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ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time
novel view synthesis. As an explicit representation optimized through gradient
propagation among primitives, optimization widely accepted in deep neural net-
works (DNNs) is actually adopted in 3DGS, such as synchronous weight updating
and Adam with the adaptive gradient. However, considering the physical signif-
icance and specific design in 3DGS, there are two overlooked details in the opti-
mization of 3DGS: (i) update step coupling, which induces optimizer state rescal-
ing and costly attribute updates outside the viewpoints, and (ii) gradient coupling
in the moment, which may lead to under- or over-effective regularization. Never-
theless, such a complex coupling is under-explored. After revisiting the optimiza-
tion of 3DGS, we take a step to decouple it and recompose the process into: Sparse
Adam, Re-State Regularization and Decoupled Attribute Regularization. Taking
a large number of experiments under the 3DGS and 3DGS-MCMC frameworks,
our work provides a deeper understanding of these components. Finally, based on
the empirical analysis, we re-design the optimization and propose AdamW-GS by
re-coupling the beneficial components, under which better optimization efficiency
and representation effectiveness are achieved simultaneously.

1 INTRODUCTION

Novel view synthesis is a fundamental task in both computer graphics and computer vision. Ow-
ing to its highly parallelized design and efficient use of GPU, 3DGS ( , ) leverages
explicit primitive-based representations to achieve significantly higher efficiency than implicit rep-
resentation NeRF ( , ), while still delivering competitive reconstruction quality.
3DGS sparks a wave of research and rapid extensions to various downstream applications (

> 5 > > ’ )‘

As a representation directly optimized via backpropagation, 3DGS inherits the Adam (

) from DNNSs, and in default attributes of all primitives are updated simultaneously within each
iteration, which we call synchronous optimization in this work. Given the viewpoint relationship,
an ideal scenario is that the optimization of primitives is guided by gradients from visible viewpoints
in different directions. However, upon closer examination, we observe that even when primitives are
invisible under a given viewpoint and their gradients are set to zero, the update-step coupling in-
duced by Adam and synchronous optimization implicitly rescales the optimizer state and causes
updating in these invisible viewpoints. From the perspective of optimization efficiency, (

, ) introduces Sparse Adam, which restricts updates to primitives visible under viewpoints
while filtering out those invisible with zero gradients, thereby enabling asynchronous optimization.
Nevertheless, this optimizer has not been widely adopted, since its efficiency gains come at the ex-
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pense of degraded performance. However, we think that such a viewpoint-related optimizer remains
promising, with the current limitation lying in the insufficient recognition of update-step coupling.

Furthermore, previous study ( , ) in DNNSs points out the gradient coupling
in Adam makes the regularization unstable. In current 3DGS, a variety of regularization losses (

, ) are introduced to improve reconstruction quality or mitigate redundancy'. With limited
regularization intensity controlled via adaptive gradients and decoupled from the photometric loss,
a natural question arises as to whether existing regularization is appropriately effective. In practice,
the regularization loss is thought to be controlled through hyperparameters, yet it remains unclear
whether they provide sufficient flexibility. Moreover, can further decoupling enable more precise
control over regularization itself? In this work, we focus on opacity and scaling regularization, which
are closely tied to reconstruction quality in the 3DGS-MCMC framework ( , )
and redundancy removal in the vanilla 3DGS framework ( , ). Prior studies
have shown that the densification stage often produces a large number of redundant primitives (

s ), while the framework lacks a native mechanism to automatically remove them. Even
with opacity regularization, existing pipelines usually rely on additional pruning operations or direct
modifications to the densification process. However, if regularization can be well recomposed, is it
possible to achieve redundancy removal without resorting to such extra pruning operations?

Considering the coupling in 3DGS optimization, this work takes a step to decouple it and recom-
pose it. Building on the analysis, the optimization is then redesigned to improve efficiency and/or
reconstruction quality. To summarize, our contributions are:

* Reanalyzing the complex coupling during 3DGS optimization, we take a step to decouple it and
recompose it into 3 effective components: Sparse Adam, Re-State Regularization and Decoupled
Attribute Regularization.

* We take a step to explore the contribution of them, including the characteristic of Sparse Adam,
activation of regularization, role of the regularization hyperparameter, risk of implicit update and
necessity of controllable regularization as well as exploration.

» Based on the experiments and analysis, we propose the AdamW-GS with controllable attribute
regularization and adopt it into vanilla 3DGS, 3DGS-MCMC and more variants. Experiments
show that our optimization method yields better reconstruction quality and optimization efficiency,
and significantly reduces redundancy in 3DGS without introducing additional pruning operations.

2 RELATED WORK

“Coupling” in 3DGS Optimization: 3DGS commonly inherits the Adam optimizer from DNNs.
However, its synchronous optimization causes primitives in invisible viewpoints to undergo over-
looked update steps. Sparse Adam ( , ) introduces asynchronous updates that
improve efficiency, yet the insufficient recognition of update-step coupling results in degraded per-
formance. Regularization in 3DGS is also coupled with the photometric loss, akin to L2 weight regu-
larization in adaptive gradient algorithms for DNNs. As analyzed in AdamW (

), the coupling of adaptive gradients in Adam makes the effective strength of regularlzatlon
governed by the second moment, thereby motivating weight decay decoupling. A similar idea is re-
flected in ( , ), which—though not explicitly designed for decoupling—replaces
opacity reset in vanilla 3DGS with a constant opacity decay during densification, effectively con-
structing an AdamW-style optimizer. Nevertheless, this approach neglects the physical properties
of opacity and the varying significance of individual primitives. The central contribution of this
work is to further decouple and recompose 3DGS optimization and, through this process, reinterpret
redundancy in 3DGS and reconstruction quality in 3DGS-MCMC from an optimization perspective.

Redundancy during Optimization: Typlcally, 3DGS requires careful treatment of the special pro-

cess of primitive generation and pruning (or death ( , ).

Current studies generally observe that optimization produces abundant redundant primitives, while

pruning (in adaptive density control ( , )) alone remains insufficient to eliminate them.

Four main strategies have been proposed to address this redundancy: (1) Densification refinement

( s ; R ; s ); (2) Hand-crafted criterion ( s
; , ; , ); (3) Learning-based pruning ( , ;

'Redundancy is strictly defined as minimizing active primitives without sacrificing reconstruction quality.
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s ; s ). More details can be found in Sec. H. (4) Optimization-related
operations: Optimization together with additional opacity L1 regularization has become a common
technique for redundancy removal, even extending beyond Efficient 3DGS tasks ( ,

b} s b} s s ) ] ’ )'

3  PRELIMINARY: 3DGS(-MCMC) AND ADAM

3DGS approximates the radiance field of a target scene using a set of Gaussian primitives param-
eterized by location, opacity (o), scale (s), and other attributes, and renders images from given
viewpoints via alpha blending. Further details are provided in Appendix Sec. D.

Typically, the training pipeline can be divided into densification and pure optimization (P-Op).
During densification, new primitives are generated to enhance scene representation while redundant
ones are pruned (low-opacity primitives are removed) ( , ), or new primitives are sam-
pled from existing primitives while dead primitives are reallocated to new locations (

, ). After densification, there is a P-Op stage, during which only gradient propagation and
attribute updates occur. In this training pipeline, photometric loss (left in Eq.1) is adopted with Adam
optimizer. For 3DGS-MCMC, extra regularization loss in Eq. | is utilized to promote respawning.

L=(1=M)Li+MLpssim + Aololi + As|s]1 )

photometric loss: £ regularization loss: R

In this work, ¢ and R denote photometric loss and any regularization, while V¢ and VR are the
corresponding gradient.

Adam is the first-order stochastic optimization method that adaptively estimates moment statistics
of the gradients. Specifically, it maintains exponential moving averages of the first moment m(6),
and second moment v(6);, which are bias-corrected to m.(6); and #(6);. The parameter update is
then performed as Eq.3, where 7 denotes the learning rate and e ensures numerical stability.

m(0): = 1 x m(0)¢—1 + (1= B1) x g(0): v(0) = fa X v(0)1—1 + (1 — B2) x g(8)7  (2)

(0
01 =0, —nx _m6), 3)

\/ ’0(0 )t + €
We omit the expression of bias correction procedure; in this paper, § and g denote the primitive
attribute in @ and gradient information respectively.

Consistent with the DNNs( , ), Adam by default updates all attributes syn-
chronously, including both the primitives visible under the current viewpoint and those that are not.
In spite of the 0 gradient, they are still included in the update step, during which their moment are
rescaled and attributes are still updated. In this paper, updates of points in invisible viewpoints are
referred to as Implicit Update, which are influenced by the previous moment.

4 METHODOLOGY

4.1 CHARACTERISTICS OF SPARSE ADAM L . .
Table 1: Quantitative results in MipN-

As discussed in Sec.1, using Sparse Adam directly im- €1f360 of 3DGS with different optimiz-
proves the optimization efficiency but causes degraded ©rs- The definition of the metrics can be
performance. Denoted V as a filter that takes the value found in Sec.5. (m: million)

1 only for primitives visible under the current viewpoint Cite PSNR SSIM LPIPS N,/m Ng/m
and O for others, Sparse Adam can be obtained by replac- GS1 27.507 0.815 0216 3.331 0.232
ing 3 in Eq. 2 via: GS2 27.285 0.809 0.228 2.532 0.039

GS3 27.567 0.816 0.216 3.342 0.048

Br=BxV+(1-V) “4)

However, from the perspective of inter-viewpoint updates, Sparse Adam is effectively viewpoint-
stable: the update of primitives is influenced only by steps in visible viewpoints at the moment and
does not undergo implicit updates in invisible viewpoints.

To conduct a preliminary investigation, three experiments were performed on vanilla 3DGS: (GS1)
training with the original Adam optimizer, (GS2) replacing Adam with Sparse Adam, and (GS3)
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Figure 1: a: The \/v(o) in 3DGS-MCMC with the different optimizer. More examples can be
found in Appendix Figure 5. b: the opacity regularization decisive term in 3DGS-MCMC with the

different optimizer. c-d: The average and max magnitude of m(0)/+/v(0) in every iteration.

employing Adam during the densification stage while applying Sparse Adam in the P-Op stage.
Based on these comparisons in Table 1, we make the following observations: Observation 1 Sparse
Adam is more stable: Since densification is governed by gradient magnitudes, the smaller number
of primitives observed under Sparse Adam suggests that more primitives fail to meet the gradient
threshold. Moreover, Sparse Adam holds on more active primitives, especially the GS3 in Table 1
(0.048 million dead primitives in Sparse Adam v.s. 0.232 million in Adam), which implies com-
ponents in Adam are potential for pruning redundant primitives. Observation 2 Sparse Adam is
less explorative: although it quickly drives primitives toward stability and results in fewer primi-
tives overall, its performance degrades noticeably. Experiments on 3DGS-MCMC show the similar
observation in some scenes that Sparse Adam makes smaller reallocated primitive number, and this
phenomenon can be found in Figure 3 f.

4.2 UPDATE-STEP DECOUPLING: RE-STATE REGULARIZATION

The key question is what components differentiate Adam from Sparse Adam. To answer this, we
revisit synchronous optimization with Adam introduced in Sec.3. The ignored update-step coupling
arises as zero-gradient updates rescale the moment (m(6); = S1m(0);—1, v(0); = P2v(0);—1) and
subsequently induce implicit update based on the rescaled moment. This first implies that the op-
timizer state of primitives in invisible viewpoints continues to change. As visualized in Figure 1 a,
the second moment in 3DGS-MCMC with Adam is notably smaller than with Sparse Adam, sug-
gesting potential amplification to the first moment. To verify this, we compare the effective strength
of opacity regularization in Figure 1 b, Vo/1/90(0), and observe that Adam induces stronger reg-
ularization, consistent with our discussion in Sec. 4.1. The moment rescaling helps regularization
activation. The comparison in Figure 1 a also shows that the magnitude remains consistently high
for Sparse Adam, underscoring the importance of moment rescaling: when inappropriate gradients
accumulate in one view, they are difficult to dissipate, thereby hindering optimization. The role of
implicit updates is direct: in invisible viewpoints, primitives are continuously updated based on the
past moment. However, no prior work has explicitly examined the impact of these components on
optimization. Motivated by this, we construct 2 decoupled variants for Sparse Adam.

The implementation of moment rescaling is straightforward. We define an optimization interval and,
proposing a milestone style State Sampling Schedule (StSS), uniformly sample the current primi-
tives at the fixed interval. The sampled primitives are directly processed as in Eq. 5 to deliberately
attenuate the state. This process is referred to as Re-State Regularization (RSR).

m(0)'Y = a; x m(0)%4 v =as x v(#)? 0<a; <1, 0<ap <1 )

Here, the subscript ¢ follows an asynchronous mode different from synchronous mode in Eq.2,
meaning that each primitive has its own distinct t. A detailed hyperparameters discussion is in
Sec. J.2.
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Figure 2: a-d: The primitive number change during training in 4 methods (Vanilla 3DGS, Redundant
Primitivs Removal/RePR, MaskGaussian and 3DGS with Our proposed AdamW-GS). e: illustrates
the iteration ranges over which different components affect the primitives number.

We also construct an implicit update to study its role. While implicit updates can be beneficial in
some cases, they may introduce negative effects, potentially linked to redundancy (see Appendix
Sec. [.4). In the experiment section of the mainbody, we retain implicit updates only as a tool to
amplify attribute regularization under Sparse Adam to study the influence of regularization: when
AVR(0)/N, in Eq. 6 is large, maintaining implicit updates further strengthens regularization. Con-
cretely, our Artificial Implicit Update (AIU) is defined as a uniform sampler that selects a random
subset of invisible primitives for extra updates, while their moments remain unchanged in invisible
viewpoints as in Sparse Adam.
m(0); = Bm (@), + (1 - B (T 4 AR
I v

where the N; and the N, are the scale of image pixel and the primitive number at the present
viewpoint respectively, decided by the code project’.

) (6)

4.3 GRADIENT DECOUPLING: DECOUPLED ATTRIBUTE REGULARIZATION

We view attribute regularization as an essential component of optimization. In efficient 3DGS and
related tasks, the widely-used opacity L1 regularization exemplifies this idea, analogous to weight
regularization in DNNs, though with a different role. As discussed in Sec. 3, our understanding
of how regularization effectively constrains each primitive remains limited. Implicit updates may
further exaggerate the effect of regularization: when AVR(6)/N, in Eq. 6 approaches or exceeds
V£(0)/ Ny, the regularization term continues to influence the optimization via the adaptive gradient
or implicit updates. The coupling of photometric and regularization losses in Eq. 6 therefore raises
a natural question: is the current regularization over- or under-effective?

First, we return to the factors actually govern the effect of the current attribute regularization loss
(L1 loss with the gradient coupling). The role of the hyperparameters serves to maintain stability
between losses, ensuring that the regularization remains relatively small at critical moments without
interfering with the photometric loss. Relevant results are presented in Appendix Sec. I.1. Regarding
the modulation by the moment, the regularization is activated when A\VR(0) /N, takes the majority
or the moment is rescaled during synchronous optimization in Adam or reset in 3DGS-MCMC.
ve(0) V()

m(O); = B x m(O)j_y + (1= 1) x ~ 2 w(0); = B x v(®)i—y + (1= 53) x (Cp2)* (D)
I I

Using Sparse Adam or Adam in 3DGS-MCMC clearly alters the effect of attribute regularization.
As illustrated in Figure 3 e—f, different optimizers yield different numbers of reallocated primitives

2https ://github.com/DerThomy/3dgs—mcmc
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and PSNR, indicating over- or under-effective regularization. This suggests that stronger regulariza-
tion may be required to improve reconstruction quality in some cases. However, due to the gradient
coupling in the moment (Eq. 6), directly amplifying V'R easily leads to update steps that become
overly attribute-dependent and less guided by the photometric gradient, while the coupling also sus-
tains the effect of regularization across iterations. In extreme cases, such as when hyperparameters
are scaled by 10x, optimization fails entirely. When amplification relies on the second moment,
the effect of regularization depends on its relative scale to V¢. Furthermore, if VR aligns with
V/, the second moment grows rapidly; if they are opposed, it grows slowly, which is contrary to
expectations. This coupling prevents effective control of regularization. As shown in Figure 1 c,d,
the order-of-magnitude gap between average and maximum m(0)/+/v(0) further illustrates that
improper amplification under coupling easily results in over-effective regularization. Decoupling
V/{ and V'R and recomposing the regularization enables more reliable control without destabilizing
optimization. Further empirical experiments in Sec. 5 will show the side effect of coupling as well.

Therefore, the first step is to decouple the gradients in the moment (Eq. 6). This step is the same as
AdamW, and readily yields Eq. 7, which defines the moment update term containing only the gradi-
ent of the photometric loss V/. For VR(6), AdamW constructs updates that are not controlled by
the second moment. This AdamW-style decoupling is effectively equivalent to a constant penalty
on opacity ( , ). The experiments are presented in Sec. [.2. Clearly, this approach
is not optimal. Unlike DNNSs, each attribute in 3DGS has physical meaning, and each primitive car-
ries a distinct importance. Penalizing all primitives with the same strength fails to remove redundant
primitives when the penalty is too weak, while overly strong penalties hinder optimization.

AdamW-style decoupling suggests that effective regularization assigns different penalties to differ-
ent primitives. Such assignment, however, cannot be arbitrary: (i) it must not interfere with normal
optimization, particularly in under-constructed regions (V/ is large); (ii) it must still fulfill its core

function of suppressing overfitting when V¢ is small ( , ). This implies that regu-
larization should adapt to the geometry of the data ( , ), naturally linking back
to adaptive gradient ( , , ) where adjustments are made via \/v. The

empirical success of vanilla regularlzatlon over the constant penalty further highlights its potential.
Since we have already disentangled the moment in Eq. 7, /0 now provides a more faithful estimate
of the parameter space. Motivated by this, we introduce the regularization form VR/ Vi (VO is
from Eq. 7). This design brings 4 benefits: (1) updates are preserved in under-constructed regions
with large V/; (2) when a primitive lies near a saddle point (small V?), regularization facilitates es-
cape, consistent with saddle-point analyses in ( , ) and long-axis primitive gradients
in ( , ); (3) regularization remains small in general but amplifies adaptively when it
becomes influential; and (4) it enables explicit control over regularization via moment modulation,
e.g., through RSR. Building on this rationale, we extend this approach and propose Eq. 8.

A !

0, — 1 x [71(79% + min(/\em,ct)]
VO(0), + e VO(0); + €

We maintain the loss balance through )¢, and normalize the regularization scale by N;. Regulariza-

tion aligned with /0(#); improves stability while removing dependence on primitive number, which

can vary by orders of magnitude across training, views, and scenes. C; keeps on the same order as

maximum step size of Adam, matches the maximum observed in Figure 1 c—d, and extensive results

confirm its robustness. Then, this recomposed regularization is referred to as Decoupled Attribute
Regularization (DAR). We provide detailed hyperparameter selection in Appendix Sec. J.2.

®)

Orr1 =

4.4 RECOUPLING: ADAMW-GS

Building on Sec. 4.1, 4.2, and 4.3, we propose AdamW-GS for better 3DGS optimization by recou-
pling Sparse Adam, RSR, and DAR. In detail, attributes of primitives are optimized asynchronously
with Sparse Adam and supervised via photometric loss and DAR. At fixed training intervals, RSR
uniformly samples primitives and rescales their moments via Eq. 5 to better activate regularization.
The rescaled moment replaces the old one and directly participates in subsequent optimization.

We consider two DAR variants—opacity and scaling regularization—both of which are already
employed in 3DGS-MCMC. Considering the bad transportation in vanilla 3DGS ( , ),
exploration in this work means better primitive movement. We directly use noise regularization in
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Figure 3: a-d: Reconstruction results visualization. More can be found in Appendix Sec.K. e-f: The

Reallocated Primitive Number in 3DGS-MCMC Framework. For outdoor scenes, MC17 and MC8

differ only in the StSS sampling ratio, where MC8(StSSMC3)>MC17(StSSMC1)=MCMC-Sparse-

RSR. For indoor scenes, MCS8 uses StSSMC1. More information can be checked in Table 2.

3DGS-MCMC as an extra position regularization, which is similar to DAR, but controlled by opacity
and primitive shape not the second moment. However considering the sensitivity to noise (Jung et al.,
2024), the noise is excluded for MipNerf360 indoors scenes with fewer primitives. To explore the
effectiveness of exploration, we provide contrast experiments with or without opacity reset(Kerbl
et al.,, 2023). Opacity reset encourages exploration via lowering the opacity. Opacity Correction is
adopted for cloning in densification as well, which is thought to be necessary (Kheradmand et al,,
2024). We adopt the similar operations for opacity as (Rota Bulo et al., 2025).

5 EXPERIMENTS

Dataset and Metric Following existing research (Kerbl et al., 2023), we employ 13 scenes from 3
datasets, including 9 scenes in Mip-Nerf360 (Barron et al., 2022), 2 scenes from the Tanks& Temples
dataset (Knapitsch et al., 2017) and 2 scenes provided by Hedman et al. (Hedman et al., 2018).

We use a train/test split for datasets, using the methodology suggested by Mip-NeRF360, taking
every 8th photo for test, for consistent and meaningful comparisons to generate the error metrics,
using the standard PSNR, SSIM, and L-PIPS(vgg) metrics used most frequently in the literature. We
also present the total primitive number N, the active primitives number IV, and the dead primitives
number Ny4. Given the significant variation in primitive number across methods (often differing by

vanilla
millions), we employ normalized changes to the vanilla (AN, = %, where x € {a,p,d})

to better illustrate primitive number variations. The active/dead primitive is defined by opacity larger
than 1/255 or not. This definition follows the underlying 3DGS® implementation, where primitives
with opacity below 1/255 are excluded from rendering, differing from (Kheradmand et al., 2024).

Baselines To evaluate the impact of different components on the training pipeline, we conduct ex-
tensive experiments on both the vanilla 3DGS and 3DGS-MCMC frameworks. These two baselines
respectively represent approaches without or with an /V,, maximum. Without explicitly introducing
pruning operations, we observe that a substantial number of redundant primitives can be automati-
cally removed under the vanilla 3DGS with AdamW-GS. For comparison, we include two adaptive
pruning methods, learning-based MaskGaussian (Liu et al., 2025b) and Redundant Primitive Re-
moval (RePR) (Papantonakis et al., 2024) with hand-crafted criterion. Unlike approaches with a
predefined pruning rate, these methods automatically identify redundant primitives and claim to
achieve this with negligible performance degradation. All methods are run on a single A6000 GPU.

3https ://github.com/graphdeco-inria/gaussian—-splatting
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Table 2: Quantitative results in MipNerf-360 with different components. Detailed descriptions of
Sparse Adam, AIU/RSR, and DAR are provided in Sec. 4.1, Sec. 4.2, and Sec. 4.3, respectively.
All RSR and DAR settings remain fixed across experiments, except for the StSS schedule. The
StSS sampling ratios used in this table are as follows: for outdoor scenes, MC8 (StSSMC3) > MC7
(StSSMC2) > others (StSSMC1), while for indoor scenes, MC8 = MC7 = others (StSSMC1). The
complete StSS schedules for each configuration are illustrated in Figure 9. Appendix Sec. K provides
per-scene experimental results, including detailed configurations and additional experiments with a
broader range of settings.

Cite Sparse Adam  AIU RSR R, Rs PSNR  SSIM  LPIPS AN, Np/m

MCl1 X X X Ll L1 27.948 0.833 0.199 -375%  3.313
MC2 v X X L1 L1 27.998 0.832 0.199 +4.28%  3.313
MC3 v v X L1 L1 28.050 0.833  0.198  +3.62%  3.313
3DGS-MCMC MC4 v v v L1 L1 28.017 0834 0.191 +0.51%  3.313
MC19 v X v L1 L1 28.075 0837 0.190 +297%  3.313
MC7 v X v DAR DAR 28185 0839 0.182 +4.72%  3.313
MC8 v X v DAR DAR 28219 0840 0.182  +4.52%  3.313

5.1 RESULTS AND ANALYSIS

Over- or Under-Effective Regularization To examine the controllability of regularization, we in-
troduce AIU during densification as a direct tool to amplify its effect. Its role is straightforward:
when the moment of a primitive places it under regularization, AIU preserves its update, yielding
more dead primitives and thus making stronger regularization. Figure 3 e—f visualizes the reallocated
primitives change in 3DGS-MCMC with AIU. Enhanced regularization promotes exploration and
improves reconstruction quality in some cases (MC3 and MC4 in Table 2), but the effect is scene-
dependent. For instance, in Kitchen (shown in Figure 3 f), rapid growth of reallocated primitives
degrades performance. This suggests that regularization can be under-effective in some scenes,
requiring amplification (e.g., via AIU or other methods), but also over-effective when its strength is
excessive or inapposite.

Activated via the Moment Within the 3DGS-MCMC framework, we evaluate the effect of our
proposed RSR on regularization, a way of activating regularization via rescaling the moment. Re-
gardless of the original L1 form subject to gradient coupling or our proposed DAR, attribute regu-
larization remains tied to the second moment. Figure 3 e—f shows that applying RSR substantially
increases the number of dead primitives, thereby strengthening attribute regularization. This di-
rectly demonstrates the effectiveness of RSR as a component to amplify regularization. However,
as highlighted by the comparison between MCMC-Sparse-RSR and MCMC-AdamWGS-MC17 in
Figure 3 e, the influence of RSR with same StSS is weaker under L1 regularization with gradient
coupling than under DAR. By decoupling the gradient in the moment and recomposing the attribute
regularization, RSR more effectively amplifies its impact, which also translates into improved re-
construction quality under stronger regularization.

Side Effect in Coupling To further examine this effect, we increase the sampling ratio of RSR in
MidNeRF-360 indoor scenes (which typically involve fewer primitives), with results summarized in
Appendix, from Sec. K.6 to Sec. K.9, MC20 and MC21, in which we replace the low-ratio StSSMC1
in original 3DGSMCMC with L1 regularization and 3DGSMCMC with our proposed AdamW-GS
with higher-ratio StSSMC2. As the sampling ratio increases, original 3DGS-MCMC with L1 reg-
ularization exhibits significant drops in reconstruction quality across all four scenes (e.g., Room:
32.514—31.179 dB; Kitchen: 32.289—31.924 dB). The same phenomenon is also observed in the
experiments on outdoor scenes. In contrast, 3DGS-MCMC with DAR shows little to no degradation
in Room, Counter, and Bosai, and only a minor drop in Kitchen (32.546—32.298 dB), while consis-
tently outperforming L1 regularization under the same settings. These results confirm that coupling
hinders effective control of regularization and can easily introduce negative effects on reconstruc-
tion quality. Thus, decoupling the gradient from the moment and recomposing regularization is
necessary for stable and effective optimization.

Experiments with RSR also highlight the issue of over- or under-effective regularization. For scenes
with more primitives, such as MipNeRF360 outdoor datasets, we adopt a higher sampling ratio
in RSR. As the sampling ratio increases, the number of reallocated primitives grows further (Fig-
ure 3 e), strengthening regularization and enhancing the exploration ability of 3DGS-MCMC. A
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Table 3: Quantitative results in MipNerf360 of different methods. MC8 and GS8/GS7 denote our
proposed AdamW-GS variants. More information of MCS is provided in Table 2. All variants
share the same hyperparameters except for the StSS schedule. Following the design used in 3DGS-
MCMC, outdoor scenes for vanilla 3DGS use a high-ratio StSS, while indoor scenes use a low-
ratio StSS. As discussed in Sec. 4.4, GS7 is the noise without opacity reset version to study the
effectiveness of exploration. A per-scene organization of results, including detailed configurations
and additional experiments, is presented in Sec. K.

All Outdoor Indoor

PSNRT SSIM?T LPIPS| AN, time/mins| |PSNRT SSIMT LPIPS| AN, |PSNR?T SSIM1 LPIPS| AN,

Original MCMC  27.948 0.833 0.199 -3.75% 46.81 25.105 0.755 0.212 -4.38% |31.502 0.930 0.182 -2.97%
+AdamW-GS(MC8) 28.219 0.840 0.182 +4.52% 39.77 |25.247 0.764 0.191 +3.07% |31.934 0.935 0.172 +6.33%
vanilla 3DGS 27.506 0.815 0.216 (3.098m) 30.58 [24.648 0.728 0.239 (4.512m)|31.080 0.925 0.189 (1.331m)
+AdamW-GS(GS8) 27.678 0.822 0.220 -49.3% 18.53 |24.854 0.740 0.243 -48.4%
+AdamW-GS(GS7) 27.730 0.820 0.222 -46.9% 19.18 24949 0.737 0.248 -44.0%
RePR 27.503 0.815 0.218 -41.1% 26.73 |24.661 0.728 0.241 -41.5% |31.055 0.924 0.190 -40.6%
MaskGaussian ~ 27.485 0.815 0.219 -53.1% 26.80 [24.683 0.728 0.240 -46.4% |30.988 0.924 0.192 -61.5%

Methods

31.209 0925 0.191 -50.4%

direct comparison between MC7 and MCS8 shows that higher sampling ratios improve reconstruc-
tion quality. This further demonstrates the effectiveness of RSR to control regularization.

AdamW-GS in 3DGS-MCMC With properly tuned hyperparameters, we evaluate our proposed
AdamW-GS within the 3DGS-MCMC framework. As shown in Table 3, our approach achieves su-
perior PSNR, SSIM, and LPIPS over vanilla 3DGS-MCMC. By decoupling gradient coupling and
recomposing regularization, we obtain more stable regularization; and by decoupling update-step
coupling, our proposed RSR provides finer control of regularization. Furthermore, eliminating nu-
merous ineffective zero-gradient updates via Sparse Adam improves overall optimization efficiency.

Robust Hyperparameter Test and Autonomously Redundancy Removal Given that AdamW-
GS, equipped with DAR and RSR, introduces many hyperparameters, we test their robustness by
directly applying the method to vanilla 3DGS with same hyperparameters. Following the training
division of vanilla 3DGS, we design several StSS configurations, as shown in Figure 9. Similar to
our observations in 3DGS-MCMC with AdamW-GS, where moment rescaling and opacity DAR
encourage a large number of dead primitives for exploration, our experiments show that with our
proposed AdamW-GS, a large number of redundant primitives can be autonomously removed for
3DGS without extra pruning components, and the improvement in reconstruction quality also indi-
cates enhanced exploration (Observation 2 issue in Sparse Adam in Sec.4.1).

We compare vanilla 3DGS trained with AdamW-GS against two adaptive pruning methods. Im-
portantly, our approach contains no extra pruning component; instead, it relies solely on opacity
DAR. In terms of pruning performance, AdamW-GS achieves results comparable to MaskGaussian
and even outperforms it by 2% on outdoor scenes. Beyond pruning efficiency, our method also
improves reconstruction quality: in outdoor scenes, it reduces the number of primitives by 48.4%
while increasing PSNR by 0.2 dB and SSIM by 0.01. In indoor scenes, it removes 50% of primitives
while still improving PSNR by 0.1 dB. By contrast, MaskGaussian removes 61% of primitives but
degrades PSNR by 0.1 dB, which is because MaskGaussian suffers from potential reconstruction
quality risk (see Figure 2 c). Visualization in Figure 3 c-d also demonstrates better detail recon-
struction in our methods compared to vanilla 3DGS, which is one of the reasons for relatively more
primitives than MaskGaussian. Ultimately, our objective is not simply to minimize the number of
active primitives, but to strike a preferable balance—achieving higher reconstruction quality with as

few primitives as necessary. Table 4: Quantitative results in Deep Blending and Tank

Additional datasets are also evaluated & Temples. (m: million.)

yvith our proposqd method. As shown Deep blending Tank & Temples

in Table 4, experiments on Deep Blend- PSNR? SSIMT LPIPS| AN, PSNR? SSIMT LPIPS| AN,

ing and Tanks&Temp]es further demon- 3DGSMCMC 30.089 0.914 0.239 -24% 24.563 0.869 0.160 -3.1%

strate the superiority of our approach, _tAJamW-GS 30417 0916 0.228 28% 24726 0875 0150 67%

On D Blending ; ricular. 3DGS 3DGS  29.694 0904 0247 2.60m 23.677 0.848 0.178 1.60m
n Deep blending 1n particular, +AdamW-GS 30260 0.912 0.245 -60% 24.303 0.855 0.181 -40%

equipped with AdamW-GS even Sur- MaskGaussian 29.895 0908 0248 -65% 23.607 0.846 0.181 50%

passes the PSNR of the original 3DGS-

MCMC. In Appendix Sec. E.4, we also report results on long-sequence datasets for vanilla 3DGS
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and 3DGS-MCMC, both with and without our proposed AdamW-GS, where our method continues

to show clear advantages. o )
Table 5: Quantitative results for MaskGaussian.

To further validate our findings and the
Indoor Outdoor

robustness of our method, we apply PSNR SSIM LPIPS AN, PSNR SSIM LPIPS AN,
AdamW-GS to additional pipelines. As  MaskGaussian 30.088 0.924 0.192 -61.5% 24.683 0.728 0240 -464%

shown in Table 3 and discussed therein, ~_“AdamW-GS 31199 0.925 0.193 -68.6% 24.939 0.739 0244 -48.1%
MaskGaussian exhibits a potential reconstruction-quality risk on indoor datasets—a phenomenon
consistent with Observation 1 in Sec. 4.1 from the Adam vs. Sparse Adam experiments. We at-
tribute this issue to the synchronous updating of mask scores in MaskGaussian (a brief introduc-
tion to MaskGaussian is given in Sec. E). Results in Table 5 further support this hypothesis: when
trained with AdamW-GS, MaskGaussian no longer suffers from the quality risk and additionally
prunes about 7% redundant primitives on indoor scenes. This also demonstrates that our method
is compatible with additional pruning operations. In Appendix Sec. E, we provide results of more
pipeline variants with AdamW-GS, offering further evidence of the robustness.

To better understand how our method penalizes redundant primitives, we further visualize the prim-
itive number dynamics during training, as shown in Figure 2. PePR, which relies solely on opacity
L1 regularization during densification, shows limit in reducing redundancy. In contrast, with our
proposed regularization, the number of primitives remains consistently lower. Even in cases where
AN, is larger than that of MaskGaussian, our method (vanilla 3DGS with AdamW-GS)—restricted
to the densification—still outperforms MaskGaussian in reducing redundancy during densification.

Extra Exploration is Necessary Previous studies have highlighted the role of exploration in
3DGS ( , ; , ), and here we investigate its interplay with re-
dundancy. AdamW-GS benefits from the noise-based position regularization, yielding improved
pruning efficiency and higher SSIM. As shown in Table 2 GS7 and GS8, removing opacity reset
weakens the noise-based regularization, leading to less improvement in SSIM and redundancy re-
moval. We attribute the effectiveness of the noise-based regularization in AdamW-GS to its more
appropriate attribute regularization. Overall, our results underscore that additional exploration is
necessary. However, the noise-based position regularization from 3DGS-MCMC cannot be directly
applied to scenes with relatively few primitives (e.g., indoor scenes), where their higher sensitivity
to noise results in a drop in reconstruction quality. In Appendix Sec. F, we provide a more detailed
analysis of the exploration ability induced by our method. We also introduce two additional explo-
ration strategies that can be combined with current AdamW-GS and yield further improvements on
certain indoor scenes as well.

Efﬁc1ency Analysis Benefiting from Sparse Adam, as shown in Table 3, 3DGS-MCMC further
improves optimization efficiency. Vanilla 3DGS enjoys the same benefit, whlle our method achieves
additional gains by substantially reducing redundancy during the densification stage, thereby further
enhancing optimization efficiency. More detailed analysis is provided in Appendix Sec. C.

6 DISCUSSION AND CONCLUSION

This work takes a step to decouple the complex 3DGS optimization and analyzes key mechanisms.
AdamW-GS is further proposed, which improves efficiency and enables more controllable regu-
larization. The method enhances reconstruction quality in the MCMC framework and achieves
notable redundancy removal in vanilla 3DGS with slight quality gains and even without pruning.
Our results indicate that efficiency and effectiveness can be jointly improved given appropriate reg-
ularization. While we focused on opacity and scaling, more common DAR in different attribute or
alternative strategies may yield further improvements. Despite the robust current hyperparameters
and hand-crafted SStS, changing the parameters during training in an adaptive manner may offer a
more promising direction. Finally, although noise-driven exploration shows necessary, it can harm
certain scenes. Other provided exploration strategies offer limited improvement. A more systematic
investigation of exploration strategies may be a promising direction for future research.
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A REPRODUCIBILITY

The datasets are directly available from ( , ). Methodological steps and formulas are
detailed in Secs. 4.4 and J.1, while all hyperparameters are reported in Secs. J.2 and K.

More rendering visualization can be found in Figure 10.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are used solely to assist in writing and polishing the manuscript; they do not
contribute to the discovery or experimental design.

C TiME COST ANALYSIS

Within the 3DGS-MCMC framework, employing Sparse Adam leads to a substantial reduction in
step time—approximately 50% (see Table 6)—by directly eliminating implicit updates. The fluc-
tuations in forward and backward costs stem from variations in the number of activated primitives
during training. Although DAR encourages a larger proportion of dead primitives, Sparse Adam
exhibits greater stability and tends to retain more activated primitives.
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Table 6: Time cost of different methods, which is divided into time cost of densification, forward,
backward and update step. In all experiments, the loss function is implemented consistently. Base-
line methods employ the native Adam optimizer in PyTorch, whereas our AdamW-GS follows the
implementation described in this work.

Methods Avg. Bicycle Flowers Garden Stump Treehill Room Counter Kichen Bosai
Densification 0.37  0.43 0.38 0.49 0.39 0.37 0.32 0.34 034 032
Forward 6.91 8.35 6.09 8.47 6.44 6.08 6.70 6.67 7.61 586

vanilla 3DGS Backward  13.72  14.26 11.27 1575 1154 1138 1469 14.62 1738 12.59
Step 9.55 1630 10.25 17.08 13.65 1053  4.63 3.75 5.69  4.12
All 30.58 3936 28.01  41.81 32.04 2838 2635 2540 31.03 2291

Densification  0.95 1.40 0.99 1.29 1.54 1.07 0.58 0.60 0.54  0.62
Forward 6.07  6.55 5.41 6.85 5.73 5.40 6.00 6.23 7.04 550

RePR Backward  12.75 1223 1052 13.82 1073 10.69 1372 1424 1679 12.05
Step 6.92 1120 7.39 11.51 11.05 7.84 3.10 2.75 451 3.01
All 26.73 31.40 2433 3348 29.06 25.02 2341 23.83 2890 21.20

Densification 0.37  0.46 0.36 0.49 0.41 0.38 0.31 0.30 032 033

Forward 5.91 7.42 5.26 7.40 5.46 5.39 5.30 5.60 6.41 496

MaskGaussian Backward  13.66 14.19 11.2 1566 11.20 1145 1415 1481 17.61 12.69
Step 6.83  12.50 7.64 1252 9.38 8.12 2.39 2.29 394 274

All 26.8 3459 2448 36.09 2646 2536 22.16 23.01 2830 20.75

Densification  0.33  0.34 0.33 0.34 0.35 0.33 0.32 0.31 034 033

Forward 519 521 4.45 4.81 4.75 4.49 5.54 5.69 6.27 556

3DGS
Backward  10.80  9.76 8.59 9.70 9.07 8.61 12.1 12.73 1425 1247
+AdamWGS(GS8) Step 217 3.90 2.89 3.76 4.19 3.05 0.34 0.40 0.58 043
All 18.53 19.23 1628  18.62 1837 1650 1839 19.15 2145 1881

Densification 0.02  0.04 0.03 0.04 0.04 0.03 0.02 0.02 0.02 0.02

Forward 9.03 9.13 8.15 9.79 8.02 7.72 9.67 9.47 1045 8.87

3DGSMCMC Backward 1895 17.39 1549 19.19 1485 1439 2255 2220 2454 19.97
Step 21.09 31.51 19.45 3376 2468 2046 1023  8.12 12.17 875

All 46.81 58.08  43.13 6279 47.60 42.61 4249 39.81 47.19 37.63

Densification  0.03 0.05 0.03 0.05 0.04 0.03 0.02 0.02 0.02  0.02

Forward 9.18  9.50 8.10 10.15  8.51 791 9.55 9.26 10.84 885

3DGSMCMC
Backward  11.46 18.33 1525 2132 16.02 1441 21.18 1991 25.61 19.66
+AdamWGS(MCS) Step 11.46 18.75 12.04  20.64 1484 1235 6.20 5.06 7.89  5.40
All 39.77 46.65 3544  52.17 3941 3471 3697 3427 4439 3394

For vanilla 3DGS, the reduction in time cost benefits from both the decrease in update-step overhead
achieved by Sparse Adam and the reduced forward and backward costs resulting from fewer prim-
itives. Overall, our method achieves more than a 40% reduction in total runtime. In indoor scenes
with fewer primitives, the update-step cost becomes negligible, as illustrated in Figure 4. Due to
extra loss in MaskGaussian as its pruning strategy, it yields almost no improvement in the backward
time cost.

D PRELIMINARY

3DGS(-MCMC) 3DGS approximates the radiance field of targeted scenes via a group of Gaus-
sian primitives {G;}" parameterized with @ = {0; € O}, where ; = (u;, X;,0;,¢;), p; € R?
denotes the primitive position, £(*) € SiX?’ is the positive semi-definite covariance matrix decou-
pled into quaternion and a scaling vector, 0o(*) is considered as the opacity value. The color attribute

¢ € R®) is typically stored as spherical harmonics coefficients and converted into RGB when
rendering.

Given a viewpoint k£ and transformation ( s ), the pixel p on the screen is rendered
via a-blending according to the projected depth of primitives:

NF i—1
Crp:i0) =) . " cloigi(p:0:) [[(1— af(p:6))) ©

o
ok (pi0;)

Transmittance T (p;0;)
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Figure 4: Training Time Cost Comparison.

Here the superscript k& denotes the corresponding parameters under the given viewpoint after the
respective transformation, whereas G = exp(—3(p¥ — p) TSk (ul — p)).

Optimization The 3DGS training pipeline typically initializes from Structure-from- Motlon (StM)
( , ) followed by several warm-up iterations ( ,

). The primitives then undergo densification, wherein new primitives are generated to enhance
scene representation while redundant ones are pruned. In the vanilla pipeline (Figure 9 a), both
operations are governed by adaptive density control: new primitives are created via cloning or split-
ting based on gradient magnitude, whereas low-opacity primitives are removed. After densification,
optimization proceeds in a pure optimization (P-Op) stage, during which only gradient propaga-
tion and attribute updates occur. Throughout warm-up, densification, and P-Op, training employs a
photometric loss (left in Eq. 1) with the Adam optimizer. Building on Stochastic Gradient Langevin
Dynamics (SGLD), 3DGS-MCMC ( , ) follows a similar stage division, as
shown in Figure 9 b: new primitive sampling and dead primitive reallocation during densification,
followed by a shortened P-Op. It also adopts Adam, augmented with a regularization loss in Eq. 1
to promote respawn and additional positional noise for exploration or adherence to the SGLD form.
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Figure 5: The average of the second moment in valid primitives.

Table 7: Quantitative results in MipNerf360 of vanilla 3DGS and MaskGaussian ( , )
with or without AdamW-GS.

All Outdoor Indoor
PSNR?T SSIM?T LPIPS| AN, |PSNRT SSIMT LPIPS| AN, |PSNRT SSIMT LPIPS| AN,
X 27.506 0.815 0.216 (3.098m)|24.648 0.728 0.239 (4.512m)|31.080 0.925 0.189 (1.331m)
v 27.678 0.822 0.220 -49.3% |24.854 0.740 0.243 -484% |31.209 0.925 0.191 -50.4%
X 27.485 0.815 0219 -53.1% |24.683 0.728 0.240 -46.4% |30.988 0.924 0.192 -61.5%
v 27.721 0.821 0.221 -57.2% |24.939 0.739 0.244 -48.1% |31.199 0.925 0.193 -68.6%

Pipeline AdamW-GS

vanilla 3DGS

MaskGaussian

E MORE PIPELINE VARIANTS WITH ADAMW-GS OR EXPERIMENTS ON
DIFFERENT DATASETS

E.1 MASKGAUSSIAN WITH ADAMW-GS: MORE STABLE UPDATING OF MASK SCORE

MaskGaussian introduces a probabilistic formulation of 3D Gaussian primitives, where each primi-
tive is assigned a learnable probability of existence that governs a dynamic sampling process during
rendering. This mechanism enables adaptive pruning of redundant primitives throughout the 3DGS
optimization. Specifically, each primitive is associated with a mask score 7r;, from which a binary
mask M, is stochastically sampled using the Gumbel-Softmax reparameterization. The standard
rendering equation in Eq. 9 is thus modified to incorporate the mask in both color accumulation and
transmittance updates, as shown in Eq. 10. Detailed derivations and implementation are provided in

( ’ )-
Nk

Ck(p;0) = Zl_pl M- ck ol (p;0;)-TF(p;0;) where M; ~ GumbelSoftmax(w) (10)

m(m);

_— 11
ﬁ(ﬂ),’5+e] (b

Tl =T — 1 X |

When MaskGaussian is equipped with AdamW-GS, the observed PSNR improvement aligns with
that of vanilla 3DGS using AdamW-GS. Additionally, for indoor scenes, it enables an extra pruning
of approximately 7% of primitives. This suggests that synchronous updates of mask scores may lead
to potentially “destructive pruning behavior”. In contrast, our method cannot only be jointly used
with such pruning strategies to stabilize their inherent training dynamics, but also further improve
overall efficiency, pruning performance, and representation quality simultaneously.

E.2 TAMING-3DGS WITH ADAMW-GS

Taming-3DGS ( , ) constrains the total number of primitives by restricting the
number of new primitives added at each densification step, as defined by Eq. 12. During every
densification step, Taming-3DGS computes a score for each primitive to determine its probability
of being selected for densification. Based on these scores, a fixed number of primitives are sampled
for densification. Additionally, Taming-3DGS incorporates further optimizations, such as enhanced
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Taming-3DGS
(final count)

Taming-3DGS with AdamW-GS

(final count)

Taming-3DGS
(multiplier)

Taming-3DGS with AdamW-GS
(multiplier)

Figure 6: Rendering visualization of Taming-3DGS with or without AdamW-GS.

Table 8: Quantitative results in MipNerf360 of Taming-3DGS (Mallick et al., 2024) with or without
AdamW-GS. A brief introduction to the Taming-3DGS can be found in Appendix Sec. E.2. All

Primitive Number (2V,

, N,) is reported in millions; Time cost is reported in mins.

Pipeline AdamW All Indoor Outdoor
-GS PSNR7 SSIM?T LPIPS) Np N, Time|PSNR SSIM LPIPS Np N, |PSNR SSIM LPIPS Np N,
Taming-3DGS  x _ 27.386 0.796 0.258 0.668 0.620 7.4 [31.025 0.918 0.205 0.357 0.329]24.479 0.698 0.299 0.916 0.853
(multiplier) v 27537 0799 0254 0.6460.575 5.27 |31.268 0.920 0.200 0.357 0.31324.552 0.703 0.297 0.877 0.785
Taming-3DGS  x _ 27.912 0.822 0207 3.205 2.609 20.30|31.603 0.928 0.181 1.377 1.144]24.959 0.736 0.228 4.667 3.776
(finalcount)  «  28.034 0.826 0.207 3.109 1.847 10.46|31.720 0.928 0.180 1.408 0.759|25.085 0.744 0.229 4.469 2.717
Ta(“;:ﬁ’fifjp v 28038 0.828 0205 2.1602.160 8.44 [31.724 0.930 0.177 0.804 0.804|25.089 0.745 0.227 3.246 3.246

parallelization. For detailed implementation and algorithmic design, please refer to (Mallick et al.,

2024).

Qdensi - QO 2_ 2Stepdensi stepi
Stepdensi

Where step,, denotes the current number of densification steps, stepy.,«; represents the total num-

ber of densification iterations, (2qepns; refers to the upper bound on the number of primitives after
densification, and €2 indicates the initial number of primitives.

A(step,,)

+ QStepm + Qdensi (12)

Two operating modes are provided in Taming-3DGS”: final count and multiplier, which correspond
to a higher and a lower upper bound on the final total primitive number NV, respectively. Experi-
ments were conducted under both modes for Taming-3DGS as well as Taming-3DGS with AdamW-
GS. DAR in this setting only includes opacity and scaling regularization as well, following the same
configuration as in Sec. 4.4. Noise regularization is omitted because the growth rate in Taming-
3DGS is constrained. Considering that AdamW-GS imposes stronger penalties on redundant primi-
tives, leading to the generation of a large number of dead primitives that are rapidly pruned and thus
reduce the total primitive count significantly, we propose to replace the conservative pruning strat-
egy in Taming-3DGS with the pruning method used in vanilla 3DGS when integrating AdamW-GS.
We denote this modified pipeline as Taming-3DGS-p. Related experimental results are summarized
in Table 8.

As shown in Table 8, under the same constraint on the final N, the variants trained with AdamW-
GS consistently achieve better reconstruction quality compared with their original counterparts,
while also providing additional advantages in training speed. Visual comparisons in Figure 6 further
demonstrate that our method more faithfully preserves fine scene details. When a relatively large
final primitive budget is given (the final count mode in Table 8), AdamW-GS reduces the total train-
ing time by nearly half (20.30 mins in the original Taming-3DGS vs. 10.46 mins for Taming-3DGS
with AdamW-GS). Since AdamW-GS effectively penalizes redundant primitives at an early stage,
we further incorporate the pruning strategy from vanilla 3DGS to construct Taming-3DGS-p. With

4https ://github.com/humansensinglab/taming-3dgs
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Table 9: Quantitative results in MipNerf360 of Deformable Beta Splatting ( , ) with or
without AdamW-GS. A brief introduction to the Taming-3DGS can be found in Appendix Sec. E.3.
Treehill from MipNeRF360 is excluded here.

All Outdoor Indoor
AdamW-GS
PSNRT SSIMt LPIPS| | PSNRT SSIM LPIPS| | PSNRT SSIM{ LPIPS|
X 29362 0864  0.165 | 26029 0787  0.187 | 32.696 0940  0.143
v 29.643 0871  0.158 | 26.108 0798  0.175 | 33.178 0945  0.140
Table 10: Quantitative results in OMMO ( R ) of vanilla 3DGS and 3DGSMCMC with

or without AdamW-GS. All Primitive Number (/V,,, N,) is reported in millions.

3DGSMCMC 3DGS
AdamW-GS
PSNRT SSIMt LPIPS, N, N, | PSNRt SSIMf LPIPS, N, N,
X 30359 0925  0.135 1960 1.673 | 30.040 0914  0.154 1878 1640
v 30716 0930  0.126 1960 1765 | 30351 0914  0.154 1245 1211

our optimizer, this variant achieves additional GPU memory savings during training (3.205 million
in the original Taming-3DGS vs. 2.160 million for Taming-3DGS with AdamW-GS).

E.3 DEFORMABLE BETA SPLATTING WITH ADAMW-GS

Deformable Beta Splatting (DBS) ( , ) shares a similar pipeline design and same
loss with 3DGSMCMC ( , ), as both are formulated under the Stochastic
Gradient Langevin Dynamics framework. Unlike 3DGSMCMC, DBS replaces the Gaussian kernel
with the Beta kernel B(p; 0;) and introduces the Spherical Beta function to better represent complex
geometries and diverse appearance attributes. Consequently, the rendering process is reformulated
as shown in Eq. 13.

* i—1

CHp:0) = 3.7 choibst(p:0) [ ] (1 - 0iB (:0,)) (13)

j=1

Consistent with our experiments on 3DGSMCMC, we apply AdamW-GS to DBS, and the results are
summarized in Table 9. Across eight of the nine scenes (excluding Treehill), we observe clear im-
provements in reconstruction quality when using AdamW-GS. For the Treehill scene, however, we
find that DBS suffers from pronounced overfitting and triggers early stopping prematurely. Mean-
while, we observe that during the densification stage, N4 has been closed early to zero, indicating
that DAR cannot effectively exert its intended effect in this scenario. Our method may be less effec-
tive in such heavily overfitting scenario.

E.4 VANILLA 3DGS OR 3DGSMCMC WITH ADAMW-GS ON OMMO DATASETS

We provide results on the OMMO dataset ( s ), which contains large-scale outdoor
scenes with long-range sequences. Our data processing follows the settings described in (

, ) and its associated Github repository °. However, the image preprocessing failed
for scene #10; thus, we report the average results for the left scenes. All results are summarized in
Table 10. Our method demonstrates effectiveness on long sequence datasets as well.

F EXPLORATION STRATEGIES

In Sec. 4.1, we observe that Sparse Adam exhibits less explosive characteristic. Part of this comes
from the stability described in Observation 1, and part is attributable to the inherent bad trans-
portation property of 3DGS ( , ), which we briefly discussed in Sec. 4.4. This phe-
nomenon causes a larger portion of primitives to remain in a stable state during optimization with
Sparse Adam—neither triggering further primitive generation nor enabling continued improvements

5https ://github.com/ubc-vision/3dgs—-mcmc
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Table 11: Quantitative results in MipNerf360 of vanilla 3DGS in our different modifications. More
detailed information can be found in Sec. F. “+ Only RSR” demotes only using the Sparse Adam
and RSR in 3DGS pipeline.

Pipeline All Outdoor Indoor
PSNR?T SSIM?T LPIPS] AN, ‘PSNRT SSIM1 LPIPS] AN, ‘PSNRT SSIM?T LPIPS] AN,
vanilla 3DGS 27.506 0.815 0.216 (3.098m)|24.648 0.728 0.239 (4.512m)|31.080 0.925 0.189 (1.331m)
+ Only RSR (GS0) 27.483 0.818 0.217 -28.6% [24.685 0.733 0.238 -27.9% |30.981 0.924 0.190 -29.5%
+AdamW-GS (GS8) 27.678 0.822 0.220 -49.3% [24.854 0.740 0.243 -48.4% |31.209 0.925 0.191 -50.4%

+AdamW-GS (GS8) + ABE 27.751 0.822 0.220 -41.1% [24.909 0.740 0.243 -38.5% |31.304 0.925 0.191 -44.3%
+AdamW-GS (GS8) + Longer Densi 27.715 0.824 0.218 -48.4% [24.857 0.744 0.240 -44.6% |31.288 0.925 0.190 -53.2%

in scene reconstruction. As a result, we obtain a primitive group with a smaller N, but inferior recon-
struction quality. In Sec. 5 (Extra Exploration is Necessary), we examine the necessity of additional
exploration through experiments that introduce noise regularization. Here, exploration is deliber-
ately to encourage primitives to undergo larger movements, which is consistent with the notion of
bad transportation described in ( s ). We have given the discussion in Sec. 4.4.

Exploration in Current AdamW-GS In Sec. 5, we argue that the current AdamW-GS improves
exploration. This enhancement arises from several factors: (1) RSR. We provide additional ablation
studies showing that, when using only Sparse Adam together with RSR, training the vanilla 3DGS
pipeline on Mip-NeRF 360 yields reconstruction quality comparable to vanilla 3DGS with Adam.
The corresponding results are reported in Table 11 under “+ Only RSR (GS0)”. (2) The influence
of DAR around saddle points. The analysis in ( , ) indicates that many primitives
become trapped near saddle points, preventing further effective optimization. The presence of DAR
encourages these primitives to continue participating in optimization rather than stagnating. (3)
Improved gradient flow after removing redundant primitives. When a large number of redun-
dant primitives are eliminated, the gradient flow within primitive groups becomes more coherent
and effective. (4) Noise regularization for outdoor scenes. For outdoor datasets, we intentionally
introduce noise regularization to further encourage extra exploration.

Existing work provides only limited discussion of exploration strategies for the 3DGS pipeline.
Noise regularization, while helpful in certain cases, has inherent limitations and is not applicable to
all datasets. Nevertheless, we argue that developing extra exploration strategies is a promising direc-
tion, as such mechanisms encourage primitives to explore a broader region of the space. Building on
our current work, we introduce two additional exploration strategies: Adaptive Bound-Expanding
Split ( , ) and Densification Extending. (For outdoor scenes, the following exper-
iments still employ noise regularization; we further demonstrate that these strategies can be used
jointly.)

Adaptive Bound-Expanding Split (ABE-Split) divides each Gaussian into three, where the loca-
tion of the third cross-region primitive is initialized using a constant factor proportional to the scene
extent. The corresponding results are reported in Table 11 “+ AdamW-GS (GS8) + ABE”. ABE-
Split consistently improves reconstruction quality across both indoor and outdoor scenes. In some
cases, the gains are particularly clear—for example, on the Room scene from Mip-NeRF 360, the
PSNR/SSIM increases from 31.500 dB / 0.920 (vanilla 3DGS) to 32.121 dB / 0.923.

Densification Extending: We extend the original densification phase from 15,000 iterations to
25,000 iterations, leveraging the densification mechanism. Thanks to the ability of our method to
quickly penalize redundant primitives, this extension does not introduce the risk of memory explo-
sion. The corresponding results are reported in Table 11 under “+ AdamW-GS (GS8) + Longer
Densi”. Extending the densification phase further benefits indoor scenes and additionally reduces
the number of active primitives.

G FAILURE CASES

Although AdamW-GS yields improved reconstruction quality—both quantitatively and qualita-
tively in terms of rendering visualization—compared with the original method, it only offers an
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a) Anti-Fact in Boundary Area: b) Blurry Detail in Backgr

i

vanilla 3DGS

md Floater: e) Geometric Information :

vanilla 3DGS

Figure 7: More examples to show the failure cases: a) the rendering results from Room to show the
anti-fact boundary area; b) the rendering results from Garden to show the blurriness in background;
¢) the rendering results and normalized depth maps from Bosai to show anti-fact in geometric infor-
mation; d-e) the ellipsoid visualization from Bicycle.

optimization-level enhancement and does not fundamentally resolve the inherent limitations of the
pipeline itself.

* Severe artifacts in boundary regions with insufficient view coverage. As shown in Figure 7 a),
boundary areas on walls exhibit substantial artifacts, floaters, and even incorrect colors due to the
lack of sufficient multi-view constraints.

* Insufficient refinement of background regions. These areas often remain under-optimized and may
suffer from blurriness. We give an example in Figure 7 b).

* Geometric inconsistency despite reasonable rendering results. Our current optimization does not
incorporate any additional geometric priors. Obtaining the normalized depth map (Figure 7 c),
Rendered Depth) using Eq. 14, it can be observed that many regions clearly violate geometric
plausibility—for example, reflective books or shadowed chairs. Without explicit geometric priors,
AdamW-GS cannot fully recover the correct underlying geometry. Nonetheless, certain improve-
ments in geometry can be observed—for instance, the tree trunk region highlighted by the purple
box in Figure 7 e).

* Persisting floater issues when the original pipeline suffers from floaters. Even with AdamW-GS,
floaters may remain, as illustrated in Figure 7 d).

* Failure under severe overfitting. When the reconstruction pipeline significantly overfits the scene,
AdamW-GS may break down. We encountered this issue when using DBS to reconstruct Treehill
from the Mip-NeRF 360 dataset. Overfitting can prematurely trigger early stopping, and the sharp
decreasing of [V,, leads to the failure of DAR.

D(p) =Y df -al(p) - TH(p) (14)

where d¥ is the depth of the primitive in the corresponding camera coordinations.

H MORE ABOUT RELATED WORK

Redundancy during Optimization (1) Densification refinement: Several works optimize the den-
sification rule (Fang & Wang, 2024; Mallick et al., 2024; Wang et al., 2025). SteepGS (Wang
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Comparison of Two Methods Across 9 Scenes
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Comparison of Two Methods Across 9 Scenes
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2) Per-Scene Error Bar of PSNR for 3DGSMCMC b) Per-Scene Error Bar of PSNR for vanilla 3DGS

Figure 8: The PSNR error bar plot across nine scenes is shown for both methods, while the other
metrics exhibit no notable variation. A more detailed per-scene result is provided in Sec. K.

et al., 2025) mitigates redundancy through optimization-conditioned densification or alleviates sub-
optimization by densification, but its reconstruction quality and pruning effectiveness remain infe-
rior to learning-based methods. (2) Hand-crafted criterion: importance or redundancy criteria are
designed to guide pruning after densification. LightGaussian (Fan et al., 2024) scores each Gaussian
by opacity—transmittance—scale product times ray contributions. RadSplat (Niemeyer et al., 2025)
uses the maximum alpha—transmittance product across views. (Papantonakis et al., 2024) propose
the pipeline to prune primitives based on their degree of overlap. PUP-3DGS(Hanson et al., 2025)
proposes a principled sensitivity pruning score which is computed as a second-order approximation
of the reconstruction error on the training views. (3) Learning-based pruning that leverages learning-
based strategies to adaptively remove redundant primitives, often via mask. Compact3DGS (Lce
et al., 2024) introduces Gaussian masks with L1 regularization on active mask count. MaskGaus-
sian (Liu et al., 2025b) models the existence of primitives, or measures the importance via learning.
LP-3DGS(Zhang et al., 2024a) redesigns the masking function to leverage the Gumbel-Sigmoid
method. (4) Optimization-related operations: Optimization together with additional opacity L1
regularization has become a common technique for redundancy removal, even extending beyond Ef-
ficient 3DGS tasks (Papantonakis et al., 2024; Lee et al., 2024; Kheradmand et al., 2024; Liu et al.,
2025a; Svitov et al., 2024).

Optimizing redundancy and training efficiency constitute a subtopic of efficient 3DGS, correspond-
ing to acceleration in inference and training (with partial overlap between the two). For inference,
approaches include vector quantization (Lee et al., 2024), knowledge distillation (Fan et al., 2024),
and entropy coding (Huang et al., 2025). For training, efforts target backward acceleration and loss
redesign (Mallick et al., 2024). These topics fall beyond the scope of this work: for fair comparison,
we maintain the same loss function and refrain from using additional compression techniques.

Optimizer and Regularization The development of adaptive first-order optimizers can be traced
back to RProp (Riedmiller & Braun, 1993). AdaGrad (Duchi et al., 201 1) adapted the learning rate
of features by estimated geometry and assigns larger learning rate to infrequent features. RMSProp
(Hinton et al., 2012) further stabilized training by normalizing updates with an exponential moving
average of squared gradients. Building on this, Adam (Kinga et al., 2015) incorporated momentum
into RMSProp through an exponential average of gradients, quickly becoming the default optimizer
for modern DNNs (Vaswani et al., 2017). Numerous refinements and extensions to Adam have since
been proposed(You et al., 2019; Chen et al., 2023). Regularization has long been recognized as a key
technique to improve model generalization and has also been employed as a tool to facilitate more
effective optimization (Srivastava et al., 2014; Shalev-Shwartz & Ben-David, 2014; Andriushchenko
et al., 2023; Brown et al., 2020; Radford et al., 2021). Importantly, Loshchilov & Hutter (2017)
demonstrated that L2 regularization and weight decay are not equivalent, and further showed that
weight decay provides a more appropriate formulation for Adam.

Optimization for 3DGS Sparse Adam (Mallick et al., 2024) introduces asynchronous updates
that improve efficiency, yet the insufficient recognition of update-step coupling results in degraded
performance. 3DGS-LM (Hollein et al., 2025) proposes a tailored Levenberg-Marquardt optimizer
for acceleration. However, it still relies on Adam for the initialization or densification. Although
Adam has become a de facto indispensable optimizer for 3DGS, our understanding of its behavior in
this context remains limited. A similar situation arises for regularization: despite the widespread use
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Table 12: Quantitative results in Mip360 of 3DGS-MCMC + Sparse Adam with different opacity
regularization.

Outdoor Indoor All
PSNR SSIM LPIPS AN, | PSNR SSIM LPIPS AN, | PSNR SSIM LPIPS AN,
MC2 0.01 25.160 0.754 0.212 3.92% |31.546 0.930 0.183 4.74% |27.998 0.832 0.199 4.28%
lo|1 MC101 0.1 17.379 0.400 0.604 -77.8% |29.957 0.906 0.220 -40.7% |22.969 0.625 0433 -59.3%
MC102 0.001 24.585 0.731 0.220 5.18% |31.342 0930 0.179 8.1% |27.588 0.819 0.202 6.28%
MC103 0.1 24298 0.714 0.242 5.79% |30.687 0921 0.193 -2.08% |27.138 0.806 0.220 2.83%
AdamW o MC104 1 24.155 0.698 0.288 3.80% |30.326 0917 0.203 -7.47% | 26.898 0.795 0.250 5.43%
MC105 10 17.031 0.350 0.654 -19.8% |20.134 0.680 0.457 -11.6% | 18.410 0.497 0.567 -16.1%
AdamWo MCI106 0.1 24239 0.713 0.242 5.77% |30.992 0.928 0.182 9.66% |27.240 0.808 0.215 7.50%
+clip MC107 1 24381 0.713 0.260 5.08% |30.850 0.922 0.194 8.76% |27.256 0.806 0.231 6.71%
(max 10) MCI108 10 19.358 0.440 0.560 2.69% |21.901 0.727 0436 7.99% |20.488 0.568 0.505 5.04%

Methods Cite Ao

of various regularization techniques in 3DGS, there is currently little work examining the interplay
between regularization and the optimizer, even though this has already been explored in the deep
neural networks ( , ).

I PREPARATION FOR DECOUPLED ATTRIBUTE REGULARIZATION

1.1 HYPERPARAMETER ADJUSTMENT

This section discusses the influence of hyperparameters on regularization. For both opacity and
scaling regularization in 3DGS-MCMC, a default value of 0.01 is adopted. Here, we vary only
the opacity hyperparameter by scaling it up or down by a factor of 10, with the results summa-
rized in Table 12. When increased to 0.1, the stronger regularization leads to severe degradation
in reconstruction quality. Conversely, reducing it to 0.001 weakens the regularization effect to the
extent that the primitive reallocation process is significantly disrupted, also resulting in quality loss.
These results suggest that hyperparameters alone are insufficient to effectively regulate the strength
of regularization

1.2 ADAMW STYLE DECOUPLING

The AdamW-style decoupling implies an equal penalty applied to attributes, which can be formally
expressed in Eq. 15 and Eq. 16. This formulation is equivalent to imposing a constant penalty on
opacity ( , ). Within the 3DGS-MCMC framework, we apply AdamW-style
decoupling to opacity and evaluate it under three hyperparameter settings representing different
strengths. To disentangle the effect of magnitude, we also experiment with constraining the magni-
tude of the AdamW-style decoupling, as given in Eq. 17. The results are summarized in Table 12.
Consistent with the findings in Appendix Sec. I.1, excessively large hyperparameters hinder conver-
gence, while overly small values render the regularization ineffective. A key limitation of AdamW-
style decoupling is that it enforces uniform penalties across all primitives, despite their varying
importance.

(O, = B xm(O)y+ (1= 8 x T w0 = By xo0)iy + (- ) x (P 1)
1

Or11=0r —n X (\/W"’ ) + AVR(6)) (16)

9t+1 = Ht —n X (’:Ze()agare + mlD(AVR(Q),Cf)) (17)

1.3 ADDITIONAL DISCUSSION REGARDING THE FORMULATION IN EQ.8
A thorough decoupling—i.e., activation via the second moment of V’R—is unreasonable: be-

sides extra computational and memory cost, it reduces regularization to a trivial attribute-dependent
penalty (e.g., higher opacity automatically incurs stronger regularization).
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1.4 DISCUSSION RELATED TO IMPLICIT UPDATE

Ineffective when stable: Implicit updates allow primitives in invisible viewpoints to be updated
based on their current moment. Our reasoning, grounded in experimental results, is as follows.
When primitives are in a stable state—more precisely, at saddle points, which are abundant in 3DGS
when no external perturbation is applied ( , )—implicit updates are largely ineffective
while incurring additional computational cost. In vanilla 3DGS, we implemented AIU (see GS4 and
GS3 in Sec. K), and observed negligible improvement.

Less controllable when unstable: In contrast, when primitives are unstable, such as during the early
training phase (e.g., densification, where newly generated primitives often have zero moment), or
when the update step is relatively large, or when moment is rescaled, implicit updates can become
problematic. We designed several experiments to highlight their uncontrollability. For instance,
adopting AIU during densification in vanilla 3DGS with Sparse Adam can lead to more primitives
but worse performance, as shown in GS6 in Appendix Sec. K, as even small update steps for in-
visible primitives introduce instability. Based on Obsidian 1, Sparse Adam tends to be stable, with
which fewer primitives meet the gradient condition. AIU disrupts this stability: when primitives
overfit certain views due to implicit updates, they induce larger gradients in other views, triggering
unnecessary densification. The additional primitives do not necessarily improve rendering quality.
In the Appendix Sec.K, we provide multiple AIU configurations: although in some cases the qual-
ity approaches that of vanilla 3DGS, the more common results are in worse quality, confirming the
uncontrollable nature of implicit updates.

Another related phenomenon is the dead primitives or more reallocated primitives (see Sec.5.1).
The comparison between GS1 and GS3 in Table 1 (or can be found in Appendix Sec. K) shows
that more dead primitives are caused by Adam (0.232m vs. 0.048m). A natural conjecture is that
when the update step, in a certain viewpoint, encourages primitives to become dead primitives, the
implicit update accelerates this process, thereby producing more dead primitives. We provide some
comparative experiments in Appendix Sec. K. (1) MC2 vs. MC3 in Appendix Sec. K, comparing
the original 3DGSMCMC with Sparse Adam against the original 3DGSMCMC with Sparse Adam
+ AIU. (2) Similar comparisons can be found in GS3 and GS4, examining the effect of AIU on
dead primitives when Sparse Adam is applied after densification ends. We observe that using AIU
results in additional dead primitives. (3) Figure 3 likewise shows that adding AIU leads to more
reallocated primitives during the densification stage of 3DGSMCMC. For certain scenes, such as
Kitchen, the corresponding reconstruction quality decreases, further reflecting the increased number
of dead primitives. This also indicates that the phenomenon is not part of a normal optimization
process; in Sec. 5.1, we relate this behavior to over-effective regularization. (4) The comparison
between MC6 and MC7 in Appendix Sec. K similarly shows that adding AIU after densification
produces additional dead primitives as well; note that in our application RSR is only added during
densification. (5) When training MaskGaussian with AdamW-GS, MaskGaussian will not suffer
from the quality risk.

J IMPLEMENTATION DETAILS

J.1 ADAMW-GS

Specifically, each parameter of the optimizer can be expressed in the form:

Since both opacity and scaling are strictly positive, the gradient of the L1 regularization reduces to
a constant value of +1.

For opacity:

o=o(1)= 7 +1e*7 Vo(r)=0(r)(1 —o(1)) (18)
m(7); Vo(r)/N;

+ min(\ ) (19)

Tt41 = Tt — N X [Ai o — Lt
VO(T), + € VO(T), + €

For scaling:
s =exp(k) Vexp(k)=exp(k) (20)
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Figure 9: a-b:: This illustrates the training pipeline of 3DGS and 3DGS-MCMC. Since our method
encourages more primitive reallocations, we postpone the densification stage by 1000 iterations
compared to the original 3DGS-MCMC. In contrast, the original 3DGS-MCMC at 25k iterations
produces almost no dead primitives. ¢-d: This shows the StSS used in this paper.

n(k); \Y N,
e = o — g X [ i (3, VORI @
0(K)} + € VO(Rr), +e
For position:
Ry=mu-0(=Au(o =) - Ty v ~N(0,1) (22)
(p)i R
fegr = e — T X [t + TR2R (23)
t+1 t " [ \/m + € nu P‘}
For the other: A6,
m
Opp1 = 6; —ng X L 24)
t+1 =0t — 1o [\/m e (
J.2  HYPERPARAMETER SELECTION
For vanilla 3DGS( R ) and 3DGS-MCMC( R ), all pipeline
parameters follow the original settings, with noise parameters identical to those in 3DGS-MCMC.
Operation for the opacity is similar as ( , ).
n(6)] VR(0)/N,
Orp1 =0 —m x| () + min(A (6)/ N1 Ct)] (25)

NGO NGO

StSS in RSR  We fix the sampling interval at 100. Currently, StSS is manually set. StSS is used
to sample the current set of primitives, followed by RSR rescaling. The configuration of StSS
must take into account the generation and reallocation behavior in the pipeline, as these processes
typically introduce additional primitives with zero state. When such zero-state primitives constitute
a large proportion of the population, a smaller sampling ratio is generally preferred. In the main text,
Figure 3 and Figure 2 respectively show the number of reallocated primitives for 3DGS-MCMC and
the evolution of the primitive count under different scenes for 3DGS. Understanding these curves
provides useful guidance for designing an effective StSS strategy.

In general, the differences between these schedules arise from two main factors: (1) variations in
the underlying pipelines (e.g., 3DGS vs. 3DGS-MCMC), which naturally require distinct schedules;
and (2) variations across scenes, where different schedules are needed to obtain the best performance
on indoor versus outdoor datasets. The discrepancies introduced by the pipelines themselves are un-
avoidable. Nevertheless, for each pipeline we design a conservative schedule—denoted StSSGS1
and StSSMC1—under which both 3DGS and 3DGS-MCMC outperform their original configura-
tions. For outdoor scenes, which typically involve higher primitive generation or reallocation rates,
we find that a more aggressive schedule further improves performance. All StSS schedules used in
this paper are illustrated in Figure 9. Appendix Sec.K summarizes the results obtained by applying
different StSS configurations across various pipelines and scenes.
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Scaling in RSR The three existing or designed operations provide guidance for selecting the pa-
rameters oy and ao in RSR. (1) The states of newly generated primitives in 3DGS, or reallocated

primitives in 3DGS-MCMC, can be viewed as naturally constrained by an RSR with a; = as = 0.
m(0);
\V0(0)i+e
relation ap; = 2. (3) A very small iy is consistent with the design philosophy of DAR, as we rely
on such a small value to rescale the second moment and thereby activate regularization. Therefore,
when «; and s are chosen to be sufficiently small while satisfying ao = 2, the configuration
is safe. We conducted a search over different combinations of «; and «e. For larger configura-
tions—for example, vy = 0.5, as = 0.25—RSR becomes less effective, and some combinations
even lead to gradient explosion. For smaller values of a; and as, the performance differences are
minor, and we find that a; = 0.2, as = 0.04 generally performs best. In Appendix Sec.K, we
report results for both a; = as = 0 and a3 = 0.2, oo = 0.04, cited as MC19 and MC18. Hence,

we adopt a; = 0.2, ap = 0.04 as default in all experiments.

(2) To properly control the magnitude of the update step , 1t is necessary to impose the

DAR We use two DAR variants: opacity and scaling regularization. Regularization is constrained
to the densification stage, as no clear benefit is observed in P-Op. This is consistent with the smaller
max magnitude of adaptive gradients in P-Op (Figure 1). Opacity regularization starts after 3000
iterations, since a large percent of generated primitives initially have zero moment, motivating a
delayed start.

For the two hyperparameters, we select values by considering activation derivatives, original set-
tings, and Adam’s parameters. We set A, = 0.001 and, since scaling activations are two orders
larger than opacity, A; = le—5. Comparative DAR experiments with Ay = 0.001 and A; = le—5
show that 1le—5 performs better (see experiments MC14 and MC17 in Appendix Sec. K). In our
application, only the most significant digit of Ny is retained and then scaled down by one order of
magnitude.

For opacity, C, is set to 10, guided by the max magnitude of adaptive gradients in Figure 1. Without
C;, over-effective regularization occurs (see MC9 in Appendix Sec. K). Smaller values (e.g., 5 or
1) reduce reallocated primitives, leading to slight drops in PSNR and SSIM, though the MCMC
framework still explores effectively. For scaling, we adopt C; = 10 by analogy with opacity, which
yields good results; scaling is less sensitive to C; (e.g., C; = 1 shows little change in reconstruction
quality; see MC8-MC17 in Appendix Sec. K).

K ALL RESULTS

More rendering visualization can be found in Fig.10.
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vanilla 3DGS + AdamW-GS vanilla 3DGS Ground Truth

Figure 10: Rendering visualization comparison.
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K.1 BICYCLE FROM MIPNERF-360

Table 13: Quantitative results in Bicycle from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and nayy constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nay = 0.5 after 0.1k iterations, nary = 0.1 after 3k,
and natu = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5R here means only adding RSR to the pipeline.

cite Sparse AIU Proaru NAIU noise reset Ours PSNR SSIM LPIPS N,/m Ng/m AN,
GST x : - : G - 75238 0765 0211 5438 0548 -

G2 v } } } - - 25142 0752 0235 4052 0.100 -25.5%
GS3 Half - ] ] - } 25260 0766 0211 5879 0.109 8.11%
GSO v - - - - v StSSGSIFSR 25337 0770 0213 3.929 0.038 -28.4%
GSA Hall [1330] 05  O13] - 7 - 75284 0766 0210 5832 0.176 724%
GSI5 Half [1530] 10  [0.1(15] - - 25256 0766 0210 5651 0285 3.91%
GSI6 v [0.L15] 05  [0.4]0.1] - v - 25.145 0756 0227 5245 0.105 -3.54%
GS17 0171 02  [05101] - v - 25.166 0755 0228 5026 0.103 -7.57%
GSI8 v [0.L15] 02 [Oié'?'?’%” . : 25.166 0757 0226 5290 0.102 -2.72%
GS19 v [0.,15] 02 '([)(']Sioéi' v : 25133 0754 0229 4726 0097 -13.1%
GS5 v [0.LI15] 02 [Oig'?'g’%” v - 25116 0756 0226 5343 0.103 -1.74%
GS6 v (0130 10 0101 - < - 25206 0760 0220 6087 0203 11.9%
GO v - . - 7 X SSSGS2 25481 0776 0219 3.116 0013 42.7%
GS7T v ; ; } v x  SISSGSS 25470 0775 0223 3066 0011 -43.6%
GSI0 v } } } v v SISSGSI 25514 0780 0215 2853 0021 -47.5%
GS8 v ; ; ; v v SISSGS2 25454 0778 0219 2717 0018 -50.0%

Table 14: Quantitative results in Bicycle from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 13). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in

StSSMC1 denotes using oy = a2 = 0 here.

cite Sparse AIU Proatu/natu RSR Ro Ao/max, Rs Ag/maxs PSNR SSIM LPIPS N,/m Ng/m AN,
MCI1 X - - - L1 0.01/- L1 0.01/-  25.537 0.794 0.181 5.189 0.790 -4.57%
MC2 v - - - L1 0.01/- L1 0.01/-  25.630 0.793 0.178 5.835 0.145 7.30%
MC3 v' [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/-  25.649 0.794 0.177 5819 0.161 7.0%
MC4 v [3,30] 0.1/0.1 StSSMC1 LI 0.01/- L1 0.01/-  25.746 0.803 0.167 5.645 0.335 3.80%
MC5 v' o [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 24.930 0.798 0.163 5.764 0.216 5.99%
MC6 v [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 107°/10 25.298 0.801 0.161 5.789 0.191 6.45%
MC18 v - - StSSMC1° L1 0.01/- L1 0.01/- 25.779 0.804 0.170 5.734 0.246 5.44%
MC19 Vv - - StSSMC1 L1 0.01/- L1 0.01/- 25.777 0.803 0.166 5.722 0.258 5.22%
MC20 Vv - - StSSMC2 L1 0.01/- L1 0.01/- 25.539 0.795 0.180 5.189 0.791 -4.57%
MCY Vv - - StSSMC1 DAR 0.001/- LI 0.01/- 25.766 0.803 0.167 5.715 0.265 5.09%
MC10 Vv - - StSSMC1 DAR 0.001/10 L1 0.01/- 25768 0.804 0.160 5.840 0.139 7.4%
MCl1l v - - StSSMC2 DAR 0.001/10 L1 0.01/- 25.813 0.807 0.158 5.835 0.144 7.31%
MC12 Vv - - StSSMC1 DAR 0.001/5 LI 0.01/- 25.753 0.804 0.159 5.843 0.137 7.44%
MC13 Vv - - StSSMC1 DAR 0.001/1 L1 0.01/- 25.666 0.800 0.162 5.871 0.109 7.96%
MCl4 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 25.727 0.803 0.159 5.873 0.107 7.99%
MC15 Vv - - StSSMC1 DAR 0.001/10 DAR 0.001/1 25.743 0.804 0.159 5.863 0.117 7.81%
MCl16 Vv - - StSSMC1 DAR 0.001/10 DAR 10~°/1 25791 0.806 0.158 5.807 0.173 6.78%
MC17 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 25.781 0.806 0.158 5.807 0.173 6.78%
MC7 Vv - - StSSMC2 DAR 0.001/10 DAR 1075/10 25.826 0.807 0.158 5.799 0.181 6.63%
MC8 v - - StSSMC3 DAR 0.001/10 DAR 107°/10 25.874 0.809 0.158 5.781 0.199 6.30%
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K.2 FLOWERS FROM MIPNERF-360

Table 15: Quantitative results in Flowers from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and nayy constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nay = 0.5 after 0.1k iterations, nary = 0.1 after 3k,
and naty = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5R here means only adding RSR to the pipeline.

cite Sparse AIU  Proaru NATU noise reset Ours PSNR SSIM LPIPS N,/m Ngm AN,
GST x - - - T - 31527 0605 0336 3421 0239 -
G2 v - } } . . 21463 0598 0346 2737 0030 -199%
GS3  Half - ] ] - ; 21580 0.605 0337 3616 0033 5.70%
GSO v - - - - v StSSGSIFSE 21698 0610 0336 2506 0011 -267%
GSA  Half [1330] 05 015 - 7 - 71398 0606 0336 3381 0036 4.67%
GSI5 Half [1530] 10  [0.1(15] - v . 20585 0605 0336 3518 0098 2.83%
GSI6 v [0.15] 05  [04]01] - v . 20488 0.600 0343 3198 0032 -6.51%
GSI7 v [017 02  [05[01] - v : 21535 0600 0342 3153 0032 -7.83%
GSI8 v [0.,15] 02 [0['5’(1)'?'%” v ; 21563 0601 0342 3240 0032 -529%
GS19 v [0.115] 02 “[)(')Sioéﬁ o : 21524 0599 0344 2940 0029 -14.0%
GS5 v [0.L15] 02 wfﬁ’?’i‘%” - i 201548 0601 0342 3330 0003 -2.66%
GS6 v (0130 10 (001 - v - 20551 0.601 0340 3599 0077 520%
S — - 5 - 7 x  SSSGS2 21762 0609 0343 2.026 0004 -40.7%
GST v - } ; V  x  SISSGS5 21718 0606 0349 1951 0003 -42.9%
GSI0 v - ; } Vv SISSGSI 21708 0612 0339 1917 0007 -43.9%
GS8 v - ; ; v v SSSGS2 21711 0610 0344 1832 0005 -46.4%

Table 16: Quantitative results in Flowers from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 15). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using oy = a2 = 0 here.

cite Sparse AIU Proatu/natu RSR Ro Ao/max, Rs Ag/maxs PSNR SSIM LPIPS N,/m Ng/m AN,
MCI1 X - - - L1 0.01/- L1 0.01/-  22.028 0.641 0.296 3.352 0.248 -2.01%
MC2 v - - - L1 0.01/- L1 0.01/-  21.966 0.635 0.304 3.534 0.066 3.30%
MC3 v' [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 22.072 0.638 0.301 3.529 0.071 3.15%
MC4 v [3,30] 0.1/0.1 StSSMC1 LI 0.01/- L1 0.01/-  22.039 0.651 0274 3.486 0.114 0.19%
MC5 v' o [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 21.750 0.650 0271 3.520 0.08 2.89%
MC6 v [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 107°/10 21.511 0.646 0275 3.524 0.076 3.01%
MC18 v - - StSSMC1° L1 0.01/- L1 0.01/-  22.195 0.649 0.292 3.510 0.090 2.60%
MC19 Vv - - StSSMC1 L1 0.01/- L1 0.01/- 22.038 0.650 0.277 3.524 0.076 3.01%
MC20 Vv - - StSSMC2 L1 0.01/- L1 0.01/- 22.017 0.641 0295 3.352 0.248 -2.01%
MCY Vv - - StSSMC1 DAR 0.001/- LI 0.01/- 21.288 0.588 0.349 - - -

MC10 Vv - - StSSMC1 DAR 0.001/10 L1 0.01/-  21.887 0.650 0.268 3.551 0.049 3.80%
MCl1l v - - StSSMC2 DAR 0.001/10 LI 0.01/-  22.017 0.656 0.268 3.548 0.052 3.71%
MC12 Vv - - StSSMC1 DAR 0.001/5 LI 0.01/- 21.876 0.650 0.266 3.554 0.046 3.88%
MC13 Vv - - StSSMC1 DAR 0.001/1 L1 0.01/- 21.726 0.646 0.264 3.565 0.035 4.20%
MCl4 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 21.923 0.650 0.269 3.563 0.037 4.15%
MC15 Vv - - StSSMC1 DAR 0.001/10 DAR 0.001/1 21.962 0.650 0.270 3.561 0.039 4.15%
MCl16 Vv - - StSSMCI1  DAR 0.001/10 DAR 10~°/1 21936 0.651 0271 3.537 0.063 3.39%
MC17 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 22.034 0.653 0.270 3.539 0.061 3.44%
MC7 v - - StSSMC2 DAR 0.001/10 DAR 1075/10 22.003 0.654 0.267 3.535 0.065 3.33%
MC8 v - - StSSMC3 DAR 0.001/10 DAR 107°/10 22.108 0.658 0.268 3.525 0.075 3.04%
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K.3 GARDEN FROM MIPNERF-360

Table 17: Quantitative results in Garden from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and nay constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nary = 0.5 after 0.1k iterations, najy = 0.1 after
3k, and naty = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. . Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5R here means only adding RSR to the pipeline.

cite Sparse AIU  Proaru NATU noise reset Ours PSNR SSIM LPIPS N,/m Ngm AN,
GST x - - - T - 77334 0865 0.108 5614 0318 -
G2 v - } } . . 27237 0860 0.117 4064 0059 -27.6%
GS3  Half - ) ] - : 27409 0866 0.107 5878 0059  4.70%
GSO v - - - - v StSSGSIRSE 27318 0.865 0.109 3.026 0.019 -46.9%
GSA  Half [1330] 05 015 - 7 - 77436 0866 0.107 35827 0112 3.79%
GSI5 Half [1530] 10  [0.1(15] - v . 27455 0866 0.107 5672 0265 1.03%
GSI6 v [0.15] 05  [04]01] - v . 27268 0862 0.114 5138 0068 -847%
GSI7 v [017 02  [05[01] - v : 27304 0862 0.113 5225 0066 -6.92%
GSI8 v [0.,15] 02 [0['5’(1)'?'%” v ; 27298 0862 0.113 5363 0069 -447%
GS19 v [0.115] 02 “[)(')Sioé%] . : 27234 0861 0.114 4652 0061 -17.1%
GS5 v [0.L15] 02 wfﬁ’?’i‘%’ .y i 27352 0863 0.112 5548 0069 -1.17%
GS6 v (0130 10 (001 - v - 27263 0862 0.112 5877 0162 4.68%
S — - 5 - 7 x  SSSGS2 27438 0864 0.125 2.076 0006 63.0%
GST v - } ; Y x  SISSGSS 27590 0864 0.127 1983 0005 -64.7%
GSI0 v - ; } Vv SISSGSI 27370 0863 0122 2145 0016 -61.8%
GS8 v - ; ; v v SSSGS2  27.170 0862 0.124 2.075 0012 -63.0%

Table 18: Quantitative results in Garden from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 17). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using oy = a2 = 0 here.

cite Sparse AIU Proatu/natu RSR Ro Ao/max, Rs Ag/maxs PSNR SSIM LPIPS N,/m Ng/m AN,
MCI1 X - - - L1 0.01/- L1 0.01/-  27.862 0.879 0.094 5.466 0433 -2.63%
MC2 v - - - L1 0.01/- L1 0.01/- 27.889 0.878 0.096 5.785 0.115 3.04%
MC3 v' [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/-  27.896 0.878 0.095 5.770 0.13 2.77%
MC4 v [3,30] 0.1/0.1 StSSMC1 LI 0.01/- L1 0.01/- 28.032 0.883 0.089 5.627 0.273 0.23%
MC5 v' o [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 25.235 0.864 0.107 5.645 0.255 0.55%
MC6 v [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 107°/10 24.993 0.825 0.149 5.651 0.249 0.65%
MC18 v - - StSSMC1° L1 0.01/- L1 0.01/- 28.010 0.882 0.090 5.726 0.174 1.99%
MC19 Vv - - StSSMC1 L1 0.01/- L1 0.01/- 28.028 0.882 0.089 5.705 0.195 1.62%
MC20 Vv - - StSSMC2 L1 0.01/- L1 0.01/- 27.877 0.879 0.094 5.714 0.186 1.78%
MCY Vv - - StSSMC1 DAR 0.001/- LI 0.01/- 28.037 0.882 0.093 5.632 0.268 0.32%
MC10 Vv - - StSSMC1 DAR 0.001/10 L1 0.01/- 28.087 0.884 0.088 5.752 0.148 2.24%
MCl1l v - - StSSMC2 DAR 0.001/10 L1 0.01/-  28.065 0.884 0.088 5.740 0.160 2.24%
MC12 Vv - - StSSMC1 DAR 0.001/5 LI 0.01/- 28.072 0.884 0.088 5.756 0.144 2.52%
MC13 Vv - - StSSMC1 DAR 0.001/1 L1 0.01/- 28.021 0.883 0.089 5.807 0.093 3.43%
MCl4 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 28.045 0.883 0.088 5.805 0.095 3.40%
MC15 Vv - - StSSMC1 DAR 0.001/10 DAR 0.001/1 28.018 0.883 0.088 5.796 0.104 3.24%
MCl16 Vv - - StSSMC1 DAR 0.001/10 DAR 10~°/1 28.081 0.884 0.088 5.725 0.175 1.97%
MC17 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 28.104 0.884 0.088 5.726 0.174 1.99%
MC7 Vv - - StSSMC2 DAR 0.001/10 DAR 107°/10 28.109 0.884 0.088 5.714 0.186 1.78%
MC8 v - - StSSMC3 DAR 0.001/10 DAR 107°/10 28.144 0.885 0.088 5.687 0213 1.30%
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K.4 STUMP FROM MIPNERF-360

Table 19: Quantitative results in Stump from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and nayy constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nay = 0.5 after 0.1k iterations, nary = 0.1 after 3k,
and natu = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5R here means only adding RSR to the pipeline.

cite Sparse AIU  Proatu NATU noise reset Ours PSNR SSIM LPIPS N,/m Ngm AN,
GST x - - : T - 76606 0772 0216 4542 0232 -
G2 v - } ; . - 26511 0762 0233 3751 0026 -17.4%
GS3  Half - ) ) v - 26730 0774 0215 4774 0029 5.10%
GSO v - - - - v StSSGSIFSE 26624 0782 0210 3.644 0016 -19.7%
GS&  Hall [1530] 05  O15] - - 76710 0773 0215 4928 0094 849%
GSI15 Half [1530] 10  [01][15] - - 26759 0774 0214 4596 0270 1.18%
GS16 v [0.L15] 05  [0101] - - 26534 0766 0226 4974 0029 951%
Gs17 v [0.07] 02  [0s|01] - i 26475 0764 0227 5010 0030 10.3%
GSI8 v  [0.L,I5] 02 [Oté’?'?*%” v - 26611 0768 0224 4811 0026 594%
GS19 v [0.L15] 02 [([)65i035| . - 26633 0767 0226 4830 0026 634%
GS5 v [0.LI15] 02 [Otg’?'g’%” -y - 26630 0767 0224 5165 0026 13.7%
GS6 v (01301 10 (0101 - i 26601 0768 0222 5274 0125 16.1%
S — - : - 7 x  SSSGS2 27075 079 0211 2894 0014 363%
GS7T v - } ; v x  SISSGS5 27271 0798 0211 2677 0009 -41.0%
GSI0 v - ; ; ¢ v SISSGSI 27033 0800 0206 2567 0023 -43.5%
GS8 v - ; ; v v SSSGS2 27045 0800 0206 2470 0020 -45.6%

Table 20: Quantitative results in Stump from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 19). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using oy = a2 = 0 here.

cite Sparse AIU Proaju/naru RSR Ro Ao/max, Rs Ag/maxs PSNR SSIM LPIPS N,/m Nym AN,
MCl1 X - - - L1 0.01/- L1 0.01/- 27.204 0.805 0.183 4.245 0.555 -6.53%
MC2 v - - - L1 0.01/- L1 0.01/- 27.293 0.805 0.182 4.718 0.082 3.84%
MC3 v' [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 27273 0.805 0.182 4.698 0.102 3.43%
MC4 v [3,30] 0.1/0.1 StSSMC1 LI 0.01/- L1 0.01/-  27.131 0.806 0.177 4.535 0.265 -0.154%
MC5 V' [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 20.854 0.687 0.284 4.621 0.179 1.73%
MC6 v [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 107°/10 25509 0.782 0.195 4.615 0.185 1.60%
MC18 Vv - - StSSMC1° L1 0.01/- L1 0.01/- 27.064 0.805 0.179 4.620 0.180 1.71%
MC19 Vv - - StSSMC1 L1 0.01/- L1 0.01/- 27.172 0.807 0.176 4.631 0.169 1.93%
MC20 Vv - - StSSMC2 L1 0.01/- L1 0.01/-  27.170 0.796 0.190 4.673 0.127 2.88%
MCY9 Vv - - StSSMC1 DAR 0.001/- L1 0.01/- 26943 0.796 0.191 4.620 0.180 1.71%
MC10 Vv - - StSSMC1 DAR 0.001/10 L1 0.01/- 27.041 0.800 0.178 4.713 0.087 3.76%
MC1l v - - StSSMC2 DAR 0.001/10 L1 0.01/-  27.064 0.803 0.176 4.705 0.095 3.58%
MCI12 - - StSSMC1 DAR 0.001/5 L1 0.01/-  27.070 0.799 0.179 4.712 0.088 3.74%
MC13 Vv - - StSSMC1 DAR 0.001/1 L1 0.01/- 26.853 0.793 0.184 4.741 0.059 4.38%
MCl4 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 26.966 0.797 0.180 4.724 0.076 4.00%
MC15 Vv - - StSSMC1 DAR 0.001/10 DAR 0.001/1 27.108 0.801 0.177 4.717 0.083 3.85%
MCl16 Vv - - StSSMC1 DAR 0.001/10 DAR 10~°/1 27.088 0.801 0.178 4.683 0.117 3.10%
MC17 Vv - - StSSMC1 DAR 0.001/10 DAR 107°/10 27.101 0.802 0.178 4.681 0.119 3.06%
MC7 Vv - - StSSMC2 DAR 0.001/10 DAR 107°/10 27.159 0.805 0.175 4.673 0.127 2.88%
MC8 Vv - - StSSMC3 DAR 0.001/10 DAR 107°/10 27.245 0.808 0.174 4.650 0.150 2.37%
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K.5 TREEHILL FROM MIPNERF-360

Table 21: Quantitative results in TreeHill from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and nay constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nary = 0.5 after 0.1k iterations, nary = 0.1 after 3k,
and natu = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5R here means only adding RSR to the pipeline.

cite Sparse AIU  Proaru NATU noise reset Ours PSNR SSIM LPIPS N,/m Ngzm AN,
GST x : - - e : 75534 0633 0326 3547 0238 -

Gs2 v } ) ) e } 2477 0629 0340 2701 0027 -23.8%
GS3  Haf - ] ] - ] 22558 0634 0327 3820 0031 7.69%
GSO v - - - - v StSSGSITSE 22447 0638 0320 2887 0016 -18.6%
GS4  Haf [1530] 05 0I5 - v : 75538 0633 0327 3732 0052 521%
GSI5 Half [1530] 10  [0.4][15] - } 2577 0634 0325 3726 0083  5.04%
GSI6 v [0.015] 05  [0.101] - v } 22480 0630 0335 3488 0030 -1.66%
GS17 .07 02  [0501 - v ] 22633 0631 0335 3304 0029 -6.85%
GSIS v [0.115] 02 [Oig'?f’%” v ; 22509 0631 0334 3490 0030 -1.60%
GS19 v [0.L15] 02 '([)(')Sioé;' v ; 22537 0630 0335 3131 0026 -11.7%
GS5 v [0.LI5] 02 [Otg*(l"g’%” . : 22558 0631 0334 3553 0029 0.169%
Gs6 v 01301 10  [010.1] - v ; 22484 0631 0331 4074 0080 14.8%
GO v - : - 7 X SSSGS2 22791 0646 0322 2616 0003 262%
GST v } ; ; v x  SISSGS5 22691 0644 0328 2553 0002 -28.0%
GSI0 v } ) ) v v SISSGSI 22005 0650 0322 2335 0006 -341%
GS8 v ; ; ; v v SiSSGS2 22891 0651 0325 2231 0005 -37.1%

Table 22: Quantitative results in TreeHill from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 21). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using oy = a2 = 0 here.

cite Sparse AIU Proatu/natu RSR Ro Ao/max, Rs Ag/maxs PSNR SSIM LPIPS N,/m Ng/m AN,
MCI1 X - - - L1 0.01/- L1 0.01/-  22.894 0.655 0.310 3.329 0.37 -6.14%
MC2 v - - - L1 0.01/- L1 0.01/-  23.023 0.659 0.300 3.621 0.079 2.08%
MC3 v' [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/-  23.012 0.658 0.302 3.612 0.088 1.83%
MC4 v [3,30] 0.1/0.1 StSSMC1 LI 0.01/- L1 0.01/- 22.858 0.663 0.284 3.555 0.145 0.22%
MC5 v' o [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 22.788 0.659 0270 3.616 0.084 1.94%
MC6 v [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 107°/10 22.715 0.660 0.268 3.622 0.078 2.11%
MC18 v - - StSSMC1° L1 0.01/- L1 0.01/- 22930 0.663 0.291 3.591 0.109 1.21%
MC19 Vv - - StSSMC1 L1 0.01/- L1 0.01/- 22918 0.663 0.285 3.580 0.120 0.93%
MC20 Vv - - StSSMC2 L1 0.01/- L1 0.01/- 22953 0.654 0312 3.323 0.377 -6.32%
MCY Vv - - StSSMC1 DAR 0.001/- LI 0.01/- - - - - -

MC10 Vv - - StSSMC1 DAR 0.001/10 L1 0.01/- 22.771 0.657 0.270 3.653 0.047 2.98%
MCl1l v - - StSSMC2 DAR 0.001/10 LI 0.01/-  22.740 0.660 0.268 3.654 0.046 3.01%
MC12 Vv - - StSSMC1 DAR 0.001/5 LI 0.01/- 22.684 0.655 0.271 3.654 0.046 3.01%
MC13 Vv - - StSSMC1 DAR 0.001/1 L1 0.01/- 22.533 0.652 0.274 3.663 0.037 3.27%
MCl4 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 22.690 0.655 0.270 3.663 0.037 3.27%
MC15 Vv - - StSSMC1 DAR 0.001/10 DAR 0.001/1 22.692 0.656 0.270 3.661 0.039 3.21%
MCl16 Vv - - StSSMC1 DAR 0.001/10 DAR 10~°/1 22.800 0.658 0.270 3.638 0.062 2.56%
MC17 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 22.806 0.658 0.270 3.639 0.061 2.59%
MC7 v - - StSSMC2 DAR 0.001/10 DAR 1075/10 22.836 0.661 0.268 3.637 0.063 2.53%
MC8 v - - StSSMC3 DAR 0.001/10 DAR 107°/10 22.866 0.662 0.265 3.630 0.07 2.34%
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K.6 ROOM FROM MIPNERF-360

Table 23: Quantitative results in Room from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and naru constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nary = 0.5 after 0.1k iterations, najy = 0.1 after 3k,
and nary = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5® here means only adding RSR to the pipeline.

cite Sparse  AIU  Proaru NATU noise Ours PSNR SSIM LPIPS N,/m Ngzm AN,
GSi x : - - - - 37500 09020 0221 1374 0202 -
GS2 v ; ] ; ] ; 3109 0917 0231 1131 0031 -17.6%
GS3  Half - ] ] ] ] 31607 0921 0220 1537 0041 11.8%
GSO v - - - - StSSGS1RSR 31541 0921 0220 0994 0017 -288%
GS4  Haf [1530] 05 OIS - - 31710 0921 0220 1496 0111 887%
GSI5  Half [1530] 10  [01115] - ] 31614 0921 0220 1466 0.113  6.69%
GS16 v  [0.LI15] 05  [0.0[01] - ] 31389 0919 0228 1447 0034 531%
Gs17 v 0171 02  [05]01] - ; 31539 0919 0227 1441 0036 225%
Gsi8 v [0.LI5] 02 [Oté’?'f’%u ; ; 31379 0918 0227 1473 0037 7.20%
GS19 v [0.LI5] 02 [([)(.)sioé;] ; ; 31476 0919 0228 1342 0034 -232%
GS5 v [0L15] 02 lotg’?'_f)’%l I ; 31500 0919 0226 1504 0036 9.46%
GS6 v [0130] 10  [0.[0.1] - ; 31259 0917 0228 1549 0066 12.7%
GS3 7 - : - T SISGS3 31768 0920 0227 0617 0.006  55.1%
GS7/GS8 v } } ; - SISSGSI 31741 0921 0222 0.624 0005 -54.6%
GS14 v } ] ] - SISSGS4 31753 0920 0222 0632 0005 -54.0%

Table 24: Quantitative results in Room from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 23). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using a; = ao = 0 here.

cite Sparse  AIU  Proaru/maru RSR Ro Ao/max, Rs As/maxs PSNR SSIM LPIPS N,/m Ng/m AN,

MCl1 X - - - L1 0.01/- L1 0.01/-  32.034 0.927 0.210 1.320 0.250 -3.93%
MC2 v - - - L1 0.01/- L1 0.01/-  32.417 0.929 0.209 1.472 0.098 7.13%
MC3 v [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/-  32.493 0.930 0.207 1.438 0.132 4.65%
MC4 v [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/-  32.498 0.930 0.204 1.351 0.219 -1.67%
MC6 v [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 19.068 0.734 0.387 1.505 0.065 9.53%
MC18 v - - StSSMC1Y L1 0.01/- L1 0.01/-  32.328 0.929 0.207 1.428 0.142 3.93%
MCI19 v - - StSSMC1 L1 0.01/- L1 0.01/-  32.514 0.930 0.205 1.430 0.140 4.07%
MC20 v - - StSSMC2 L1 0.01/- L1 0.01/-  31.179 0.922 0.213 1.126 0.444 -18.4%
MC9 v - - StSSMC1  DAR  0.001/- L1 0.01/- 32.498 0.930 0.204 1.351 0.219 -1.67%
MC10 v - - StSSMC1 DAR 0.001/10 L1 0.01/-  32.600 0.933 0.196 1.536 0.034 11.7%
MCl11 v - - StSSMC2 DAR 0.001/10 L1 0.01/-  32.542 0.933 0.197 1.535 0.035 11.7%
MC12 v - - StSSMC1 DAR 0.001/5 L1 0.01/-  32.611 0.933 0.197 1.536 0.034 11.7%
MC13 v - - StSSMC1 DAR 0.001/1 L1 0.01/-  32.317 0.932 0.197 1.546 0.024 12.5%
MC14 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 32.547 0.933 0.195 1.528 0.042 11.2%
MC15 v - - StSSMC1 DAR 0.001/10 DAR 0.001/1 32.586 0.933 0.196 1.528 0.042 11.2%
MC16 v - - StSSMC1 DAR 0.001/10 DAR 10~°/1 32.647 0.933 0.197 1515 0.055 10.2%
MC8MC7 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 32.651 0.933 0.196 1.515 0.055 10.2%
MC21 v - - StSSMC2 DAR 0.001/10 DAR 107°/10 32.647 0.933 0.197 1.512 0.058 10.0%
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K.7 COUNTER FROM MIPNERF-360

Table 25: Quantitative results in Counter from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and naru constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nary = 0.5 after 0.1k iterations, najy = 0.1 after 3k,
and nary = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5® here means only adding RSR to the pipeline.

cite Sparse  AIU  Proatu TAIU noise Ours PSNR SSIM LPIPS N,/m Ngm AN,
GS1 X B - - - . 29046 0009 0201 1.092 0.097 B
GS2 v - - - - - 28979 0907 0205 1.005 0034 -7.96%
GS3 Half - - - - - 29065 0909 0201 1.115 0076 2.10%
GS0 v - - - - StSSGSITSR 29026 0909 0202 0768 0011 -30.6%
GS4 Half [15.30] 05 [0.17(15] - B 20.060 0009 0201 1.124 0067 2.93%
GSI5  Half [1530] 1.0 [0.1][15] - - 29079 0909 0201 1.067 0.116 -2.28%
GS16 v [0.1,15] 05 [0.1][0.1] - - 28947 0908 0204 1.163 0.035 6.50%
GS17 v [017] 02 [0.5][0.1] - - 28974 0908 0204 1.175 0.036 7.60%
GS18 v [0.1,15] 02 [Ofé’(l)f’%l] - - 29010 0908 0203 1.199 0036 9.97%
GSI9 v [0.L1S] 02 [([)(')Sioés] ; ; 28972 0908 0203 L1118 0033 2.38%
GS5 v [0.1,051 02 lotg’?g’%l b - 28.998 0.908 0202 1221 0036 11.81%
GS6 v [0130] 1.0 [0.1][0.1] - - 28974 0908 0202 1257 0058 15.1%
GS13 e B - - - StSSGS3  29.084 0907 0204 0579 0005 -469%
GS7/GS8 v - - - - SISSGS1  29.112 0907 0206 0.535 0.004 -51.0%
GS14 v - - - - SISSGS4  29.077 0907 0203 0.535 0.003 -51.0%

Table 26: Quantitative results in Counter from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 25). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using a; = ao = 0 here.

cite Sparse  AIU  Proaru/maru RSR Ro Ao/max, Rs As/maxs PSNR SSIM LPIPS N,/m Ng/m AN,

MCl1 X - - - L1 0.01/- L1 0.01/-  29.229 0914 0.195 1.084 0.106 -0.73%
MC2 v - - - L1 0.01/- L1 0.01/-  29.180 0.912 0.198 1.148 0.042 5.12%
MC3 v [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/-  29.194 0914 0.196 1.140 0.05 4.39%
MC4 v [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/-  29.345 0916 0.190 1.098 0.092 0.54%
MC6 v [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 28.791 0.916 0.186 1.148 0.042 5.12%
MC18 v - - StSSMC1Y L1 0.01/- L1 0.01/-  29.274 0914 0.196 1.160 0.03 6.22%
MC19 v - - StSSMC1 L1 0.01/- L1 0.01/-  29.291 0916 0.191 1.151 0.039 5.40%
MC20 v - - StSSMC2 L1 0.01/- L1 0.01/-  29.069 0911 0.199 0.967 0.223 -11.4%
MC9 v - - StSSMC1  DAR  0.001/- L1 0.01/- 29.075 0910 0.202 1.13 0.060 3.47%
MC10 v - - StSSMC1 DAR 0.001/10 L1 0.01/- 29476 0919 0.184 1.172 0.018 7.32%
MCl11 v - - StSSMC2 DAR 0.001/10 L1 0.01/-  29.495 0919 0.183 1.171 0.019 7.23%
MC12 v - - StSSMC1 DAR 0.001/5 L1 0.01/-  29.470 0919 0.184 1.143 0.047 4.67%
MC13 v - - StSSMC1 DAR 0.001/1 L1 0.01/-  29.450 0919 0.183 1.181 0.009 8.15%
MC14 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 29.455 0.919 0.182 1.172 0.018 7.32%
MC15 v - - StSSMC1 DAR 0.001/10 DAR 0.001/1 29.486 0.919 0.183 1.171 0.019 7.23%
MC16 v - - StSSMC1 DAR 0.001/10 DAR 10~°/1 29.475 0919 0.184 1.163 0.027 6.50%
MC8MC7 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 29.515 0.919 0.183 1.163 0.027 6.50%
MC21 v - - StSSMC2 DAR 0.001/10 DAR 107°/10 29.506 0.919 0.184 1.161 0.029 6.31%
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K.8 KITCHEN FROM MIPNERF-360

Table 27: Quantitative results in Kitchen from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and naru constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nary = 0.5 after 0.1k iterations, najy = 0.1 after 3k,
and nary = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5® here means only adding RSR to the pipeline.

cite Sparse  AIU  Proatu TAIU noise Ours PSNR SSIM LPIPS N,/m Ngzm AN,
GSI X . - B B - 31505 0028 0.127 1699 0.116 B

GS2 v - - - - - 31053 0926 0.131 1.621 0036 -4.59%
GS3 Half - - - - - 31564 0929 0.127 1774 0.040 4.41%
GSO v - - - - StSSGSITSE 31072 0922 0.133 0930 0013 -452%
GS4  Half [1530] 05 [0.11[15] B . 31531 0029 0.127 1721 0089 129%
GSI5  Half [1530] 1.0 [0.1][15] - - 31509 0.929 0.127 1.602 0237 -5.70%
GS16 v [0.1,05] 05 [0.1][0.1] - - 31110 0926 0.130 1.766 0.035 3.94%
GS17 v [017] 02 [0.5]1[0.1] - - 31389 0.927 0.129 1.740 0.037 2.41%
GS18 v [01,05] 02 [0[3??%1] - - 30997 0926 0.129 1769 0.035 4.12%
GS19 v [0.L15] 02 [([)(.)sioé;] : ; 31330 0927 0129 1724 0035 147%
GS5 v [01,05] 02 |0£,(1),g,%1 b - 31355 0927 0.129 1772 0036 4.29%
GS6 v [0130] 1.0 [0.17[0.1] - - 31404 0928 0.128 1782 0.069 4.88%
GS13 e . B - B SiSSGS3 31770 0927 0.131 0692 0.005 -59.3%
GS7/GS8 v - - - - StSSGS1  31.728 0927 0.132 0.667 0.004 -60.7%
GS14 v - - - - SiSSGS4 31741 0926 0.133 0.667 0.004 -60.7%

Table 28: Quantitative results in Kitchen from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 27). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using a; = ao = 0 here.

cite Sparse  AIU  Proaru/maru RSR Ro Ao/max, Rs As/maxs PSNR SSIM LPIPS N,/m Ng/m AN,

MCl1 X - - - L1 0.01/- L1 0.01/- 32.173 0.933 0.122 1.661 0.149 -2.23%
MC2 v - - - L1 0.01/- L1 0.01/-  32.079 0.934 0.122 1.753 0.057 3.17%
MC3 v [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/-  32.286 0.934 0.122 1.743 0.067 2.58%
MC4 v [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/-  31.765 0.909 0.137 1.681 0.129 -1.05%
MC6 v [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 21.787 0.820 0.234 1.729 0.081 1.76%
MC18 v - - StSSMC1Y L1 0.01/- L1 0.01/- 32363 0.346 0.120 1.72 0.09 1.23%
MCI19 v - - StSSMC1 L1 0.01/- L1 0.01/-  32.289 0.934 0.119 1.714 0.096 0.88%
MC20 v - - StSSMC2 L1 0.01/- L1 0.01/-  31.924 0.931 0.124 1.495 0.315 -12.0%
MC9 v - - StSSMC1  DAR  0.001/- L1 0.01/- 32342 0934 0.121 1.703 0.107 2.35%
MC10 v - - StSSMC1 DAR 0.001/10 L1 0.01/- 32,570 0.937 0.117 1.765 0.045 3.88%
MCl11 v - - StSSMC2 DAR 0.001/10 L1 0.01/-  32.397 0.935 0.118 1.763 0.047 3.76%
MC12 v - - StSSMC1 DAR 0.001/5 L1 0.01/-  32.443 0936 0.118 1.767 0.043 4.00%
MC13 v - - StSSMC1 DAR 0.001/1 L1 0.01/-  32.458 0.935 0.118 1.786 0.024 5.12%
MC14 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 32.466 0.936 0.117 1.766 0.044 3.94%
MC15 v - - StSSMC1 DAR 0.001/10 DAR 0.001/1 32.173 0.935 0.118 1.766 0.044 3.94%
MC16 v - - StSSMC1 DAR 0.001/10 DAR 10~°/1 32.521 0.936 0.117 1.756 1.756 3.35%
MC8MC7 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 32.546 0.937 0.117 1.755 1.755 3.29%
MC21 v - - StSSMC2 DAR 0.001/10 DAR 107°/10 32.298 0.936 0.117 1.753 0.057 3.17%
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K.9 BOSAI FROM MIPNERF-360

Table 29: Quantitative results in Bosai from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k-30k
iterations). ProAIU is the sampling probability of primitives, and naru constrains the extra update
step applied to sampled primitives. [-][-] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means nary = 0.5 after 0.1k iterations, najy = 0.1 after 3k,
and nary = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. ®5® here means only adding RSR to the pipeline.

cite Sparse  AIU  Proaju NATU noise Ours PSNR SSIM LPIPS N,/m Ngzm AN,
GSI X : - - - : 3360 0043 0207 1159 0105 -
G2 v ; i - - ; 31610 0931 0216 1230 0016 6.12%
GS3  Half - - - - } 32325 0943 0206 1256 0017 836%
GSO v ; - - - SISSGSIRSR 32284 0942 0205 1003 0011 -13.4%
GSé  Haf (15301 05  OI5T - - 3382 0043 0206 1230 0037 6.12%
GSI5  Half [1530] 1.0  [0.1][15] - ; 32406 0943 0206 1208 0072 422%
GS16 v  [0.L15] 05  [0.1[01] - ; 3243 0942 0209 1360 0016 17.3%
Gs17 v [017 02  [05]01] - } 32106 0942 0208 1353 0017 16.7%
GS1I8 v [0.L,15] 02 [0[3??2]” - ; 32293 0943 0208 1370 0015 182%
GSI19 v [0.L15] 02 [?(.)sioé;] - ; 32260 0941 0209 1283 0015 10.6%
GS5 v [0L15] 02 |0£,(1),§,%1 b ; 32260 0943 0208 1378 0016 18.8%
GS6 v [0130] 10  [0.0][0.1] - ; 32251 0942 0208 1428 0034 23.2%
GS3 v - - - T SISSGS3 32400 0942 0204 0807 0004 -303%
GS7/GS8 v ; - - - SISSGSI 32251 0942 0205 0747 0004 -35.5%
GSl4 v ; - - - SISSGS4 32279 0941 0206 0735 0003 -36.5%

Table 30: Quantitative results in Bosai from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 29). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, A
its hyperparameter, and max corresponds to C; in the paper; other parameters remain default. © in
StSSMC1 denotes using a; = a2 = 0 here.

cite Sparse  AIU  Proaru/maru RSR Ro Ao/max, Rs As/maxs PSNR SSIM LPIPS N,/m Ngz/m AN,

MCl1 X - - - L1 0.01/- L1 0.01/-  32.572 0.946 0.200 1.101 0.169 -5.00%
MC2 v - - - L1 0.01/- L1 0.01/-  32.508 0.945 0.203 1.200 0.070 3.53%
MC3 v [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/-  32.578 0.946 0.202 1.191 0.079 2.76%
MC4 v [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/-  32.742 0.947 0.198 1.130 0.140 -2.50%
MC6 v [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 107°/10 29.919 0.922 0.213 1.204 0.066 3.88%
MC18 v - - StSSMC17 L1 0.01/- L1 0.01/-  32.527 0.946 0.201 1.205 0.065 3.96%
MC19 v - - StSSMC1 L1 0.01/- L1 0.01/-  32.645 0.947 0.199 1.201 0.069 3.62%
MC20 v - - StSSMC2 LI 0.01/- LI 0.01/-  32.417 0.944 0.204 0.959 0.311 -17.2%
MC9 v - - StSSMC1 DAR 0.001/- L1 0.01/- 32,513 0.943 0.206 1.184 0.086 2.15%
MC10 v - - StSSMC1 DAR 0.001/10 L1 0.01/- 33.006 0.950 0.191 1.221 0.049 5.34%
MCl11 v - - StSSMC2 DAR 0.001/10 L1 0.01/- 32990 0.950 0.189 1.234 0.036 6.47%
MC12 v - - StSSMC1 DAR 0.001/5 L1 0.01/- 32,990 0.950 0.189 1.237 0.033 6.72%
MC13 v - - StSSMC1 DAR 0.001/1 L1 0.01/- 32,921 0.950 0.190 1.252 0.018 8.02%
MC14 v - - StSSMC1 DAR 0.001/10 DAR 0.001/10 32.916 0.950 0.189 1.233 0.037 6.38%
MC15 v - - StSSMC1 DAR 0.001/10 DAR 0.001/1 32.906 0.950 0.189 1.232 0.038 6.29%
MC16 v - - StSSMC1 DAR 0.001/10 DAR 10~°/1 32.990 0.950 0.190 1.220 0.050 5.26%
MC8MC7 v - - StSSMC1 DAR 0.001/10 DAR 107°/10 33.022 0.950 0.190 1.220 0.050 5.26%
MC21 v - - StSSMC2 DAR 0.001/10 DAR 107°/10 33.007 0.950 0.190 1.219 0.051 5.17%
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