
Gradient Multi-Normalization for Efficient
LLM Training

Meyer Scetbon∗

Microsoft Research
Chao Ma∗

Microsoft Research
Wenbo Gong∗

Microsoft Research
Ted Meeds

Microsoft Research

Abstract

Training large language models (LLMs) commonly relies on adaptive optimizers
such as Adam (Kingma & Ba, 2015), which accelerate convergence through mo-
ment estimates but incur substantial memory overhead. Recent stateless approaches
such as SWAN (Ma et al., 2024) have shown that appropriate preprocessing of
instantaneous gradient matrices can match the performance of adaptive methods
without storing optimizer states. Building on this insight, we introduce gradient
multi-normalization, a principled framework for designing stateless optimizers
that normalize gradients with respect to multiple norms simultaneously. Whereas
standard first-order methods can be viewed as gradient normalization under a single
norm (Bernstein & Newhouse, 2024), our formulation generalizes this perspective
to a multi-norm setting. We derive an efficient alternating scheme that enforces
these normalization constraints and show that our procedure can produce, up to
an arbitrary precision, a fixed-point of the problem. This unifies and extends prior
stateless optimizers, showing that SWAN arises as a specific instance with partic-
ular norm choices. Leveraging this principle, we develop SinkGD, a lightweight
matrix optimizer that retains the memory footprint of SGD (w/o momentum)
while substantially reducing computation relative to whitening-based methods. On
the memory-efficient LLaMA training benchmark (Zhao et al., 2024a), SinkGD
achieves state-of-the-art performance, reaching the same evaluation perplexity as
Adam using only 40% of the training tokens.

1 Introduction

The training of Large Language Models (LLMs) relies heavily on adaptive optimization algorithms,
such as Adam Kingma & Ba (2015), which dynamically adjust learning rates for each parameter
based on past gradient information, leading to faster convergence and improved stability. However,
these optimizers introduce substantial memory overhead due to the storage of internal states, typically
moment estimates of gradients, a challenge that becomes particularly pronounced in distributed
training settings where memory constraints and communication overhead are critical concerns Rajb-
handari et al. (2020); Korthikanti et al. (2023); Dubey et al. (2024). In contrast, simpler first-order
optimization methods such as Stochastic Gradient Descent (SGD) require significantly less memory
but fail to adequately train LLMs Zhao et al. (2024b); Zhang et al. (2020); Kunstner et al. (2023,
2024). As a result, there is an ongoing need for developing new optimization strategies that resolves
the memory efficiency v.s. training performance dilemma for large-scale models training.

Recent research has made significant strides in improving memory efficiency of optimization. A
key focus is on low rank compression of optimizer states (Hu et al., 2021; Lialin et al., 2023; Zhao
et al., 2024a; Hao et al., 2024; Xu et al., 2024a; Zhang et al., 2024; Gong et al., 2025; Chen et al.,
2024a; Zhu et al., 2024). More recently, a new approach that directly removes certain optimizer
states started to emerge, and has shown stronger results compared with direct state compression (Ma

∗Equal contribution. This work was done when Meyer Scetbon was affiliated with Microsoft Research.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

(a) 350M LLaMA model (b) 1.3B LLaMA model

Adam SinkGD (raw) SinkGD (effective)

0K

20K

40K

60K

80K

100K

120K

140K

160K

To
ke

ns
/s

53.0K
58.0K

161.8K

Effective Throughput Comparison
Adam
SinkGD (raw)
SinkGD (effective)

(c) Training Throughputs

Figure 1: SinkGD performance preview on memory-efficient LLaMA pretraining benchmark
Zhao et al. (2024a). (a) and (b): Comparison of the test perplexities obtained by Adam Kingma &
Ba (2015); Zhao et al. (2024a), SWAN (Ma et al., 2024), Apollo (Zhu et al., 2024), and our proposed
SinkGD (Algorithm 4) on 1B LLaMA pretraining task with C4 dataset. All loss curves of Adam
and Apollo-mini are reproduced from the corresponding opensource codes. We also compare with
their official results in Table 1. On both 350M and 1.3B LLama architectures, SinkGD achieves >
2× speed-up vs Adam in terms of tokens seen; and 1.3 to 1.5 X speed-up vs SWAN and Apollo. (c):
Training throughput analysis on training 1.3 B model on 8 × A100, under constant batch size = 130K
tokens. We present two metrics: raw throughput, measured by number of training tokens consumed
per second; and effective throughput, which is raw throughput adjusted by the token efficiency of
optimizer relative to Adam. SinkGD has a raw throughput that is marginally higher than Adam, while
improving the effective throughput by > 3×.

et al., 2024; Jordan et al., 2024; Chen et al., 2024c). Among these advancements, Ma et al. (2024)
propose to replace all moving average states with a sequence of stateless matrix operations acting
on the raw gradient tensors. This results in SWAN, an optimizer that achieved the same memory
footprint as SGD (w/o momentum) while delivering comparable or even better performances than
Adam. Collectively, they demonstrate that memory efficiency and loss throughput are not mutually
exclusive. The goal of this paper is to understand the design principle of those empirical methods,
and further improve their efficiency.

Contributions. Motivated by the insights of SWAN (Ma et al., 2024), we introduce gradient multi-
normalization, a framework for designing efficient optimizers based on a novel multi-normalization
scheme. Unlike standard first-order methods that can be interpreted as gradient normalization
according to a single norm (Bernstein & Newhouse, 2024), our approach aims at normalizing
gradients according to multiple norms. We demonstrate that gradient matrix processing-based
techniques proposed in (Ma et al., 2024) can be understood as a particular instance of our approach
with carefully chosen norms and shorter iterative steps. Given this new perspective, we instantiate a
more efficient and scalable stateless optimizer (SinkGD) that achieves Adam-level computational cost,
while having the same memory footprint as SGD. Moreover, it achieves on par or even outperforms
Adam in LLM pretraining tasks, as well as various existing memory-efficient baselines under LLaMA
architecture. Our contributions are summarized below:

• We propose a novel family of first-order methods, called Multi-Normalized Gradient Descent
(MNGD), that aims at normalizing gradients according to multiple norms. Our framework general-
izes the steepest descent viewpoint of Bernstein & Newhouse (2024) that recasts popular first-order
optimizers as normalization of gradients under a single norm.

• We then propose a simple alternating scheme in order to effectively compute the multi-
normalization of gradients, and show that our algorithm can provide a fixed-point solution up to an
arbitrary precision, ensuring the normalization of its output with respect to the norms considered.

• We leverage our framework and design a new lightweight, stateless optimizer that improves the
scalability of SWAN. Our algorithm, namely SinkGD (Algorithm 4), alternatively performs row-
wise and column-wise normalization according to the Euclidean geometry. We show that SinkGD
exactly recovers the square-root iterates of Sinkhorn algorithm (Sinkhorn, 1964).

• Finally, we evaluate our Sinkhorn-based stateless optimizer SinkGD by training LlaMA models
on various scales, from 60m to 1.3B. Results show that SinkGD manages to be on par or even

2

outperforms the Adam optimizer, as well as other memory-efficient baselines. On the memory-
efficient LLaMA training benchmark Zhao et al. (2024a), SinkGD achieves a 3× speedup over
Adam with significantly reduced memory requirements.

2 Background

2.1 From Adam to Stateless Optimizers

Adam Optimizer. Adam (Kingma & Ba, 2015) relies on accumulating internal states throughout
training in order to improve the convergence. More formally, given a loss function (θ, x) ∈ Θ×X →
L(θ, x) ∈ R, where Θ ⊂ Rd is the set of learnable parameters and X is the set where the data resides,
Adam aims at minimizing θ → Ex∼Px

(L(θ, x)) where Px is the distribution of data on X . To achieve
this, Adam computes at every step t ≥ 1 a stochastic gradient associated with a mini-batch of input
data x(t), and performs the following updates (denoting∇t = ∇θL(θt, x(t))):

mt = β1mt−1 + (1− β1)∇t, st = β2st−1 + (1− β2)∇⊙2
t ,

m̂t =
mt

1− βt1
, ŝt =

st
1− βt2

, θt+1 = θt − ηt
m̂t√
ŝt + ε

where ⊙ is the Hadamard product, ηt > 0 are global step-sizes, and β1, β2 > 0 are the weights of the
exponential moving averages (EMAs) for the first and second moments respectively. During training,
Adam optimizer stores two additional states (mt, st), effectively tripling the memory required to train
the model compared to a simple stochastic gradient descent (SGD) scheme.

SWAN: a Stateless Optimizer. Ma et al. (2024) propose to move away from the paradigm of
keeping track of internal states, and propose SWAN, a stateless optimizer that only pre-processes
the stochastic gradients before updating the parameters. More precisely, they propose to update the
learnable weight matrices involved in the model using two matrix operators. Given a weight matrix
W ∈ Rm×n, with m ≤ n, at time t ≥ 1, the SWAN update is (denoting∇t = ∇WL(Wt, x

(t)),):

∇̃t =
√
nQ(∇t)−1∇t, ∇̂t =

√
n(∇̃t∇̃⊤

t)
−1/2∇̃t, Wt+1 =Wt − ηt∇̂t (1)

where for a matrix W ∈ Rm×n, Q(W) := Diag(∥W1,:∥2, . . . , ∥Wm,:∥2) is the diagonal matrix of
size m where the diagonal coefficients are the ℓ2-norm of the rows of W . To compute (∇̂t∇̂⊤

t)
−1/2,

the authors leverage the Newton-Schulz algorithm (Song et al., 2022; Li et al., 2018; Huang et al.,
2019) instead of computing the SVD. While this approach does not require storing any additional
states, it still suffers from a computational burden due to the O(m2(n + m)) computation of
(∇t∇⊤

t)
−1/2∇t which may limit its practical usage for certain scenarios.

2.2 Steepest Descent as Gradient Normalization

Bernstein & Newhouse (2024) interpret several gradient descent schemes as steepest descent methods
under specific norms. More formally, they propose to minimize a local quadratic model of the loss
L(·, x(t)) at θt w.r.t to a given norm ∥ · ∥, that is:

Q∥·∥(z) := L(θt, x(t)) + ⟨∇t, z⟩+
λt
2
∥z∥2

where λt > 0 are the sharpness parameters and ∇t := ∇θL(θt, x(t)) is the current stochastic
gradient. As shown in (Bernstein & Newhouse, 2024), finding a minimizer ofQ∥·∥ can be equivalently
formulated as solving:

−∥∇t∥∗
λt

argmax
z∈Rd: ∥z∥=1

⟨∇t, z⟩ (2)

where ∥x∥∗ := supz∈Rd: ∥z∥=1⟨x, z⟩ is the dual norm of ∥x∥. Several popular gradient-descent
schemes can be recovered using the above approach. For example, when the ℓ2-norm is used, one
recovers standard gradient descent, while the ℓ∞ leads to signed gradient descent (Carlson et al.,
2015). However, this framework considers only a single norm for pre-processing the raw gradient∇t.
In the following, we extend this approach to incorporate multiple norms for gradient pre-processing,
enabling the design of efficient and stateless optimizers for LLM training.

3

3 Multi-Normalized Gradient Descent

Notations. For a vector x ∈ Rd, we call its normalized projection w.r.t to a given norm ∥ · ∥, the
solution to the following optimization problem:

P∥·∥(x) := argmax
z: ∥z∥=1

⟨x, z⟩ (3)

We also extend the definition of this notation if x ∈ Rm×n is a matrix and ∥ · ∥ is a matrix norm.

3.1 Gradient Multi-Normalization

Let us now consider a finite family ofK ≥ 1 norms (g1, . . . , gK). In order to pre-process the gradient
∇ jointly according to these norms, we propose to consider the following optimization problem:

argmax
z
⟨∇, z⟩ s.t. ∀ i ∈ [|1,K|], gi(z) = 1 . (4)

Assuming the constraint set is non-empty, the existence of a maximum is guaranteed. However, this
problem is NP-hard and non-convex due to the constraints, making it hard to solve efficiently for the
general case of arbitrary norms.

Algorithm 1 MultiNorm(∇, L, g)

Input: the stochastic gradient ∇θL(θt, x(t)),
the norms g := (g1, . . . , gK), and L ≥ 1 the
number of iterations.
Initialize x = ∇θL(θt, x(t)).
for ℓ = 1 to L do

for i = 1 to K do
x← Pgi(x) := argmax

z: gi(z)=1

⟨x, z⟩

end for
end for
Return x

Algorithm 2 Multi-Normalized GD (MNGD)

Input: T ≥ 1 the number of updates,
(ηt)0≤t≤T the global step-sizes, L the loss
to minimize, L ≥ 1 the number of itera-
tions for the multi-normalization, and g :=
(g1, . . . , gK) the norms.
for t = 1 to T do
∇t ← ∇θL(θt, x(t)) with x(t) ∼ Px
∇̂t ← MultiNorm(∇t, L, g) as in Alg. 1.
θt+1 ← θt − ηt∇̂t

end for
Return x

Remark 3.1. Observe that when K = 1, the problem (4) recovers exactly the single normalization
step used in Bernstein & Newhouse (2024).
Remark 3.2. The convex relaxation of (4), defined as

argmax
z
⟨∇, z⟩ s.t. ∀ i ∈ [|1,K|], gi(z) ≤ 1 (5)

is in fact equivalent to the single normalization case discussed in Section 2.2, where the norm
considered is ∥x∥ := max

i∈[|1,K]
gi(x). Thus, solving (5) is equivalent to computing the projection

P∥·∥(∇). In Appendix C, we provide a general approach to compute it using the so-called Chambolle-
Pock algorithm Chambolle & Pock (2011).

While solving (4) exactly might not be practically feasible in general, we propose a simple alternating
projection scheme, presented in Algorithm 1. Notably, our method assumes that the projections Pgi(·)
can be efficiently computed for all i ∈ [|1,K|]. Fortunately, when the gi’s correspond to ℓp-norms
with p ∈ [|1,+∞|], or Schatten p-norms for matrices, closed-form solutions for these projections
exist. See Appendix C for more details.

SWAN: an Instance of MultiNorm. SWAN Ma et al. (2024) applies two specific pre-processing
steps to the raw gradients in order to update the weight matrices. In fact, each of these pre-processing
steps can be seen as normalized projections with respect to a specific norm. More precisely, for
W ∈ Rm×n and m ≤ n, let us define

g1(W) :=

max
i∈[|1,m|]

∥Wi,:∥2
√
n

, and g2(W) :=
∥W∥σ,∞√

n
.

4

where for p ∈ [1,+∞], ∥W∥σ,p is the Schatten p-norm of W . Simple derivations leads to the
following equalities:

Pg1(W) =
√
nQ(W)−1W, Pg2(W) =

√
n(WW⊤)−1/2W

Therefore applying a single iteration (L = 1) of Algorithm 1 with norms g1 and g2 as defined above
on the raw gradient∇t exactly leads to the SWAN update (Eq. (1)).

3.2 On the Convergence of MultiNorm

We aim now at providing some theoretical guarantees on the convergence of MultiNorm (Algo-
rithm 1). More precisely, following the SWAN implementation Ma et al. (2024), we focus on the
specific case where K = 2 and the normalized projections associated with the norms g1 and g2 have
constant ℓ2-norm. More formally, we consider the following assumption.
Assumption 3.3. Let g be a norm on Rd. We say that it satisfies the assumption if for all x ∈ Rd,
∥Pg(x)∥2 = c where c > 0 is an arbitrary positive constant independent of x and ∥ · ∥2 represents
the Euclidean norm.
Remark 3.4. Observe that both norms in SWAN satisfies Assumption 3.3 and their normalized
projections have the same ℓ2-norm, as for any W ∈ Rm×n with m ≤ n, we have ∥Pg1(W)∥2 =
∥Pg2(W)∥2 =

√
nm.

This assumption enables to obtain useful properties on Pg as we show in the following Lemma:
Lemma 3.5. Let g a norm satisfying Assumption 3.3. Then

Pg ◦ Pg = Pg
and for all x ∈ Rd, g∗(Pg(x)) = ∥Pg(x)∥22 = c2, where g∗ is the dual norm associated with g.

Let us now introduce some additional notation to clearly state our result. Let x0 ∈ Rd and let us
define for n ≥ 0:

x2n+1 := Pg1(x2n), x2n+2 := Pg2(x2n+1) (6)

which is exactly the sequence generated by Algorithm 1 when K = 2 and x0 = ∇θL(θt, x(t)). Let
us now show our main theoretical result, presented in the following Theorem.
Theorem 3.6. Let g1 and g2 two norms on Rd satisfying Assumption 3.3 and such that their
normalized projections have the same ℓ2 norm. Let also (xn)n≥0 be defined as in (6) and let us define
the set of fixed-point as:

F := {x : Pg1(x) = Pg2(x) = x}
Then by denoting d(x,F) := min

z∈F
∥x− z∥2 we have

d(xn,F) −−−−→
n→∞

0 .

This Theorem states that if MultiNorm runs for a sufficient amount of time, then the returned point x
can be arbitrarily close to a fixed-point solution. While we cannot guarantee that it solves (4), we
can assert that our algorithm converges to a fixed-point solution with arbitrary precision, and as a
by-product produces a solution x normalized w.r.t both norms g1, g2 (up to an arbitrary precision).
Remark 3.7. Note that in Theorem 3.6 we assume that the normalized projections associated to g1
and g2 have the same ℓ2-norms. However, given two norms g1 and g2 satisfying Assumption 3.3, i.e.
such that for all x:

∥Pg1(x)∥2 = c1, ∥Pg2(x)∥2 = c2

for some c1, c2 > 0, and given a target value a > 0, one can always rescale the norms such that their
normalized projections have the same ℓ2 norm equal to a. More formally, by denoting g̃1 = c1

a g1 and
g̃2 = c2

a g2, we obtain that

∥Pg̃1(x)∥2 = ∥Pg̃2(x)∥2 = a.

Remark 3.8. It is worth noting that, for squared matrices (m = n), a single iteration (L = 1) of
MultiNorm using the norms considered in Ma et al. (2024), immediately converges to a fixed-point—
precisely recovering SWAN.

5

3.3 MNGD: a New Family of Stateless Optimizers.

We now introduce our family of optimizers: Multi-Normalized Gradient Descents (MNGDs) (Algo-
rithm 2). The key distinction from the framework proposed in Bernstein & Newhouse (2024) is that
MNGDs normalize the gradient with respect to multiple norms using the MultiNorm step, whereas
in Bernstein & Newhouse (2024), the gradient is normalized using a single norm. In the following,
we focus on the MNGD scheme with a specific choice of norms, for which we can efficiently compute
the gradient multi-normalization step. This enables the application of stateless optimizers to LLMs.

4 Sinkhorn: a Multi-Normalization Procedure

As in SWAN Ma et al. (2024), we propose to normalize the weight matrices according to multiple
norms. We still leverage the row-wise ℓ2-norm to pre-process raw gradients, however, rather than
using the spectral norm, we propose to consider instead a relaxed form of this constraint and use the
column-wise ℓ2-norm. More formally, consider the two following norms on matrices of size Rm×n:

g1(W) :=

max
i∈[|1,m|]

∥Wi,:∥2
√
n

, g2(W) :=

max
j∈[|1,n|]

∥W:,j∥2
√
m

,

which leads to the following two normalized projections:

Pg1(W) =
√
nQ(W)−1W, Pg2(W) =

√
mWR(W)−1

where R(W) := Diag(∥W:,1∥2, . . . , ∥W:,n∥2) ∈ Rn×n is the diagonal matrix of size n with the
ℓ2-norm of the columns of W as diagonal coefficients. For such a choice of norms, the MultiNorm
reduces to a simple procedure as presented in Algorithm 3.
Remark 4.1. For such a choice of norms, we obtain ∥Pg1(W)∥2 = ∥Pg2(W)∥2 =

√
nm for any

W ∈ Rm×n. That is, both norms satisfy Assumption 3.3 and their ℓ2 norms are equal to
√
nm.

For completeness we include the MNGD scheme (Algorithm 4) that replaces the MultiNorm step
with SR-Sinkhorn (Algorithm 3).

Algorithm 3 SR-Sinkhorn(∇, L)

Input: the stochastic gradient∇WL(Wt, x
(t)),

and L ≥ 1 the number of iterations.
Initialize X = ∇WL(Wt, x

(t)) ∈ Rm×n.
for ℓ = 1 to L do
Q(X) = Diag(∥X1,:∥2, . . . , ∥Xm,:∥2)
X ←

√
nQ(X)−1X

R(X) = Diag(∥X:,1∥2, . . . , ∥X:,n∥2)
X ←

√
mXR(X)−1

end for
Return X

Algorithm 4 Sinkhorn GD (SinkGD)

Input: T ≥ 1 the number of updates,
(ηt)0≤t≤T the global step-sizes, L the loss to
minimize, and L ≥ 1 the number of iterations
for the SR-Sinkhorn procedure.
for t = 1 to T do
∇t ← ∇θL(θt, x(t)) with x(t) ∼ Px
∇̂t ← SR-Sinkhorn(∇t, L) as in Alg. 3.
θt+1 ← θt − ηt∇̂t

end for
Return x

The Sinkhorn Algorithm. Before explicitly showing the link between Algorithm 3 and the
Sinkhorn algorithm, let us first recall the Sinkhorn theorem Sinkhorn (1964) and the Sinkhorn
algorithm Sinkhorn & Knopp (1967). Given a positive coordinate-wise matrix A ∈ Rm×n

+ , there
exists a unique matrix P ∈ Rm×n

+ of the form P = QAR with Q and R positive coordinate-wise
and diagonal matrices of size m and n respectively, such that P1n = n1m and P⊤1m = m1n. To
find P , one can use the Sinkhorn algorithm that initializes P0 := A and computes for k ≥ 0:

Pk+1/2 = nDiag(Pk1n)−1Pk, Pk+1 = mPk+1/2Diag(P⊤
k+1/21m)−1 .

Equivalently, these updates on P can be directly expressed as updates on the diagonal coefficients of
Q = Diag(u) and R = Diag(v) with u ∈ Rm+ and v ∈ Rn+. By initializing u0 = 1m an v0 = 1m,
the above updates can be reformulated as follows:

uk+1 = n
1m
Avk

, vk+1 = m
1n

A⊤uk+1
(7)

6

where / denote the coordinate-wise division. Franklin & Lorenz (1989) show the linear convergence
of Sinkhorn’s iterations. More formally, they show that (uk, vk) converges to some (u∗, v∗) such that
P := Diag(u∗)ADiag(v∗) satisfies P1n = n1m and P⊤1m = m1n, and:

dH(uk, u
∗) ∈ O(λ(A)2k) , and dH(vk, v

∗) ∈ O(λ(A)2k) ,

where dH is the Hilbert projective metric De La Harpe (1993) and λ(A) < 1 is a contraction factor
associated with the matrix A.

Links between Sinkhorn and Algorithm 3. Algorithm 3 can be seen as a simple reparameterization
of the updates presented in (7). More precisely, given a gradient∇ ∈ Rm×n and denoting A := ∇⊙2,
we obtain that the iterations of Algorithm 3 exactly compute:

u
1/2
k+1 =

√
n
1m
Avk

, v
1/2
k+1 =

√
m

1n
A⊤uk+1

(8)

where the square-root is applied coordinate-wise, and returns after L iterations XL =

Diag(u1/2L)∇Diag(v1/2L). Therefore the linear convergence of Algorithm 3 follows directly from the
convergence rate of Sinkhorn, and Algorithm 3 can be thought as applying the square-root Sinkhorn
algorithm, thus the name SR-Sinhkorn. Note also that at convergence (L→ +∞) we obtain X∗ ∈
Rm×n which is a fixed-point of both normalized projections, that is Pg1(X∗) = Pg2(X∗) = X∗,
from which we deduce that ∥X∗

i,:∥2 =
√
n and ∥X∗

:,j∥2 =
√
m as demonstrated in Theorem 3.6.

On the Importance of the Scaling. Now that we have shown the convergence SR-Sinkhorn, let us
explain in more detail the scaling considered for both the row-wise and column-wise normalizations.
First recall that both norm g1 and g2 satisfy Assumption 3.3 and that the ℓ2 norm of their normalized
projections is equal to

√
nm. The reason for this specific choice of scaling (

√
nm) is due to the

global step-size in Algorithm 4. In our proposed MNGD, we did not prescribe how to select ηt. In
practice, we aim to leverage the same global step-sizes as those used in Adam(Kingma & Ba (2015))
for training LLMs, and therefore we need to globally rescale the (pre-processed) gradient accordingly.
To achieve that, observe that when EMAs are turned-off, Adam corresponds to a simple signed
gradient descent, and therefore the Frobenius norm of the pre-processed gradient is simply

√
nm.

Thus, when normalizing either the rows or the columns, we only need to rescale the normalized
gradient accordingly.

Computational Efficiency of SinkGD over SWAN. Compared to SWAN Ma et al. (2024), the
proposed approach, SinkGD, is more efficient as it only requires O(nm) numerical operations. In
contrast, SWAN, even when implemented with Newton-Schulz, still requires performing matrix-
matrix multiplications, which have a time complexity of O(m2(m+ n)). In the next section, we will
demonstrate the practical effectiveness of MNGD with SR-Sinkhorn, that is SinkGD. This approach
manages to be on par with, and even outperforms, memory-efficient baselines for pretraining the
family of LLaMA models up to 1B scale.

5 Experimental Results

In this section, we evaluate the empirical performance of applying SinkGD optimizer to LLM
pretraining tasks. All experiments were performed on NVIDIA A100 GPUs.

5.1 LlaMA Pre-training Tasks

Setup. We evaluate SinkGD on the memory-efficient LLaMA training benchmark proposed by
Zhao et al. (2024a). This benchmark uses LLaMA-based architecture (Touvron et al., 2023) with
RMSNorm and SwiGLU activations (Zhang & Sennrich, 2019; Gao et al., 2023). We consider models
with 60M, 130M, 350M, and 1.3B parameters, all trained on the C4 dataset Raffel et al. (2020) using
an effective token batch size of 130K tokens (total batch size 512, context length 256). Specifically,
for both 130M and 350M, we use 128 batch size with 4 accumulations. For 60M and 1B, we uses
256 batch with 2 accumulation, and 32 per-device batch size with 2 accumulation and 8xA100s,
respectively. Following the setup of Zhao et al. (2024a); Zhu et al. (2024), SinkGD is applied to
all linear modules in both attention and MLP blocks with L = 5 iterations for the SR-Sinkhorn
procedure. For all other modules, that are the embedding layer, the RMSnorm layers, and the last

7

Table 1: Comparison with Adam and memory-efficient baselines on pre-training LLaMA models with C4
dataset. Test PPL is reported, along with a memory estimate of the total of parameters and optimizer states in
BF16 format. The PPLs reported for all competitive methods are taken from Zhao et al. (2024a); Zhu et al. (2024)
and Ma et al. (2024). We report both the reported Adam results from Zhao et al. (2024a) and our reproduced
result. Note that the memory estimations from Zhao et al. (2024a); Zhu et al. (2024) did not consider the fact
that Adam optimizer was used for embedding layers. This is corrected in our estimates.

Methods 60M 130M 350M 1.3B
PPL MEM PPL MEM PPL MEM PPL MEM

Adam (reproduced) 33.94 0.32G 25.03 0.75G 19.24 2.05G 16.44 7.48G
Adam (cited) 34.06 0.32G 25.08 0.75G 18.80 2.05G 15.56 7.48G

Galore 34.88 0.26G 25.36 0.57G 18.95 1.29G 15.64 4.43G
Fira 31.06 0.26G 22.73 0.57G 17.03 1.29G 14.31 4.43G

Apollo-mini 31.93 0.23G 23.53 0.43G 17.18 0.93G 14.17 2.98G
Apollo 31.55 0.26G 22.94 0.57G 16.85 1.29G 14.20 4.43G
SWAN 32.28 0.23G 24.13 0.43G 18.22 0.93G 15.13 2.98G

SinkGD 30.99 0.23G 22.75 0.43G 16.51 0.93G 13.51 2.98G
SinkGD speed up v.s. Adam (reproduced) 1.60 X 1.56 X 2.42 X 2.79 X

SinkGD speed up v.s. Adam (cited) 1.66 X 1.73 X 2.10 X 2.17 X
Total Training Steps 10K 20K 60K 100K

output layer, Adam optimizer Kingma & Ba (2015) is used. We use exactly the same cosine learning
rate scheduler as in Zhao et al. (2024a), where 10% of total training steps is used for warm-up. Note
that, as in Zhao et al. (2024a); Zhu et al. (2024), we use a group-wise learning rate for our optimizer.
The effective learning rate used for linear modules in the transformer blocks is of the form αηt where
ηt is global learning rate provided by the scheduler and α is fixed hyperparameter that we set to
α = 0.05. For Adam, we use ηt as the learning rate.

Baselines. We consider the following memory-efficient optimizers baselines: Adam (Kingma
& Ba, 2015); Galore Zhao et al. (2024a); Fira Chen et al. (2024b), Apollo and Apollo-mini
Zhu et al. (2024), and SWAN Ma et al. (2024). For all methods, training uses BF16 precision
for weights, gradients and optimizer states by default, except for SWAN that uses FP32 preci-
sion to pre-process the gradient Ma et al. (2024). We also perform a grid search of learning rate
for Adam over {0.01, 0.005, 0.001, 0.0005, 0.0001}, except for 1B model which we search over
{0.001, 0.0007, 0.0005, 0.0003, 0.0001}. We do not perform any weight decay for all optimizers.

Table 2: Comparison of the test perplexities obtained during training when training 1B LLaMA with
SinkGD v.s. 7B LLaMA using different baselines. For Apollo, Apollo-mini, 8-bit Adam and Galore,
we cite the number from Zhu et al. (2024).

Method Mem. 40K 80K 120K 150K
8-bit Adam (7B) 26G 18.09 15.47 14.83 14.61
8-bit Galore (7B) 18G 17.94 15.39 14.95 14.65
Apollo (7B) 15.03G 17.55 14.39 13.23 13.02
Apollo-mini (7B) 13.53G 18.03 14.60 13.32 13.09
SinkGD (1B) 2.98G 16.44 14.27 13.17 12.97

Performance evaluation and memory efficiency analysis. The results presented in Table 1
demonstrate the effectiveness of SinkGD in terms of both computational efficiency and model
performance. Notably, SinkGD achieves competitive performance while maintaining the lowest
estimated memory consumption, comparable to that of SGD. Across all evaluated models, our method
performs on par with or even surpasses Adam and other memory-efficient baselines in terms of
test perplexity. In particular, SinkGD outperforms all other baselines in this experimental setup
for the 350M and 1.3B model variants. Additionally, we quantify the computational efficiency of
SinkGD by measuring the speed-up relative to Adam. This is determined by computing the ratio
of the total training steps of Adam to the number of steps needed for SinkGD to reach the same
final test perplexity. Note also that the reported memory consumption values in Table 1 account for
three components: (1) memory allocated for model parameters, (2) optimizer-related costs for linear
modules within transformer blocks, and (3) Adam’s memory footprint for remaining parameters.

8

Table 3: Raw and effective throughput analysis.
Method Raw / eff. throughput
Adam 53047 / 53047 (tokens/s)
SinkGD 57982 / 161769 (tokens/s)

Comparative analysis of 1B and 7B LLaMA training. To further evaluate the efficacy of our
proposed optimizer, we replicate the experimental setup of Zhu et al. (2024), but instead train a
1B-parameter LLaMA model using SinkGD and compare its performance against a 7B-parameter
LLaMA model trained with Apollo, Apollo-mini, 8-bit Adam, and 8-bit Galore. As shown in Table
2, the 1B model trained with SinkGD achieves comparable test perplexities to those of the 7B model
trained with Apollo after 150K optimization steps, while incurring significantly lower costs. Notably,
training the 7B LLaMA model with Apollo requires 15 days on an 8xA100 GPU setup to complete
150K steps, whereas our approach achieves a similar loss in 3.3 days. The reported memory estimates
correspond to the total memory cost detailed in the previous paragraph.

5.2 Ablation Study

Throughput analysis. We also assess throughput when training a 1.3B-parameter model on 8xA100
GPUs. We use two metrics: (1) the raw throughput which is the number of tokens processed per
second, and (2) the effective throughput defined as the total training token used by Adam divided by
the time (in seconds) used by SinkGD to reach the same test perplexities. These metrics evaluate
the impact of the multi-normalization step on training speed, and also account for the fact that some
optimizers make more effective use of training tokens. As shown in Table 3, SinkGD achieves
competitive raw throughput compared to Adam, suggesting the multi-normalization step does not
require expensive computations. Furthermore, SinkGD exhibits a 3 × higher effective throughput
than Adam, indicating a significantly faster wall-clock time convergence.

On the effect of the number of iterations. In this experiment, we measure the effect of applying
different iterations of our proposed MultiNorm (Algorithm 1) scheme in the specific case of the
SWAN and SinkGD methods. More specifically, we train a 130M LLaMA model on C4 datasets and
compare the test perplexities obtained after 10K steps. We observe a small but consistent improvement
when using L = 5 iterations, we decide to use this number of iterations in our benchmark evaluation,
as reported in table 1.

Table 4: Comparison of the test PPLs obtained during training at 10K steps when training 130M
LLaMA model with either SWAN or SinkGD using different number of iterations in MultiNorm.

Method PPL
SWAN (L = 1) 26.79
SWAN (L = 5) 26.56
SinkGD (L = 1) 26.21
SinkGD (L = 5) 26.13

6 Related Work

Gradient Normalization. Gradient normalization has emerged as a key technique in optimization,
complementing its well-established role in forward-pass operations such as Layer Normalization
(LayerNorm) (Ba et al., 2016). LARS and LAMB (You et al., 2017, 2019) employ global normal-
ization to raw gradients and Adam’s layer-wise updates, respectively, improving convergence and
mitigating gradient pathologies in large-batch training. Apollo (Zhu et al., 2024) introduces a channel-
wise scaling approach, while SWAN (Ma et al., 2024) replaces Adam’s first-moment estimate with
normalized gradients to stabilize gradient distributions. Theoretical analyses further underscore the
importance of gradient normalization. Hazan et al. (2015) study its convergence properties in SGD,
while Cutkosky & Mehta (2020) demonstrate that incorporating momentum enhances convergence
without requiring large batches. Bernstein & Newhouse (2024) interpret normalization in certain
optimizers as a form of steepest descent under a specific norm, with SignSGD (Bernstein et al.,
2018), or standard gradient descent, serving as examples of gradient normalization. More recently,
the concurrent work of Vyas et al. considered iterative processing of gradient matrices from the
perspective of whitening.

9

Memory Efficient Optimizers. Optimizers for large-scale training can reduce memory consump-
tion primarily through two approaches: (1) low-rank approximation and (2) elimination of internal
state dependencies. Low-rank optimizers project gradients onto a reduced subspace, allowing internal
state updates within this subspace. ReLoRA (Lialin et al., 2023) periodically merges LoRA (Hu
et al., 2021) weights to restore full-rank representations. FLoRA (Hao et al., 2024) employs random
Gaussian projections, whereas GaLore (Zhao et al., 2024a) utilizes singular value decomposition
(SVD) for structured projections, further improved by Fira (Chen et al., 2024a) via a compensation
term. Apollo (Zhu et al., 2024) minimizes memory overhead using rank-1 state representations. An al-
ternative approach eliminates the need for internal states altogether. SWAN (Ma et al., 2024) removes
Adam’s first and second moments through gradient normalization and whitening. Adam-mini (Zhang
et al., 2024) reduces memory by leveraging block-wise second moment estimation. SGD-SaI (Xu
et al., 2024b) obviates Adam’s second moment by precomputing learning rate scaling. Sign-based
optimization (Chen et al., 2024c) enables large-scale training using only first-moment updates. Muon
(Jordan et al., 2024), a simplification of Shampoo (Gupta et al., 2018), accelerates large model training
via whitened first-moment updates, further demonstrating the viability of reduced-memory optimizers.
(Gong et al., 2025) unified memory-efficient optimizers under the perspective of structured Fisher
information approximation, and proposed low rank approximation with error corrections to reduce
memory and accelerate computation.

Alternating Projection. Many iterative fixed-point algorithms employ alternating updates to en-
force constraints or refine estimates. A classical example is the Von Neumann algorithm Von Neumann
(1950), which alternates projections onto affine subspaces and converges to their intersection. The
Sinkhorn algorithm Sinkhorn & Knopp (1967) similarly alternates row and column normalizations,
which can be seen as Bregman projections Benamou et al. (2015) onto affine spaces, to approximate
entropy-regularized optimal transport. While effective in Hilbert spaces, these algorithms do not
generalize to arbitrary convex sets. Dykstra’s algorithm Dykstra (1983) extends these methods by in-
troducing correction terms, ensuring convergence to the exact projection. More generally, alternating
projection methods have been extended through Pierra’s product space reformulation Pierra (1984),
as well as modern techniques like ADMM Boyd et al. (2011) and block-coordinate methods Tibshi-
rani (2017) in large-scale optimization. Despite these theoretical advances, extending alternating
projection methods to non-convex settings remains a significant challenge. Recent progress includes
manifold-based projection methods Lewis & Malick (2008), and proximal alternating techniques Bolte
et al. (2014), which aim to improve convergence in non-convex problems, yet a comprehensive theory
for convergence remains an open question.

7 Conclusion.

In this work, we introduced gradient multi-normalization, a novel optimizer design framework. Our
approach formalizes gradient matrix processing as the normalization of stochastic gradients with
respect to multiple norms, and we propose an alternating optimization procedure to achieve this
normalization efficiently. We establish that our multi-normalization scheme can approximate, to
arbitrary precision, a fixed point of the optimization problem, thereby ensuring that the gradient is ap-
propriately scaled according to both norms. Using this principle, we developed SinkGD, a lightweight
matrix optimizer with reduced computational cost while retaining the same memory footprint as SGD.
Experiments on pretraining LLaMA models with up to 1B parameters demonstrate a strong speedup
over Adam with significantly reduced memory requirements. Open questions for future research
include: 1, understanding the mathematical mechanisms of how gradient multi-normalization enables
the removal of EMA states, and when such approaches will fail; 2, the understanding of the theoretical
properties of multi-normalization-based optimization; and 3, extending the applicability of gradient
multi-normalization to other training tasks beyond LLM pre-training, as well as its scalability to
frontier model size training regimes.

10

References
Ba, J., Kiros, J. R., and Hinton, G. E. Layer normalization. ArXiv, abs/1607.06450, 2016. URL
https://api.semanticscholar.org/CorpusID:8236317.

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. Iterative bregman projections for
regularized transportation problems. SIAM Journal on Scientific Computing, 37(2):A1111–A1138,
2015.

Bernstein, J. and Newhouse, L. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anandkumar, A. signsgd: Compressed optimisa-
tion for non-convex problems. In International Conference on Machine Learning, pp. 560–569.
PMLR, 2018.

Bolte, J., Sabach, S., and Teboulle, M. Proximal alternating linearized minimization for nonconvex
and nonsmooth problems. Mathematical Programming, 146(1):459–494, 2014.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends® in Machine
learning, 3(1):1–122, 2011.

Carlson, D., Cevher, V., and Carin, L. Stochastic spectral descent for restricted boltzmann machines.
In Artificial Intelligence and Statistics, pp. 111–119. PMLR, 2015.

Chambolle, A. and Pock, T. A first-order primal-dual algorithm for convex problems with applications
to imaging. Journal of mathematical imaging and vision, 40:120–145, 2011.

Chen, X., Feng, K., Li, C., Lai, X., Yue, X., Yuan, Y., and Wang, G. Fira: Can we achieve full-rank
training of llms under low-rank constraint? arXiv preprint arXiv:2410.01623, 2024a.

Chen, X., Feng, K., Li, C., Lai, X., Yue, X., Yuan, Y., and Wang, G. Fira: Can we achieve full-
rank training of llms under low-rank constraint?, 2024b. URL https://arxiv.org/abs/2410.
01623.

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Pham, H., Dong, X., Luong, T., Hsieh, C.-J.,
Lu, Y., et al. Symbolic discovery of optimization algorithms. Advances in neural information
processing systems, 36, 2024c.

Cutkosky, A. and Mehta, H. Momentum improves normalized sgd. In International conference on
machine learning, pp. 2260–2268. PMLR, 2020.

De La Harpe, P. On hilbert’s metric for simplices. Geometric group theory, 1:97–119, 1993.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Yang, A., Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravankumar, A., Korenev, A.,
Hinsvark, A., Rao, A., Zhang, A., Rodriguez, A., Gregerson, A., Spataru, A., Rozière, B., Biron,
B., Tang, B., Chern, B., Caucheteux, C., Nayak, C., Bi, C., Marra, C., McConnell, C., Keller, C.,
Touret, C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Allonsius, D., Song, D., Pintz, D.,
Livshits, D., Esiobu, D., Choudhary, D., Mahajan, D., Garcia-Olano, D., Perino, D., Hupkes, D.,
Lakomkin, E., AlBadawy, E., Lobanova, E., Dinan, E., Smith, E. M., Radenovic, F., Zhang, F.,
Synnaeve, G., Lee, G., Anderson, G. L., Nail, G., Mialon, G., Pang, G., Cucurell, G., Nguyen, H.,
Korevaar, H., Xu, H., Touvron, H., Zarov, I., Ibarra, I. A., Kloumann, I. M., Misra, I., Evtimov,
I., Copet, J., Lee, J., Geffert, J., Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J.,
Billock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J.,
Park, J., Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani, K., Plawiak, K., Li, K.,
Heafield, K., and Stone, K. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.

Dykstra, R. L. An algorithm for restricted least squares regression. Journal of the American Statistical
Association, 78(384):837–842, 1983.

Franklin, J. and Lorenz, J. On the scaling of multidimensional matrices. Linear Algebra and its
applications, 114:717–735, 1989.

11

https://api.semanticscholar.org/CorpusID:8236317
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/2410.01623

Gao, K., Huang, Z.-H., Liu, X., Wang, M., Wang, S., Wang, Z., Xu, D., and Yu, F. Eigenvalue-
corrected natural gradient based on a new approximation. Asia-Pacific Journal of Operational
Research, 40(01):2340005, 2023.

Gong, W., Scetbon, M., Ma, C., and Meeds, E. Towards efficient optimizer design for llm via
structured fisher approximation with a low-rank extension. arXiv preprint arXiv:2502.07752, 2025.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Preconditioned stochastic tensor optimization, 2018.
URL https://arxiv.org/abs/1802.09568.

Hao, Y., Cao, Y., and Mou, L. Flora: Low-rank adapters are secretly gradient compressors. ArXiv,
abs/2402.03293, 2024. URL https://api.semanticscholar.org/CorpusID:267412117.

Hazan, E., Levy, K., and Shalev-Shwartz, S. Beyond convexity: Stochastic quasi-convex optimization.
Advances in neural information processing systems, 28, 2015.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., and Chen, W. Lora:
Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Huang, L., Zhou, Y., Zhu, F., Liu, L., and Shao, L. Iterative normalization: Beyond standardization
towards efficient whitening. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4874–4883, 2019.

Jordan, K., Jin, Y., Boza, V., You, J., Cecista, F., Newhouse, L., and Bernstein, J. Muon: An optimizer
for hidden layers in neural networks, 2024. URL https://kellerjordan.github.io/posts/
muon/.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In ICLR (Poster), 2015.

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L., Andersch, M., Shoeybi, M., and Catanzaro, B.
Reducing activation recomputation in large transformer models. Proceedings of Machine Learning
and Systems, 5:341–353, 2023.

Kunstner, F., Chen, J., Lavington, J. W., and Schmidt, M. Noise is not the main factor behind
the gap between sgd and adam on transformers, but sign descent might be. arXiv preprint
arXiv:2304.13960, 2023.

Kunstner, F., Yadav, R., Milligan, A., Schmidt, M., and Bietti, A. Heavy-tailed class imbalance and
why adam outperforms gradient descent on language models. arXiv preprint arXiv:2402.19449,
2024.

Lewis, A. S. and Malick, J. Alternating projections on manifolds. Mathematics of Operations
Research, 33(1):216–234, 2008.

Li, P., Xie, J., Wang, Q., and Gao, Z. Towards faster training of global covariance pooling networks
by iterative matrix square root normalization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 947–955, 2018.

Lialin, V., Shivagunde, N., Muckatira, S., and Rumshisky, A. Relora: High-rank training through
low-rank updates. In International Conference on Learning Representations, 2023. URL https:
//api.semanticscholar.org/CorpusID:259836974.

Ma, C., Gong, W., Scetbon, M., and Meeds, E. Swan: Sgd with normalization and whitening enables
stateless llm training, 2024. URL https://arxiv.org/abs/2412.13148.

Pierra, G. Decomposition through formalization in a product space. Mathematical Programming, 28:
96–115, 1984.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero: Memory optimizations toward training
trillion parameter models. In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

12

https://arxiv.org/abs/1802.09568
https://api.semanticscholar.org/CorpusID:267412117
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://api.semanticscholar.org/CorpusID:259836974
https://api.semanticscholar.org/CorpusID:259836974
https://arxiv.org/abs/2412.13148
http://jmlr.org/papers/v21/20-074.html

Rockafellar, R. T. Conjugate duality and optimization. SIAM, 1974.

Sinkhorn, R. A relationship between arbitrary positive matrices and doubly stochastic matrices. The
annals of mathematical statistics, 35(2):876–879, 1964.

Sinkhorn, R. and Knopp, P. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–348, 1967.

Song, Y., Sebe, N., and Wang, W. Fast differentiable matrix square root and inverse square root.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6):7367–7380, 2022.

Tibshirani, R. J. Dykstra’s algorithm, admm, and coordinate descent: Connections, insights, and
extensions. Advances in Neural Information Processing Systems, 30, 2017.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

Von Neumann, J. Functional operators: Measures and integrals, volume 1. Princeton University
Press, 1950.

Vyas, N., Zhao, R., Morwani, D., Kwun, M., and Kakade, S. Improving soap using iterative whitening
and muon.

Watson, G. A. Characterization of the subdifferential of some matrix norms. Linear Algebra Appl,
170(1):33–45, 1992.

Xu, M., Xiang, L., Cai, X., and Wen, H. No more adam: Learning rate scaling at initialization is all
you need, 2024a. URL https://arxiv.org/abs/2412.11768.

Xu, M., Xiang, L., Cai, X., and Wen, H. No more adam: Learning rate scaling at initialization is all
you need. arXiv preprint arXiv:2412.11768, 2024b.

You, Y., Gitman, I., and Ginsburg, B. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli, S., Song, X., Demmel, J., Keutzer, K.,
and Hsieh, C.-J. Large batch optimization for deep learning: Training bert in 76 minutes. arXiv
preprint arXiv:1904.00962, 2019.

Zhang, B. and Sennrich, R. Root mean square layer normalization. Advances in Neural Information
Processing Systems, 32, 2019.

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S., Kumar, S., and Sra, S. Why are adaptive
methods good for attention models? Advances in Neural Information Processing Systems, 33:
15383–15393, 2020.

Zhang, Y., Chen, C., Li, Z., Ding, T., Wu, C., Ye, Y., Luo, Z.-Q., and Sun, R. Adam-mini: Use fewer
learning rates to gain more. arXiv preprint arXiv:2406.16793, 2024.

Zhao, J., Zhang, Z. A., Chen, B., Wang, Z., Anandkumar, A., and Tian, Y. Galore: Memory-
efficient llm training by gradient low-rank projection. ArXiv, abs/2403.03507, 2024a. URL
https://api.semanticscholar.org/CorpusID:268253596.

Zhao, R., Morwani, D., Brandfonbrener, D., Vyas, N., and Kakade, S. Deconstructing what makes a
good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

Zhu, H., Zhang, Z., Cong, W., Liu, X., Park, S., Chandra, V., Long, B., Pan, D. Z., Wang, Z., and Lee,
J. Apollo: Sgd-like memory, adamw-level performance. arXiv preprint arXiv:2412.05270, 2024.

13

https://arxiv.org/abs/2412.11768
https://api.semanticscholar.org/CorpusID:268253596

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: our abstract summarized main theoretical contributions (new scheme general-
izing SWAN), methodological contribution (new optimizer derived from the scheme), and
empirical findings.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we have briefly discussed limitations in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [Yes]
Justification: for all theoretical results clearly stated assumptions and provided proofs in
supplementary materials.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: our main results used the exact standardized benchmark setup introduced in
Zhao et al. (2024a). Methods introduced in this paper will be integrated into an opensource
repo.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: our main results used the exact standardized benchmark setup introduced in
Zhao et al. (2024a), where research code/dataset/configs habe been open sourced. Methods
introduced in this paper will be integrated into an opensource repo.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: in Appendix we have discussed experimental settings and hyperparameters in
detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: note that error bars are uncommon for LLM pre-training experiments due to
its computational demanding nature. However, the gap between our method and baselines
are non-trivial. For example, the validation PPL difference between ours and Adam on 1.3B
model is around 2, which is usually considered as very significant.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we have provided details on compute types (A100).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: research presented in the paper is purely methodological and were conducted
with only theoretical derivations and standardized benchmark experiments.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

17

https://neurips.cc/public/EthicsGuidelines

Justification: we focus on fundamental research on optimization and does not have negative
social impacts such as unintended uses, security, privacy issues. In the long run a potential
social impact would be making the LLM training more economic and sustainable for the
society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: no models/datasets where released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we mainly use the LLaMA architecture and C4 dataset, both were correctly
credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.

18

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: our paper concerns fundamental research in methodology and does not release
dataset/code/model.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.

19

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: the core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Implementation details

General setup We describe the implementation setups for the LLM pre-training tasks. To enable a
more straightforward and comparable analysis, we simply replicate the setting of Zhao et al. (2024a),
under exactly the same model configs and optimizer hyperparameter configs, whenever possible. This
includes the same model architecture, tokenizer, batch size, context length, learning rate scheduler,
learning rates, subspace scaling, etc.

Precision All baselines uses BF16 for model weights, gradients, and optimizer states storage. For
SWAN and SWAN†, we follow the original paper and use FP32 in there whitening step.

Learning rate scheduling we use exactly the same scheduler as in Zhao et al. (2024a) for all
methods.

Hyperparameters Since SinkGD utilizes matrix-level operations on gradients, it can only be
applied to 2D parameters. Therefore, in our experiments, we only apply SinkGD on all linear
projection weights in transformer blocks. Similar to Galore (Zhao et al., 2024a), the rest of the
non-linear parameters still uses Adam as the default choice. Therefore, we follow the learning rate
setup of Galore, where we fix some global learning rate across all model sizes and all modules. Then,
for the linear projection modules where SinkGD is applied, we simply apply a scaling factor α on
top of the global learning rate. For all SinkGD, we adopt a lazy-tuning approach (hyperparameters
are set without extensive search), as detailed below. This helps to reduce the possibility of unfair
performance distortion due to excessive tuning.

• Adam For Adam we use same learning rate tuning procedure as suggested by
Zhao et al. (2024a) and Ma et al. (2024) (i.e., performing grid search over
{0.01, 0.005, 0.001, 0.0005, 0.0001}). We found that the optimal learning rates for Adam
is 0.001. The only exception is that for a model of size 1.3B: as we already know that a
larger model requires smaller learning rates, we conduct a learning search for Adam over a
smaller but more fine-grained grid of {0.001, 0.0007, 0.0005, 0.0003, 0.0001}. As a result,
the optimal learning rate found for Adam on 1.3B is 0.0007. Other hyperparameters of
Adam (β1, β2, ϵ etc) follows the implementation of (Zhao et al., 2024a), that is, we use
β1 = 0.9, β2 = 0.999. We also perform further ablation on extensive grid-search over all
hyperparameters, see Appendix D.1.

• SWAN†, is the tuned version of SWAN presented in Ma et al. (2024). The original results of
SWAN from Ma et al. (2024) assumes no learning rate warm-up and no learning rate tuning,
in order to demonstrate the robustness of the method. This setting is more challenging than
the setting of the usual literature (Zhao et al., 2024a; Zhu et al., 2024). Hence, for fair
comparison we relax those constraints and matches the setting of Galore and Apollo: we
now allow learning rate warm-up (set to the same as Adam and Apollo), as well as larger
learning rates for SWAN. This improved version of SWAN is denoted by SWAN†. We use
a global learning rate of 0.02, as well as the scaling factor α = 0.05. This is selected by
simply searching the learning rate over a constraint grid {0.01, 0.02, 0.05}, and then setting
α = 0.05 such that the effective learning rate is scaled back to 0.001. Finally, for other
hyperparameters, we follow Ma et al. (2024).

• Finally, SinkGD, we use the same global learning rate of 0.02, as well as the scaling factor
α = 0.05 which are the same as SWAN†, across all model sizes. We suspect with more
careful tuning, its performance can be significantly improved; however, this is out of the
scope of the paper. For SR-Sinkhorn(∇, L) operation used in SinkGD, we simply use 5
steps.

21

B Proofs

B.1 Proof of Lemma 3.5

Proof. Let us assume that ∥Pg(x)∥2 = c and so for any x. Then we have that:

∥∥Pg ◦ Pg(x)∥2∥Pg(x)∥2 ≥ g∗(Pg(x)) := ⟨Pg ◦ Pg(x),Pg(x)⟩
≥ sup
z: g(z)≤1

⟨z,Pg(x)⟩

where the first inequality follows from Cauchy–Schwarz and the second inequality follows from the
definition of Pg . Now recall by definition, that g(Pg(x)) ≤ 1, and therefore we can select z = Pg(x)
in the right inequality which gives:

∥Pg ◦ Pg(x)∥2∥Pg(x)∥2 ≥ g∗(Pg(x))
≥ ∥Pg(x)∥22

However because ∥Pg ◦ Pg(x)∥2 = ∥Pg(x)∥2 = c, we obtain that

g∗(Pg(x)) = ∥Pg(x)∥22
and by optimality, we also deduce that Pg ◦ Pg(x) = Pg(x).

B.2 Proof of Thoerem 3.6

Proof. First observe that thanks to Lemma 3.5, we have for any n ≥ 1:

∥xn∥22 = g∗1(x2n−1) = g∗2(x2n) = c2 (9)

where g∗1 and g∗2 are the dual norms of g1 and g2 respectively. We also have that for n ≥ 1

g2(x2n) ≤ 1, g1(x2n+1) ≤ 1 (10)

by definition of the normalized projections. We even have

g2(x2n) = g1(x2n+1) = 1

by optimality of the normalized projections. Let assume now that n ≥ 2 is even, then we have that:

⟨xn+1, xn⟩ = ⟨Pg1(xn), xn⟩ = g∗1(xn)

≥ ⟨z, xn⟩ ∀ z ∈ B1(0d)

where Bg1(0d) is the unit ball centered in 0d associated to the norm g1 and the inequality follows
from the definition of Pg1 . In particular by taking z = xn−1 = Pg1(xn−2) ∈ Bg1(0d), we obtain
that:

⟨xn+1, xn⟩ ≥ ⟨xn−1, xn⟩

A similar proof can be conducted when n is odd using the definition of Pg2 . Therefore the sequence
(⟨xn+1, xn⟩)n≥1 is increasing and bounded so it converges to a certain constant r > 0. From this
result we directly deduces that:

• (g∗1(x2n))n≥1 is monotonic increasing and converges towards r.

• (g∗2(x2n+1))n≥1 is monotonic increasing and converges towards r.

Because (x2n+1)n≥0 and (x2n)n≥0 are bounded, we can extract a common subsequence
(x2ϕ(n)+1)n≥1 and (x2ϕ(n))n≥1 that converge to some cluster points x1 and x2 respectively.

Now by continuity of the dual norms and of the inner product we obtain that:

lim
n→∞

g∗2(x2ϕ(n)+1) = g∗2(x1)

lim
n→∞

g∗1(x2ϕ(n)) = g∗1(x2)

lim
n→∞

⟨x2ϕ(n)+1, xϕ(n)⟩ = ⟨x1, x2⟩

22

However observe that these three sequences are subsequences of (⟨xn, xn+1⟩)n≥0 which converges
towards r, therefore we obtain that:

r = g∗2(x1) = g∗1(x2) = ⟨x1, x2⟩

Additionally, remark that

g∗2(x2ϕ(n)+1) = g∗2(Pg1(x2ϕ(n))) (11)

Let us now show that x2ϕ(n)+1 = Pg1(x2ϕ(n)) −−−−→
n→∞

Pg1(x2). Indeed we have that:

⟨Pg1(x2ϕ(n)), x2ϕ(n)⟩ = g∗1(x2ϕ(n)) −−−−→
n→∞

g∗1(x2)

Then, because (Pg1(x2ϕ(n)))n≥0 is bounded, we can extract a subsequence that converges towards z
such that g1(z) ≤ 1, from which follows that:

⟨z, x2⟩ = ⟨Pg1(x2), x2⟩

then by optimality of Pg1(x2) over the unit ball induced by g1, we deduce that z = Pg1(x2).
This is true for all converging sub-sequences of (Pg1(x2ϕ(n)))n≥0, therefore we have that
Pg1(x2ϕ(n)) −−−−→

n→∞
Pg1(x2), and by unicity of the limit, it follows that

x1 = Pg1(x2) .

Now from the equality g∗2(x1) = ⟨x1, x2⟩, and given the fact that g2(x2) ≤ 1 (as for all n
g2(x2ϕ(n)) ≤ 1 which is obtained from (10)), we deduce that

x2 = Pg2(x1)

thanks to the optimality of Pg2 . Now observe now that:

g∗2(x1) = g∗2(Pg1(x2)) = ⟨Pg2 ◦ Pg1(x2),Pg1(x2)⟩
= ⟨x2,Pg2(x2)⟩

where the equality follows from the fact that:

Pg2 ◦ Pg1(x2) = Pg2(x1) = x2

and the two equalities follows the previous results obtained. Therefore we obtain that

g∗2(x1) = g∗2(x2) = c2

where the last equality follows from (9). Thus, we obtain that

r = c2 = g∗2(x1) = ⟨x1, x2⟩ ≤ ∥x1∥2∥x2∥2
but from (9), ∥x1∥2 = ∥x2∥2 = c, from which follows that x1 = x2 = x, and Pg1(x) = Pg2(x) = x.
As a by-product, we also obtain that ⟨xn, xn+1⟩ −−−−→

n→∞
r = c2, and therefore ∥xn − xn−1∥22 =

2c2 − 2⟨xn, xn+1⟩ −−−−→
n→∞

0.

From the above proof, we also conclude that if y is a cluster point of (xn)n≥0, then there exists ψ
such that (xψ(n))n≥0 converges towards y that satisfies: Pg1(y) = Pg2(y) = y. Indeed this follows
simply from the fact that we can extract a subsequence of (xψ(n))n≥0 which has all indices that are
either even or odd.

Let us now show that

g1(xn) −−−−→
n→∞

1, and g2(xn) −−−−→
n→∞

1 .

Indeed for a convergent subsequence, if the subsequence has infinitely many odd indices the result is
trivial from the fact g1(x2n+1) = 1. Now if the indices are even, we obtain that g1(x2ϕ(n)) −−−−→

n→∞
g1(x), however x has to be a fixed-point so g1(x) = g1(Pg1(x)) = 1. This hold for any subsequences,
therefore we have g1(xn) −−−−→

n→∞
1. Similarly, we can apply the same reasoning for g2(xn).

Let us now show the following Lemma.

23

Lemma B.1. Let g1 and g2 two norms satisfying the same assumption as in Theorem 3.6, that is for
all x, ∥Pg1(x)∥2 = ∥Pg2(x)∥2 = c with c > 0. Then by denoting Sg the unit sphere associated to a
norm g, we have:

Sg1 ∩ Sg2 ∩ Scℓ2 = F where F := {x : Pg1(x) = Pg2(x) = x} .

Proof. Indeed F ⊂ Sg1 ∩ Sg2 ∩ Scℓ2 follows directly from the definition of Pg1 , Pg1 , and from
Assumption 3.3. Now let z ∈ Sg1 ∩ Sg2 ∩ Scℓ2 . Observe that

c2 ≥ ⟨z,P1(z)⟩ = sup
q: g1(q)=1

⟨z, q⟩

where the inequality follows from the assumption on Pg1 and from the definition of z. Then as
g1(z) = 1, we deduce that:

c2 ≥ ⟨z,P1(z)⟩ ≥ ∥z∥22 = c2

from which folows that Pg1(z) = z. Similarly we deduce that Pg2(z) = z, and thus we have
Sg1 ∩ Sg2 ∩ Scℓ2 ⊂ F .

Now observe that d(xn,Sg1) −−−−→
n→∞

0, and d(xn,Sg1) −−−−→
n→∞

0. Additionally, from (11), we have

d(xn,Scℓ2) = 0, therefore we have that d(x,Sg1 ∩ Sg2 ∩ Scℓ2) −−−−→
n→∞

0 since all these spaces are
closed, and the result follows from Lemma B.1.

C On the Convex Relaxation of Problem (4)

Given K norms, (g1, . . . , gK), in this section we are interested in solving:

argmax
z
⟨∇, z⟩ s.t. ∀ i ∈ [|1,K|], gi(z) ≤ 1 (12)

which as stated in the main paper is equivalent to solve

argmax
z
⟨∇, z⟩ s.t. ∥z∥ ≤ 1

where

∥z∥ := max
i∈[|1,K|]

gi(z) . (13)

Note that this constrained optimization problem is exactly finding the subdifferential of the dual norm
∥ · ∥. To see this, let us recall the following Lemma with its proof Watson (1992).
Lemma C.1. The subdifferential of a norm ∥ · ∥ at x is given by

∂∥ · ∥(x) = {p ∈ Rd : ∥p∥∗ ≤ 1, ⟨p, x⟩ = ∥x∥}
where the dual norm is defined as

∥x∥∗ := max
∥z∥≤1

⟨z, x⟩

Proof. We can show this result by double inclusion. Let us define the subdifferential of a norm as

∂∥ · ∥(x) := {p : ∥y∥ ≥ ∥x∥+ ⟨p, y − x⟩ ∀y}
and let us denote our set of interest as

V(x) := {p ∈ Rd : ∥p∥∗ ≤ 1, ⟨p, x⟩ = ∥x∥}

Let p ∈ V(x). Then we have

∥x∥+ ⟨p, y − x⟩ = ⟨p, y⟩
≤ ∥p∥∗∥y∥
≤ ∥y∥

24

where the first equality comes from the definition of p, the first inequality comes from Holder, and
the last one is obtained by definition of p. So we deduce that V(x) ⊂ ∂∥ · ∥(x). Let us now take
p ∈ ∂∥ · ∥(x), that is p such that for all y ∥y∥ ≥ ∥x∥+ ⟨p, y − x⟩. Then we have for all y that:

⟨p, x⟩ − ∥x∥ ≥ ⟨p, y⟩ − ∥y∥
≥ sup

y
⟨p, y⟩ − ∥y∥

≥ ∥p∥∗

where ∥ · ∥∗ is the Fenchel-Legendre transform of the norm ∥ · ∥. From Lemma C.3, we deduce that

⟨p, x⟩ − ∥x∥ ≥ 1B1(p)

where B1 is the unit ball associated with the dual norm ∥ · ∥∗. As the left-hand side is finite, we
deduce that p ∈ B1. Then we deduce that

∥x∥ ≥ ⟨p, x⟩ ≥ ∥x∥

where the left inequality is obtained by applying Holder to the inner-product, from which follows the
result.

For simple norms, such as the ℓp-norm with 1 < p ≤ +∞, obtaining an element of ∂∥ · ∥∗(∇) can
be done in closed-form. For ℓp norms, recall the their dual norm are the ℓq norms with q the dual
exponent respectively. The following Lemma provide analytic formulas for such norms.
Lemma C.2. For x ∈ Rd, let us define the ℓp-norm as

∥x∥p :=

(
d∑
i=1

|xi|p
)1/p

Case 1: 1 < p < ∞. Let us define the dual exponent q by

1

p
+

1

q
= 1.

Then the subdifferential of ∥x∥p is

∂∥x∥p =


{(
|x1|p−2x1, . . . , |xd|p−2xd

)
∥x∥ p−1

p

}
, x ̸= 0,{

g ∈ Rd : ∥g∥q ≤ 1
}
, x = 0.

Case 2: p = 1. For the ℓ1-norm, the subdifferential at x ∈ Rn is given by

∂∥x∥1 =
{
g ∈ Rn : gi = sign(xi)

}
.

Here, sign(xi) is +1 if xi > 0, −1 if xi < 0, and can be any value in [−1, 1] if xi = 0.

Case 3: p = ∞. For the ℓ∞-norm, let M = ∥x∥∞ and let us define

S(x) := {g : gi = 0 if |xi| < M, gi = sign(xi) else, ∥g∥1 = 1}

Then by denoting for any set A ⊂ Rd, conv(A) the convex hull of the set A, we have:

∂∥x∥∞ =

{
conv(S(x)) x ̸= 0,{
g ∈ Rn : ∥g∥1 ≤ 1

}
, x = 0.

However, for general norms, there are not known closed-form solutions of their associated subdiffer-
entials. In particular, if the norm is defined as in (13), even when the gi’s are simple norms (i.e. norms
for which we can compute the subdifferential of their dual norms), then no closed-form solution can
be obtained in general.

25

C.1 A Dual Perspective

In this section, we propose an algorithmic approach to solve the convex relaxation of the problem
introduced in (4). More formally, given a family of simple norms (gi)Ki=1 and some positive constants
(εi)

K
i=1, we consider the following problem:

max
dθ∈Rd

⟨∇, dθ⟩ s.t. g(dθ) ≤ 1 . (14)

where

g(x) := max
i∈[|1,K|]

gi(x)

εi

which is also a norm. For such problems, as long as ∇ ̸= 0, then the solutions lies in the level set
{dθ : g(dθ) = 1}. Even if the subdifferentials of (the dual norm of) each gi can be derived in closed
form, there is not known closed-form for the subdifferential of (the dual norm of) g. To solve (14),
we propose to consider a coordinate gradient descent on the dual. A simple application of the Fenchel
duality Rockafellar (1974) leads to the following equivalent optimization problem:

inf
λ1,...,λK

K∑
i=1

ϵig
†
i (λi) s.t. ∇L(θ) =

K∑
i=1

λi (15)

where g†i is the dual norm of gi and so for all i ∈ [|1,K|], from which a primal solution can be
recovered by simply finding yi s.t. λi > 0 and such that ⟨λi, yi⟩ = εig

†
i (yi) under the condition that

gi(yi) = εi, which is equivalent to solve:

y∗i := εi argmax
z: gi(z)≤1

⟨z, λi⟩ .

Proof. Let (Bi(ϵi))Ki=1 the ball associated with the norm (gi)
K
i=1 with radius (εi)

K
i=1 respectively.

Let us also denote for any set A ⊂ Rd, the indicator function as

1A(x) =

{
0 if x ∈ A
+∞ otherwise

In the following we denote f(x) := ⟨x,∇⟩. Then (14) can be reformulated as the following
optimization problem:

− inf
dθ
f(dθ) +

K∑
i=1

1Bi(ϵi)(dθ)

which can be again reparameterized (up to the sign) as

inf
x=yi, ∀i∈[|1,K|]

f(x) +

K∑
i=1

1Bi(ϵi)(yi)

Now the Lagrangian associated with this problem is:

F((λi)Ki=1, (yi)
K
i=1, x) :=

f(x)− ⟨x,
K∑
i=1

λi⟩+
K∑
i=1

1Bi(ϵi)(yi) + ⟨yi, λi⟩

And taking the infimum of the Lagrangian w.r.t the primal variables leads to the following optimization
problem:

inf
x
f(x)− ⟨x,

K∑
i=1

λi⟩+
K∑
i=1

inf
yi

1Bi(ϵi)(yi) + ⟨yi, λi⟩

26

Now observe that

inf
x
f(x)− ⟨x,

K∑
i=1

λi⟩ = − sup
x
⟨x,

K∑
i=1

λi⟩ − f(x)

= −f∗(
K∑
i=1

λi)

where f∗ is the Fenchel-Legendre transform of f . Similarly, we have:

inf
yi

1Bi(ϵi)(yi) + ⟨yi, λi⟩ = − sup
yi

⟨yi,−λi⟩ − 1Bi(ϵi)(yi)

= −1∗
Bi(ϵi)

(−λi)

Finally the dual of the problem is:

sup
λ1,...,λK

−f∗(
K∑
i=1

λi)−
K∑
i=1

1∗
Bi(ϵi)

(−λi)

Now recall that f(x) := ⟨x,∇⟩, therefore we have that

f∗(x) = 1{∇}(x)

Also, we have that

1∗
Bi(ϵi)

(x) = εig
†
i (x)

where g†i is the dual norm of gi, from which it follows the final dual formulation:

inf
λ1,...,λK

K∑
i=1

ϵig
†
i (λi) s.t. ∇L(θ) =

K∑
i=1

λi.

Finally, Slater condition are verified, thus strong duality holds, and the KKT conditions gives the
following primal-dual conditions: 

∇L(θ) =
∑K
i=1 λi

λi ∈ ∂1Bi(εi)(yi) ∀i
x = yi ∀i

Now according to Lemma C.4, we have that

∂1Bi(εi)(x) =


{0} if gi(x) < εi
∅ if gi(x) > εi
{p : ⟨p, x⟩ = εig

†
i (p)} if gi(x) = εi

from which follows that one can recover a primal solution by simply finding yi s.t. λi > 0 and such
that ⟨λi, yi⟩ = εig

†
i (yi) under the condition that gi(yi) = εi, which is equivalent to solve:

y∗i := εi argmax
z: gi(z)≤1

⟨z, λi⟩ .

To solve the dual problem introduced in (15), we apply a coordinate gradient descent on the λi. More
precisely, we can reformulate the problem as an unconstrained optimization one by considering:

inf
λ2,...,λK

ϵ1g
†
1

(
∇L(θ)−

K∑
i=2

λi

)
+

K∑
i=2

ϵig
†
i (λi)

27

Algorithm 5 Primal-Dual Algorithm to solve (16)

Input: βk ∈ Rd, ϵ1, ϵk > 0, η1, η2 > 0, s.t. η1η2 < 1.
Initialize λ = z = u = 0d.
for i = 1 to L do
λold ← λ
z ← projB1(ϵ1)

(z + η1(u− βk))
λ← proxη2ϵkg†k(λ− η2z)
u← 2λ− λold

end for
Return λ

Starting with λ(0)2 = · · · = λ
(0)
K = 0d, we propose to apply the following updates at time t ≥ 0 and

so for all k ∈ [|2,K|]:

λ
(t+1)
k = argmin

λk

ϵ1g
†
1

(
β
(t)
k − λk

)
+ ϵkg

†
k(λk) (16)

where β(t)
k := ∇L(θ)−

∑
i̸=k

λ
(t)
i . In order to solve (16), we leverage the so-called Chambolle-Pock

algorithm Chambolle & Pock (2011). Let us denote h1(λ) := ε1g
†
1(β

(t)
k − λ) and hk(λ) := εkg

†
k(λ).

Then we can write

inf
λ
h1(λ) + hk(λ) = inf

λ
hk(λ) + sup

z
⟨z, λ⟩ − h∗1(z)

= inf
λ

sup
z
⟨z, λ⟩ − h∗1(z) + hk(λ)

where h∗1 is the Fenchel-Legendre transform of h1 given by h∗1(x) = ⟨x, β
(t)
k ⟩+ 1B1(ϵ1)(x) where

B1(ϵ1) is the ball induced by the norm g1 of radius ε1. We are now ready to present the Chambolle-
Pock algorithm for our setting as presented in Algorithm 5. This algorithm requires to have access
to the projection operation w.r.t the norm g1 and the proximal operator w.r.t the norm g†k, that is, it
requires to have access to:

projB1(ε1)
(x) := argmin

z: g1(z)≤ε1
∥z − x∥2

proxλg†k(x) := argmin
z

∥z − x∥22
2

+ λg†k(z)

Computing proximal and projection operators of norms and their duals can also be done using the
Moreau decomposition property which states that:

proxf (x) + proxf∗(x) = x

in particular if f := ∥ · ∥ is a norm, we have:

prox∥·∥(x) + projB∗(1)
(x) = x

where B∗(1) is the unit ball of the dual norm of ∥ · ∥. Finally, the full coordinate gradient scheme is
presented in Algorithm 6 which returns a solution of the primal problem defined in (12).

Lemma C.3. Let ∥ · ∥ be a norm on Rd with dual norm ∥x∥∗ := maxz:∥z∥≤1⟨z, x⟩, then the Fenchel-
Legendre transform of ∥ · ∥ is the indicator function of the unit ball induced by its dual norm. More
formally, we have

sup
z∈Rd

⟨z, x⟩ − ∥z∥ =
{
0 if ∥x∥∗ ≤ 1

+∞ otherwise

28

Algorithm 6 Coordinate Gradient Descent to solve (15)

Input: the gradient∇L(θ) and ϵ1, . . . , ϵK > 0
Initialize λ2 = · · · = λK = 0d.
for t = 1 to T do

for k = 2 to K do
β
(t)
k ← ∇L(θ)−

∑
i ̸=k

λ
(t)
i

λ
(t+1)
k ← argminλ h1(λ) + hk(λ) with Alg. 5

end for
end for
Find k such that λk > 0
Return x∗ := εk argmax

z: gk(z)≤1

⟨z, λk⟩

Proof. Using the fact that ∥x∥ = supz:∥z∥∗≤1⟨z, x⟩, we have:

sup
z∈Rd

⟨z, x⟩ − ∥z∥ = max
z∈Rd
⟨z, x⟩ − sup

y:∥y∥∗≤1

⟨y, z⟩

= sup
z∈Rd

inf
y:∥y∥∗≤1

⟨z, x− y⟩

= inf
y:∥y∥∗≤1

sup
z∈Rd

⟨z, x− y⟩

= inf
y:∥y∥∗≤1

{
0 if y = x

+∞ otherwise

which gives the desired result. Note that the third equality follows from Sion’s minimax theorem.

Lemma C.4. Let ∥ · ∥ a norm on Rd and ε > 0. Then we have:

∂1B(ε)(x) =


{0} if ∥x∥ < ε

∅ if ∥x∥ > ε

{p : ⟨p, x⟩ = ε∥p∥∗} if ∥x∥ = ε

where ∥ · ∥∗ is the dual norm of ∥ · ∥, and B(ε) is the ball of radius ε w.r.t the norm ∥ · ∥.

Proof. Recall that the definition of the subdifferential is:

∂1B(ε)(x) := {p : 1B(ε)(y) ≥ 1B(ε)(x) + ⟨p, y − x⟩ ∀y}

If ∥x∥ < ε, then we have that p must satisfy for all y ∈ B(ε):

⟨p, y − x⟩ ≤ 0

By taking γ sufficiently small we can therefore choose y = x+ γ p
∥p∥2

∈ B(ε) which leads to

γ∥p∥2 ≤ 0

which is only true for p = 0 as γ can be selected to be negative or positive. Now if ∥x∥ > ε, then the
subdifferential is clearly empty. Finally, let us consider the case where ∥x∥ = ε. We deduce that:

⟨p, x⟩ ≥ ⟨p, y⟩ − 1B(ε)(y)

and so for all y. Therefore we obtain that

⟨p, x⟩ ≥ sup
y
⟨p, y⟩ − 1B(ε)(y)

= ε∥p∥∗
But we also have that:

ε∥p∥∗ = ∥p∥∗∥x∥ ≥ ⟨p, x⟩

from which follows that ⟨p, x⟩ = ε∥p∥∗ which conclude the proof.

29

D Further ablations

D.1 On Adam hyperparameters sweep

In our main results presented in Section 5, the hyperparameters of Adam (β1, β2, ϵ etc) follows the
setups of (Zhao et al., 2024a). Moreover, weight decay is not used. Below, we further fine-tune those
hyperparameters and comapare with our method. We conducted an additional parameter sweep for lr,
β1, β2, weight decay, and ϵ specifically for the 1B model scale, and obtained the following optimal
values:

• Learning rate: 0.0007
• Betas: (0.9, 0.95)
• ϵ: 1e-8
• Weight decay: 0.1 (we observed that a weight decay of 0.1 outperforms no weight decay,

though we did not perform an exhaustive search)

We further trained the 1B model on 20B tokens using Adam with these optimal settings and our
method. Apart from hyperparameters, the general training setup still follows Zhao et al. (2024a). The
following table summarizes the test loss (lower is better) at various training steps:

Table 5: Comparison of the test loss obtained during training when training 1B LLaMA with SinkGD
v.s. 1B LLaMA under optimally tuned Adam.

Method 40K 80K 120K 150K
Adam 2.880 2.728 2.659 2.651
SinkGD 2.799 2.658 2.578 2.561

For our method, we still use the default parameter setting described in Appendix A. Our method
still outperforms Adam by a large margin despite we spent much more compute to sweep the Adam
hyperparameters.

30

	Introduction
	Background
	From Adam to Stateless Optimizers
	Steepest Descent as Gradient Normalization

	Multi-Normalized Gradient Descent
	Gradient Multi-Normalization
	On the Convergence of MultiNorm
	MNGD: a New Family of Stateless Optimizers.

	Sinkhorn: a Multi-Normalization Procedure
	Experimental Results
	LlaMA Pre-training Tasks
	Ablation Study

	Related Work
	Conclusion.
	Implementation details
	Proofs
	Proof of Lemma 3.5
	Proof of Thoerem 3.6

	On the Convex Relaxation of Problem (4)
	A Dual Perspective

	Further ablations
	On Adam hyperparameters sweep

