from single-level optimization have been employed to improve the convergence rate
(Yang et al., 2021; Dagréou et al., 2022; Khanduri et al., 2021; Chen et al., 2024c; Dagréou et al., 2024; Chu et al., 2024;
Huang, 2024).

Although our paper focuses on the lower-level strongly convex case, the lower-level non-strongly convex case is also of
great interest. In some works, the hypergradient can still be approximated in non-strongly convex case, by combining the
pseudo inverse of the Hessian (Arbel & Mairal, 2022b; Xiao et al., 2023) or aggregation functions (Liu et al., 2023b). Then
this approximate hypergradient can be used to iteratively update the upper-level variable. There are also works that employ
penalty function methods, including but not limited to Kwon et al. (2024); Shen & Chen (2023); Chen et al. (2024a).

C. Experimental Details and Additional Experiments
Our experiments were conducted using the Bilevel Optimization Benchmark framework (Dagréou et al., 2022) and the
Benchopt library (Moreau et al., 2022). All experiments were performed on a system equipped with an Intel(R) Xeon(R)

13

Efficient Curvature-Aware Hypergradient Approximation

Gold 5218R CPU running at 2.10 GHz and an NVIDIA H100 GPU with 80 GB of memory. Each experiment was repeated
ten times.

C.1. Synthetic Data

For the synthetic dataset, we use 16,000 training samples and 4,000 validation samples. The dimension size is set to
p = 50. For both AmIGO and NBO, the outer step size is set to 1, and the inner step size is set to 0.03. Both algorithms are
deterministic, employing full-batch updates. The experimental results for r′ = 0.5 and r′ = 2 are presented in Figures 6
and 7, respectively.

0 10 20 30 40 50
Iteration

10 1

f(
,

* (
))

(a)

0.0 2.5 5.0 7.5 10.0 12.5
Time(s)

10 1

f(
,

* (
))

(b)

NBO-GD (T=10) NBO-GD (T=1) AmIGO (Q=10) AmIGO (Q=1)

Figure 6. Experimental results on synthetic data with r′ = 0.5.

0 10 20 30 40 50
Iteration

10 1

f(
,

* (
))

(a)

0.0 2.5 5.0 7.5 10.0 12.5
Time(s)

10 1

f(
,

* (
))

(b)

NBO-GD (T=10) NBO-GD (T=1) AmIGO (Q=10) AmIGO (Q=1)

Figure 7. Experimental results on synthetic data with r′ = 2.

The results align with our discussion in Section 4.1. Figures 6 and 7 demonstrate that NBO-GD maintains strong performance
even when the Newton direction is approximated with T = 1. In contrast, AmIGO’s performance deteriorates significantly
when only a single step of gradient descent is used. When considering runtime, the results show that NBO-GD (T = 1)
outperforms other methods. Moreover, we evaluate the scalability of NBO on synthetic data while progressively increasing
the problem dimension in Figure 8. We record the time it takes to achieve (f(λk, ω∗(λk))− Φ∗)/(f(λ0, ω∗(λ0))− Φ∗) <
10−3 when the dimension increasing. The results after 5000 iterations is used as Φ∗.

C.2. Hyperparameter Optimization and Data Hyper-Cleaning

Datasets. We provide detailed information regarding the datasets used in our experiments. For IJCNN11, we employ
49,990 training samples and 91,701 validation samples. For Covtype2, we utilize 371,847 training samples, 92,962 validation
samples, and 116,203 testing samples. For MNIST3 and FashionMNIST4, we use 20,000 training samples, 5,000 validation

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
2https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch covtype.html
3http://yann.lecun.com/exdb/mnist/
4https://github.com/zalandoresearch/fashion-mnist

14

Efficient Curvature-Aware Hypergradient Approximation

0 100 200 300 400 500
Dimension

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

NBO-GD

Figure 8. Scalability of NBO to large dimensional problems on synthetic data.

samples, and 10,000 testing samples, and we corrupt the labels of these two datasets with a probability of p′ = 0.5. In terms
of computational frameworks, we use JAX (Bradbury et al., 2018) for MNIST, FashionMNIST, and Covtype. For IJCNN1,
we use Numba (Lam et al., 2015), as it demonstrates faster performance compared to JAX for this dataset.

Algorithm Settings. We provide a detailed description of the batch size, step size, and other settings for the algorithms
compared in Section 4.2. The batch size for all algorithms is set to 64, except for NSBO-SGD and SHINE. For NSBO-SGD,
since the size of Bk

2 is significantly larger than that of other batches in theory, we set |Bk
2 | = 256, while the other batches

remain at 64. For SHINE, we set the batch size to 256, as it is a deterministic algorithm by design. In the benchmark, the
double-loop algorithms, including AmIGO, StocBiO, and F2SA, are configured with 10 inner loop iterations, and we set
the number of iterations for BFGS in SHINE to 5. The step sizes are tuned via grid search, following a method similar to
(Dagréou et al., 2022). The grid search procedure is described in detail below. For algorithms that employ a decreasing step
size, the step sizes we search for correspond to their initial values. For SHINE, the inner step size we search for is related to
the initial step size of the strong-Wolfe line search. The outer step size is computed as inner step size

outer ratio .

• IJCNN1: The inner step size is chosen from 6 values between 2−5 and 1, spaced on a logarithmic scale. The outer
ratio is chosen in

{
10−2, 10−1.5, 10−1, 10−0.5, 1

}
.

• Covtype: The inner step size is chosen from 7 values between 2−6 and 1, spaced on a logarithmic scale. The outer
ratio is chosen from 4 values between 10−2 and 10, spaced on a logarithmic scale.

• MNIST and FashionMNIST: The inner step size is chosen from 4 values between 10−3 and 1, spaced on a logarithmic
scale. The outer ratio is chosen from 4 values between 10−6 and 10−3, spaced on a logarithmic scale.

Moreover, for MA-SABA and MA-NSBO-SAGA, we set the moving average coefficient to 0.99 for MNIST and FashionM-
NIST, 0.9 for IJCNN1, 0.8 for Covtype. Last but not least, we do not follow the initialization in Algorithm 2 and Algorithm
4. Instead, we set the initial points for our framework in the same way as other algorithms in the benchmark. Other settings
not mentioned are kept consistent with the benchmark.

Additional results. We present the additional experimental results for Covtype and FashionMNIST. In Figure 9 (a) ,
the additional results of hyperparameter optimization on Covtype are shown. In Figure 9 (b), the additional results of
data hyper-cleaning on FashionMNIST are displayed. These results demonstrate the effectiveness of our framework under
different implementations. In Figure 9 (b), the performance of MA-SABA and MA-NSBO-SAGA is similar, likely because
MA-SABA is fast enough on FashionMNIST, leaving little room for further acceleration.

15

Efficient Curvature-Aware Hypergradient Approximation

0 20 40 60 80 100
Time(s)

27.8%

27.9%

28.0%

28.1%

28.2%

28.3%

28.4%

28.5%

Te
st

 e
rr

or

(a) Hyperparameter optimization

0 5 10 15 20
Time(s)

21.0%

21.5%

22.0%

22.5%

23.0%

23.5%

24.0%

Te
st

 e
rr

or

(b) Data hyper-cleaning

SABA NSBO-SAGA MA-SABA MA-NSBO-SAGA

Figure 9. Comparison between NBO framework and other algorithms equipped with variance reduction and moving average technique.
Left: Hyperparameter optimization on Covtype; Right: Data hyper-cleaning on FashionMNIST.

D. Initialization Strategy of the Proposed Algorithms
In this section, we introduce two initialization boxes for our proposed algorithms. These initializations ensure that the initial
points y0, u0 are close to y∗(x0), u∗(x0), respectively, thereby guaranteeing that yk, uk remain within a neighborhood of
y∗(xk), u∗(xk) for all k = 0, · · · ,K with a controlled step size αk. It is important to note that the primary purpose of these
initialization requirements is to ensure theoretical validity. In practice, strict adherence to these constraints is not necessary,
as the proposed initialization process does not introduce significant computational overhead. Some constants in this section,
such as ru and L1, are defined in (29).

• Choose x0, y0,0, u0,0, stepsize β0 ≤ 1
Lf,1

.

• Take N0 ≥ 2 log
min
{

µ

2
√

L1
, µ2

2Lg,2

}
∥∇g(x0,y0,0)∥

/
log(1− β0µ) = Θ(κ log κ) and compute y0 = yN0,0:

for n = 0, 1, . . . , N0 − 1

yn+1,0 = yn,0 − β0∇2g(x
0, yn,0)

end for

• Take Q0 ≥ log
min
{

5L1
4Lg,2

,

√
L1

2µ

}
∥u0,0∥+L1

µ2 ∥∇g(x0,y0)∥+ru

/
log(1− β0µ) = Θ(κ log κ) and compute u0 = uQ0,0:

for q = 0, 1, . . . , Q0 − 1

uq+1,0 = uq,0 − β0
(
∇2

22g(x
0, y0)uq,0 −∇2f(x

0, y0)
)

end for

• Output x0, y0, u0.

BOX 1: Initialization of Algorithm 2.

16

Efficient Curvature-Aware Hypergradient Approximation

• Choose x0, y0,0, u0,0, stepsize β0 ≤ 1
Lf,1

, batch size |B0,n|, |B0,q| ≥ Θ(κ5), |B′
0,q| ≥ Θ(1) according to

(24).

• Take N0 ≥ log
min
{

µ2

8L1
, µ4

40rL2
g,2

}
∥∇g(x0,y0,0)∥2

/
log(1− β0µ) = Θ(κ log κ) and compute y0 = yN0,0:

for n = 0, 1, . . . , N0 − 1

yn+1,0 = yn,0 − β0∇2G(x
0, yn,0;B0,n)

end for

• Take Q0 ≥ log
min
{

2L2
1

5rL2
g,2

,
L1
2µ2

}
4
(
∥u0,0∥+L1

µ2 ∥∇g(x0,y0)∥+ru

)2/ log(1− β0µ/2) = Θ(κ log κ) and compute u0 = uQ0,0:

for q = 0, 1, . . . , Q0 − 1

uq+1,0 = uq,0 − β0
(
∇2

22G(x
0, y0;B0,q)u

q,0 −∇2f(x
0, y0;B′

0,q)
)

end for

• Output x0, y0, u0.

BOX 2: Initialization of Algorithm 4.

The following two lemmas describe the properties of the output sequences from BOX 1 and BOX 2, respectively.

Lemma D.1. Suppose Assumption 3.1 holds, then x0, y0, u0 in BOX 1 satisfy ∥y0 − y∗(x0)∥ ≤ min
{

µ
2Lg,2

, 1
2
√
L1

}
,

∥u0 − u∗(x0)∥ ≤ min
{

5L1

2Lg,2
,
√
L1

µ

}
.

Proof. For yn+1,0 = yn,0 − β0∇2g(x
0, yn,0), we have∥∥yn+1,0 − y∗(x0)
∥∥2 =

∥∥yn,0 − β0∇2g(x
0, yn,0)− y∗(x0)

∥∥2
=∥yn,0 − y∗(x0)∥2 − 2β0

〈
yn,0 − y∗(x0),∇2g(x

0, yn,0)
〉
+ β2

0∥∇2g(x
0, yn,0)∥2.

Since ∇2g(x
0, y∗(x0)) = 0, Assumption 3.1 and Theorem 2.1.12 in (Nesterov, 2018) implies that〈

yn,0 − y∗(x0),∇2g(x
0, yn,0)

〉
=
〈
yn,0 − y∗(x0),∇2g(x

0, yn,0)−∇2g(x
0, y∗(x0))

〉
≥ µLg,1

µ+ Lg,1
∥yn,0 − y∗(x0)∥2 + 1

µ+ Lg,1
∥∇2g(x

0, yn,0)∥2.

Since β0 ≤ 1
Lg,1

≤ 2
µ+Lg,1

, we have

∥∥yn+1,0 − y∗(x0)
∥∥2 ≤

(
1− 2β0

µLg,1

µ+ Lg,1

)
∥yn,0 − y∗(x0)∥2 ≤ (1− β0µ)∥yn,0 − y∗(x0)∥2. (19)

Then we can deduce that∥∥yN0,0 − y∗(x0)
∥∥ ≤ (1− β0µ)

N0/2∥y0,0 − y∗(x0)∥ ≤ (1− β0µ)
N0/2

1

µ
∥∇g(x0, y0,0)∥ ≤ min

{ 1

2
√
L1

,
µ

2Lg,2

}
,

where the second inequality follows from

∥y0,0 − y∗(x0)∥ ≤ 1

µ
∥∇g(x0, y0,0)−∇g(x0, y∗(x0))∥ =

1

µ
∥∇g(x0, y0,0)∥ (20)

17

Efficient Curvature-Aware Hypergradient Approximation

by µ-strong convexity of g(x, ·) and the optimality of y∗(x0). Next, recall that u∗(x, y) = [∇2
22g(x, y)]

−1∇2f(x, y), the
difference between u∗(x) and u∗(x, y) is

µ∥u∗(x, y)− u∗(x)∥ ≤ ∥∇2
22g(x, y)(u

∗(x, y)− u∗(x))∥
≤∥∇2f(x, y)−∇2f(x, y

∗(x))∥+ ∥u∗(x)∥∥∇2
22g(x, y

∗(x))−∇2
22g(x, y)∥

≤(Lf,1 + ruLg,2)∥y − y∗(x)∥ = L1∥y − y∗(x)∥, (21)

where ∥u∗(x)∥ ≤ Lf,0

µ = ru by definition, the second inequality is because ∇2
22g(x, y

∗(x))u∗(x) = ∇2f(x, y
∗(x)) and

∇2
22g(x, y)u

∗(x, y) = ∇2f(x, y). For uq+1,0 = uq,0 − β0
(
∇2

22g(x
0, y0)uq,0 −∇2f(x

0, y0)
)
, by µ-strong convexity of

g(x, ·) and β0 ≤ 1
Lg,1

, we have∥∥uq+1,0 − u∗(x0, y0)
∥∥ =

∥∥uq,0 − β0
(
∇2

22g(x
0, y0)uq,0 −∇2f(x

0, y0)
)
− u∗(x0, y0)

∥∥
≤
∥∥I − β0∇2

22g(x
0, y0)

∥∥
op

∥∥uq,0 − u∗(x0, y0)
∥∥ ≤ (1− β0µ)∥uq,0 − u∗(x0, y0)∥. (22)

So we can deduce that∥∥uQ0,0 − u∗(x0)
∥∥ =

∥∥uQ0,0 − u∗(x0, y0)
∥∥+ ∥∥u∗(x0, y0)− u∗(x0)

∥∥
(22),(21)
≤ (1− β0µ)

Q0∥u0,0 − u∗(x0, y0)∥+ L1

µ
∥y0 − y∗(x0)∥

≤(1− β0µ)
Q0
(
∥u0,0∥+ ∥u∗(x0, y0)∥

)
+
L1

µ
min

{ 1

2
√
L1

,
µ

2Lg,2

}
≤ min

{ 5L1

2Lg,2
,

√
L1

µ

}
,

where

∥u∗(x0, y0)∥ ≤ ∥u∗(x0, y0)− u∗(x0)∥+ ∥u∗(x0)∥
(21)
≤ L1

µ
∥y0 − y∗(x0)∥+ ru ≤ L1

µ2
∇g(x0, y0) + ru. (23)

Hence we complete the proof.

Lemma D.2. Suppose Assumptions 3.1, 3.5 hold, when we take the bachsize

|B0| ≥ max
{8β0σ2

g,2

µ
,

σ2
g,1β0

µmin{µ2/(40rL2
g,2), 1/(8L1)}

,
32β0σ

2
g,1

(
L1

µ2 ∥∇g(x0, y0)∥+ ru
)2

µmin{L2
1/(5rL

2
g,2), L1/(4µ2)}

}
= Θ(κ5),

|B′
0| ≥ Θ(1) ≥

16β0σ
2
f,1

µmin{L2
1/(5rL

2
g,2), L1/(4µ2)}

, (24)

then x0, y0, u0 in BOX 2 satisfy E
[
∥y0 − y∗(x0)∥2

]
≤ min

{
µ2

20rL2
g,2
, 1
4L1

}
and E

[
∥u0 − u∗(x0)∥2

]
≤ min

{ 4L2
1

5rL2
g,2
, L1

µ2

}
.

Proof. Similar to Lemma D.1, we can deduce that

∥yn,0 − β0∇2g(x
0, yn,0)− y∗(x0)∥2 ≤ (1− µβ0)∥yn,0 − y∗(x0)∥2.

Then denote a conditional expectation En
y := E

[
· |x0, yn,0

]
, for yn+1,0 = yn,0 − β0∇2G(x

0, yn,0;B0), we have

En
y

[
∥yn+1,0 − y∗(x0)∥2

]
= ∥yn,0 − β0∇2g(x

0, yn,0)− y∗(x0)∥2 + β2
0En

y

[
∥∇2g(x

0, yn,0)−∇2G(x
0, yn,0;B0)∥2

]
≤ (1− µβ0)∥yn,0 − y∗(x0)∥2 + β2

0

σ2
g,1

|B0|
, (25)

take expectation and by induction we obtain

E
[
∥yN0,0 − y∗(x0)∥2

]
≤ (1− µβ0)

N0∥y0,0 − y∗(x0)∥2 + β0
σ2
g,1

µ|B0|
≤ min

{ µ2

20rL2
g,2

,
1

4L1

}
,

18

Efficient Curvature-Aware Hypergradient Approximation

where ∥y0,0 − y∗(x0)∥ ≤ 1
µ∥∇g(x

0, y0,0)∥ from (20). Next, from (22) we have∥∥uq,0 − β0
(
∇2

22g(x
0, y0)uq,0 −∇2f(x

0, y0)
)
− u∗(x0, y0)

∥∥ ≤ (1− β0µ)∥uq,0 − u∗(x0, y0)∥,

denote Eq
u := E

[
· |x0, y0, uq,0

]
, we have

Eq
u

[
∥uq+1,0 − u∗(x0, y0)∥2

]
=
∥∥uq,0 − β0

(
∇2

22g(x
0, y0)uq,0 −∇2f(x

0, y0)
)
− u∗(x0, y0)

∥∥2
+ β2

0Eq
u

[
∥∇2

22g(x
0, y0)uq,0 −∇2f(x

0, y0)−∇2
22G(x

0, y0;B0)u
q,0 +∇2F (x

0, y0;B0)∥2
]

≤(1− β0µ)
2∥uq,0 − u∗(x0, y0)∥2 + 2β2

0

σ2
f,1

|B′
0|

+ 4β2
0

σ2
g,2

|B0|
∥uq,0 − u∗(x0, y0)∥2 + 4β2

0

σ2
g,2

|B0|
∥u∗(x0, y0)∥2,

≤(1− β0µ/2)∥uq,0 − u∗(x0, y0)∥2 + 2β2
0

σ2
f,1

|B′
0|

+ 4β2
0

σ2
g,1

|B0|
∥u∗(x0, y0)∥2,

where the last inequality is because |B0| ≥
8β0σ

2
g,2

µ . Then taking conditional expetation E′ = E[·|x0, y0] on both side of the
inequality and by induction,

E′ [∥uQ0,0 − u∗(x0, y0)∥2
]
≤ (1− β0µ/2)

Q0∥u0,0 − u∗(x0, y0)∥2 + 4β0
σ2
f,1

µ|B′
0|

+ 8β0
σ2
g,1

µ|B0|
∥u∗(x0, y0)∥2.

Combining with (21) and (23), we obtain

E′ [∥uQ0,0 − u∗(x0)∥2
]
≤ 2E′ [∥uQ0,0 − u∗(x0, y0)∥2

]
+ 2∥u∗(x0)− u∗(x0, y0)∥2

≤2(1− β0µ/2)
Q0
(
∥u0,0∥+ ∥u∗(x0, y0)∥

)2
+ 8β0

σ2
f,1

µ|B′
0|

+ 16β0
σ2
g,1

µ|B0|
∥u∗(x0, y0)∥2 + 2L2

1

µ2
E
[
∥y0 − y∗(x0)∥2

]
≤2(1− β0µ/2)

Q0
(
∥u0,0∥+ L1

µ2
∥∇g(x0, y0)∥+ ru

)2
+ 8β0

σ2
f,1

µ|B′
0|

+ 16β0
σ2
g,1

µ|B0|
(L1

µ2
∥∇g(x0, y0)∥+ ru

)2
+

2L2
1

µ2
E
[
∥y0 − y∗(x0)∥2

]
≤ min

{ 4L2
1

5rL2
g,2

,
L1

µ2

}
,

then we complete the proof.

Remark D.3. From Lemma D.1, we deduce that the initialization in BOX 1 requires O(κ log κ) gradient computations and
Hessian-vector products. Similarly, Lemma D.2 indicates that the initialization in BOX 2 has a gradient complexity of
O(κ6 log κ) for g, O(κ log κ) for f , and a Hessian-vector product complexity of O(κ6 log κ).

E. Detailed Proofs
In this section of the Appendix, we provide detailed proofs of Theorem 3.2, Theorem 3.7, and Remark 3.4. Recall that

dkx := ∇1f(x
k, yk)−∇2

12g(x
k, yk)uk, Dk

x := ∇1F (x
k, yk;Bk

3)−∇2
12G(x

k, yk;Bk
4)u

k, (26)

dky := ∇2g(x
k, yk), Dk

y = ∇2G(x
k, yk;Bk

2), (27)

dku := ∇2
22g(x

k, yk)uk −∇2f(x
k, yk), Dk

u := ∇2
22G(x

k, yk;Bk
1)u

k −∇2F (x
k, yk;Bk

3). (28)

For convenience, we further define

ru := Lf,0/µ, Lu := (Lf,1 + Lg,2ru) (1 + Lg,1/µ) , L1 := Lf,1 + Lg,2ru, L2 := Cf,0 + Lg,1ru, (29)

w∗(xk, yk, uk) = uk − [∇2
22g(x

k, yk)]−1∇2f(x
k, yk),

dt,kv := ∇2
22g(x

k, yk)vt,k −∇2g(x
k, yk), Dt,k

v := ∇2
22G(x

k, yk;Bt,k
1)vt,k −∇2G(x

k, yk;Bk
2), (30)

dt,kw := ∇2
22g(x

k, yk)wt,k −∇2
22g(x

k, yk)uk +∇2f(x
k, yk),

Dt,k
w := ∇2

22G(x
k, yk;Bt,k

1)wt,k −∇2
22G(x

k, yk;Bk
1)u

k +∇2F (x
k, yk;B3), (31)

Ek[·] := E[·|xk, yk, uk], Et,k[·] = E[·|xk, yk, uk, vt,k, wt,k],

Sg,1 :=
σ2
g,1

|Bk
2 |
, Sg,2

1 :=
σ2
g,2

|Bt,k
1 |

, Sg,2
2 :=

σ2
g,2

|Bk
1 |
, Sg,2

3 :=
σ2
g,2

|Bk
4 |
, Sf,1 :=

σ2
f,1

|Bk
3 |
. (32)

19

Efficient Curvature-Aware Hypergradient Approximation

The following lemma is fundamental and will be repeatedly invoked throughout the proof.

Lemma E.1. Suppose Assumption 3.1 holds, we have

∥y∗(x′)− y∗(x)∥ ≤ Lg,1

µ
∥x′ − x∥ and ∥u∗(x′)− u∗(x)∥ ≤ Lu

µ
∥x′ − x∥. (33)

Proof. From the definition of u∗(x), by Assumption 3.1, we have ∥u∗(x)∥ ≤ ∥[∇2
22g(x, y

∗(x))]−1∥op∥∇2f(x, y
∗(x))∥ ≤

Lf,0

µ = ru. Due to the optimality of y∗(x), we have ∇2g(x, y
∗(x)) = 0. Since g(x, ·) is µ-strongly convex and g(·, y) is

Lg,1-smooth, we can deduce that

µ∥y∗(x)− y∗(x′)∥ ≤ ∥∇2g(x, y
∗(x))−∇2g(x, y

∗(x′))∥
= ∥∇2g(x, y

∗(x′))−∇2g(x
′, y∗(x′))∥ ≤ Lg,1∥x− x′∥,

which implies the first inequality in (33). Next, by the strong convexity of g(x, ·) and smoothness of g, f , we have

∥∇2
22g(x, y

∗(x))(u∗(x)− u∗(x′))∥ ≥ µ∥u∗(x)− u∗(x′)∥, (34)

and ∥∥∇2f(x, y
∗(x))−∇2f(x

′, y∗(x′)) +
[
∇2

22g(x
′, y∗(x′))−∇2

22g(x, y
∗(x))

]
u∗(x′)

∥∥
≤
(
Lf,1 + Lg,2ru

)(
∥x′ − x∥+ ∥y∗(x′)− y∗(x)∥

)
. (35)

By the definition of u∗(x), the following equality holds

∇2
22g(x, y

∗(x))(u∗(x)− u∗(x′)) = ∇2f(x, y
∗(x))−∇2

22g(x, y
∗(x))u∗(x′)

+∇2
22g(x

′, y∗(x′))u∗(x′)−∇2f(x
′, y∗(x′)).

Taking the norm on both sides of the above inequality and combining (34), (35), we can deduce the second inequlity in
(33).

E.1. Detailed Proof of Theorem 3.2 and Remark 3.4

We first establish the descent of Φ(xk), ∥yk − y∗(xk)∥2 and ∥uk − u∗(xk)∥2 respectively.

Lemma E.2. Suppose Assumption 3.1 holds, the sequences generated by Algorithm 2 satisfy

Φ(xk+1)

≤Φ(xk)− αk

2
∥∇Φ(xk)∥2 −

(αk

2
− LΦα

2
k

2

)
∥dkx∥2 + L2

1αk∥yk − y∗(xk)∥2 + L2
g,1αk∥uk − u∗(xk)∥2. (36)

Proof. From Lemma 2.2 in (Ghadimi & Wang, 2018) we know that Φ(x) is LΦ-smooth, and LΦ is defined in (17), then we
have

Φ(xk+1) ≤ Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩+ LΦ

2
∥xk+1 − xk∥2

= Φ(xk)− αk⟨∇Φ(xk), dkx⟩+
LΦα

2
k

2
∥dkx∥2

= Φ(xk) +
αk

2
∥∇Φ(xk)− dkx∥2 −

αk

2
∥∇Φ(xk)∥2 − αk

2
∥dkx∥2 +

LΦα
2
k

2
∥dkx∥2, (37)

where

∥∇Φ(xk)− dkx∥ ≤
∥∥∇1f(x

k, y∗(xk))−∇1f(x
k, yk)

∥∥+ ∥∥[∇2
12g(x

k, yk)−∇2
12g(x

k, y∗(xk))]u∗(xk)
∥∥

+
∥∥∇2

12g(x
k, yk)[uk − u∗(xk)]

∥∥
≤ (Lf,1 + Lg,2ru)∥yk − y∗(xk)∥+ Lg,1∥uk − u∗(xk)∥. (38)

Then combining (38) with (37), we can obtain the desired result.

20

Efficient Curvature-Aware Hypergradient Approximation

Lemma E.3. Suppose Assumption 3.1 holds. When we take T ≥ Θ(κ), the sequences generated by Algorithm 2 satisfy

∥yk+1 − y∗(xk+1)∥ ≤ Lg,2

2µ
∥y∗(xk)− yk∥2 + Lg,1

µ
∥xk+1 − xk∥+ 1

4
∥yk − y∗(xk)∥, (39)

∥uk+1 − u∗(xk+1)∥ ≤ 1

4
∥uk − u∗(xk)∥+ 5L1

4µ
∥yk − y∗(xk)∥+ Lu

µ
∥xk+1 − xk∥. (40)

Proof. From the iteration of Algorithm 2 we know that

yk − vt+1,k = yk −
[
I − γk∇2

22g(x
k, yk)

]
vt,k − γk∇2g(x

k, yk).

Combining ∇2g(x
k, y∗(xk)) = 0, we have

yk − vt+1,k − y∗(xk) =
[
I − γk∇2

22g(x
k, yk)

]
(yk − vt,k − y∗(xk))

+ γk
(
∇2g(x

k, y∗(xk))−∇2g(x
k, yk)−∇2

22g(x
k, yk)(y∗(xk)− yk)

)
.

Since ∇2
22g(x, ·) is Lg,2-Lipschitz continuous, Lemma 1.2.4 in (Nesterov, 2018) implies that

∥∇2g(x
k, y∗(xk))−∇2g(x

k, yk)−∇2
22g(x

k, yk)(y∗(xk)− yk)∥ ≤ Lg,2

2
∥y∗(xk)− yk∥2,

then we can deduce that

∥yk − vt+1,k − y∗(xk)∥ ≤ ∥I − γk∇2
22g(x

k, yk)∥op∥yk − vt,k − y∗(xk)∥+ Lg,2γk
2

∥y∗(xk)− yk∥2

≤ (1− µγk)∥yk − vt,k − y∗(xk)∥+ Lg,2γk
2

∥y∗(xk)− yk∥2, (41)

where the second inequality is because g(x, ·) is µ-strongly convex and γk ≤ 1
Lg,1

. Then we can calculate that

∥yk+1 − y∗(xk)∥ = ∥yk − vT,k − y∗(xk)∥ ≤ (1− µγk)
T ∥yk − v0,k − y∗(xk)∥+ Lg,2

2µ
∥y∗(xk)− yk∥2,

= (1− µγk)
T ∥yk − γk∇2g(x

k, yk)− y∗(xk)∥+ Lg,2

2µ
∥y∗(xk)− yk∥2

≤ (1− µγk)
T+ 1

2 ∥yk − y∗(xk)∥+ Lg,2

2µ
∥y∗(xk)− yk∥2

≤ 1

4
∥yk − y∗(xk)∥+ Lg,2

2µ
∥y∗(xk)− yk∥2, (42)

where the second inequality is derived based on the same reason as in (19), and the last ineauqlity holds when T ≥
ln 1/4

ln(1−µγk)
− 1

2 = Θ(κ). Finally we have

∥yk+1 − y∗(xk+1)∥ ≤ ∥yk+1 − y∗(xk)∥+ ∥y∗(xk+1)− y∗(xk)∥
(42)
≤ 1

4
∥yk − y∗(xk)∥+ Lg,2

2µ
∥y∗(xk)− yk∥2 + ∥y∗(xk+1)− y∗(xk)∥

(33)
≤ 1

4
∥yk − y∗(xk)∥+ Lg,2

2µ
∥y∗(xk)− yk∥2 + Lg,1

µ
∥xk+1 − xk∥.

Similarily, from the update of wt,k we know that

∥uk − wt+1.k − u∗(xk, yk)∥ =∥
[
I − γk∇2

22g(x
k, yk)

]
(uk − wt,k − u∗(xk, yk))∥

≤(1− µγk)∥uk − wt,k − u∗(xk, yk)∥. (43)

21

Efficient Curvature-Aware Hypergradient Approximation

This inequality implies

∥uk+1 − u∗(xk, yk)∥ = ∥uk − wT.k − u∗(xk, yk)∥ ≤ (1− µγk)
T ∥uk − w0,k − u∗(xk, yk)∥

= (1− µγk)
T ∥uk − γk∇2

22g(x
k, yk)uk + γk∇2f(x

k, yk)− u∗(xk, yk)∥
= (1− µγk)

T ∥
[
I − γk∇2

22g(x
k, yk)

]
(uk − u∗(xk, yk))∥

≤ (1− µγk)
T+1∥uk − u∗(xk)∥+ (1− µγk)

T+1∥u∗(xk, yk)− u∗(xk)∥

≤ 1

4
∥uk − u∗(xk)∥+ 1

4
∥u∗(xk, yk)− u∗(xk)∥, (44)

where the last inequality holds when T ≥ ln 1/4
ln(1−µγk)

− 1. Then we have

∥uk+1 − u∗(xk+1)∥ ≤∥uk+1 − u∗(xk, yk)∥+ ∥u∗(xk)− u∗(xk, yk)∥+ ∥u∗(xk)− u∗(xk+1)∥

≤1

4
∥uk − u∗(xk)∥+ 5

4
∥u∗(xk, yk)− u∗(xk)∥+ ∥u∗(xk+1)− u∗(xk)∥

(21),(33)
≤ 1

4
∥uk − u∗(xk)∥+ 5L1

4µ
∥yk − y∗(xk)∥+ Lu

µ
∥xk+1 − xk∥.

Hence we complete the proof.

Next, we prove that ∥yk − y∗(xk)∥ and ∥uk − u∗(xk)∥ have uniform upper bounds.
Lemma E.4. Suppose Assumption 3.1 holds. Take T ≥ Θ(κ) and

αk ≤ min
{ µ2

8Lg,1L2Lg,2
,

µ2

20L2
g,1L1

,
5µL1

8LuL2Lg,2
,

µ

4Lg,1Lu

}
= O(κ−3),

we have ∥yk − y∗(xk)∥ ≤ µ
2Lg,2

and ∥uk − u∗(xk)∥ ≤ 5L1

2Lg,2
for all 0 ≤ k ≤ K, then

∥yk+1 − y∗(xk+1)∥ ≤ 1

2
∥yk − y∗(xk)∥+ Lg,1

µ
∥xk+1 − xk∥. (45)

Proof. From (26) and ∥u∗(xk)∥ ≤ ru we know that

∥dkx∥ = ∥∇1f(x
k, yk)−∇2

12g(x
k, yk)uk∥ ≤ Cf,0 + Lg,1∥uk − u∗(xk)∥+ Lg,1ru ≤ L2 + Lg,1∥uk − u∗(xk)∥. (46)

For ∥xk+1 − xk∥ = αk∥dkx∥, combine (46) with (39) and (40), we have

∥yk+1 − y∗(xk+1)∥ ≤ Lg,2

2µ
∥y∗(xk)− yk∥2 + Lg,1αk

µ

(
L2 + Lg,1∥uk − u∗(xk)∥

)
+

1

4
∥yk − y∗(xk)∥,

∥uk+1 − u∗(xk+1)∥ ≤ 1

4
∥uk − u∗(xk)∥+ 5L1

4µ
∥yk − y∗(xk)∥+ Luαk

µ

(
L2 + Lg,1∥uk − u∗(xk)∥

)
.

If ∥yk − y∗(xk)∥ ≤ µ
2Lg,2

, ∥uk − u∗(xk)∥ ≤ 5L1

2Lg,2
and αk ≤ min

{
µ2

8Lg,1L2Lg,2
, µ2

20L2
g,1L1

, 5µL1

8LuL2Lg,2
, µ
4Lg,1Lu

}
, we can

deduce that ∥yk+1 − y∗(xk+1)∥ ≤ µ
2Lg,2

, ∥uk+1 − u∗(xk+1)∥ ≤ 5L1

2Lg,2
. By induction, since ∥y0 − y∗(x0)∥ ≤ µ

2Lg,2
,

∥u0 − u∗(x0)∥ ≤ 5L1

2Lg,2
(Lemma D.1), we have ∥yk − y∗(xk)∥ ≤ µ

2Lg,2
, ∥uk − u∗(xk)∥ ≤ 5L1

2Lg,2
for all 0 ≤ k ≤ K.

Moreover, we can get (45) by taking ∥yk − y∗(xk)∥ ≤ µ
2Lg,2

in to (39).

Then, we can obtain the results in Theorem 2.
Theorem E.5 (Restatement of Theorem 3.2). Under Assumption 3.1, choose an initial iterate (y0, u0, x0) in BOX 1 that
satisfies ∥y0 − y∗(x0)∥ ≤ min

{
µ

2Lg,2
, 1
2
√
L1

}
and ∥u0 − u∗(x0)∥ ≤ min

{
5L1

2Lg,2
,
√
L1

µ

}
. Then, for any constant step size

γk = γ ≤ 1/Lg,1, there exists a proper constant step size

αk = α ≤ min
{ µ2

8Lg,1L2Lg,2
,

5µL1

8LuL2Lg,2
,

µ

4Lg,1Lu
,

1

4LΦ
,
L1

4L2
u

,
µ2

64L1L2
g,1

}
= Θ(κ−3),

and T ≥ Θ(κ) such that NBO-GD, as described in Algorithm 2, has the following properties:

22

Efficient Curvature-Aware Hypergradient Approximation

(a) For all integersK ≥ 1, min0≤k≤K−1 ∥∇Φ(xk)∥2 ≤ 2Φ(x0)−2Φ∗+4
αK = O(κ

3

K). That is, NBO-GD can find an ϵ-optimal
solution x̄ (i.e., ∥∇Φ(x̄)∥2 ≤ ϵ) in K = O(κ3ϵ−1) steps.

(b) The computational complexity of NBO-GD is: O(κ3/ϵ) gradient computations and Jacobian-vector products, and
O(κ4/ϵ) Hessian-vector products.

Proof. Define a Lyapunov function

Vk = f(xk, y∗(xk))− Φ∗ + by∥yk − y∗(xk)∥2 + bu∥uk − u∗(xk)∥2,

where by = 4L1, bu = µ2

8L1
. When αk satisfies the bound in Lemma E.4, because of Cauchy-Schwarz inequality and

xk+1 − xk = αkd
k
x, inequalities (45) and (40) become

∥yk+1 − y∗(xk+1)∥2 ≤ 1

2
∥yk − y∗(xk)∥2 +

2L2
g,1α

2
k

µ2
∥dkx∥2,

∥uk+1 − u∗(xk+1)∥2 ≤ 1

8
∥uk − u∗(xk)∥2 + 8L2

1

µ2
∥yk − y∗(xk)∥2 + 4L2

uα
2
k

µ2
∥dkx∥2.

Combining (36), we obtain

Vk+1 − Vk ≤ −αk

2
∥∇Φ(xk)∥2 −

(
αk

2
− LΦα

2
k

2
− 4buL

2
uα

2
k

µ2
−

2byL
2
g,1α

2
k

µ2

)
∥dkx∥2

−
(
by
2

− L2
1αk − 8buL

2
1

µ2

)
∥yk − y∗(xk)∥2 −

(
7bu
8

− L2
g,1αk

)
∥uk − u∗(xk)∥2.

Further controlling αk ≤ min
{

1
4LΦ

, L1

4L2
u
, µ2

64L1L2
g,1

}
, we have

αk

2
− LΦα

2
k

2
− 4buL

2
uα

2
k

µ2
−

2byL
2
g,1α

2
k

µ2
≥ αk

8
,

by
2

− L2
1αk − 8buL

2
1

µ2
≥ by

8
,

7bu
8

− L2
g,1αk ≥ 7bu

16
.

Then, by telescoping sum, we have min0≤k≤K−1 ∥∇Φ(xk)∥2 ≤ 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 ≤ 2V0

αK = O
(
κ3

K

)
, where V0 =

Φ(x0) − Φ∗ + 4L1∥y0 − y∗(x0)∥2 + µ2

8L1
∥u0 − u∗(x0)∥2 ≤ Φ(x0) − Φ∗ + 2 because from Lemma D.1 we know that

∥y0 − y∗(x0)∥2 ≤ 1
4L1

and ∥u0 − u∗(x0k)∥2 ≤ L1

µ2 .

Additionally, we calculate the complexities of Algorithm 2 to achieve a stationary point. To achieve
min0≤k≤K−1 ∥∇Φ(xk)∥2 ≤ ϵ, we need gradient computations: Gc(ϵ) = O(K + N0) = O(κ3ϵ−1); Matrix-vector
products: MV(ϵ) = O(KT +Q0) = O(κ4ϵ−1).

Moreover, we give a brief proof of Remark 3.4.

Proof. (Proof of Remark 3.4) For yk and vk, if we use CG to solve (8) with initial point v−1,k = 0, we have

∥yk+1 − y∗(xk+1)∥ ≤ ∥yk+1 − y∗(xk)∥+ ∥y∗(xk+1)− y∗(xk)∥
(33)
≤ ∥yk − v∗(xk, yk)− y∗(xk)∥+ ∥vT,k − v∗(xk, yk)∥+ Lg,1

µ
∥xk+1 − xk∥

≤Lg,2

2µ
∥yk − y∗(xk)∥2 + 2

√
κ
(√κ− 1√

κ+ 1

)T+1∥v−1,k − v∗(xk, yk)∥+ Lg,1

µ
∥xk+1 − xk∥

≤Lg,2

2µ
∥yk − y∗(xk)∥2 + 2

√
κLg,1

µ

(√κ− 1√
κ+ 1

)T+1∥yk − y∗(xk)∥+ Lg,1

µ
∥xk+1 − xk∥

where the third inequality is due to (6) and the linear rate of CG (refer to (17) in (Grazzi et al., 2020)), and the last inequality
folloes from v−1,k = 0 and ∥v∗(xk, yk)∥ = ∥[∇2

22g(x
k, yk)]−1(∇2g(x

k, yk)−∇2g(x
k, y∗(xk))∥ ≤ Lg,1

µ ∥yk − y∗(xk)∥.

23

Efficient Curvature-Aware Hypergradient Approximation

When we take T = Θ(
√
κ log(κ)), the above inequality becomes the same as (39). For uk and wk, if we use CG to solve

(10) with initial point w−1,k = 0, similarily, we obain

∥uk+1 − u∗(xk, yk)∥ = ∥uk − wT,k − u∗(xk, yk)∥

≤∥wT,k − w∗(xk, yk, uk)∥ ≤ 2
√
κ
(√κ− 1√

κ+ 1

)T+1∥w−1,k − w∗(xk, yk, uk)∥

=2
√
κ
(√κ− 1√

κ+ 1

)T+1∥uk − u∗(xk, yk)∥

≤2
√
κ
(√κ− 1√

κ+ 1

)T+1∥uk − u∗(xk)∥+ 2
√
κ
(√κ− 1√

κ+ 1

)T+1∥u∗(xk, yk)− u∗(xk)∥.

When we take T = Θ(
√
κ log(κ)), we can get (44).

The proof process following (39) and (44) is the same as that of NBO-GD. Therefore, if we replace GD with CG in
Algorithm 2, the convergence rate is min0≤k≤K−1 ∥∇Φ(xk)∥2 ≤ 1

K

∑K−1
k=0 ∥∇Φ(xk)∥2 ≤ 2V0

αK . Additionally, in order to
achieve min0≤k≤K−1 ∥∇Φ(xk)∥2 ≤ ϵ, we need gradient computations: Gc(ϵ) = O(K +N0) = O(κ3ϵ−1); Matrix-vector
products: MV(ϵ) = O(KT +Q0) = O(κ3.5 log κϵ−1).

E.2. Detailed Proof of Theorem 3.7

Here, we provide a detailed proof of Theorem 3.7 for the stochastic setting. Firstly, similar to the deterministic setting, we
establish the descent of E[Φ(xk)], E

[
∥yk − y∗(xk)∥2

]
and E

[
∥u0 − u∗(xk)∥2

]
.

Lemma E.6. Suppose Assumption 3.1 and 3.5 hold, then the sequences generated by Algorithm 4 satisfy

E[Φ(xk+1)] ≤ E[Φ(xk)]− αk

2
E
[
∥∇Φ(xk)∥2

]
−
(αk

2
− LΦα

2
k

2

)
E
[
∥Dk

x∥2
]
+ 2L2

1αkE
[
∥yk − y∗(xk)∥2

]
+
(
2L2

g,1 + 4Sg,2
3

)
αkE

[
∥uk − u∗(xk)∥2

]
+
(
2Sf,1 + 4Sg,2

3 r2u
)
αk. (47)

Proof. Recall that Ek = E[·|xk, yk, uk], from Assumption 3.5 we can deduce that

Ek
[
∥Dk

x − dkx∥2
]

≤2Ek
[
∥∇1F (x

k, yk;Bk
3)−∇1f(x

k, yk)∥2
]
+ 2Ek

[
∥∇2

12G(x
k, yk, Bk

4)−∇2
12g(x

k, yk)∥2
]
∥uk∥2

≤2Sf,1 + 2Sg,2
3 ∥uk∥2 ≤ 2Sf,1 + 2Sg,2

3

(
2∥uk − u∗(xk)∥2 + 2∥u∗(xk)∥2

)
≤2Sf,1 + 4Sg,2

3 r2u + 4Sg,2
3 ∥uk − u∗(xk)∥2, (48)

where the last inequality follows from ∥u∗(xk)∥ ≤ ru. For xk+1 = xk − αkD
k
x, replace dkx with Dk

x in (37) and take
expectation, we have

E
[
Φ(xk+1)

]
= E

[
Φ(xk)

]
+
αk

2
E
[
∥∇Φ(xk)−Dk

x∥2
]
− αk

2
E
[
∥∇Φ(xk)∥2

]
−
(αk

2
− LΦα

2
k

2

)
E
[
∥Dk

x∥2
]
, (49)

where

E
[
∥∇Φ(xk)−Dk

x∥2
]
≤ 2E

[
∥∇Φ(xk)− dkx∥2

]
+ 2E

[
∥Dk

x − dkx∥2
]

(38),(48)
≤ 4L2

1E
[
∥yk − y∗(xk)∥2

]
+ (4L2

g,1 + 8Sg,2
3)E

[
∥uk − u∗(xk)∥2

]
+ 4Sf,1 + 8Sg,2

3 r2u. (50)

Then we can get the desired inequality by putting (50) into (49).

Lemma E.7. Suppose Assumption 3.1,3.5 and 3.6 hold, if Sg,2
1 ≤ µ2

4 , then the sequences generated by Algorithm 4 satisfy

E
[
∥yk+1 − y∗(xk+1)∥2

]
≤
5rL2

g,2

µ2

(
E
[
∥y∗(xk)− yk∥2

])2
+ r
[
5(1− µγk

2
)2T+1 +

20Sg,2
1

µ2

]
E
[
∥yk − y∗(xk)∥2

]
+

5rL2
g,1α

2
k

µ2
E
[
∥Dk

x∥2
]
+ 5r(1− µγk

2
)2T γ2kSg,1 +

20rSg,1

µ2
. (51)

24

Efficient Curvature-Aware Hypergradient Approximation

Proof. From the iteration of vt,k we know that

∥yk − vt+1,k − y∗(xk)∥ ≤ ∥yk − vt,k + γkd
k
v − y∗(xk)∥+ γk∥Dt,k

v − dt,kv ∥
(41)
≤ (1− µγk)∥yk − vt,k − y∗(xk)∥+ Lg,2γk

2
∥y∗(xk)− yk∥2 + γk∥Dt,k

v − dt,kv ∥. (52)

For ∥Dt,k
v − dt,kv ∥, we have(

Et,k
[
∥Dt,k

v − dt,kv ∥
])2 ≤ Et,k

[
∥Dt,k

v − dt,kv ∥2
]

=Et,k
[
∥(∇2

22G(x
k, yk;Bt,k

1)−∇2
22g(x

k, yk))vt,k −∇2G(x
k, yk;Bk

2) +∇2g(x
k, yk)∥2

]
≤Et,k

[
∥∇2

22G(x
k, yk;Bt,k

1)−∇2
22g(x

k, yk)∥2
]
∥vt,k∥2 + ∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥2

≤Sg,2
1 ∥vt,k∥2 + ∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥2.

Then by trangle inequality, we obtain

Et,k
[
∥Dt,k

v − dt,kv ∥
]
≤
√
Sg,2
1 ∥vt,k∥+ ∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥

≤
√
Sg,2
1 ∥yk − vt,k − y∗(xk)∥+

√
Sg,2
1 ∥yk − y∗(xk)∥+ ∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥. (53)

Take expectation on both side of the above inequality and combine (52), we have

E
[
∥yk − vt+1,k − y∗(xk)∥

]
(52)
≤ (1− µγk)E

[
∥yk − vt,k − y∗(xk)∥

]
+
Lg,2γk

2
E
[
∥y∗(xk)− yk∥2

]
+ γkE

[
∥Dt,k

v − dt,kv ∥
]

(53)
≤ (1− µγk + γk

√
Sg,2
1)E

[
∥yk − vt,k − y∗(xk)∥

]
+
Lg,2γk

2
E
[
∥y∗(xk)− yk∥2

]
+ γk

√
Sg,2
1 E

[
∥yk − y∗(xk)∥

]
+ γkE

[
∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥
]
.

For Sg,1 ≤ µ2

4 , we have 1− µγk + γk

√
Sg,2
1 ≤ 1− µγk

2 , this implies

E
[
∥yk+1 − y∗(xk+1)∥

]
= E

[
∥yk − vT,k − y∗(xk)∥

]
+ E

[
∥y∗(xk+1)− y∗(xk)∥

]
≤(1− µγk

2
)TE

[
∥yk − v0,k − y∗(xk)∥

]
+
Lg,2

µ
E
[
∥y∗(xk)− yk∥2

]
+

2
√
Sg,2
1

µ
E
[
∥yk − y∗(xk)∥

]
+ E

[
∥y∗(xk+1)− y∗(xk)∥

]
+

2

µ
E
[
∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥
]
,

and from (33) we know that E
[
∥y∗(xk+1)− y∗(xk)∥

]
≤ Lg,1

µ E
[
∥xk+1 − xk∥

]
. Following (

∑n
i=1 ai)

2 ≤ n
∑n

i=1 a
2
i and

(E[X])2 ≤ E[X2], we can deduce that

(
E
[
∥yk+1 − y∗(xk+1)∥

])2 ≤ 5(1− µγk
2

)2TE
[
∥yk − v0,k − y∗(xk)∥2

]
+

5L2
g,2

µ2

(
E
[
∥y∗(xk)− yk∥2

])2
+

5L2
g,1

µ2
E
[
∥xk+1 − xk∥2

]
+

20Sg,2
1

µ2
E
[
∥yk − y∗(xk)∥2

]
+

20

µ2
E
[
∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥2
]

≤5(1− µγk
2

)2T+1E
[
∥yk − y∗(xk)∥2

]
+

5L2
g,2

µ2

(
E
[
∥y∗(xk)− yk∥2

])2
+

20Sg,2
1

µ2
E
[
∥yk − y∗(xk)∥2

]
+

5L2
g,1

µ2
E
[
∥xk+1 − xk∥2

]
+ 5(1− µγk

2
)2T γ2kSg,1 ++

20Sg,1

µ2
,

where the last inequality is because

E
[
∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥2
]
= E

[
Ek
[
∥∇2G(x

k, yk;Bk
2)−∇2g(x

k, yk)∥2
]]

≤ Sg,1,

25

Efficient Curvature-Aware Hypergradient Approximation

and

E
[
∥yk − v0,k − y∗(xk)∥2

]
= E

[
∥yk − γk∇2G(x

k, yk;Bk
2)− y∗(xk)∥2

]
=E

[
Ek
[
∥yk − γk∇2G(x

k, yk;Bk
2)− y∗(xk)∥2

]] similar to (25)
≤ (1− µγk)E

[
∥yk − y∗(xk)∥2

]
+ γ2kSg,1.

Then we can complete the proof by combining xk+1 − xk = −αkD
k
x and

(
E
[
∥yk+1 − y∗(xk+1)∥

])2 ≥
1
rE
[
∥yk+1 − y∗(xk+1)∥2

]
from Assumption 3.6.

Lemma E.8. Suppose Assumption 3.1 and 3.5 hold, if Sg,2
1 ≤ µ2

8 , we have

E
[
∥uk+1 − u∗(xk+1)∥2

]
≤
(
6(1− µγk

2
)T+2 +

48Sg,1
1

µ2
+ 12(1− µγk

2
)TSg,2

2 γ2k +
48Sg,2

2

µ2

)
E
[
∥uk − u∗(xk)∥2

]
+
L2
1

µ2

(
3 + 6(1− µγk

2
)T+2 +

48Sg,1
1

µ2

)
E
[
∥yk − y∗(xk)∥2

]
+

3L2
u

µ2
E
[
∥xk+1 − xk∥2

]
+ 6(1− µγk

2
)TSf,1γ

2
k +

24Sf,1

µ2
+
(
12(1− µγk

2
)TSg,2

2 γ2k +
48Sg,2

2

µ2

)
r2u. (54)

Proof. The iteration of wt,k implies that

∥uk − wt+1,k − u∗(xk, yk)∥2 = (1 + µγk)∥uk − ut,k + γkd
k
w − u∗(xk, yk)∥2 + (1 +

1

µγk
)γ2k∥Dt,k

w − dt,kw ∥2

(43)
≤ (1 + µγk)(1− µγk)

2∥uk − wt,k − u∗(xk, yk)∥2 + 2γk
µ

∥Dt,k
w − dt,kw ∥2. (55)

For ∥Dt,k
w − dt,kw ∥ we have

Ek
[
∥Dt,k

w − dt,kw ∥2
]
= Ek

[
Et,k

[
∥Dt,k

w − dt,kw ∥2
]]

≤Ek
[
Et,k

[
∥(∇2

22G(x
k, yk;Bt,k

1)−∇2
22g(x

k, yk))∥2
]
∥wt,k∥2

]
+ Ek

[
∥ −Dk

u + dku∥2
]

≤Sg,1
1 Ek

[
∥wt,k∥2

]
+ Ek

[
∥Dk

u − dku∥2
]

≤Sg,1
1 Ek

[
∥wt,k∥2

]
+ Ek

[
∥(∇2

22G(x
k, yk;Bk

1)−∇2
22g(x

k, yk))∥uk∥2 − (∇2F (x
k, yk;Bk

3)−∇2f(x
k, yk))∥2

]
≤Sg,1

1 Ek
[
∥wt,k∥2

]
+ 2Sg,2

2 ∥uk∥2 + 2Sf,1

≤2Sg,1
1 Ek

[
∥uk − wt,k − u∗(xk, yk)∥2

]
+ 2Sg,1

1 ∥uk − u∗(xk, yk)∥2 + 2Sg,2
2 ∥uk∥2 + 2Sf,1.

Take expectation and combine (55),

E
[
∥uk − wt+1,k − u∗(xk, yk)∥2

]
≤(1− µγk +

4Sg,1
1 γk
µ

)E
[
∥uk − wt,k − u∗(xk, yk)∥2

]
+

4Sg,1
1 γk
µ

E
[
∥uk − u∗(xk, yk)∥2

]
+

4Sg,2
2 γk
µ

E
[
∥uk∥2

]
+

4γkSf,1

µ
.

Since Sg,1 ≤ µ2

8 , we obtain

E
[
∥uk+1 − u∗(xk, yk)∥2

]
= E

[
∥uk − wT,k − u∗(xk, yk)∥2

]
≤(1− µγk

2
)TE

[
∥uk − w0,k − u∗(xk, yk)∥2

]
+

8Sg,1
1

µ2
E
[
∥uk − u∗(xk, yk)∥2

]
+

8Sg,2
2

µ2
E
[
∥uk∥2

]
+

8Sf,1

µ2

≤
(
(1− µγk

2
)T+2 +

8Sg,1
1

µ2

)
E
[
∥uk − u∗(xk, yk)∥2

]
+
(
2(1− µγk

2
)TSg,2

2 γ2k +
8Sg,2

2

µ2

)
E
[
∥uk∥2

]
+ 2(1− µγk

2
)TSf,1γ

2
k +

8Sf,1

µ2
, (56)

26

Efficient Curvature-Aware Hypergradient Approximation

where the last inequlity is becuase

E
[
∥uk − w0,k − u∗(xk, yk)∥2

]
= E

[
Ek
[
∥uk − γkD

k
u − u∗(xk, yk)∥2

]]
≤E

[
∥uk − γkd

k
u − u∗(xk, yk)∥2

]
+ γ2kE

[
Ek
[
∥Dk

u − dku∥2
]]

≤E
[
∥[I − γk∇2

22g(x
k, yk)](uk − u∗(xk, yk))∥2

]
+ 2Sg,2

2 γ2kE
[
∥uk∥2

]
+ 2Sf,1γ

2
k

≤(1− µγk)
2E
[
∥uk − u∗(xk, yk)∥2

]
+ 2Sg,2

2 γ2kE
[
∥uk∥2

]
+ 2Sf,1γ

2
k.

Then by (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i , we have

E
[
∥uk+1 − u∗(xk+1)∥2

]
≤3E

[
∥uk+1 − u∗(xk, yk)∥2

]
+ 3E

[
∥u∗(xk, yk)− u∗(xk)∥2

]
+ 3E

[
∥u∗(xk+1)− u∗(xk)∥2

]
(56),(21),(33)

≤
(
3(1− µγk

2
)T+2 +

24Sg,1
1

µ2

)
E
[
∥uk − u∗(xk, yk)∥2

]
+
(
6(1− µγk

2
)TSg,2

2 γ2k +
24Sg,2

2

µ2

)
E
[
∥uk∥2

]
+

3L2
1

µ2
E
[
∥yk − y∗(xk)∥2

]
+

3L2
u

µ2
E
[
∥xk+1 − xk∥2

]
+ 6(1− µγk

2
)TSf,1γ

2
k +

24Sf,1

µ2

≤
(
6(1− µγk

2
)T+2 +

48Sg,1
1

µ2
+ 12(1− µγk

2
)TSg,2

2 γ2k +
48Sg,2

2

µ2

)
E
[
∥uk − u∗(xk)∥2

]
+
L2
1

µ2

(
3 + 6(1− µγk

2
)T+2 +

48Sg,1
1

µ2

)
E
[
∥yk − y∗(xk)∥2

]
+

3L2
uα

2
k

µ2
E
[
∥Dk

x∥2
]

+ 6(1− µγk
2

)TSf,1γ
2
k +

24Sf,1

µ2
+
(
12(1− µγk

2
)TSg,2

2 γ2k +
48Sg,2

2

µ2

)
r2u,

where the last inequality follows from

E
[
∥uk − u∗(xk, yk)∥2

]
≤ 2E

[
∥uk − u∗(xk)∥2

]
+ 2E

[
∥u∗(xk, yk)− u∗(xk)∥2

]
≤ 2E

[
∥uk − u∗(xk)∥2

]
+

2L2
1

µ2
E
[
∥yk − y∗(xk)∥2

]
,

and E
[
∥uk∥2

]
≤ 2E

[
∥uk − u∗(xk)∥2

]
+ 2r2u.

Next, we prove that there exist constant bounds for both E
[
∥yk − y∗(xk)∥2

]
and E

[
∥uk − u∗(xk)∥2

]
.

Lemma E.9. Suppose Assumptions 3.1, 3.5 and 3.6 hold, choose T , stepsize αk and batch sizes satisfy the conditions

T ≥ max{ln(1/
√
40r), ln(1/96)}

ln(1− µγk/2)
= Θ(κ),

αk ≤ ᾱ := min
{ µ

6
√
2LuLg,1

,
µ2

8
√
30rL1L2

g,1

,
µ2

80rLg,1L2Lg,2
,

L1µ

6
√
10rLg,2LuL2

}
= Θ(κ−3),

Sf,1 ≤ min
{ L2

1µ
2

375rL2
g,2

, L2
2

}
, Sg,1 ≤ µ4

3360r2L2
g,2

,

Sg,1
1 ≤ min

{ µ2

160r
,
µ2

768

}
, Sg,2

2 ≤ min
{ L2

1µ
2

735rL2
g,2r

2
u

,
µ2

768

}
, Sg,2

3 ≤ min
{
L2
g,1,

L2
2

r2u

}
,

then we have E
[
∥yk − y∗(xk)∥2

]
≤ µ2

20rL2
g,2

, E
[
∥uk − u∗(xk)∥2

]
≤ 4L2

1

5rL2
g,2

for all 0 ≤ k ≤ K.

Proof. Take Sg,2
3 ≤ min

{
L2
g,1,

L2
2

r2u

}
, Sf,1 ≤ L2

2, from (46) and (48) we know that

E
[
∥Dk

x∥2
]
≤ E

[
∥dkx∥2

]
+ E

[
Ek
[
∥Dk

x − dkx∥2
]]

≤
(
2L2

g,1 + 4Sg,2
3

)
∥uk − u∗(xk)∥2 + 2L2

2 + 2Sf,1 + 4Sg,2
3 r2u

≤ 6L2
g,1∥uk − u∗(xk)∥2 + 8L2

2. (57)

27

Efficient Curvature-Aware Hypergradient Approximation

Take T ≥ max{ln(1/
√
40r),ln(1/96)}

ln(1−µγk/2)
, Sg,1

1 ≤ min
{

µ2

160r ,
µ2

768

}
, Sg,2

2 ≤ µ2

768 , combine γk ≤ 1
Lf,1

and r ≥ 1, then (51) and
(54) becomes

E
[
∥yk+1 − y∗(xk+1)∥2

]
≤
5rL2

g,2

µ2

(
E
[
∥y∗(xk)− yk∥2

])2
+

1

4
E
[
∥yk − y∗(xk)∥2

]
+

5rL2
g,1α

2
k

µ2
E
[
∥Dk

x∥2
]
+

21rSg,1

µ2
, (58)

and

E
[
∥uk+1 − u∗(xk+1)∥2

]
≤1

4
E
[
∥uk − u∗(xk)∥2

]
+

4L2
1

µ2
E
[
∥yk − y∗(xk)∥2

]
+

3L2
uα

2
k

µ2
E
[
∥Dk

x∥2
]
+

25Sf,1

µ2
+

49Sg,2
2

µ2
r2u. (59)

Put (57) into the above inequalities, we obtain

E
[
∥yk+1 − y∗(xk+1)∥2

]
≤

5rL2
g,2

µ2

(
E
[
∥y∗(xk)− yk∥2

])2
+

1

4
E
[
∥yk − y∗(xk)∥2

]
+

30rL4
g,1α

2
k

µ2
E
[
∥uk − u∗(xk)∥2

]
+

40rL2
g,1L

2
2α

2
k

µ2
+

21rSg,1

µ2
, (60)

and

E
[
∥uk+1 − u∗(xk+1)∥2

]
≤
(1
4
+

18L2
g,1L

2
uα

2
k

µ2

)
E
[
∥uk − u∗(xk)∥2

]
+

4L2
1

µ2
E
[
∥yk − y∗(xk)∥2

]
+

24L2
uL

2
2α

2
k

µ2
+

25Sf,1

µ2
+

49Sg,2
2

µ2
r2u. (61)

For y0, u0 outputed by BOX 2 satisfy E
[
∥y0 − y∗(x0)∥2

]
≤ µ2

20rL2
g,2

and E
[
∥u0 − u∗(x0)∥2

]
≤ 4L2

1

5rL2
g,2

, then we complete

the proof by induction: If E
[
∥yk − y∗(xk)∥2

]
≤ µ2

20rL2
g,2

, E
[
∥uk − u∗(xk)∥2

]
≤ 4L2

1

5rL2
g,2

, and

αk ≤ min
{ µ

6
√
2LuLg,1

,
µ2

8
√
30rL1L2

g,1

,
µ2

80rLg,1L2Lg,2
,

L1µ

6
√
10rLg,2LuL2

}
, (62)

Sf,1 ≤ L2
1µ

2

375rL2
g,2

, Sg,1 ≤ µ4

3360r2L2
g,2

, Sg,2
2 ≤ L2

1µ
2

735rL2
g,2r

2
u

, (63)

we can deduce that E
[
∥yk+1 − y∗(xk+1)∥2

]
≤ µ2

20rL2
g,2

and E
[
∥uk+1 − u∗(xk+1)∥2

]
≤ 4L2

1

5rL2
g,2

from (60) and (61).

Finally, we can prove Theorem 3.7.

Theorem E.10 (Restatement of Theorem 3.7). Under Assumptions 3.1,3.5 and 3.6, choose an initial iterate (y0, u0, x0) in
BOX 2 that satisfies E

[
∥y0 − y∗(x0)∥2

]
≤ min

{
µ2

20rL2
g,2
, 1
4L1

}
and E

[
∥u0 − u∗(x0)∥2

]
≤ min

{ 4L2
1

5rL2
g,2
, L1

µ2

}
. Then, for

any constant step size γk = γ ≤ 1/Lg,1, there exists a proper constant step size αk = α = Θ(κ−3) and T ≥ Θ(κ) such
that NSBO-SGD, as described in Algorithm 4, has the following properties:

(a) Fix K ≥ 1. For samples with batch sizes |Bt,k
1 | ≥ Θ(κ2), |Bk

1 | ≥ Θ(κK + κ2), |Bk
2 | ≥ Θ(κ3K + κ4), |Bk

3 | ≥
Θ(κ−1K), |Bk

4 | ≥ Θ(κ−1K), it holds that min0≤k≤K−1 E
[
∥∇Φ(xk)∥2

]
= O(κ

3

K). That is, NSBO-SGD can find an
ϵ-optimal solution in K = O(κ3ϵ−1) steps.

(b) The computational complexity of NSBO-SGD is: O(κ5ϵ−2) gradient complexity for F , O(κ9ϵ−2) gradient complexity
for G, O

(
κ5ϵ−2

)
Jacobian-vector product complexity, O(κ7ϵ−2) Hessian-vector product complexity.

Proof. Define a Lyapunov function

Vk = E
[
f(xk, y∗(xk))

]
− Φ∗ + byE

[
∥yk − y∗(xk)∥2

]
+ buE

[
∥uk − u∗(xk)∥2

]
,

28

Efficient Curvature-Aware Hypergradient Approximation

where by = 4L1, bu = µ2

8L1
. If the step sizes and T satisfy the conditions in Lemma E.9, for E

[
∥yk − y∗(xk)∥2

]
≤ µ2

20rL2
g,2

,
the inequality (58) becomes

E
[
∥yk+1 − y∗(xk+1)∥2

]
≤ 1

2
E
[
∥yk − y∗(xk)∥2

]
+

5rL2
g,1α

2
k

µ2
E
[
∥Dk

x∥2
]
+

21rSg,1

µ2
, (64)

Combining (47) and (59), we have

Vk+1 − Vk ≤ −αk

2
E
[
∥∇Φ(xk)∥2

]
−
(αk

2
− LΦα

2
k

2
−

5rbyL
2
g,1α

2
k

µ2
− 3buL

2
uα

2
k

µ2

)
E
[
∥Dk

x∥2
]

−
(by
2

− 2L2
1αk − 4buL

2
1

µ2

)
E
[
∥yk − y∗(xk)∥2

]
−
(3bu

4
− 2L2

g,1αk − 4Sg,2
3 αk

)
E
[
∥uk − u∗(xk)∥2

]
+
(
2Sf,1 + 4Sg,2

3 r2u
)
αk +

21rbySg,1

µ2
+

25buSf,1

µ2
+

49buS
g,2
2 r2u

µ2
. (65)

On the basis of conditions in Lemma E.9, further add

αk ≤ min
{ 1

4LΦ
,

µ2

160rL1L2
g,1

,
L1

3L2
u

}
= Θ(κ−3), Sg,2

3 ≤ µ2

128L1αk
, (66)

then we can deduce that coefficients in (65) are all positive:

αk

2
− LΦα

2
k

2
−

5rbyL
2
g,1α

2
k

µ2
− 3buL

2
uα

2
k

µ2
≥ αk

8
,
by
2

− 2L2
1αk − 4buL

2
1

µ2
≥ by

4
,
3bu
4

− 2L2
g,1αk − 4Sg,2

3 αk ≥ bu
4
.

Take αk as constant step sizes α, we have

α

2
E
[
∥∇Φ(xk)∥2

]
≤ Vk − Vk+1 +

(
2Sf,1 + 4Sg,2

3 r2u
)
α+

21rbySg,1

µ2
+

25buSf,1

µ2
+

49buS
g,2
2 r2u

µ2
.

By telescoping we obtain

min
0≤k≤K−1

E
[
∥∇Φ(xk)∥2

]
≤ 1

K

K−1∑
k=0

E
[
∥∇Φ(xk)∥2

]
≤ 2V0
αK

+ 4Sf,1 + 8Sg,2
3 r2u +

42rbySg,1

µ2α
+

50buSf,1

µ2α
+

98buS
g,2
2 r2u

µ2α
,

where V0 ≤ E
[
f(x0, y∗(x0))

]
− Φ∗ + 2 because of Lemma D.2. Take Sg,1 = O(µ3

LK), Sf,1 = O(L
µK), Sg,2

2 =

O(µLK), Sg,2
3 = O(L3

µK), we have min0≤k≤K−1 E
[
∥∇Φ(xk)∥2

]
= O(κ

3

K). Combining the conditions in Lemma E.9,

we can deduce the batch sizes from (32) as follows |Bt,k
1 | ≥ Θ(κ2), |Bk

1 | ≥ Θ(κK + κ2), |Bk
2 | ≥ Θ(κ3K + κ4),

|Bk
3 | ≥ Θ(κ−1K), |Bk

4 | ≥ Θ(κ−1K).

Moreover, to achieve min0≤k≤K−1 E
[
∥∇Φ(xk)∥2

]
≤ ϵ, we need to choose K ≥ Θ(κ

3

ϵ), and |Bt,k
1 | ≥ Θ(κ2), |Bk

1 | ≥
Θ(κ

4

ϵ), |Bk
2 | ≥ Θ(κ

6

ϵ), |Bk
3 | ≥ Θ(κ

2

ϵ), |Bk
4 | ≥ Θ(κ

2

ϵ). Then, we need the following complexities: Gradient complexity of
F : K|Bk

3 | + Q0|B′
0| = O

(
κ5ϵ−2

)
; Gradient complexity of G: K|Bk

2 | + T0|B0| = O
(
κ9ϵ−2

)
; Jacobian-vector product

complexity: K|Bk
4 | = O

(
κ5ϵ−2); Hessian-vector product complexity: KT |Bt,k

1 |+K|Bk
1 |+Q0|B0| = O(κ7ϵ−2).

29

