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Abstract In this paper, we address the problem of cost-sensitive multi-fidelity Bayesian Optimization

(BO) for efficient hyperparameter optimization (HPO). Specifically, we assume a scenario

where users want to early-stop the BOwhen the performance improvement is not satisfactory

with respect to the required computational cost. To this end, we aim to explicitly improve

such trade-off by dynamically finding the hyperparameter configurations that can maximally

improve the trade-off in future, and also automatically stopping the BO around the best trade-

off. Further, we improve the sample efficiency of learning curve (LC) extrapolation with

transfer learning. We validate our method on various LC datasets, achieving significantly

better trade-off than the baselines we consider.

1 Introduction
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Figure 1: (a) A utility function shown in the dotted black lines.

The red curve shows a BO trajectory from which we

determine the maximum utility (≈ 0.7) and when to

stop (𝑏∗). (b) An illustration of selecting the best con-

figuration at each BO step. Notice, the y-axis is utility.

Starting from the current BO step 𝑏, we extrapolate

the LCswith the three configurations𝑥1, 𝑥2, 𝑥3 (shown

in the solid curves with colors and the shaded area),

and then select 𝑥3 which achieves at 𝑏3 the maximum

expected improvement (EI) of utility over the previous

utility𝑈prev.

The goal of multi-fidelity (or gray-box)

Bayesian optimization (BO) is to make

use of lower fidelity information to pre-

dict and optimize the performances at

higher or full fidelity, greatly improv-

ing the sample efficiency of BO (Li et al.,

2018; Falkner et al., 2018; Awad et al.,

2021; Swersky et al., 2014;Wistuba et al.,

2022; Arango et al., 2023; Kadra et al.,

2023; Rakotoarison et al., 2024). Un-

like black-box BO, multi-fidelity BO dy-

namically selects hyperparameter con-

figurations even before finishing a sin-

gle training run, demonstrating its abil-

ity of finding better configurations in

a more sample efficient manner than

black-box BO. However, the existing

methods are not aware of the trade-off

between the cost and performance of

BO – users may want to penalize the

cost of BO with respect to its performance, and in this case the BO process should focus on ex-

ploiting the current belief on good hyperparameter configurations than trying to explore new

configurations. Yet, existing multi-fidelity BO methods tend to over-explore because they usually

assume a sufficiently large budget for the BO and aim to obtain the best asymptotic performance

on a validation set, hence are not able to properly penalize the cost (Swersky et al., 2014).
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In this paper, we introduce a sophisticated notion of cost-sensitivity for multi-fidelity BO. Specif-

ically, we introduce utility, a function which is predefined by each user and describes users’ own

preferences about the trade-off. It has higher values as cost decreases and performance increases,

and vice versa (Fig. 1a). We explicitly maximize this utility by dynamically selecting hyperparamter

configurations which are expected to maximally improve it in future (Fig. 1b), and also automatically

terminating the BO around the maximum utility (Fig. 1a), instead of terminating at an arbitrary

target budget. We call our method Cost-sensitive Multi-fidelity BO (CMBO). We first introduce the

acquisition function and stopping criteria specifically developed for our framework, and explain

how to achieve with them a good trade-off between cost and performance (utility) of multi-fidelity

BO (§2.1). Also, based on a recently introduced Prior-Fitted Networks (PFNs) (Müller et al., 2021;

Adriaensen et al., 2023) for in-context Bayesian inference, we explain how to transfer-learn a PFN

with the existing learning curve (LC) datasets to develop a sample efficient in-context surrogate

function for freeze-thaw BO that can also effectively capture the correlations between different

hyperparameter configurations (§2.1 ). Lastly, we empirically demonstrate the superiority of CMBO

on a set of diverse user preferences and three HPO benchmarks, showing that it significantly

outperforms all the previous multi-fidelity BO and the transfer-BO baselines we consider (§3). We

discuss related work in §A.

2 Approach

In this section, we introduce CMBO, a novel framework for cost-sensitive multi-fidelity BO.

Notation. Following the convention, we assume that we are given a finite pool of hyperparameter

configurations X = {𝑥1, . . . , 𝑥𝑁 }, with 𝑁 the number of configurations. Let 𝑡 ∈ [𝑇 ] := {1, . . . ,𝑇 }
denote the training epochs, 𝑇 the last epoch, and 𝑦𝑛,1, . . . , 𝑦𝑛,𝑇 the validation performances (e.g.,

validation accuracies) obtained with the configuration 𝑥𝑛 . We further introduce notations for

multi-fidelity BO. Let 𝑏 = 1, . . . , 𝐵 denote the BO steps, 𝐵 the last BO step, and 𝑦1, . . . , 𝑦𝐵 the BO

performances, i.e., each 𝑦𝑏 is the best validation performance (𝑦) obtained until the BO step 𝑏.

Freeze-thaw BO. Freeze-thaw BO (Swersky et al., 2014) is an advanced form of multi-fidelity BO. At

each BO step, it allows us to dynamically select and evaluate the best hyperparameter configuration

𝑥𝑛∗ with 𝑛
∗ ∈ [𝑁 ] denoting the corresponding index, while pausing the evaluation on the previous

best configuration. Specifically, given C = {(𝑥, 𝑡,𝑦)} that represents a set of partial learning curves

(LCs) collected up to a specific BO step, we predict for all 𝑥 ∈ X the remaining part of the LCs up

to the last training epoch 𝑇 with a (pretrained) LC extrapolator, compute the acquisition such as

the expected improvement (Mockus et al., 1978) of validation performance at epoch 𝑇 , and select

and evaluate the best configuration 𝑥𝑛∗ that maximizes the acquisition. Note that at any BO step,

the partial LCs in C can have different length across the configurations. Suppose that at BO step 𝑏

the next training epoch for 𝑥𝑛∗ is 𝑡𝑛∗ . We then evaluate 𝑥𝑛∗ a single epoch from the corresponding

checkpoint to obtain the validation performance 𝑦𝑛∗,𝑡𝑛∗ at the next epoch 𝑡𝑛∗ , which we use to

update the corresponding partial LC in C and compute the BO performance 𝑦𝑏 . We repeat this

process 𝐵 times until convergence. See Alg. 1 for the pseudocode (except the red parts).

2.1 Cost-sensitive Multi-fidelity BO
We next introduce our main method and algorithm based on freeze-thaw BO.

Utility function.. A utility function𝑈 1
describes the trade-off between the BO step 𝑏 and the BO

performance 𝑦𝑏 . Its values𝑈 (𝑏,𝑦𝑏) negatively correlate with 𝑏 and positively with 𝑦𝑏 . For instance,

we may simply define𝑈 (𝑏,𝑦𝑏) = 𝑦𝑏 −𝛼𝑏 for some 𝛼 > 0, such that the utility gives linear incentives

and penalties to the performance and number of BO steps, respectively.

1
In this paper we assume that the utility function is predefined by a user. One can instead try to learn it from data,

but we leave that as a future work.
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Acquisition function.. Let 𝑡𝑛 be the next training epoch for the configuration 𝑥𝑛 at a BO step

𝑏. Further, suppose we have a LC extrapolator 𝑓 (·|𝑥𝑛, C) that can probabilistically estimate 𝑥𝑛’s

remaining part of LC, 𝑦𝑛,𝑡𝑛 :𝑇 , conditioned on C a set of partial LCs collected up to the step 𝑏. Then,

based on the expected improvement (EI) (Mockus et al., 1978), we define the acquisition function 𝐴:

𝐴(𝑛) = max

Δ𝑡 ∈{0,...,𝑇−𝑡𝑛 }
E𝑦𝑛,𝑡𝑛 :𝑇∼𝑓 ( · |𝑥𝑛,C )

[
max

(
0,𝑈 (𝑏 + Δ𝑡, 𝑦𝑏+Δ𝑡 ) −𝑈prev

) ]
. (1)

Algorithm 1 Cost-sensitive Multi-fidelity BO

1: Input: LC extrapolator 𝑓 , acquisition function 𝐴, util-

ity function𝑈 , maximum BO steps 𝐵, hyperparameter

configuration pool X , number of configurations 𝑁 .

2: 𝑈prev ← 0, 𝑦0 ← −∞, C ← ∅, 𝑡1, . . . , 𝑡𝑁 ← 1

3: for 𝑏 = 1, . . . , 𝐵 do
4: 𝑛∗ ← arg max𝑛 𝐴(𝑛) ⊲ Acquisition func., Eq. (1)

5: if Eq. (2) and 𝑏 > 1 then ⊲ Stopping criterion

6: Break the for loop ⊲ Stop the BO

7: end if
8: Evaluate 𝑦𝑛∗,𝑡𝑛∗ with 𝑥𝑛∗ .

9: C ← C ∪ {(𝑥𝑛∗ , 𝑡𝑛∗ , 𝑦𝑛∗,𝑡𝑛∗ )} ⊲ Update the history

10: 𝑦𝑏 ← max(𝑦𝑏−1, 𝑦𝑛∗,𝑡𝑛∗ ) ⊲ Update the BO perf.

11: 𝑈prev ← 𝑈 (𝑏,𝑦𝑏) ⊲ Update the prev. utility

12: 𝑡𝑛∗ ← 𝑡𝑛∗ + 1

13: end for

In Eq. (1), we first extrapolate 𝑦𝑛,𝑡𝑛 :𝑇 ,

the remaining part of the LC associated

with 𝑥𝑛 , and compute the corresponding

predictive BO performances {𝑦𝑏+Δ𝑡 | Δ𝑡 =
0, . . . ,𝑇 − 𝑡𝑛}, where 𝑦𝑏+Δ𝑡 is computed

by taking the maximum among the last

step BO performance 𝑦𝑏−1 as well as

the newly extrapolated validation perfor-

mances 𝑦𝑛,𝑡𝑛 , . . . , 𝑦𝑛,𝑡𝑛+Δ𝑡 . Then, based on

the increased BO step 𝑏 + Δ𝑡 and the

updated BO performance 𝑦𝑏+Δ𝑡 , we com-

pute the corresponding utility, and its ex-

pected improvement over the previous util-

ity𝑈prev over the distribution of LC extrap-

olation with the Monte-Carlo (MC) estima-

tion. The acquisition 𝐴(𝑛) is defined by

picking the best increment Δ𝑡 ∈ {0, . . . ,𝑇 − 𝑡𝑛} that maximizes the expected improvement, and we

eventually choose the best configuration index 𝑛 that maximizes 𝐴 (see Fig. 1b).

Stopping criterion. The next question is how to properly stop the BO around the maximum utility.

We propose to stop when the following criterion is satisfied at each BO step 𝑏 > 1:

(𝑈max −𝑈prev)/(𝑈max −𝑈min) > 𝛿𝑏 . (2)

In Eq. (2),𝑈prev is the utility value at the last step 𝑏 − 1,𝑈max is defined as the maximum utility value

seen up to the last step, and𝑈min = 𝑈 (𝐵,𝑦1). The role of𝑈max and𝑈min is to roughly estimate the

maximum and the minimum utility achievable over the course of BO, respectively. Therefore, the

LHS of Eq. (2) can be seen as the normalized regret of utility roughly estimated at the current step

𝑏, and we stop the BO as soon as the current estimation on the regret exceeds some threshold 𝛿𝑏 .

To define 𝛿𝑏 , let 𝑛
∗ = arg max𝑛 𝐴(𝑛) denote the index of the currently chosen best configuration

𝑥𝑛∗ based on Eq. (1), BetaCDF is the CDF of Beta, and 1 the indicator function. Then, we have:

𝛿𝑏 = BetaCDF(𝑝𝑏 ; 𝛽, 𝛽)𝛾 , 𝛽, 𝛾 > 0, (3)

𝑝𝑏 = max

Δ𝑡 ∈{0,...,𝑇−𝑡𝑛∗ }
E𝑦𝑛,𝑡𝑛∗ :𝑇∼𝑓 ( · |𝑥𝑛∗ ,C )

[
1
(
𝑈 (𝑏 + Δ𝑡, 𝑦𝑏+Δ𝑡 ) > 𝑈prev

) ]
. (4)

𝑝𝑏 in Eq. (4) is the probability that the current best configuration 𝑥𝑛∗ improves on 𝑈prev in some

future BO step (i.e., probability of improvement, or PI (Mockus et al., 1978)). Intuitively, we want to

defer the termination as 𝑝𝑏 increases, and vice versa. It is considered in Eq. (3) – as 𝑝𝑏 increases,

the threshold 𝛿𝑏 increases as well because BetaCDF(·; 𝛽, 𝛽)𝛾 is a monotonically increasing function

in [0, 1], so we have less motivation to stop according to Eq. (2). Therefore, our stopping criterion

can be seen as a smooth interpolation between two extreme stopping criteria: 1. normalized regret

and 2. probability of improvement, with 𝛽 and 𝛾 determining the shape of the interpolation. We

discuss the effects of 𝛽 and 𝛾 on our stopping criterion in §B.
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Table 1: Results on the cost-sensitive multi-fidelity HPO setups (𝛼 = 4𝑒-05, 2𝑒-04). We multiply 100

to the normalized regret. The transfer learning methods are indicated by blue.

Method

LCBench TaskSet PD1

𝛼 = 4𝑒-05 𝛼 = 2𝑒-04 𝛼 = 4𝑒-05 𝛼 = 2𝑒-04 𝛼 = 4𝑒-05 𝛼 = 2𝑒-04

Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank Regret Rank

Random (Bergstra and Bengio, 2012) 14.1±1.8 7.7 18.1±1.7 7.5 18.9±4.6 7.8 22.3±4.3 7.7 5.4±2.3 7.1 11.0±5.6 7.2

ASHA (Li et al., 2020a) 8.6±1.0 6.3 13.7±1.1 6.8 8.4±4.1 6.2 14.7±5.4 7.0 5.9±7.3 6.5 9.7±7.4 6.5

BOHB (Falkner et al., 2018) 6.4±1.0 5.0 11.6±1.0 5.5 7.4±1.4 6.9 11.2±1.9 6.2 1.6±0.2 4.7 4.9±0.2 4.9

DEHB (Awad et al., 2021) 6.1±1.6 4.6 11.0±1.4 4.9 5.8±2.3 6.1 10.0±1.7 6.0 2.1±0.1 6.1 5.4±0.1 6.0

DyHPO (Wistuba et al., 2022) 7.2±1.2 5.7 12.1±1.6 5.9 7.5±2.1 6.4 11.1±2.0 6.3 2.5±0.6 6.2 6.2±0.9 6.7

DPL (Kadra et al., 2023) 3.8±0.5 3.2 9.3±0.5 4.4 2.6±0.7 3.4 7.5±0.6 4.5 1.8±0.3 4.5 5.1±0.6 4.7

Quick-Tune
†
(Arango et al., 2023) 9.6±0.0 6.9 12.7±0.0 6.1 3.7±0.0 3.7 5.6±0.0 3.1 2.4±0.0 5.4 5.5±0.0 5.0

FSBO (Wistuba and Grabocka, 2020) 2.6±0.0 3.0 6.4±0.0 2.7 2.9±0.0 3.0 4.9±0.0 2.6 1.3±0.0 2.6 4.2±0.0 3.1

CMBO (ours) 2.3±0.1 2.7 3.1±0.0 1.3 1.3±0.0 1.5 3.1±1.0 1.5 0.8±0.0 1.9 0.9±0.0 1.0
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Figure 2: Visualization of the normalized regret over BO steps on 𝛼 = 2𝑒-04. The asterisks indicate

the stopping points, and the dotted lines represent the normalized regret achievable by

running each method without stopping. See §H for the results on all the other tasks.

Algorithm. See Alg. 1 for the pseudocode, with the red parts corresponding the specifics of ours.

Transfer learning. Since users may want to early-stop the BO, we should have a sample efficient

LC extrapolation mechanism for preventing inaccurate early-stopping before collecting a sufficient

amount of BO observations. We thus propose to make use of transfer learning with mixup (Zhang

et al., 2018) to improve the sample efficiency of the LC extrapolator. We defer more details on our

mixup strategy and training of the LC extrapolator to §D and §E, respectively.

3 Experiments

Datasets and baselines. We use three benchmark datasets including LCBench (Zimmer et al.,

2021), TaskSet (Metz et al., 2020), and PD1 (Wang et al., 2021). For the baselines. we compare our

method against Random Search (Bergstra and Bengio, 2012), ASHA (Li et al., 2020a), BOHB (Falkner

et al., 2018), DEHB (Awad et al., 2021), DyHPO (Wistuba et al., 2022), DPL (Kadra et al., 2023),

Quick-Tune† (Arango et al., 2023), and FSBO (Wistuba and Grabocka, 2020). See §C and §F for

more details on datasets and baselines, respectively.

Experimental setups. We use a linear function for penalizing the cost of multi-fidelity BO, i.e.,

𝑈 (𝑏,𝑦) = 𝑦 − 𝛼𝑏 where 𝑦 is the BO performance, 𝑏 the BO steps, and 𝛼 ∈ {0, 4𝑒-05, 2𝑒-04}. For the
baselines, we simply use the fixed threshold 𝛿𝑏 = 0.2 in Eq. (2) as computing the PI in Eq. (4) is not

straightforward for them. For our model, we use 𝛽 = exp(3) and 𝛾 = log
2

5 for all the experiments

in this paper, except the ablation study in Fig. 3d. In order to report the average performances over

the tasks, we use the normalized regret of utility (𝑈max −𝑈𝑏∗)/(𝑈max −𝑈min) ∈ [0, 1], similarly to

Eq. (2). We also report the rank of each method averaged over the tasks. Please see §G for more

details on experimental setups such as how to compute𝑈max and𝑈min.

Results. Table 1 shows the performance of each method on the cost-sensitive multi-fidelity HPO

setup (𝛼 > 0). We see that our method largely outperforms all the methods on all the settings,

including the multi-fidelity HPO and the transfer-BO methods, in terms of both normalized regret

and average rank. Notice, our method achieves better average rank as the penalty becomes stronger
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Figure 3: (a, b, c) Additional analysis on the effectiveness of our acquisition function. We use PD1 for

the visualization. In (c), the values of 𝛼 are shown in the parenthesis. (d) Ablation study on

𝛽 , with the minimum regret shown with the asterisks.

(𝛼 = 2𝑒-04). Fig. 2 illustrates the normalized regret over the course of BO, where ourmethod achieves

significantly lower regret upon termination. Our method tends to achieve the minimum regret

earlier than the baselines, demonstrating its sample efficiency in searching good hyperparameter

configurations by explicitly considering the utility during the BO. In §H, we provide additional

experimental results including various ablation studies that support the efficacy of our method.

Analysis. In order to clearly understand the source of improvements, we next analyze the con-

figurations chosen by each method. Specifically, for each BO step 𝑏, we run the configuration

currently selected at step 𝑏 up to its last epoch 𝑇 , and compute its minimum ground-truth regret

achievable at some future step 𝑏 + Δ𝑡 (Fig. 3a), as well as the corresponding optimal increment Δ𝑡
(Fig. 3b). In Fig. 3a, our method shows much lower minimum regret than the baselines. It means

that our acquisition function in Eq. (1) works as intended, trying to select at each BO step the

best configuration which is expected to maximally improve the utility in future. Fig. 3b shows

that the configurations chosen by our method initially correspond to greater Δ𝑡 (i.e., non-greedy),
but gradually to the smaller Δ𝑡 (i.e., greedy). It is because as the BO proceeds, the performance

improvements of BO saturate, so the cost of BO quickly dominates the trade-off, leading to smaller

Δ𝑡 even close to 0. On the other hand, the tendencies of the baselines are very noisy and relatively

unclear. Lastly, Fig. 3c shows the distribution of the top-10 most frequently selected configurations

during the BO. As expected, our method tend to focus only on a few configurations during the BO

to maximize the short-term performances, especially when the penalty is stronger with greater 𝛼 .

On the other hand, the baselines tend to overly explore the configurations even when the penalty

is the strongest (𝛼 = 2𝑒-04).

Lastly, we analyze the effectiveness of our stopping criterion discussed in Eq. (2), (3), and (4).

Fig. 3d shows the normalized regret over the different values of 𝛽 , a mixing coefficient between the

two extreme stopping criteria, as discussed in §2.1. 𝛽 → 0 corresponds to the criterion used by the

baselines which is only based on the estimated normalized regret, whereas 𝛽 → +∞ corresponds

to the hard thresholding only based on the PI. We can see that the optimal criterion is achieved

by smoothly mixing between the two (𝛽 = 𝑒−1
), demonstrating the superiority of our stopping

criterion to the one used by the baselines (𝛽 → 0).

4 Broader Impact and Limitation
In this paper, we discussed cost-sensitive multi-fidelity BO (CMBO), a novel framework for improv-

ing the sample efficiency of HPO. The proposed CMBO is designed to maximize user utility which

defines tradeoff between computational cost and performance and to stop searching hyperparam-

eter; therefore, we can save certain amounts of computational resources (e.g., runtime of GPUs).

This reduces carbon emissions which is closely related to the most arising issue of global warming.

Although our method sheds light on improving the efficiency of HPO, there remain a few

limitations. First, we assumed that the utility function is given, but instead we could learn it from

data provided by each user. Second, our LC extrapolator is prone to overfitting even with the

mixup strategy when the training dataset is small. Thus, we need a theoretically grounded way to

incorporate the prior on LCs and infer the corresponding posterior.
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A Related Work

Multi-fidelity HPO. Unlike traditional black-box approaches for HPO (Bergstra and Bengio, 2012; Hutter

et al., 2011; Bergstra et al., 2011; Snoek et al., 2012, 2015, 2014; Cowen-Rivers et al., 2022; Müller et al.,

2023), multi-fidelity (or gray-box) HPO aims to optimize hyperparameters in a sample efficient manner

by utilizing low fidelity information (e.g., validation set performances with smaller training dataset) as a

proxy for higher or full fidelities (Swersky et al., 2013; Klein et al., 2017a; Poloczek et al., 2017; Li et al.,

2020b), dramatically speeding up the HPO. In this paper, we focus on making use of performances at fewer

training epochs to better predict/optimize the performances at longer training epochs. One of the well-

known examples is Hyperband (Li et al., 2018), a bandit-based method that randomly selects a set of random

hyperparameter configurations, and stops poorly performing ones using successive halving (Karnin et al.,

2013) even before reaching the last training epoch. While Hyperband shows much better performance than

random search (Bergstra and Bengio, 2012), its computational or sample efficiency can be further improved

by replacing random sampling of configurations with Bayesian optimization (Falkner et al., 2018), adopting

evolution strategy to promote internal knowledge transfer (Awad et al., 2021), or making it asynchronously

parallel (Li et al., 2020a).

Freeze-thaw BO. Whereas the form of knowledge transfer of Hyperband (and its variants) from lower

to higer fidelity is indirect, freeze-thaw BO (Swersky et al., 2014) transfers knowledge more directly by

explicitly modeling a GP kernel to jointly model interactions between different training budgets and configu-

rations. It then dynamically pauses (freezes) and resumes (thaws) configurations based on the last epoch

performances extrapolated from a set of partially observed LCs obtained from other configurations, leading

to an efficient and sensible allocation of computational resources. DyHPO (Wistuba et al., 2022) and its

transfer version (Arango et al., 2023) improve the computational efficiency of freeze-thaw BO (Swersky et al.,

2014) with deep kernel GP (Wilson et al., 2016), but their multi-fidelity version of expected improvement

(EI) acquisition extrapolates the LCs only a one-step forward, producing a greedy strategy for dynamically

selecting configurations. Other recent variants of freeze-thaw BO include DPL (Kadra et al., 2023) and

ifBO (Rakotoarison et al., 2024) which are not greedy and show competitive performances, but they are

either lack of transfer learning (Kadra et al., 2023; Rakotoarison et al., 2024), resort to too strong assumptions

on the shape of LCs (Rakotoarison et al., 2024), or incur the cost of retraining the surrogate function for each

BO step (Rakotoarison et al., 2024). On the other hand, we maximize the sample efficiency of freeze-thaw

BO with transfer learning, while getting rid of any need for such strong assumptions or retraining costs.

Learning curve extrapolation. Freeze-thaw BO requires the ability of dynamically updating predictions

on future performances from a growing set of partially observed LCs, thus heavily relies on the ability of LC

extrapolation (Baker et al., 2017; Gargiani et al., 2019; Wistuba and Pedapati, 2020). The LC extrapolation used

in DyHPO (Wistuba et al., 2022) and Quick-Tune (Arango et al., 2023) is based on deep kernel GP (Wilson et al.,

2016), but extrapolates only a single step forward, making it hard to be used for our case - maximizing utilites

at any possible future time steps. Freeze-thaw BO (Swersky et al., 2014) and DPL (Kadra et al., 2023) use

non-greedy extrapolations but limit the shape of LCs with exponential decay kernel or power law functions,

which is questionable if such strong inductive biases are applicable to more general cases. Domhan et al.

(2015) consider a broader set of basis functions to define a prior on LCs and infer its posterior, but requires

computationally expensive MCMC, and also do not consider correlations between different configurations.

Klein et al. (2017b) models interactions between configurations with a Bayesian neural network (BNN), but

suffers from the same computational inefficiency of MCMC and also the additional cost for online retraining

of the BNN. LC-PFNs (Adriaensen et al., 2023) are an in-context Bayesian LC extrapolation method without

retraining, based on recently introduced Prior-Fitted Networks (PFNs) (Müller et al., 2021). However, as with

Domhan et al. (2015), LC-PFNs do not consider interactions between configurations and hence is suboptimal

to use as a surrogate function for freeze-thaw BO. Recently, Rakotoarison et al. (2024) further combine

LC-PFN with PFN4BO (Müller et al., 2023) to develop an in-context surrogate function for freeze-thaw BO,

but they train PFNs only with a prior distribution similarly to the original PFN training scheme. On the

other hand, we use transfer learning, i.e., train PFNs with the existing LC datasets, to improve the sample

efficiency of freeze-thaw BO while successfully encoding the correlations between configurations at the

same time.
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Transfer BO. Transfer learning can be used for improving the sample efficiency of BO (Bai et al., 2023),

and here we list a few of them. Some of recent works explore scalable transfer learning with deep neural

networks (Perrone et al., 2018; Wistuba and Grabocka, 2020). Also, different components of BO can be

transferred such as observations (Swersky et al., 2013), surrogate functions (Golovin et al., 2017; Wistuba and

Grabocka, 2020), hyperparmater initializations (Wistuba and Grabocka, 2020), or all of them (Wei et al., 2021).

However, most of the existing transfer-BO approaches assume the traditional black-box BO settings. To the

best of our knowledge, Quick-Tune (Arango et al., 2023) is the only recent work which targets multi-fidelity

and transfer BO at the same time. However, as mentioned above, their multi-fidelity BO formulation is

greedy, whereas our transfer-BO method can dynamically control the degree of greediness during the BO by

explicitly taking into consideration the trade-off between cost and performance of BO.

Cost-sensitive BO. Multi-fidelity BO is inherently cost-sensitive since predictions get more accurate as

the gap between the fidelities becomes closer. However, the performance metric of such vanilla multi-fidelity

BO monotonically increases as we spend more budget, whereas in this paper we want to find the optimal

trade-off between the amount of budget spent thus far and the corresponding intermediate performances of

BO, thereby automatically early-stopping the BO around the maximal utility. Quick-Tune (Arango et al.,

2023) also suggests a cost-sensitive BO in multi-fidelity settings, but unlike our work, their primary focus is

to trade-off between the performance and the cost of BO associated with pretrained models of various size,

which can be seen as a generalization of more traditional notion of cost-sensitive BO (Snoek et al., 2012;

Abdolshah et al., 2019; Lee et al., 2020), from black-box to multi-fidelity settings.

BO with user preference. Several works have tried to encode user’s belief on good hyperparameter

configurations into BO frameworks Souza et al. (2021); Hvarfner et al. (2021); Mallik et al. (2024). On the othet

hand, our paper suggests encoding user’s preference about the trade-off between cost and performance of

multi-fidelity BO. Therefore, the notion of user preference in this paper is largely different from the previous

literature.

B Details on Stop Criterion
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Figure 4: Eq. (3) with 𝛾 = log
2

5 and the various values for 𝛽 .

Fig. 4 plots BetaCDF(·; 𝛽, 𝛽)𝛾 in Eq. (3) over the various values of 𝛽 and when 𝛾 = log
2

5. We see that

the function becomes vertical as 𝛽 → +∞ and horizontal as 𝛽 → 0. In the former case, we terminate the

BO when 𝑝𝑏 < 0.5 while ignoring the regret in the LHS of Eq. (2), whereas in the latter case we ignore

𝑝𝑏 and only decide based on the regret, with the threshold 𝛿𝑏 fixed to a specific value specified by 𝛾 (e.g.,

𝛾 = log
2

5 corresponds to 𝛿𝑏 = 0.2 in Fig. 4). Therefore, the role of 𝛽 is to smoothly interpolate between the

two extreme stopping criteria, whereas 𝛾 decides the range of the overall shape of the interpolated criterion.

C Details on Benchmarks and Data Preprocessing

In this section, we elaborate the details on the LC benchmarks and data preprocessing we have done.
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LCBench. A LC dataset that evaluates the performance of 7 different hyperparameters on 35 different

tabular datasets. The LCs are collected by training MLPs with 2,000 hyperparameter configurations, each for

51 epochs. We train our LC prediction model on 20 datasets and evaluate on the remaining 15 datasets. We

use [APSFailure, Amazon_employee_access, Australian, Fashion-MNIST, KDDCup09_appetency, MiniBooNE,

adult, airlines, albert, bank-marketing, blood-transfusion-service-center, car, christine, cnae-9, connect-4,

covertype, credit-g, dionis, fabert, helena] for training LC extrapolator. We evaluate it on [higgs, jannis,

jasmine, jungle_chess_2pcs_raw_endgame_complete, kc1, kr-vs-kp, mfeat-factors, nomao, numerai28.6,

phoneme, segment, shuttle, sylvine, vehicle, volkert]. Each task contains 2000 LCs with 51 training epochs.

We summarize the hyperparameter of LCBench in Table 2.

Table 2: The 7 hyperparameters for LCBench tasks.

Name Type Vaules Info

batch_size integer [16, 51] log

learning_rate continuous [0.0001, 0.1] log

max_dropout continuous [0.0, 1.0]
max_units integer [64, 1024] log

momentum continuous [0.1, 0.99]
max_layers integer [1, 5]
weight_decay continuous [1𝑒 − 05, 0.1]

TaskSet. A LC dataset that consists of a diverse set of 1,000 optimization tasks drawn from various

domains. We select 30 natural language processing (text classification and language modeling) tasks, train

our LC extrapolator on 21 tasks, and evaluate on the remaining 9 tasks. Each task include 8 different

hyperparameters and 1,000 their configurations. Each LC is collected by training models for 50 epochs. We

use [rnn_text_classification_family_seed{19, 3, 46, 47, 59, 6, 66},

word_rnn_language_model_family_seed{22, 47, 48, 74, 76, 81}, char_rnn_language_model_family_seed{19,

26, 31, 42, 48, 5, 74}] for training LC extrapolator. We evaluate it on [rnn_text_classification_family_seed{8,

82, 89}, word_rnn_language_model_family_seed{84, 98, 99}, char_rnn_language_model_family_seed{84, 94,

96}]. Each task contains 1000 LCs with 50 training epochs. We summarize the hyperparameter of TaskSet in

Table 3.

Table 3: The 8 hyperparameters for Taskset tasks.

Name Type Vaules Info

learning_rate continuous [1𝑒 − 09, 10.0] log

beta1 continuous [0.0001, 1.0]
beta2 continuous [0.001, 1.0]
epsilon continuous [1𝑒 − 12, 1000] log

l1 continuous [1𝑒 − 09, 10.0] log

l2 continuous [1𝑒 − 09, 10.0] log

linear_decay continuous [1𝑒 − 08, 0.0001] log

PD1. A LC benchmark that includes the performance of modern neural architectures (including

Transformers) run on large vision datasets such as CIFAR-10, CIFAR-100 Krizhevsky et al. (2009),

ImageNet Russakovsky et al. (2015), as well as statistical modeling corpora and protein sequence datasets

from bioinformatics. We select 23 tasks with 4 different hyperparameters based on SyneTune Salinas et al.

(2022) package, train our LC extrapolator on 16 tasks, and evaluate on the remaining 7 tasks. For easier

transfer learning, we preprocess the data by excluding hyperparameter configurations with their training

diverging (e.g., LCs with NaN), and linearly interpolate the LCs to match their length across different tasks. We

then obtain the LCs of 50 epochs over the 240 configurations. We use [ uniref50_transformer_batch_size_128,

lm1b_transformer_batch_size_2048,

imagenet_resnet_batch_size_256, mnist_max_pooling_cnn_tanh_batch_size_2048,
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mnist_max_pooling_cnn_relu_batch_size_{2048, 256}, mnist_simple_cnn_batch_size_{2048, 256},

fashion_mnist_max_pooling_cnn_tanh_batch_size_2048, fashion_mnist_max_pooling_cnn_relu_batch_size_{2048,

256}, fashion_mnist_simple_cnn_batch_size_{2048, 256}, svhn_no_extra_wide_resnet_batch_size_1024,

cifar{100, 10}_wide_resnet_batch_size_2048] for training LC extrapolator. We evaluate it on

[imagenet_resnet_batch_size_512, translate_wmt_xformer_translate_batch_size_64,

mnist_max_pooling_cnn_tanh_batch_size_256, fashion_mnist_max_pooling_cnn_tanh_batch_size_256,

svhn_no_extra_wide_resnet_batch_size_256, cifar100_wide_resnet_batch_size_256,

cifar10_wide_resnet_batch_size_256]. Each task contains 240 LCs with 50 training epochs. We summarize

the hyperparameter of PD1 in Table 4.

Table 4: The 8 hyperparameters for PD1 tasks.

Name Type Vaules Info

lr_initial_value continuous [1𝑒 − 05, 10.0] log

lr_power continuous [0.1, 2.0]
lr_decay_steps_factor continuous [0.01, 0.99]
one_minus_momentum continuous [1𝑒 − 05, 1.0] log

Data Preprocessing. Aswill be detailed in the §G,we use the 0-epoch LC value𝑦𝑛,0 which is the performance

before taking any gradient steps. The 0-epoch LC values originally are not provided except for LCBench; we

use the log-loss of the first epoch as the 0-epoch LC value for TaskSet, as it is already sufficiently large in our

chosen tasks. For PD1, we interpolate the LCs to be the length of 51 training epochs, and we take the first

performance as the 0-epoch LC value. Furthermore, we take the average over the 0-epoch LC values 𝑦0 since

it is hard to have different initial values among optimizer hyperparameter configurations in a task, without

taking any gradient steps. For transfer learning, we follow the convention of PFN Adriaensen et al. (2023) for

data preprocessing; we consistently apply non-linear LC normalization
2
to the LC data of three benchmarks,

which not only maps either accuracy or log-loss LCs into [0, 1] but also simply make our optimization as a

maiximization problem. To facilitate transfer learning, we use the maximum and minimum values in each

task in LCBench and PD1 benchmark for the LC normalization. In TaskSet, we only use the 𝑦0 for the LC

normalization.

D Transfer learning with LC mixup.

LC Mixup. Among many plausible options, in this paper we propose to use Prior Fitted Networks

(PFNs) (Müller et al., 2021) for LC extrapolation. PFNs are an in-context Bayesian inference method based on

Transformer architectures (Vaswani et al., 2017), and show good performances on LC extrapolation (Adri-

aensen et al., 2023; Rakotoarison et al., 2024) without the computationally expensive online retraining Kadra

et al. (2023). A major difficulty of using PFNs for our purpose is that they are not trained with the existing

datasets, but trained with a prior distribution, which is essential to perform Bayesian inference. Also, PFNs

require relatively a large Transformer architecture (Vaswani et al., 2017) as well as huge amounts of training

examples for good generalization performance (Adriaensen et al., 2023), which makes it risky to train PFNs

with a finite set of examples.

Here we explain our novel transfer learning method for PFNs that can circumvent those difficulties with

the mixup strategy (Zhang et al., 2018). Suppose we have𝑀 different datasets and the corresponding𝑀 sets

of LCs collected from 𝑁 hyperparameter configurations. Define 𝑙𝑚,𝑛 = (𝑦𝑚𝑛,1, . . . , 𝑦𝑚𝑛,𝑇 ), the 𝑇 -dimensional

row vector of validation performances (𝑦’s) collected from the 𝑚-th dataset and the 𝑛-th configuration,

forming a complete LC of length 𝑇 . Further define the matrix 𝐿𝑚 = [𝑙⊤𝑚,1; . . . ; 𝑙⊤
𝑚,𝑁
]⊤, the row-wise stack of

those LCs. In order to augment training examples, we propose to perform the following two consecutive

mixups (Zhang et al., 2018):

1. Across datasets: 𝐿′ = 𝜆1𝐿𝑚 + (1 − 𝜆1)𝐿𝑚′ , with 𝜆1 ∼ Unif (0, 1), for all𝑚,𝑚′ ∈ [𝑀].

2
The details can be found in Appendix A of PFN (Adriaensen et al., 2023) and https://github.com/automl/lcpfn/

blob/main/lcpfn/utils.py.
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2. Across configurations: (𝑥 ′′, 𝑙 ′′) = 𝜆2 (𝑥𝑛, 𝑙 ′𝑛) + (1 − 𝜆2) (𝑥𝑛′ , 𝑙 ′𝑛′ )
. with 𝑙 ′𝑛 the 𝑛-th row of 𝐿′, 𝜆2 ∼ Unif (0, 1), for all 𝐿′ and 𝑛, 𝑛′ ∈ [𝑁 ].

In this way, we can sample infinitely many training examples {(𝑥 ′′, 𝑙 ′′)} by interpolating between the LCs,

leading to a robust LC extrapolator with less overfitting. Note that in the first step, we do not individually

perform the mixup over the configurations but apply the same 𝜆1 to all the configurations, in order to

preserve the correlations between the configurations encoded in the given datasets.

Connection to ifBO and Neural Process. Our mixup strategy is reminiscent of the data generation

scheme of ifBO (Rakotoarison et al., 2024), a variant of PFNs for in-context freeze-thaw BO. Similarly to our

ancestral sampling, ifBO first samples random weights for a neural network (i.e., a prior distribution) to

sample a correlation between configurations (the first mixup step), and then linearly combines a set of basis

functions to generate LCs (the second mixup step). Our training method differs from ifBO in that our prior

distribution is implicitly defined by LC datasets and the mixup strategy, whereas ifBO resorts to a manually

defined distribution.

Indeed, our training method is more similar to Transformer Neural Processes (TNPs) (Nguyen and

Grover, 2022), a Transformer variant of Neural Processes (NPs) (Garnelo et al., 2018). Similarly to PFNs, TNPs

directly maximize the likelihood of target data given context data with a Transformer architecture, which

differs from the typical NP variants that summarize the context into a latent variable and perform variational

inference on it. Moreover, as with the other NP variants, TNPs meta-learn a model over a distribution of

tasks to perform sample efficient probabilistic inference. In this vein, the whole training pipeline of our LC

extrapolator can be seen as an instance of TNPs – we also meta-learn a sample efficient Transformer-based

LC extrapolator over the distribution of LCs induced by the mixup strategy.

E Details on Architecture and Training of LC Extrapolator

In the section, we elaborate our LC extrapolator model and how to train it on the learning curve dataset.

Construction of Context and Query points.. The whole training pipeline of our learning curve

extrapolator model can be seen an instance of TNPs (Nguyen and Grover, 2022). Here we can simulate each

step of Bayesian Optimization; predicting the remaining part of LC in all configurations conditioned on the

set C of the collected partial LCs. To do so, we construct a training task by randomly sampling context and

query points from LC benchmark after the proposed LC mixup as follows:

1. We choose a LC dataset 𝐿𝑚 = [𝑙⊤𝑚,1; . . . ; 𝑙⊤
𝑚,𝑁
]⊤ ∈ R𝑁×𝑇 by randomly sampling𝑚 ∈ [𝑀].

2. From 𝐿𝑚 , we randomly sample 𝑛1, . . . , 𝑛𝐶 ∈ [𝑁 ] and 𝑡1, ..., 𝑡𝐶 ∈ [𝑇 ] and construct context points of

𝑋 (𝑐 ) = [𝑥⊤𝑛1

, . . . , 𝑥⊤𝑛𝐶 ]
⊤ ∈ R𝐶×𝑑𝑥 , 𝑇 (𝑐 ) = [𝑡1/𝑇, . . . , 𝑡𝐶/𝑇 ]⊤ ∈ R𝐶×1

, and 𝑌 (𝑐 ) = [𝑦𝑛1,𝑡1 , . . . , 𝑦𝑛𝐶 ,𝑡𝐶 ] ∈ R𝐶×1
.

3. From 𝐿𝑚 , we exclude 𝑛1, . . . , 𝑛𝐶 ∈ [𝑁 ] and 𝑡1, ..., 𝑡𝐶 ∈ [𝑇 ] and randomly sample 𝑛′
1
, . . . , 𝑛′

𝑄
∈ [𝑁 ] and

𝑡 ′
1
, ..., 𝑡 ′

𝑄
∈ [𝑇 ] and construct query points of 𝑋 (𝑞) = [𝑥⊤

𝑛′
1

, . . . , 𝑥⊤
𝑛′
𝑄

]⊤ ∈ R𝑄×𝑑𝑥 , 𝑇 (𝑞) = [𝑡 ′
1
/𝑇, . . . , 𝑡 ′

𝐶
/𝑇 ]⊤ ∈

R𝑄×1
, and 𝑌 (𝑞) = [𝑦𝑛′

1
,𝑡 ′

1

, . . . , 𝑦𝑛′
𝑄
,𝑡 ′
𝑄
] ∈ R𝑄×1

.

Transformer for Predicting Learning Curves.. From now on, we denote each row vector of the

constructed context and query points with the lowercase, e.g., 𝑦 (𝑞) of 𝑌 (𝑞) . We learn a Transformer-

based learning curve extrapolator model which is a probabilistic model of 𝑓 (𝑌 (𝑞) |𝑋 (𝑐 ) ,𝑇 (𝑐 ) , 𝑌 (𝑐 ) , 𝑋 (𝑞) ,𝑇 (𝑞) ).
Conditioned on any subsets of LCs (i.e.,𝑋 (𝑐 ) ,𝑇 (𝑐 ) , and𝑌 (𝑐 ) ), this model predicts a mini-batch of the remaining

part of LCs of existing hyperparameter configurations in a given dataset (i.e., 𝑌 (𝑞) of 𝑋 (𝑞) and 𝑇 (𝑞) ). For the
computational efficiency, we further assume that the query points are independent to each other, as done in

PFN (Adriaensen et al., 2023):

𝑓 (𝑌 (𝑞) |𝑋 (𝑐 ) ,𝑇 (𝑐 ) , 𝑌 (𝑐 ) , 𝑋 (𝑞) ,𝑇 (𝑞) ) =
∏

𝑥 (𝑞) ,𝑡 (𝑞) ,𝑦 (𝑞)

𝑓 (𝑦 (𝑞) |𝑥 (𝑞) , 𝑡 (𝑞) , 𝑋 (𝑐 ) ,𝑇 (𝑐 ) , 𝑌 (𝑐 ) ). (5)
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Before encoding the input into the Transformer, we first encode the input of 𝑋 (𝑐 ) ,𝑇 (𝑐 ) , 𝑌 (𝑐 ) , 𝑋 (𝑞) , and
𝑇 (𝑞) using simple linear layer as follows:

𝐻 (𝑐 ) = 𝑋 (𝑐 )𝑊𝑥 +𝑇 (𝑐 )𝑊𝑡 + 𝑌 (𝑐 )𝑊𝑦 (6)

𝐻 (𝑞) = 𝑋 (𝑞)𝑊𝑥 +𝑇 (𝑞)𝑊𝑡 , (7)

where𝑊𝑥 ∈ R𝑑𝑥×𝑑ℎ ,𝑊𝑡 ∈ R1×𝑑ℎ
, and𝑊𝑦 ∈ R1×𝑑ℎ

. Here, we abbreviate the bias term.

Then we concatenate the encoded representations of𝐻 (𝑐 ) and𝐻 (𝑞) , and feedforward it into Transformer

layer by treating each pair of each row vector of 𝐻 (𝑐 ) and 𝐻 (𝑞) as a separate position/token as follows:

𝐻 = Transformer( [𝐻 (𝑐 ) ;𝐻 (𝑞) , Mask]) ∈ R(𝑀+𝑁 )×𝑑ℎ (8)

𝑌 = Head(𝐻 ) ∈ R(𝑀+𝑁 )×𝑑𝑜 , (9)

where Transformer(·) and Head(·) denote the Transformer layer and multi-layer perceptron (MLP) for the

output prediction, respectively. Mask ∈ R(𝑁𝑐+𝑁𝑞 )×(𝑁𝑐+𝑁𝑞 )
is the mask of transformer that allows all the

tokens to attend context tokens only. Here, the output dimension 𝑑𝑜 is specified by output distribution of 𝑦.

Following PFN (Adriaensen et al., 2023), we discretize the domain of 𝑦 by 𝑑𝑜 = 1000 and use the categorical

distribution. Finally, we only take the output of the last 𝑁𝑞 tokens as output, i.e., 𝑌
(𝑞) = 𝑌 [:, 𝑁𝑐 : (𝑁𝑐 +𝑁𝑞)] ∈

R𝑁𝑞×𝑑ℎ
(PyTorch-style indexing operation), since we only need the outputs of query tokens for modeling∏

𝑓 (𝑦 (𝑞) |𝑥 (𝑞) , 𝑡 (𝑞) , 𝑋 (𝑐 ) ,𝑇 (𝑐 ) , 𝑌 (𝑐 ) ).

Training Objective.. Our pre-training objective is then defined as follows:

arg min

𝑓

E𝑝
−

∑︁
𝑥 (𝑞) ,𝑡 (𝑞) ,𝑦 (𝑞)

log 𝑓 (𝑦 (𝑞) |𝑥 (𝑞) , 𝑡 (𝑞) , 𝑋 (𝑐 ) ,𝑇 (𝑐 ) , 𝑌 (𝑐 ) )
 + 𝜆PFNLPFN, (10)

where D𝐾𝐿 is the Kullback–Leibler divergence, and 𝑝 is the empirical LC data distribution. We additionally

minimize LPFN with coefficient 𝜆PFN, which is the LC extrapolation loss in each LC (Adriaensen et al., 2023).

We found 𝜆PFN = 0.1 works well for most cases. We use the stochastic gradient descent algorithm to solve

the above optimization problem.

Training Details.. We sample 4 training tasks for each iteration, i.e., the size of meta mini-batch is set to 4.

We uniformly sample the size 𝐶 of context points from 1 to 300, and the size of query points 𝑄 is set to 2048.

Following PFN (Adriaensen et al., 2023), the hidden size of each Transformer block 𝑑ℎ , the hidden size of

feed-forward networks, the number of layers of Transformer, dropout rate are set 1024, 2048, 12, 0.2. We use

GeLU (Hendrycks and Gimpel, 2016). We train the extrapolator for 10,000 iterations on training split of each

benchmark with Adam Kingma and Ba (2014) optimizer. The ℓ2 norm of meta mini-batch gradient is clipped

to 1.0. The learning rate is linearly increased to 2e-05 for 25000 iterations, and it is decreased with a cosine

scheduling until the end. The whole training process takes roughly 10 hours in one NVIDIA Tensor Core

A100 GPU.

F Baseline
We list the implementation details for baselines as follows:

1. Random Search. (Bergstra and Bengio, 2012) Instead of randomly selecting a hyperparameter configuration

for each BO step, we run the selected configuration until the last epoch 𝑇 .

2. ASHA, BOHB, and DEHB. We next compare against several variants of Hyperband (Li et al., 2018) such

as ASHA (Li et al., 2020a) the asynchronous parallel version of it, BOHB (Falkner et al., 2018) which

replaces its random sampling of configurations with BO, and DEHB (Awad et al., 2021) which promotes

internal knowledge transfer with evolution strategy. We follow the most recent implementation of these

algorithms in Quick-Tune (Arango et al., 2023). We slightly modify the official code
3
, which is heavily

based on SyneTune (Salinas et al., 2022) package.

3https://github.com/releaunifreiburg/QuickTune
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3. DyHPO. We also compare against more recent multi-fidelity BO methods such as DyHPO (Wistuba

et al., 2022) which uses deep kernel GP (Wilson et al., 2016) and a greedy acquisition function with a

short-horizon LC extrapolation. We follow the official code
4
provided the authors of DyHPO Wistuba

et al. (2022), and slightly modify the benchmark implementation to incorporate our experimental setups.

4. Quick-Tune†. This is a modified version of Quick-Tune (Arango et al., 2023) which is originally developed

for dynamically selecting both pretrained models and hyperparmater configurations, with the additional

cost term penalizing the non-uniform evaluation wall-time associated with each joint configuration.

Since our experimental setup does not consider selecting pretrained models nor non-uniform evaluation

wall-time, we only leave the transfer learning part of the model, which corresponds to a transfer learning

version of DyHPO, i.e., we train its surrogate function with the same LC datasets used for training our LC

extrapolator. For Quick-Tune
†
, we pretrain the deep kernel GP for 50000 iterations with Adam optimizer

with mini-batch size of 512. The initial learning rate is set to 1e-03 and decayed with cosine scheduling.

To leverage the transfer learning scenario, we use the best configuration among the LC datasets which is

used for training the GP as an initial guess of BO.

5. DPL. This method extrapolates LCs with power law functions and model ensemble. We follow the official

code
5
provided the authors of DPL (Kadra et al., 2023), and slightly modify the benchmark implementation

to incorporate our experimental setups.

6. FSBO. This is a black-box transfer-BO method that uses the same LC datasets to train a deep kernel GP

surrogate function. The difference of FSBO from Quick-Tune
†
is that its surrogate models the validation

performances at the last epoch, whereas the surrogate of Quick-Tune
†
predicts the performances at

the next epoch for multi-fidelity HPO. FSBO does not provide an official code, therefore, we follow an

available code in the internet
6
. We also slightly modify the benchmark implementation, and use the best

configuration among the LC datasets as an initial guess.

G Experimental Setups
In this section, we elaborate details on the experimental setups.

Utility function. While there are many plausible options for the utility function, in this paper we use

a linear function for penalizing the cost of multi-fidelity BO, i.e., 𝑈 (𝑏,𝑦) = 𝑦 − 𝛼𝑏 where 𝑦 is the BO

performance, 𝑏 the BO steps, and 𝛼 ∈ {0, 4𝑒-05, 2𝑒-04}. Note that 𝛼 = 0 does not penalize the number of BO

steps at all, hence the BO does not terminate until the last BO step 𝐵 as with the conventional multi-fidelity

BO setup.

Evaluation metric. In order to report the average performances over the tasks, we use the normalized

regret of utility (𝑈max −𝑈𝑏∗ )/(𝑈max −𝑈min) ∈ [0, 1], similarly to Eq. (2). 𝑈𝑏∗ is the utility obtained right after

the BO terminates at step 𝑏∗, and𝑈max is the maximum achievable by running a single optimal configuration

up to its maximum utility. Computing the exact 𝑈min is a difficult combinatorial optimization problem, thus

we simply approximate it with𝑈 (𝐵,𝑦worst
1
), where 𝑦worst

1
is the worst 1-epoch validation performance across

the configurations – we simply let 𝑦worst
1

decay over the maximum BO steps 𝐵, corresponding to a lower

bound of the exact 𝑈min. We then average the normalized regret across all the tasks in each benchmark, and

report the mean and standard deviation over 5 runs. Lastly, we also report the rank of each method averaged

over the tasks.

0-epoch LC value. We assume the access of the 0-epoch LC value 𝑦0 in §C which is the model performance

before taking gradient steps. This is also plausible for realistic scenarios since in most deep-learning models

one evaluation cost is acceptable in comparison to training costs. The 0-epoch LC value 𝑦0 is always

conditioned on our LC extrapolator 𝑓 for both pretraining and BO stage.

Monte-Carlo (MC) sampling for reducing variance of LCs. As mentioned in §2.1, we estimate the

expectation of proposed acquisition function 𝐴 in Eq. (1) with 1000 MC samples. We found that each LC

𝑦𝑛,𝑡𝑛:𝑇
sampled from LC extrapolator 𝑓 (·|𝑥𝑛, C) is noisy, due to the assumption that query points of 𝑦𝑛,𝑡𝑛:𝑇

are

4https://github.com/releaunifreiburg/DyHPO
5https://github.com/releaunifreiburg/DPL
6https://github.com/releaunifreiburg/fsbo
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Figure 5: The results on the conventional multi-fidelity HPO setup (𝛼 = 0). For each benchmark, we

report the normalized regret of utility aggregated over all the test datasets.
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Figure 6: Ablation study on the mixup training. We use 𝛼 = 0 and PD1 benchmark for the experiments.

independent to each other in Eq. (5). We compute 𝑦𝑏+Δ𝑡 by taking the maximum among the last step BO

performance (i.e., cumulative max operation), therefore, the quality of estimation highly degenerates due to

the noise in the small Δ𝑡 . To prevent this, we reduce the variance of MC samples by taking the average of

the sampled LCs. For example, we sample 5000 LC samples from the LC extrapolator 𝑓 , then we divide them

into 1000 groups and take the average among the 5 LC samples in each group. We empirically found that

this stabilize the estimation of not only acquisition function 𝐴 and probability of utility improvement 𝑝𝑏 in

Eq. (4).

Inference Time for BO. The most of time for each BO step in our method is spent during LC extrapolation.

In Table 5, we report the wall-clock time spent on LC extrapolation for 100 mini-batches of LCs. The

wall-clock times vary depending on the context size. We measure all the wall-clock times in one one NVIDIA

Tensor Core A100 GPU.

Table 5: Wall-clock time for Inference on 100 mini-batches of LCs.

Context Size Inference Time (s)

1 0.00921010971069336

10 0.01493692398071289

20 0.01413583755493164

50 0.017796993255615234

100 0.01770782470703125

200 0.025087356567382812

300 0.027765989303588867

H Additional Experimental Results

Effectiveness of our transfer learning.. We first demonstrate the effectiveness of our transfer learning

method. Fig. 5 shows the results on the conventional multi-fidelity HPO setting where we do not penalize

the cost of BO at all (𝛼 = 0). First of all, note that FSBO, a black-box transfer-BO method which switches its

configuration only after a single complete training (e.g., 50 epochs), even outperforms all the other multi-
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fidelity methods that can change the configurations every epoch. The result clearly shows the importance of

transfer learning for improving the sample efficiency of HPO. Quick-Tune
†
, a transfer version of DyHPO,

performs similarly to the other baselines despite of the transfer learning, except on TaskSet benchmark. We

attribute this result to its greedy acquisition function, and more importantly its lack of data augmentation.

On the other hand, our method is non-greedy (when 𝛼 = 0) and can effectively augment the data with our

mixup strategy, thereby showing significantly better performances than all the other multi-fidelity methods.

Fig. 6 shows the ablation study on our mixup training. Fig. 6a shows that we can effectively reduce the

risk of overfitting by adding the mixup strategy. As a result, the performance of BO improves significantly

(Fig. 6b). Lastly, our method significantly outperforms FSBO on TaskSet and slightly on LCBench and PD1,

showing the superiority of multi-fidelity BO to black-box BO.

Visualizations of the normalized regret over BO steps. for LCBench (𝛼 = 4𝑒-05), LCBench (𝛼 = 2𝑒-04),

TaskSet (𝛼 = 4𝑒-05), TaskSet (𝛼 = 2𝑒-04), PD1 (𝛼 = 4𝑒-05), and PD1 (𝛼 = 2𝑒-04) are provided Figure 7, 8, 9,

10, 11, and 12, respectively. These figures illustrate the normalized regret over the course of BO, where our

method achieves significantly lower regret upon termination. Our method tends to achieve the minimum

regret earlier than the baselines, demonstrating its sample efficiency in searching good hyperparameter

configurations by explicitly considering the utility during the BO.
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Figure 7: Visualization of the normalized regret over BO steps on LCBench (𝛼 =4e-05).
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Figure 8: Visualization of the normalized regret over BO steps on LCBench (𝛼 =2e-04).
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Figure 9: Visualization of the normalized regret over BO steps on TaskSet (𝛼 =4e-05).
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Figure 10: Visualization of the normalized regret over BO steps on TaskSet (𝛼 =2e-04).
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Figure 11: Visualization of the normalized regret over BO steps on PD1 (𝛼 =4e-05).
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Figure 12: Visualization of the normalized regret over BO steps on PD1 (𝛼 =2e-04).

Visualizations of the LC extrapolation over BO steps. for LCBench, TaskSet, and PD1 are provided

Figure 13, 14, and 15, respectively. Here, we plot the LC extrapolation results of unseen hyperparameter

configurations through BO. Each row shows the results for a different size of the observation set (|C | = 0, 10, 50,

and 300), and each column shows a different size of context points in each LC (0, 2, 5, 10, 20, and 30).
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Figure 13: Visualization of LC extrapolation over BO steps on LCBench.
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Figure 14: Visualization of LC extrapolation over BO steps on TaskSet.
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Figure 15: Visualization of LC extrapolation over BO steps on PD1.
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