
Published as a conference paper at ICLR 2026

A STEP TO DECOUPLE OPTIMIZATION IN 3DGS

Renjie Ding1 Yaonan Wang1∗ Min Liu1 Jialin Zhu2 Jiazheng Wang1
Jiahao Zhao1 Wenting Shen1 Feixiang He3 Xiang Chen1

1National Engineering Research Center of Robot Visual Perception and
Control Technology, School of Artificial Intelligence and Robitics, Hunan University
2 Baidu Inc., 3 Central South University
{regi, yaonan, liu min}@hnu.edu.cn, misaliet@outlook.com
{wjiazheng, zhaojiahao, wenting}@hnu.edu.cn
drfxhe@gmail.com, xiangc@hnu.edu.cn

https://eliottdjay.github.io/adamwgs/

ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a powerful technique for real-time
novel view synthesis. As an explicit representation optimized through gradient
propagation among primitives, optimization widely accepted in deep neural net-
works (DNNs) is actually adopted in 3DGS, such as synchronous weight updating
and Adam with the adaptive gradient. However, considering the physical signif-
icance and specific design in 3DGS, there are two overlooked details in the opti-
mization of 3DGS: (i) update step coupling, which induces optimizer state rescal-
ing and costly attribute updates outside the viewpoints, and (ii) gradient coupling
in the moment, which may lead to under- or over-effective regularization. Never-
theless, such a complex coupling is under-explored. After revisiting the optimiza-
tion of 3DGS, we take a step to decouple it and recompose the process into: Sparse
Adam, Re-State Regularization and Decoupled Attribute Regularization. Taking
a large number of experiments under the 3DGS and 3DGS-MCMC frameworks,
our work provides a deeper understanding of these components. Finally, based on
the empirical analysis, we re-design the optimization and propose AdamW-GS by
re-coupling the beneficial components, under which better optimization efficiency
and representation effectiveness are achieved simultaneously.

1 INTRODUCTION

Novel view synthesis is a fundamental task in both computer graphics and computer vision. Ow-
ing to its highly parallelized design and efficient use of GPU, 3DGS (Kerbl et al., 2023) leverages
explicit primitive-based representations to achieve significantly higher efficiency than implicit rep-
resentation NeRF (Mildenhall et al., 2020), while still delivering competitive reconstruction quality.
3DGS sparks a wave of research and rapid extensions to various downstream applications (Matsuki
et al., 2024; Chen et al., 2024; Dai et al., 2024).

As a representation directly optimized via backpropagation, 3DGS inherits the Adam (Kinga et al.,
2015) from DNNs, and in default attributes of all primitives are updated simultaneously within each
iteration, which we call synchronous optimization in this work. Given the viewpoint relationship,
an ideal scenario is that the optimization of primitives is guided by gradients from visible viewpoints
in different directions. However, upon closer examination, we observe that even when primitives are
invisible under a given viewpoint and their gradients are set to zero, the update-step coupling in-
duced by Adam and synchronous optimization implicitly rescales the optimizer state and causes
updating in these invisible viewpoints. From the perspective of optimization efficiency, (Mallick
et al., 2024) introduces Sparse Adam, which restricts updates to primitives visible under viewpoints
while filtering out those invisible with zero gradients, thereby enabling asynchronous optimization.
Nevertheless, this optimizer has not been widely adopted, since its efficiency gains come at the ex-

∗Corresponding authors.

1

https://eliottdjay.github.io/adamwgs/

Published as a conference paper at ICLR 2026

pense of degraded performance. However, we think that such a viewpoint-related optimizer remains
promising, with the current limitation lying in the insufficient recognition of update-step coupling.

Furthermore, previous study (Loshchilov & Hutter, 2017) in DNNs points out the gradient coupling
in Adam makes the regularization unstable. In current 3DGS, a variety of regularization losses (Yu
et al., 2024) are introduced to improve reconstruction quality or mitigate redundancy1. With limited
regularization intensity controlled via adaptive gradients and decoupled from the photometric loss,
a natural question arises as to whether existing regularization is appropriately effective. In practice,
the regularization loss is thought to be controlled through hyperparameters, yet it remains unclear
whether they provide sufficient flexibility. Moreover, can further decoupling enable more precise
control over regularization itself? In this work, we focus on opacity and scaling regularization, which
are closely tied to reconstruction quality in the 3DGS-MCMC framework (Kheradmand et al., 2024)
and redundancy removal in the vanilla 3DGS framework (Papantonakis et al., 2024). Prior studies
have shown that the densification stage often produces a large number of redundant primitives (Liu
et al., 2025b), while the framework lacks a native mechanism to automatically remove them. Even
with opacity regularization, existing pipelines usually rely on additional pruning operations or direct
modifications to the densification process. However, if regularization can be well recomposed, is it
possible to achieve redundancy removal without resorting to such extra pruning operations?

Considering the coupling in 3DGS optimization, this work takes a step to decouple it and recom-
pose it. Building on the analysis, the optimization is then redesigned to improve efficiency and/or
reconstruction quality. To summarize, our contributions are:

• Reanalyzing the complex coupling during 3DGS optimization, we take a step to decouple it and
recompose it into 3 effective components: Sparse Adam, Re-State Regularization and Decoupled
Attribute Regularization.

• We take a step to explore the contribution of them, including the characteristic of Sparse Adam,
activation of regularization, role of the regularization hyperparameter, risk of implicit update and
necessity of controllable regularization as well as exploration.

• Based on the experiments and analysis, we propose the AdamW-GS with controllable attribute
regularization and adopt it into vanilla 3DGS, 3DGS-MCMC and more variants. Experiments
show that our optimization method yields better reconstruction quality and optimization efficiency,
and significantly reduces redundancy in 3DGS without introducing additional pruning operations.

2 RELATED WORK

“Coupling” in 3DGS Optimization: 3DGS commonly inherits the Adam optimizer from DNNs.
However, its synchronous optimization causes primitives in invisible viewpoints to undergo over-
looked update steps. Sparse Adam (Mallick et al., 2024) introduces asynchronous updates that
improve efficiency, yet the insufficient recognition of update-step coupling results in degraded per-
formance. Regularization in 3DGS is also coupled with the photometric loss, akin to L2 weight regu-
larization in adaptive gradient algorithms for DNNs. As analyzed in AdamW (Loshchilov & Hutter,
2017), the coupling of adaptive gradients in Adam makes the effective strength of regularization
governed by the second moment, thereby motivating weight decay decoupling. A similar idea is re-
flected in (Rota Bulò et al., 2025), which—though not explicitly designed for decoupling—replaces
opacity reset in vanilla 3DGS with a constant opacity decay during densification, effectively con-
structing an AdamW-style optimizer. Nevertheless, this approach neglects the physical properties
of opacity and the varying significance of individual primitives. The central contribution of this
work is to further decouple and recompose 3DGS optimization and, through this process, reinterpret
redundancy in 3DGS and reconstruction quality in 3DGS-MCMC from an optimization perspective.

Redundancy during Optimization: Typically, 3DGS requires careful treatment of the special pro-
cess of primitive generation and pruning (or death (Kheradmand et al., 2024; Zhu et al., 2025)).
Current studies generally observe that optimization produces abundant redundant primitives, while
pruning (in adaptive density control (Kerbl et al., 2023)) alone remains insufficient to eliminate them.
Four main strategies have been proposed to address this redundancy: (1) Densification refinement
(Fang & Wang, 2024; Mallick et al., 2024; Wang et al., 2025); (2) Hand-crafted criterion (Fan et al.,
2024; Niemeyer et al., 2025; Hanson et al., 2025); (3) Learning-based pruning (Lee et al., 2024; Liu

1Redundancy is strictly defined as minimizing active primitives without sacrificing reconstruction quality.

2

Published as a conference paper at ICLR 2026

et al., 2025b; Zhang et al., 2024a). More details can be found in Sec. H. (4) Optimization-related
operations: Optimization together with additional opacity L1 regularization has become a common
technique for redundancy removal, even extending beyond Efficient 3DGS tasks (Papantonakis et al.,
2024; Lee et al., 2024; Kheradmand et al., 2024; Liu et al., 2025a; Svitov et al., 2024).

3 PRELIMINARY: 3DGS(-MCMC) AND ADAM

3DGS approximates the radiance field of a target scene using a set of Gaussian primitives param-
eterized by location, opacity (o), scale (s), and other attributes, and renders images from given
viewpoints via alpha blending. Further details are provided in Appendix Sec. D.

Typically, the training pipeline can be divided into densification and pure optimization (P-Op).
During densification, new primitives are generated to enhance scene representation while redundant
ones are pruned (low-opacity primitives are removed) (Kerbl et al., 2023), or new primitives are sam-
pled from existing primitives while dead primitives are reallocated to new locations (Kheradmand
et al., 2024). After densification, there is a P-Op stage, during which only gradient propagation and
attribute updates occur. In this training pipeline, photometric loss (left in Eq.1) is adopted with Adam
optimizer. For 3DGS-MCMC, extra regularization loss in Eq. 1 is utilized to promote respawning.

L = (1− λ1)L1 + λ1LDSSIM︸ ︷︷ ︸
photometric loss: ℓ

+ λo|o|1 + λs|s|1︸ ︷︷ ︸
regularization loss:R

(1)

In this work, ℓ and R denote photometric loss and any regularization, while ∇ℓ and ∇R are the
corresponding gradient.

Adam is the first-order stochastic optimization method that adaptively estimates moment statistics
of the gradients. Specifically, it maintains exponential moving averages of the first moment m(θ)t
and second moment v(θ)t, which are bias-corrected to m̂(θ)t and v̂(θ)t. The parameter update is
then performed as Eq.3, where η denotes the learning rate and ϵ ensures numerical stability.

m(θ)t = β1 ×m(θ)t−1 + (1− β1)× g(θ)t v(θ)t = β2 × v(θ)t−1 + (1− β2)× g(θ)2t (2)

θt+1 = θt − η × m̂(θ)t√
v̂(θ)t + ϵ

(3)

We omit the expression of bias correction procedure; in this paper, θ and g denote the primitive
attribute in θ and gradient information respectively.

Consistent with the DNNs(Goodfellow et al., 2016), Adam by default updates all attributes syn-
chronously, including both the primitives visible under the current viewpoint and those that are not.
In spite of the 0 gradient, they are still included in the update step, during which their moment are
rescaled and attributes are still updated. In this paper, updates of points in invisible viewpoints are
referred to as Implicit Update, which are influenced by the previous moment.

4 METHODOLOGY

4.1 CHARACTERISTICS OF SPARSE ADAM
Table 1: Quantitative results in MipN-
erf360 of 3DGS with different optimiz-
ers. The definition of the metrics can be
found in Sec.5. (m: million)

Cite PSNR SSIM LPIPS Np/m Nd/m
GS1 27.507 0.815 0.216 3.331 0.232
GS2 27.285 0.809 0.228 2.532 0.039
GS3 27.567 0.816 0.216 3.342 0.048

As discussed in Sec.1, using Sparse Adam directly im-
proves the optimization efficiency but causes degraded
performance. Denoted V as a filter that takes the value
1 only for primitives visible under the current viewpoint
and 0 for others, Sparse Adam can be obtained by replac-
ing β in Eq. 2 via:

β′ = β × V + (1− V) (4)

However, from the perspective of inter-viewpoint updates, Sparse Adam is effectively viewpoint-
stable: the update of primitives is influenced only by steps in visible viewpoints at the moment and
does not undergo implicit updates in invisible viewpoints.

To conduct a preliminary investigation, three experiments were performed on vanilla 3DGS: (GS1)
training with the original Adam optimizer, (GS2) replacing Adam with Sparse Adam, and (GS3)

3

Published as a conference paper at ICLR 2026

b) Opacity Penalty (bosai From MipNerf360)a) the Second Moment (bosai From MipNerf360)

c) Magnitude Average and Max Valune in every
iteration (bicycle From MipNerf360)

d) Magnitude Average and Max Valune in every
iteration (bosai From MipNerf360)

Figure 1: a: The
√
v(o) in 3DGS-MCMC with the different optimizer. More examples can be

found in Appendix Figure 5. b: the opacity regularization decisive term in 3DGS-MCMC with the
different optimizer. c-d: The average and max magnitude of m(o)/

√
v(o) in every iteration.

employing Adam during the densification stage while applying Sparse Adam in the P-Op stage.
Based on these comparisons in Table 1, we make the following observations: Observation 1 Sparse
Adam is more stable: Since densification is governed by gradient magnitudes, the smaller number
of primitives observed under Sparse Adam suggests that more primitives fail to meet the gradient
threshold. Moreover, Sparse Adam holds on more active primitives, especially the GS3 in Table 1
(0.048 million dead primitives in Sparse Adam v.s. 0.232 million in Adam), which implies com-
ponents in Adam are potential for pruning redundant primitives. Observation 2 Sparse Adam is
less explorative: although it quickly drives primitives toward stability and results in fewer primi-
tives overall, its performance degrades noticeably. Experiments on 3DGS-MCMC show the similar
observation in some scenes that Sparse Adam makes smaller reallocated primitive number, and this
phenomenon can be found in Figure 3 f.

4.2 UPDATE-STEP DECOUPLING: RE-STATE REGULARIZATION

The key question is what components differentiate Adam from Sparse Adam. To answer this, we
revisit synchronous optimization with Adam introduced in Sec.3. The ignored update-step coupling
arises as zero-gradient updates rescale the moment (m(θ)t = β1m(θ)t−1, v(θ)t = β2v(θ)t−1) and
subsequently induce implicit update based on the rescaled moment. This first implies that the op-
timizer state of primitives in invisible viewpoints continues to change. As visualized in Figure 1 a,
the second moment in 3DGS-MCMC with Adam is notably smaller than with Sparse Adam, sug-
gesting potential amplification to the first moment. To verify this, we compare the effective strength
of opacity regularization in Figure 1 b, ∇o/

√
v̂(o), and observe that Adam induces stronger reg-

ularization, consistent with our discussion in Sec. 4.1. The moment rescaling helps regularization
activation. The comparison in Figure 1 a also shows that the magnitude remains consistently high
for Sparse Adam, underscoring the importance of moment rescaling: when inappropriate gradients
accumulate in one view, they are difficult to dissipate, thereby hindering optimization. The role of
implicit updates is direct: in invisible viewpoints, primitives are continuously updated based on the
past moment. However, no prior work has explicitly examined the impact of these components on
optimization. Motivated by this, we construct 2 decoupled variants for Sparse Adam.

The implementation of moment rescaling is straightforward. We define an optimization interval and,
proposing a milestone style State Sampling Schedule (StSS), uniformly sample the current primi-
tives at the fixed interval. The sampled primitives are directly processed as in Eq. 5 to deliberately
attenuate the state. This process is referred to as Re-State Regularization (RSR).

m(θ)newt = α1 ×m(θ)oldt v(θ)newt = α2 × v(θ)oldt 0 ≤ α1 < 1, 0 ≤ α2 < 1 (5)

Here, the subscript t follows an asynchronous mode different from synchronous mode in Eq.2,
meaning that each primitive has its own distinct t. A detailed hyperparameters discussion is in
Sec. J.2.

4

Published as a conference paper at ICLR 2026

b) Garden from MipNerf-360

d) Kitchen from MipNerf-360c) Counter from MipNerf-360

e) Effective Iteration for Different Methods

Densification

0 500 15000 30000
RePR Pipeline:

Vanilla 3DGS Training Pipeline:

Opacity L1 Regularization

RePR

MaskGaussian Pipeline:

Mask Loss

Mask Pruning

Our Pipeline:

AdamW-GS

0

0

30000

30000

1000 15000

a) Bicycle from MipNerf-360

Figure 2: a-d: The primitive number change during training in 4 methods (Vanilla 3DGS, Redundant
Primitivs Removal/RePR, MaskGaussian and 3DGS with Our proposed AdamW-GS). e: illustrates
the iteration ranges over which different components affect the primitives number.

We also construct an implicit update to study its role. While implicit updates can be beneficial in
some cases, they may introduce negative effects, potentially linked to redundancy (see Appendix
Sec. I.4). In the experiment section of the mainbody, we retain implicit updates only as a tool to
amplify attribute regularization under Sparse Adam to study the influence of regularization: when
λ∇R(θ)/Nv in Eq. 6 is large, maintaining implicit updates further strengthens regularization. Con-
cretely, our Artificial Implicit Update (AIU) is defined as a uniform sampler that selects a random
subset of invisible primitives for extra updates, while their moments remain unchanged in invisible
viewpoints as in Sparse Adam.

m(θ)′t = β′
1m(θ)′t−1 + (1− β′

1)(
∇ℓ(θ)

NI
+

λ∇R(θ)

Nv
) (6)

where the NI and the Nv are the scale of image pixel and the primitive number at the present
viewpoint respectively, decided by the code project2.

4.3 GRADIENT DECOUPLING: DECOUPLED ATTRIBUTE REGULARIZATION

We view attribute regularization as an essential component of optimization. In efficient 3DGS and
related tasks, the widely-used opacity L1 regularization exemplifies this idea, analogous to weight
regularization in DNNs, though with a different role. As discussed in Sec. 3, our understanding
of how regularization effectively constrains each primitive remains limited. Implicit updates may
further exaggerate the effect of regularization: when λ∇R(θ)/Nv in Eq. 6 approaches or exceeds
∇ℓ(θ)/NI , the regularization term continues to influence the optimization via the adaptive gradient
or implicit updates. The coupling of photometric and regularization losses in Eq. 6 therefore raises
a natural question: is the current regularization over- or under-effective?

First, we return to the factors actually govern the effect of the current attribute regularization loss
(L1 loss with the gradient coupling). The role of the hyperparameters serves to maintain stability
between losses, ensuring that the regularization remains relatively small at critical moments without
interfering with the photometric loss. Relevant results are presented in Appendix Sec. I.1. Regarding
the modulation by the moment, the regularization is activated when λ∇R(θ)/Nv takes the majority
or the moment is rescaled during synchronous optimization in Adam or reset in 3DGS-MCMC.

m(θ)′t = β′
1 ×m(θ)′t−1 + (1− β′

1)×
∇ℓ(θ)

NI
v(θ)′t = β′

2 × v(θ)′t−1 + (1− β′
2)× (

∇ℓ(θ)

NI
)2 (7)

Using Sparse Adam or Adam in 3DGS-MCMC clearly alters the effect of attribute regularization.
As illustrated in Figure 3 e–f, different optimizers yield different numbers of reallocated primitives

2https://github.com/DerThomy/3dgs-mcmc

5

https://github.com/DerThomy/3dgs-mcmc

Published as a conference paper at ICLR 2026

and PSNR, indicating over- or under-effective regularization. This suggests that stronger regulariza-
tion may be required to improve reconstruction quality in some cases. However, due to the gradient
coupling in the moment (Eq. 6), directly amplifying ∇R easily leads to update steps that become
overly attribute-dependent and less guided by the photometric gradient, while the coupling also sus-
tains the effect of regularization across iterations. In extreme cases, such as when hyperparameters
are scaled by 10×, optimization fails entirely. When amplification relies on the second moment,
the effect of regularization depends on its relative scale to ∇ℓ. Furthermore, if ∇R aligns with
∇ℓ, the second moment grows rapidly; if they are opposed, it grows slowly, which is contrary to
expectations. This coupling prevents effective control of regularization. As shown in Figure 1 c,d,
the order-of-magnitude gap between average and maximum m(o)/

√
v(o) further illustrates that

improper amplification under coupling easily results in over-effective regularization. Decoupling
∇ℓ and ∇R and recomposing the regularization enables more reliable control without destabilizing
optimization. Further empirical experiments in Sec. 5 will show the side effect of coupling as well.

Therefore, the first step is to decouple the gradients in the moment (Eq. 6). This step is the same as
AdamW, and readily yields Eq. 7, which defines the moment update term containing only the gradi-
ent of the photometric loss ∇ℓ. For ∇R(θ), AdamW constructs updates that are not controlled by
the second moment. This AdamW-style decoupling is effectively equivalent to a constant penalty
on opacity (Rota Bulò et al., 2025). The experiments are presented in Sec. I.2. Clearly, this approach
is not optimal. Unlike DNNs, each attribute in 3DGS has physical meaning, and each primitive car-
ries a distinct importance. Penalizing all primitives with the same strength fails to remove redundant
primitives when the penalty is too weak, while overly strong penalties hinder optimization.

AdamW-style decoupling suggests that effective regularization assigns different penalties to differ-
ent primitives. Such assignment, however, cannot be arbitrary: (i) it must not interfere with normal
optimization, particularly in under-constructed regions (∇ℓ is large); (ii) it must still fulfill its core
function of suppressing overfitting when ∇ℓ is small (Srivastava et al., 2014). This implies that regu-
larization should adapt to the geometry of the data (Pascanu & Bengio, 2013), naturally linking back
to adaptive gradient (Duchi et al., 2011; Kinga et al., 2015) where adjustments are made via

√
v. The

empirical success of vanilla regularization over the constant penalty further highlights its potential.
Since we have already disentangled the moment in Eq. 7,

√
v̂ now provides a more faithful estimate

of the parameter space. Motivated by this, we introduce the regularization form ∇R/
√
v̂ (

√
v̂ is

from Eq. 7). This design brings 4 benefits: (1) updates are preserved in under-constructed regions
with large ∇ℓ; (2) when a primitive lies near a saddle point (small ∇ℓ), regularization facilitates es-
cape, consistent with saddle-point analyses in (Wang et al., 2025) and long-axis primitive gradients
in (Zhang et al., 2024b); (3) regularization remains small in general but amplifies adaptively when it
becomes influential; and (4) it enables explicit control over regularization via moment modulation,
e.g., through RSR. Building on this rationale, we extend this approach and propose Eq. 8.

θt+1 = θt − η × [
m̂(θ)′t√
v̂(θ)′t + ϵ

+min(λθ
∇R(θ)/NI√
v̂(θ)′t + ϵ

, Ct)] (8)

We maintain the loss balance through λθ, and normalize the regularization scale by NI . Regulariza-
tion aligned with

√
v̂(θ)′t improves stability while removing dependence on primitive number, which

can vary by orders of magnitude across training, views, and scenes. Ct keeps on the same order as
maximum step size of Adam, matches the maximum observed in Figure 1 c–d, and extensive results
confirm its robustness. Then, this recomposed regularization is referred to as Decoupled Attribute
Regularization (DAR). We provide detailed hyperparameter selection in Appendix Sec. J.2.

4.4 RECOUPLING: ADAMW-GS

Building on Sec. 4.1, 4.2, and 4.3, we propose AdamW-GS for better 3DGS optimization by recou-
pling Sparse Adam, RSR, and DAR. In detail, attributes of primitives are optimized asynchronously
with Sparse Adam and supervised via photometric loss and DAR. At fixed training intervals, RSR
uniformly samples primitives and rescales their moments via Eq. 5 to better activate regularization.
The rescaled moment replaces the old one and directly participates in subsequent optimization.

We consider two DAR variants—opacity and scaling regularization—both of which are already
employed in 3DGS-MCMC. Considering the bad transportation in vanilla 3DGS (Jung et al., 2024),
exploration in this work means better primitive movement. We directly use noise regularization in

6

Published as a conference paper at ICLR 2026

e) Garden from MipNerf-360

f) Kitchen from MipNerf-360

a) TreeHill from MipNerf-360(3DGS-MCMC)

b) TreeHill (3DGS-MCMC+AdamW-GS)

c) Room from MipNerf-360(Vanilla 3DGS)

d) Room (3DGS+AdamW-GS)

Figure 3: a-d: Reconstruction results visualization. More can be found in Appendix Sec.K. e-f: The
Reallocated Primitive Number in 3DGS-MCMC Framework. For outdoor scenes, MC17 and MC8
differ only in the StSS sampling ratio, where MC8(StSSMC3)>MC17(StSSMC1)=MCMC-Sparse-
RSR. For indoor scenes, MC8 uses StSSMC1. More information can be checked in Table 2.

3DGS-MCMC as an extra position regularization, which is similar to DAR, but controlled by opacity
and primitive shape not the second moment. However considering the sensitivity to noise (Jung et al.,
2024), the noise is excluded for MipNerf360 indoors scenes with fewer primitives. To explore the
effectiveness of exploration, we provide contrast experiments with or without opacity reset(Kerbl
et al., 2023). Opacity reset encourages exploration via lowering the opacity. Opacity Correction is
adopted for cloning in densification as well, which is thought to be necessary (Kheradmand et al.,
2024). We adopt the similar operations for opacity as (Rota Bulò et al., 2025).

5 EXPERIMENTS

Dataset and Metric Following existing research (Kerbl et al., 2023), we employ 13 scenes from 3
datasets, including 9 scenes in Mip-Nerf360 (Barron et al., 2022), 2 scenes from the Tanks&Temples
dataset (Knapitsch et al., 2017) and 2 scenes provided by Hedman et al. (Hedman et al., 2018).

We use a train/test split for datasets, using the methodology suggested by Mip-NeRF360, taking
every 8th photo for test, for consistent and meaningful comparisons to generate the error metrics,
using the standard PSNR, SSIM, and L-PIPS(vgg) metrics used most frequently in the literature. We
also present the total primitive number Np, the active primitives number Na and the dead primitives
number Nd. Given the significant variation in primitive number across methods (often differing by
millions), we employ normalized changes to the vanilla (∆Nx =

Nx−Nvanilla
x

Nvanilla
x

, where x ∈ {a, p, d})
to better illustrate primitive number variations. The active/dead primitive is defined by opacity larger
than 1/255 or not. This definition follows the underlying 3DGS3 implementation, where primitives
with opacity below 1/255 are excluded from rendering, differing from (Kheradmand et al., 2024).

Baselines To evaluate the impact of different components on the training pipeline, we conduct ex-
tensive experiments on both the vanilla 3DGS and 3DGS-MCMC frameworks. These two baselines
respectively represent approaches without or with an Np maximum. Without explicitly introducing
pruning operations, we observe that a substantial number of redundant primitives can be automati-
cally removed under the vanilla 3DGS with AdamW-GS. For comparison, we include two adaptive
pruning methods, learning-based MaskGaussian (Liu et al., 2025b) and Redundant Primitive Re-
moval (RePR) (Papantonakis et al., 2024) with hand-crafted criterion. Unlike approaches with a
predefined pruning rate, these methods automatically identify redundant primitives and claim to
achieve this with negligible performance degradation. All methods are run on a single A6000 GPU.

3https://github.com/graphdeco-inria/gaussian-splatting

7

https://github.com/graphdeco-inria/gaussian-splatting

Published as a conference paper at ICLR 2026

Table 2: Quantitative results in MipNerf-360 with different components. Detailed descriptions of
Sparse Adam, AIU/RSR, and DAR are provided in Sec. 4.1, Sec. 4.2, and Sec. 4.3, respectively.
All RSR and DAR settings remain fixed across experiments, except for the StSS schedule. The
StSS sampling ratios used in this table are as follows: for outdoor scenes, MC8 (StSSMC3) > MC7
(StSSMC2) > others (StSSMC1), while for indoor scenes, MC8 = MC7 = others (StSSMC1). The
complete StSS schedules for each configuration are illustrated in Figure 9. Appendix Sec. K provides
per-scene experimental results, including detailed configurations and additional experiments with a
broader range of settings.

Cite Sparse Adam AIU RSR Ro Rs PSNR SSIM LPIPS ∆Na Np/m

3DGS-MCMC

MC1 x x x L1 L1 27.948 0.833 0.199 -3.75% 3.313
MC2 ✓ x x L1 L1 27.998 0.832 0.199 +4.28% 3.313
MC3 ✓ ✓ x L1 L1 28.050 0.833 0.198 +3.62% 3.313
MC4 ✓ ✓ ✓ L1 L1 28.017 0.834 0.191 +0.51% 3.313

MC19 ✓ x ✓ L1 L1 28.075 0.837 0.190 +2.97% 3.313
MC7 ✓ x ✓ DAR DAR 28.185 0.839 0.182 +4.72% 3.313
MC8 ✓ x ✓ DAR DAR 28.219 0.840 0.182 +4.52% 3.313

5.1 RESULTS AND ANALYSIS

Over- or Under-Effective Regularization To examine the controllability of regularization, we in-
troduce AIU during densification as a direct tool to amplify its effect. Its role is straightforward:
when the moment of a primitive places it under regularization, AIU preserves its update, yielding
more dead primitives and thus making stronger regularization. Figure 3 e–f visualizes the reallocated
primitives change in 3DGS-MCMC with AIU. Enhanced regularization promotes exploration and
improves reconstruction quality in some cases (MC3 and MC4 in Table 2), but the effect is scene-
dependent. For instance, in Kitchen (shown in Figure 3 f), rapid growth of reallocated primitives
degrades performance. This suggests that regularization can be under-effective in some scenes,
requiring amplification (e.g., via AIU or other methods), but also over-effective when its strength is
excessive or inapposite.

Activated via the Moment Within the 3DGS-MCMC framework, we evaluate the effect of our
proposed RSR on regularization, a way of activating regularization via rescaling the moment. Re-
gardless of the original L1 form subject to gradient coupling or our proposed DAR, attribute regu-
larization remains tied to the second moment. Figure 3 e–f shows that applying RSR substantially
increases the number of dead primitives, thereby strengthening attribute regularization. This di-
rectly demonstrates the effectiveness of RSR as a component to amplify regularization. However,
as highlighted by the comparison between MCMC-Sparse-RSR and MCMC-AdamWGS-MC17 in
Figure 3 e, the influence of RSR with same StSS is weaker under L1 regularization with gradient
coupling than under DAR. By decoupling the gradient in the moment and recomposing the attribute
regularization, RSR more effectively amplifies its impact, which also translates into improved re-
construction quality under stronger regularization.

Side Effect in Coupling To further examine this effect, we increase the sampling ratio of RSR in
MidNeRF-360 indoor scenes (which typically involve fewer primitives), with results summarized in
Appendix, from Sec. K.6 to Sec. K.9, MC20 and MC21, in which we replace the low-ratio StSSMC1
in original 3DGSMCMC with L1 regularization and 3DGSMCMC with our proposed AdamW-GS
with higher-ratio StSSMC2. As the sampling ratio increases, original 3DGS-MCMC with L1 reg-
ularization exhibits significant drops in reconstruction quality across all four scenes (e.g., Room:
32.514�31.179 dB; Kitchen: 32.289�31.924 dB). The same phenomenon is also observed in the
experiments on outdoor scenes. In contrast, 3DGS-MCMC with DAR shows little to no degradation
in Room, Counter, and Bosai, and only a minor drop in Kitchen (32.546�32.298 dB), while consis-
tently outperforming L1 regularization under the same settings. These results confirm that coupling
hinders effective control of regularization and can easily introduce negative effects on reconstruc-
tion quality. Thus, decoupling the gradient from the moment and recomposing regularization is
necessary for stable and effective optimization.

Experiments with RSR also highlight the issue of over- or under-effective regularization. For scenes
with more primitives, such as MipNeRF360 outdoor datasets, we adopt a higher sampling ratio
in RSR. As the sampling ratio increases, the number of reallocated primitives grows further (Fig-
ure 3 e), strengthening regularization and enhancing the exploration ability of 3DGS-MCMC. A

8

Published as a conference paper at ICLR 2026

Table 3: Quantitative results in MipNerf360 of different methods. MC8 and GS8/GS7 denote our
proposed AdamW-GS variants. More information of MC8 is provided in Table 2. All variants
share the same hyperparameters except for the StSS schedule. Following the design used in 3DGS-
MCMC, outdoor scenes for vanilla 3DGS use a high-ratio StSS, while indoor scenes use a low-
ratio StSS. As discussed in Sec. 4.4, GS7 is the noise without opacity reset version to study the
effectiveness of exploration. A per-scene organization of results, including detailed configurations
and additional experiments, is presented in Sec. K.

Methods
All Outdoor Indoor

PSNR↑ SSIM↑ LPIPS↓ ∆Na time/mins↓ PSNR↑ SSIM↑ LPIPS↓ ∆Na PSNR↑ SSIM↑ LPIPS↓ ∆Na

Original MCMC 27.948 0.833 0.199 -3.75% 46.81 25.105 0.755 0.212 -4.38% 31.502 0.930 0.182 -2.97%
+AdamW-GS(MC8) 28.219 0.840 0.182 +4.52% 39.77 25.247 0.764 0.191 +3.07% 31.934 0.935 0.172 +6.33%

vanilla 3DGS 27.506 0.815 0.216 (3.098m) 30.58 24.648 0.728 0.239 (4.512m) 31.080 0.925 0.189 (1.331m)
+AdamW-GS(GS8) 27.678 0.822 0.220 -49.3% 18.53 24.854 0.740 0.243 -48.4% 31.209 0.925 0.191 -50.4%
+AdamW-GS(GS7) 27.730 0.820 0.222 -46.9% 19.18 24.949 0.737 0.248 -44.0%

RePR 27.503 0.815 0.218 -41.1% 26.73 24.661 0.728 0.241 -41.5% 31.055 0.924 0.190 -40.6%
MaskGaussian 27.485 0.815 0.219 -53.1% 26.80 24.683 0.728 0.240 -46.4% 30.988 0.924 0.192 -61.5%

direct comparison between MC7 and MC8 shows that higher sampling ratios improve reconstruc-
tion quality. This further demonstrates the effectiveness of RSR to control regularization.

AdamW-GS in 3DGS-MCMC With properly tuned hyperparameters, we evaluate our proposed
AdamW-GS within the 3DGS-MCMC framework. As shown in Table 3, our approach achieves su-
perior PSNR, SSIM, and LPIPS over vanilla 3DGS-MCMC. By decoupling gradient coupling and
recomposing regularization, we obtain more stable regularization; and by decoupling update-step
coupling, our proposed RSR provides finer control of regularization. Furthermore, eliminating nu-
merous ineffective zero-gradient updates via Sparse Adam improves overall optimization efficiency.

Robust Hyperparameter Test and Autonomously Redundancy Removal Given that AdamW-
GS, equipped with DAR and RSR, introduces many hyperparameters, we test their robustness by
directly applying the method to vanilla 3DGS with same hyperparameters. Following the training
division of vanilla 3DGS, we design several StSS configurations, as shown in Figure 9. Similar to
our observations in 3DGS-MCMC with AdamW-GS, where moment rescaling and opacity DAR
encourage a large number of dead primitives for exploration, our experiments show that with our
proposed AdamW-GS, a large number of redundant primitives can be autonomously removed for
3DGS without extra pruning components, and the improvement in reconstruction quality also indi-
cates enhanced exploration (Observation 2 issue in Sparse Adam in Sec.4.1).

We compare vanilla 3DGS trained with AdamW-GS against two adaptive pruning methods. Im-
portantly, our approach contains no extra pruning component; instead, it relies solely on opacity
DAR. In terms of pruning performance, AdamW-GS achieves results comparable to MaskGaussian
and even outperforms it by 2% on outdoor scenes. Beyond pruning efficiency, our method also
improves reconstruction quality: in outdoor scenes, it reduces the number of primitives by 48.4%
while increasing PSNR by 0.2 dB and SSIM by 0.01. In indoor scenes, it removes 50% of primitives
while still improving PSNR by 0.1 dB. By contrast, MaskGaussian removes 61% of primitives but
degrades PSNR by 0.1 dB, which is because MaskGaussian suffers from potential reconstruction
quality risk (see Figure 2 c). Visualization in Figure 3 c-d also demonstrates better detail recon-
struction in our methods compared to vanilla 3DGS, which is one of the reasons for relatively more
primitives than MaskGaussian. Ultimately, our objective is not simply to minimize the number of
active primitives, but to strike a preferable balance—achieving higher reconstruction quality with as
few primitives as necessary.

Table 4: Quantitative results in Deep Blending and Tank
& Temples. (m: million.)

Deep blending Tank & Temples
PSNR↑ SSIM↑ LPIPS↓ ∆Na PSNR↑ SSIM↑ LPIPS↓ ∆Na

3DGSMCMC 30.089 0.914 0.239 -24% 24.563 0.869 0.160 -3.1%
+AdamW-GS 30.417 0.916 0.228 2.8% 24.726 0.875 0.150 6.7%

3DGS 29.694 0.904 0.247 2.60m 23.677 0.848 0.178 1.60m
+AdamW-GS 30.260 0.912 0.245 -60% 24.303 0.855 0.181 -40%
MaskGaussian 29.895 0.908 0.248 -65% 23.607 0.846 0.181 -50%

Additional datasets are also evaluated
with our proposed method. As shown
in Table 4, experiments on Deep Blend-
ing and Tanks&Temples further demon-
strate the superiority of our approach.
On Deep Blending in particular, 3DGS
equipped with AdamW-GS even sur-
passes the PSNR of the original 3DGS-
MCMC. In Appendix Sec. E.4, we also report results on long-sequence datasets for vanilla 3DGS

9

Published as a conference paper at ICLR 2026

and 3DGS-MCMC, both with and without our proposed AdamW-GS, where our method continues
to show clear advantages.

Table 5: Quantitative results for MaskGaussian.
Indoor Outdoor

PSNR SSIM LPIPS ∆Na PSNR SSIM LPIPS ∆Na

MaskGaussian 30.988 0.924 0.192 -61.5% 24.683 0.728 0.240 -46.4%
+AdamW-GS 31.199 0.925 0.193 -68.6% 24.939 0.739 0.244 -48.1%

To further validate our findings and the
robustness of our method, we apply
AdamW-GS to additional pipelines. As
shown in Table 3 and discussed therein,
MaskGaussian exhibits a potential reconstruction-quality risk on indoor datasets—a phenomenon
consistent with Observation 1 in Sec. 4.1 from the Adam vs. Sparse Adam experiments. We at-
tribute this issue to the synchronous updating of mask scores in MaskGaussian (a brief introduc-
tion to MaskGaussian is given in Sec. E). Results in Table 5 further support this hypothesis: when
trained with AdamW-GS, MaskGaussian no longer suffers from the quality risk and additionally
prunes about 7% redundant primitives on indoor scenes. This also demonstrates that our method
is compatible with additional pruning operations. In Appendix Sec. E, we provide results of more
pipeline variants with AdamW-GS, offering further evidence of the robustness.

To better understand how our method penalizes redundant primitives, we further visualize the prim-
itive number dynamics during training, as shown in Figure 2. PePR, which relies solely on opacity
L1 regularization during densification, shows limit in reducing redundancy. In contrast, with our
proposed regularization, the number of primitives remains consistently lower. Even in cases where
∆Na is larger than that of MaskGaussian, our method (vanilla 3DGS with AdamW-GS)—restricted
to the densification—still outperforms MaskGaussian in reducing redundancy during densification.

Extra Exploration is Necessary Previous studies have highlighted the role of exploration in
3DGS (Jung et al., 2024; Kheradmand et al., 2024), and here we investigate its interplay with re-
dundancy. AdamW-GS benefits from the noise-based position regularization, yielding improved
pruning efficiency and higher SSIM. As shown in Table 2 GS7 and GS8, removing opacity reset
weakens the noise-based regularization, leading to less improvement in SSIM and redundancy re-
moval. We attribute the effectiveness of the noise-based regularization in AdamW-GS to its more
appropriate attribute regularization. Overall, our results underscore that additional exploration is
necessary. However, the noise-based position regularization from 3DGS-MCMC cannot be directly
applied to scenes with relatively few primitives (e.g., indoor scenes), where their higher sensitivity
to noise results in a drop in reconstruction quality. In Appendix Sec. F, we provide a more detailed
analysis of the exploration ability induced by our method. We also introduce two additional explo-
ration strategies that can be combined with current AdamW-GS and yield further improvements on
certain indoor scenes as well.

Efficiency Analysis Benefiting from Sparse Adam, as shown in Table 3, 3DGS-MCMC further
improves optimization efficiency. Vanilla 3DGS enjoys the same benefit, while our method achieves
additional gains by substantially reducing redundancy during the densification stage, thereby further
enhancing optimization efficiency. More detailed analysis is provided in Appendix Sec. C.

6 DISCUSSION AND CONCLUSION

This work takes a step to decouple the complex 3DGS optimization and analyzes key mechanisms.
AdamW-GS is further proposed, which improves efficiency and enables more controllable regu-
larization. The method enhances reconstruction quality in the MCMC framework and achieves
notable redundancy removal in vanilla 3DGS with slight quality gains and even without pruning.
Our results indicate that efficiency and effectiveness can be jointly improved given appropriate reg-
ularization. While we focused on opacity and scaling, more common DAR in different attribute or
alternative strategies may yield further improvements. Despite the robust current hyperparameters
and hand-crafted SStS, changing the parameters during training in an adaptive manner may offer a
more promising direction. Finally, although noise-driven exploration shows necessary, it can harm
certain scenes. Other provided exploration strategies offer limited improvement. A more systematic
investigation of exploration strategies may be a promising direction for future research.

Acknowledgments This work was supported by China Mobile Hunan Company Limited, China
Mobile Communications Group Co., Ltd., and by the National Natural Science Foundation of China
under Grant U22B2050, 62425305, 62221002, and 62503161. This work was conducted as part of
the project “Networked Robotic System for Major Equipment Manufacturing (5G+Robotics)”.

10

Published as a conference paper at ICLR 2026

REFERENCES

Maksym Andriushchenko, Francesco D’Angelo, Aditya Varre, and Nicolas Flammarion. Why do
we need weight decay in modern deep learning? CoRR, 2023.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36:49205–49233, 2023.

Zilong Chen, Feng Wang, Yikai Wang, and Huaping Liu. Text-to-3d using gaussian splatting. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21401–
21412, 2024.

Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin Wang, and Weiwei Xu. High-quality
surface reconstruction using gaussian surfels. In Proceedings of the ACM SIGGRAPH Confer-
ence, pp. 1–11, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang, et al. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. Advances in neural
information processing systems, 37:140138–140158, 2024.

Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians. In European Conference on Computer Vision, pp. 165–181. Springer, 2024.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, and Tom Gold-
stein. Pup 3d-gs: Principled uncertainty pruning for 3d gaussian splatting. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 5949–5958, 2025.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Lukas Höllein, Aljaž Božič, Michael Zollhöfer, and Matthias Nießner. 3dgs-lm: Faster gaussian-
splatting optimization with levenberg-marquardt. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 26740–26750, 2025.

Yuning Huang, Jiahao Pang, Fengqing Zhu, and Dong Tian. Entropygs: An efficient entropy coding
on 3d gaussian splatting. arXiv preprint arXiv:2508.10227, 2025.

Jaewoo Jung, Jisang Han, Honggyu An, Jiwon Kang, Seonghoon Park, and Seungryong Kim. Relax-
ing accurate initialization constraint for 3d gaussian splatting. arXiv preprint arXiv:2403.09413,
2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

11

Published as a conference paper at ICLR 2026

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Jeff Tseng, Hossam Isack, Ab-
hishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splatting as markov chain
monte carlo. arXiv preprint arXiv:2404.09591, 2024.

Diederik Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International
conference on learning representations (ICLR), volume 5. California;, 2015.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21719–21728, 2024.

Rong Liu, Dylan Sun, Meida Chen, Yue Wang, and Andrew Feng. Deformable beta splatting.
In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques
Conference Conference Papers, pp. 1–11, 2025a.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 681–690, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Chongshan Lu, Fukun Yin, Xin Chen, Tao Chen, Gang Yu, and Jiayuan Fan. A large-scale outdoor
multi-modal dataset and benchmark for novel view synthesis and implicit scene reconstruction.
arXiv preprint arXiv:2301.06782, 2023.

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Francisco Vicente
Carrasco, and Fernando De La Torre. Taming 3dgs: High-quality radiance fields with limited
resources. In SIGGRAPH Asia 2024 Conference Papers, pp. 1–11, 2024.

Hidenobu Matsuki, Riku Murai, Paul HJ Kelly, and Andrew J Davison. Gaussian splatting slam.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
18039–18048, 2024.

B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In European Conference on Computer Vision,
2020.

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel Duck-
worth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico Tombari. Rad-
splat: Radiance field-informed gaussian splatting for robust real-time rendering with 900+ fps. In
2025 International Conference on 3D Vision (3DV), pp. 134–144. IEEE, 2025.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Dret-
takis. Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(1):1–17, 2024.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learn-
ing: The rprop algorithm. In IEEE international conference on neural networks, pp. 586–591.
IEEE, 1993.

Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. Revising densification in gaussian splat-
ting. In European Conference on Computer Vision, pp. 347–362. Springer, 2025.

12

Published as a conference paper at ICLR 2026

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113, 2016.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

David Svitov, Pietro Morerio, Lourdes Agapito, and Alessio Del Bue. Billboard splatting (bbsplat):
Learnable textured primitives for novel view synthesis. arXiv preprint arXiv:2411.08508, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Peihao Wang, Yuehao Wang, Dilin Wang, Sreyas Mohan, Zhiwen Fan, Lemeng Wu, Ruisi Cai, Yu-
Ying Yeh, Zhangyang Wang, Qiang Liu, et al. Steepest descent density control for compact 3d
gaussian splatting. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pp. 26663–26672, 2025.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface
reconstruction in unbounded scenes. ACM Transactions on Graphics, 43(6):1–13, 2024.

Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li Yang, Cheng Peng, Rama Chellappa, and Deliang
Fan. Lp-3dgs: Learning to prune 3d gaussian splatting. Advances in Neural Information Process-
ing Systems, 37:122434–122457, 2024a.

Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, and Hengshuang Zhao. Pixel-gs: Density control
with pixel-aware gradient for 3d gaussian splatting. arXiv preprint arXiv:2403.15530, 2024b.

Jialin Zhu, Jiangbei Yue, Feixiang He, and He Wang. 3d student splatting and scooping. In Pro-
ceedings of the Computer Vision and Pattern Recognition Conference, pp. 21045–21054, 2025.

A REPRODUCIBILITY

The datasets are directly available from (Kerbl et al., 2023). Methodological steps and formulas are
detailed in Secs. 4.4 and J.1, while all hyperparameters are reported in Secs. J.2 and K.

More rendering visualization can be found in Figure 10.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are used solely to assist in writing and polishing the manuscript; they do not
contribute to the discovery or experimental design.

C TIME COST ANALYSIS

Within the 3DGS-MCMC framework, employing Sparse Adam leads to a substantial reduction in
step time—approximately 50% (see Table 6)—by directly eliminating implicit updates. The fluc-
tuations in forward and backward costs stem from variations in the number of activated primitives
during training. Although DAR encourages a larger proportion of dead primitives, Sparse Adam
exhibits greater stability and tends to retain more activated primitives.

13

Published as a conference paper at ICLR 2026

Table 6: Time cost of different methods, which is divided into time cost of densification, forward,
backward and update step. In all experiments, the loss function is implemented consistently. Base-
line methods employ the native Adam optimizer in PyTorch, whereas our AdamW-GS follows the
implementation described in this work.

Methods Avg. Bicycle Flowers Garden Stump Treehill Room Counter Kichen Bosai

vanilla 3DGS

Densification 0.37 0.43 0.38 0.49 0.39 0.37 0.32 0.34 0.34 0.32
Forward 6.91 8.35 6.09 8.47 6.44 6.08 6.70 6.67 7.61 5.86

Backward 13.72 14.26 11.27 15.75 11.54 11.38 14.69 14.62 17.38 12.59
Step 9.55 16.30 10.25 17.08 13.65 10.53 4.63 3.75 5.69 4.12
All 30.58 39.36 28.01 41.81 32.04 28.38 26.35 25.40 31.03 22.91

RePR

Densification 0.95 1.40 0.99 1.29 1.54 1.07 0.58 0.60 0.54 0.62
Forward 6.07 6.55 5.41 6.85 5.73 5.40 6.00 6.23 7.04 5.50

Backward 12.75 12.23 10.52 13.82 10.73 10.69 13.72 14.24 16.79 12.05
Step 6.92 11.20 7.39 11.51 11.05 7.84 3.10 2.75 4.51 3.01
All 26.73 31.40 24.33 33.48 29.06 25.02 23.41 23.83 28.90 21.20

MaskGaussian

Densification 0.37 0.46 0.36 0.49 0.41 0.38 0.31 0.30 0.32 0.33
Forward 5.91 7.42 5.26 7.40 5.46 5.39 5.30 5.60 6.41 4.96

Backward 13.66 14.19 11.2 15.66 11.20 11.45 14.15 14.81 17.61 12.69
Step 6.83 12.50 7.64 12.52 9.38 8.12 2.39 2.29 3.94 2.74
All 26.8 34.59 24.48 36.09 26.46 25.36 22.16 23.01 28.30 20.75

Densification 0.33 0.34 0.33 0.34 0.35 0.33 0.32 0.31 0.34 0.33

3DGS
Forward 5.19 5.21 4.45 4.81 4.75 4.49 5.54 5.69 6.27 5.56

Backward 10.80 9.76 8.59 9.70 9.07 8.61 12.1 12.73 14.25 12.47

+AdamWGS(GS8)
Step 2.17 3.90 2.89 3.76 4.19 3.05 0.34 0.40 0.58 0.43
All 18.53 19.23 16.28 18.62 18.37 16.50 18.39 19.15 21.45 18.81

3DGSMCMC

Densification 0.02 0.04 0.03 0.04 0.04 0.03 0.02 0.02 0.02 0.02
Forward 9.03 9.13 8.15 9.79 8.02 7.72 9.67 9.47 10.45 8.87

Backward 18.95 17.39 15.49 19.19 14.85 14.39 22.55 22.20 24.54 19.97
Step 21.09 31.51 19.45 33.76 24.68 20.46 10.23 8.12 12.17 8.75
All 46.81 58.08 43.13 62.79 47.60 42.61 42.49 39.81 47.19 37.63

Densification 0.03 0.05 0.03 0.05 0.04 0.03 0.02 0.02 0.02 0.02

3DGSMCMC
Forward 9.18 9.50 8.10 10.15 8.51 7.91 9.55 9.26 10.84 8.85

Backward 11.46 18.33 15.25 21.32 16.02 14.41 21.18 19.91 25.61 19.66

+AdamWGS(MC8)
Step 11.46 18.75 12.04 20.64 14.84 12.35 6.20 5.06 7.89 5.40
All 39.77 46.65 35.44 52.17 39.41 34.71 36.97 34.27 44.39 33.94

For vanilla 3DGS, the reduction in time cost benefits from both the decrease in update-step overhead
achieved by Sparse Adam and the reduced forward and backward costs resulting from fewer prim-
itives. Overall, our method achieves more than a 40% reduction in total runtime. In indoor scenes
with fewer primitives, the update-step cost becomes negligible, as illustrated in Figure 4. Due to
extra loss in MaskGaussian as its pruning strategy, it yields almost no improvement in the backward
time cost.

D PRELIMINARY

3DGS(-MCMC) 3DGS approximates the radiance field of targeted scenes via a group of Gaus-
sian primitives {Gi}n parameterized with θ = {θi ∈ Θ}ni=1 where θi ≜ (µi,Σi, oi, ci), µi ∈ R3

denotes the primitive position, Σ(i) ∈ S3×3
+ is the positive semi-definite covariance matrix decou-

pled into quaternion and a scaling vector, o(i) is considered as the opacity value. The color attribute
c(i) ∈ R(3) is typically stored as spherical harmonics coefficients and converted into RGB when
rendering.

Given a viewpoint k and transformation (Kerbl et al., 2023), the pixel p on the screen is rendered
via α-blending according to the projected depth of primitives:

Ck(p;θ) =
∑Nk

p

i=1
cki oiGk

i (p;θi)︸ ︷︷ ︸
αk

i (p;θi)

i−1∏
j=1

(1− αk
j (p;θj))︸ ︷︷ ︸

Transmittance Tk
i (p;θi)

(9)

14

Published as a conference paper at ICLR 2026

Bicycle from MipNerf-360 Garden from MipNerf-360 Kitchen from MipNerf-360 Bosai from MipNerf-360

b)
 3

D
G

S
M

C
M

C
c)

 M
C

M
C

 +
 A

da
m

W
-G

S
d)

 V
an

ill
a

3D
G

S
a)

 T
im

e
C

os
t C

om
pa

ri
so

n
e)

 M
as

kG
au

ss
ia

n
f)

 V
an

ill
a

+A
da

m
W

-G
S

Figure 4: Training Time Cost Comparison.

Here the superscript k denotes the corresponding parameters under the given viewpoint after the
respective transformation, whereas Gk

i = exp(− 1
2 (µ

k
i − p)⊤Σk

i (µ
k
i − p)).

Optimization The 3DGS training pipeline typically initializes from Structure-from-Motion (SfM)
(Schonberger & Frahm, 2016) followed by several warm-up iterations (Kerbl et al., 2023; Jung et al.,
2024). The primitives then undergo densification, wherein new primitives are generated to enhance
scene representation while redundant ones are pruned. In the vanilla pipeline (Figure 9 a), both
operations are governed by adaptive density control: new primitives are created via cloning or split-
ting based on gradient magnitude, whereas low-opacity primitives are removed. After densification,
optimization proceeds in a pure optimization (P-Op) stage, during which only gradient propaga-
tion and attribute updates occur. Throughout warm-up, densification, and P-Op, training employs a
photometric loss (left in Eq. 1) with the Adam optimizer. Building on Stochastic Gradient Langevin
Dynamics (SGLD), 3DGS-MCMC (Kheradmand et al., 2024) follows a similar stage division, as
shown in Figure 9 b: new primitive sampling and dead primitive reallocation during densification,
followed by a shortened P-Op. It also adopts Adam, augmented with a regularization loss in Eq. 1
to promote respawn and additional positional noise for exploration or adherence to the SGLD form.

15

Published as a conference paper at ICLR 2026

a) Bicycle in MipNerf-360 b) Garden in MipNerf-360 c) Kitchen in MipNerf-360 d) Bosai in MipNerf-360

Figure 5: The average of the second moment in valid primitives.

Table 7: Quantitative results in MipNerf360 of vanilla 3DGS and MaskGaussian (Liu et al., 2025b)
with or without AdamW-GS.

Pipeline AdamW-GS
All Outdoor Indoor

PSNR↑ SSIM↑ LPIPS↓ ∆Na PSNR↑ SSIM↑ LPIPS↓ ∆Na PSNR↑ SSIM↑ LPIPS↓ ∆Na

vanilla 3DGS
x 27.506 0.815 0.216 (3.098m) 24.648 0.728 0.239 (4.512m) 31.080 0.925 0.189 (1.331m)
✓ 27.678 0.822 0.220 -49.3% 24.854 0.740 0.243 -48.4% 31.209 0.925 0.191 -50.4%

MaskGaussian
x 27.485 0.815 0.219 -53.1% 24.683 0.728 0.240 -46.4% 30.988 0.924 0.192 -61.5%
✓ 27.721 0.821 0.221 -57.2% 24.939 0.739 0.244 -48.1% 31.199 0.925 0.193 -68.6%

E MORE PIPELINE VARIANTS WITH ADAMW-GS OR EXPERIMENTS ON
DIFFERENT DATASETS

E.1 MASKGAUSSIAN WITH ADAMW-GS: MORE STABLE UPDATING OF MASK SCORE

MaskGaussian introduces a probabilistic formulation of 3D Gaussian primitives, where each primi-
tive is assigned a learnable probability of existence that governs a dynamic sampling process during
rendering. This mechanism enables adaptive pruning of redundant primitives throughout the 3DGS
optimization. Specifically, each primitive is associated with a mask score πi, from which a binary
mask Mi is stochastically sampled using the Gumbel-Softmax reparameterization. The standard
rendering equation in Eq. 9 is thus modified to incorporate the mask in both color accumulation and
transmittance updates, as shown in Eq. 10. Detailed derivations and implementation are provided in
(Liu et al., 2025b).

Ck(p;θ) =
∑Nk

p

i=1
Mi · cki · αk

i (p;θi) · T k
i (p;θi) where Mi ∼ GumbelSoftmax(π) (10)

πt+1 = πt − η × [
m̂(π)′t√
v̂(π)′t + ϵ

] (11)

When MaskGaussian is equipped with AdamW-GS, the observed PSNR improvement aligns with
that of vanilla 3DGS using AdamW-GS. Additionally, for indoor scenes, it enables an extra pruning
of approximately 7% of primitives. This suggests that synchronous updates of mask scores may lead
to potentially “destructive pruning behavior”. In contrast, our method cannot only be jointly used
with such pruning strategies to stabilize their inherent training dynamics, but also further improve
overall efficiency, pruning performance, and representation quality simultaneously.

E.2 TAMING-3DGS WITH ADAMW-GS

Taming-3DGS (Mallick et al., 2024) constrains the total number of primitives by restricting the
number of new primitives added at each densification step, as defined by Eq. 12. During every
densification step, Taming-3DGS computes a score for each primitive to determine its probability
of being selected for densification. Based on these scores, a fixed number of primitives are sampled
for densification. Additionally, Taming-3DGS incorporates further optimizations, such as enhanced

16

Published as a conference paper at ICLR 2026

Taming-3DGS
(final count)

Taming-3DGS with AdamW-GS
(final count)

Taming-3DGS
(multiplier)

Taming-3DGS with AdamW-GS
(multiplier)

Figure 6: Rendering visualization of Taming-3DGS with or without AdamW-GS.

Table 8: Quantitative results in MipNerf360 of Taming-3DGS (Mallick et al., 2024) with or without
AdamW-GS. A brief introduction to the Taming-3DGS can be found in Appendix Sec. E.2. All
Primitive Number (Np, Na) is reported in millions; Time cost is reported in mins.

Pipeline
AdamW All Indoor Outdoor

-GS PSNR↑ SSIM↑ LPIPS↓ Np Na Time PSNR SSIM LPIPS Np Na PSNR SSIM LPIPS Np Na

Taming-3DGS x 27.386 0.796 0.258 0.668 0.620 7.44 31.025 0.918 0.205 0.357 0.329 24.479 0.698 0.299 0.916 0.853
(multiplier) ✓ 27.537 0.799 0.254 0.646 0.575 5.27 31.268 0.920 0.200 0.357 0.313 24.552 0.703 0.297 0.877 0.785

Taming-3DGS x 27.912 0.822 0.207 3.205 2.609 20.30 31.603 0.928 0.181 1.377 1.144 24.959 0.736 0.228 4.667 3.776
(final count) ✓ 28.034 0.826 0.207 3.109 1.847 10.46 31.720 0.928 0.180 1.408 0.759 25.085 0.744 0.229 4.469 2.717

Taming-3DGS-p
✓ 28.038 0.828 0.205 2.160 2.160 8.44 31.724 0.930 0.177 0.804 0.804 25.089 0.745 0.227 3.246 3.246

(final count)

parallelization. For detailed implementation and algorithmic design, please refer to (Mallick et al.,
2024).

A(stepx) =
Ωdensi − Ω0 − 2stepdensi

step2densi
step2x + 2stepx +Ωdensi (12)

Where stepx denotes the current number of densification steps, stepdensi represents the total num-
ber of densification iterations, Ωdensi refers to the upper bound on the number of primitives after
densification, and Ω0 indicates the initial number of primitives.

Two operating modes are provided in Taming-3DGS4: final count and multiplier, which correspond
to a higher and a lower upper bound on the final total primitive number Np, respectively. Experi-
ments were conducted under both modes for Taming-3DGS as well as Taming-3DGS with AdamW-
GS. DAR in this setting only includes opacity and scaling regularization as well, following the same
configuration as in Sec. 4.4. Noise regularization is omitted because the growth rate in Taming-
3DGS is constrained. Considering that AdamW-GS imposes stronger penalties on redundant primi-
tives, leading to the generation of a large number of dead primitives that are rapidly pruned and thus
reduce the total primitive count significantly, we propose to replace the conservative pruning strat-
egy in Taming-3DGS with the pruning method used in vanilla 3DGS when integrating AdamW-GS.
We denote this modified pipeline as Taming-3DGS-p. Related experimental results are summarized
in Table 8.

As shown in Table 8, under the same constraint on the final Np, the variants trained with AdamW-
GS consistently achieve better reconstruction quality compared with their original counterparts,
while also providing additional advantages in training speed. Visual comparisons in Figure 6 further
demonstrate that our method more faithfully preserves fine scene details. When a relatively large
final primitive budget is given (the final count mode in Table 8), AdamW-GS reduces the total train-
ing time by nearly half (20.30 mins in the original Taming-3DGS vs. 10.46 mins for Taming-3DGS
with AdamW-GS). Since AdamW-GS effectively penalizes redundant primitives at an early stage,
we further incorporate the pruning strategy from vanilla 3DGS to construct Taming-3DGS-p. With

4https://github.com/humansensinglab/taming-3dgs

17

https://github.com/humansensinglab/taming-3dgs

Published as a conference paper at ICLR 2026

Table 9: Quantitative results in MipNerf360 of Deformable Beta Splatting (Liu et al., 2025a) with or
without AdamW-GS. A brief introduction to the Taming-3DGS can be found in Appendix Sec. E.3.
Treehill from MipNeRF360 is excluded here.

AdamW-GS
All Outdoor Indoor

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
x 29.362 0.864 0.165 26.029 0.787 0.187 32.696 0.940 0.143
✓ 29.643 0.871 0.158 26.108 0.798 0.175 33.178 0.945 0.140

Table 10: Quantitative results in OMMO (Lu et al., 2023) of vanilla 3DGS and 3DGSMCMC with
or without AdamW-GS. All Primitive Number (Np, Na) is reported in millions.

AdamW-GS
3DGSMCMC 3DGS

PSNR↑ SSIM↑ LPIPS↓ Np Na PSNR↑ SSIM↑ LPIPS↓ Np Na

x 30.359 0.925 0.135 1.960 1.673 30.040 0.914 0.154 1.878 1.640
✓ 30.716 0.930 0.126 1.960 1.765 30.351 0.914 0.154 1.245 1.211

our optimizer, this variant achieves additional GPU memory savings during training (3.205 million
in the original Taming-3DGS vs. 2.160 million for Taming-3DGS with AdamW-GS).

E.3 DEFORMABLE BETA SPLATTING WITH ADAMW-GS

Deformable Beta Splatting (DBS) (Liu et al., 2025a) shares a similar pipeline design and same
loss with 3DGSMCMC (Kheradmand et al., 2024), as both are formulated under the Stochastic
Gradient Langevin Dynamics framework. Unlike 3DGSMCMC, DBS replaces the Gaussian kernel
with the Beta kernel B(p;θi) and introduces the Spherical Beta function to better represent complex
geometries and diverse appearance attributes. Consequently, the rendering process is reformulated
as shown in Eq. 13.

Ck(p;θ) =
∑Nk

p

i=1
cki oiBk

i (p;θi)

i−1∏
j=1

(1− oiBk
i (p;θi)) (13)

Consistent with our experiments on 3DGSMCMC, we apply AdamW-GS to DBS, and the results are
summarized in Table 9. Across eight of the nine scenes (excluding Treehill), we observe clear im-
provements in reconstruction quality when using AdamW-GS. For the Treehill scene, however, we
find that DBS suffers from pronounced overfitting and triggers early stopping prematurely. Mean-
while, we observe that during the densification stage, Nd has been closed early to zero, indicating
that DAR cannot effectively exert its intended effect in this scenario. Our method may be less effec-
tive in such heavily overfitting scenario.

E.4 VANILLA 3DGS OR 3DGSMCMC WITH ADAMW-GS ON OMMO DATASETS

We provide results on the OMMO dataset (Lu et al., 2023), which contains large-scale outdoor
scenes with long-range sequences. Our data processing follows the settings described in (Kherad-
mand et al., 2024) and its associated Github repository 5. However, the image preprocessing failed
for scene #10; thus, we report the average results for the left scenes. All results are summarized in
Table 10. Our method demonstrates effectiveness on long sequence datasets as well.

F EXPLORATION STRATEGIES

In Sec. 4.1, we observe that Sparse Adam exhibits less explosive characteristic. Part of this comes
from the stability described in Observation 1, and part is attributable to the inherent bad trans-
portation property of 3DGS (Jung et al., 2024), which we briefly discussed in Sec. 4.4. This phe-
nomenon causes a larger portion of primitives to remain in a stable state during optimization with
Sparse Adam—neither triggering further primitive generation nor enabling continued improvements

5https://github.com/ubc-vision/3dgs-mcmc

18

https://github.com/ubc-vision/3dgs-mcmc

Published as a conference paper at ICLR 2026

Table 11: Quantitative results in MipNerf360 of vanilla 3DGS in our different modifications. More
detailed information can be found in Sec. F. “+ Only RSR” demotes only using the Sparse Adam
and RSR in 3DGS pipeline.

Pipeline
All Outdoor Indoor

PSNR↑ SSIM↑ LPIPS↓ ∆Na PSNR↑ SSIM↑ LPIPS↓ ∆Na PSNR↑ SSIM↑ LPIPS↓ ∆Na

vanilla 3DGS 27.506 0.815 0.216 (3.098m) 24.648 0.728 0.239 (4.512m) 31.080 0.925 0.189 (1.331m)
+ Only RSR (GS0) 27.483 0.818 0.217 -28.6% 24.685 0.733 0.238 -27.9% 30.981 0.924 0.190 -29.5%

+AdamW-GS (GS8) 27.678 0.822 0.220 -49.3% 24.854 0.740 0.243 -48.4% 31.209 0.925 0.191 -50.4%
+AdamW-GS (GS8) + ABE 27.751 0.822 0.220 -41.1% 24.909 0.740 0.243 -38.5% 31.304 0.925 0.191 -44.3%

+AdamW-GS (GS8) + Longer Densi 27.715 0.824 0.218 -48.4% 24.857 0.744 0.240 -44.6% 31.288 0.925 0.190 -53.2%

in scene reconstruction. As a result, we obtain a primitive group with a smaller Na but inferior recon-
struction quality. In Sec. 5 (Extra Exploration is Necessary), we examine the necessity of additional
exploration through experiments that introduce noise regularization. Here, exploration is deliber-
ately to encourage primitives to undergo larger movements, which is consistent with the notion of
bad transportation described in (Jung et al., 2024). We have given the discussion in Sec. 4.4.

Exploration in Current AdamW-GS In Sec. 5, we argue that the current AdamW-GS improves
exploration. This enhancement arises from several factors: (1) RSR. We provide additional ablation
studies showing that, when using only Sparse Adam together with RSR, training the vanilla 3DGS
pipeline on Mip-NeRF 360 yields reconstruction quality comparable to vanilla 3DGS with Adam.
The corresponding results are reported in Table 11 under “+ Only RSR (GS0)”. (2) The influence
of DAR around saddle points. The analysis in (Wang et al., 2025) indicates that many primitives
become trapped near saddle points, preventing further effective optimization. The presence of DAR
encourages these primitives to continue participating in optimization rather than stagnating. (3)
Improved gradient flow after removing redundant primitives. When a large number of redun-
dant primitives are eliminated, the gradient flow within primitive groups becomes more coherent
and effective. (4) Noise regularization for outdoor scenes. For outdoor datasets, we intentionally
introduce noise regularization to further encourage extra exploration.

Existing work provides only limited discussion of exploration strategies for the 3DGS pipeline.
Noise regularization, while helpful in certain cases, has inherent limitations and is not applicable to
all datasets. Nevertheless, we argue that developing extra exploration strategies is a promising direc-
tion, as such mechanisms encourage primitives to explore a broader region of the space. Building on
our current work, we introduce two additional exploration strategies: Adaptive Bound-Expanding
Split (Jung et al., 2024) and Densification Extending. (For outdoor scenes, the following exper-
iments still employ noise regularization; we further demonstrate that these strategies can be used
jointly.)

Adaptive Bound-Expanding Split (ABE-Split) divides each Gaussian into three, where the loca-
tion of the third cross-region primitive is initialized using a constant factor proportional to the scene
extent. The corresponding results are reported in Table 11 “+ AdamW-GS (GS8) + ABE”. ABE-
Split consistently improves reconstruction quality across both indoor and outdoor scenes. In some
cases, the gains are particularly clear—for example, on the Room scene from Mip-NeRF 360, the
PSNR/SSIM increases from 31.500 dB / 0.920 (vanilla 3DGS) to 32.121 dB / 0.923.

Densification Extending: We extend the original densification phase from 15,000 iterations to
25,000 iterations, leveraging the densification mechanism. Thanks to the ability of our method to
quickly penalize redundant primitives, this extension does not introduce the risk of memory explo-
sion. The corresponding results are reported in Table 11 under “+ AdamW-GS (GS8) + Longer
Densi”. Extending the densification phase further benefits indoor scenes and additionally reduces
the number of active primitives.

G FAILURE CASES

Although AdamW-GS yields improved reconstruction quality—both quantitatively and qualita-
tively in terms of rendering visualization—compared with the original method, it only offers an

19

Published as a conference paper at ICLR 2026

d) Floater：

a) Anti-Fact in Boundary Area：

vanilla 3DGS w/ AdamW-GS

b) Blurry Detail in Background：

3DGSMCMC w/ AdamW-GS

c) Anti-Fact in Geometric Information：

vanilla 3DGS Rendered Depth Rendered Depthw/ AdamW-GS

vanilla 3DGS w/ AdamW-GS 3DGSMCMC w/ AdamW-GS

e) Geometric Information：

Figure 7: More examples to show the failure cases: a) the rendering results from Room to show the
anti-fact boundary area; b) the rendering results from Garden to show the blurriness in background;
c) the rendering results and normalized depth maps from Bosai to show anti-fact in geometric infor-
mation; d-e) the ellipsoid visualization from Bicycle.

optimization-level enhancement and does not fundamentally resolve the inherent limitations of the
pipeline itself.

• Severe artifacts in boundary regions with insufficient view coverage. As shown in Figure 7 a),
boundary areas on walls exhibit substantial artifacts, floaters, and even incorrect colors due to the
lack of sufficient multi-view constraints.

• Insufficient refinement of background regions. These areas often remain under-optimized and may
suffer from blurriness. We give an example in Figure 7 b).

• Geometric inconsistency despite reasonable rendering results. Our current optimization does not
incorporate any additional geometric priors. Obtaining the normalized depth map (Figure 7 c),
Rendered Depth) using Eq. 14, it can be observed that many regions clearly violate geometric
plausibility—for example, reflective books or shadowed chairs. Without explicit geometric priors,
AdamW-GS cannot fully recover the correct underlying geometry. Nonetheless, certain improve-
ments in geometry can be observed—for instance, the tree trunk region highlighted by the purple
box in Figure 7 e).

• Persisting floater issues when the original pipeline suffers from floaters. Even with AdamW-GS,
floaters may remain, as illustrated in Figure 7 d).

• Failure under severe overfitting. When the reconstruction pipeline significantly overfits the scene,
AdamW-GS may break down. We encountered this issue when using DBS to reconstruct Treehill
from the Mip-NeRF 360 dataset. Overfitting can prematurely trigger early stopping, and the sharp
decreasing of Np leads to the failure of DAR.

Dk(p) =
∑Nk

p

i=1
dki · αk

i (p) · T k
i (p) (14)

where dki is the depth of the primitive in the corresponding camera coordinations.

H MORE ABOUT RELATED WORK

Redundancy during Optimization (1) Densification refinement: Several works optimize the den-
sification rule (Fang & Wang, 2024; Mallick et al., 2024; Wang et al., 2025). SteepGS (Wang

20

Published as a conference paper at ICLR 2026

a) Per-Scene Error Bar of PSNR for 3DGSMCMC b) Per-Scene Error Bar of PSNR for vanilla 3DGS

Figure 8: The PSNR error bar plot across nine scenes is shown for both methods, while the other
metrics exhibit no notable variation. A more detailed per-scene result is provided in Sec. K.

et al., 2025) mitigates redundancy through optimization-conditioned densification or alleviates sub-
optimization by densification, but its reconstruction quality and pruning effectiveness remain infe-
rior to learning-based methods. (2) Hand-crafted criterion: importance or redundancy criteria are
designed to guide pruning after densification. LightGaussian (Fan et al., 2024) scores each Gaussian
by opacity–transmittance–scale product times ray contributions. RadSplat (Niemeyer et al., 2025)
uses the maximum alpha–transmittance product across views. (Papantonakis et al., 2024) propose
the pipeline to prune primitives based on their degree of overlap. PUP-3DGS(Hanson et al., 2025)
proposes a principled sensitivity pruning score which is computed as a second-order approximation
of the reconstruction error on the training views. (3) Learning-based pruning that leverages learning-
based strategies to adaptively remove redundant primitives, often via mask. Compact3DGS (Lee
et al., 2024) introduces Gaussian masks with L1 regularization on active mask count. MaskGaus-
sian (Liu et al., 2025b) models the existence of primitives, or measures the importance via learning.
LP-3DGS(Zhang et al., 2024a) redesigns the masking function to leverage the Gumbel-Sigmoid
method. (4) Optimization-related operations: Optimization together with additional opacity L1
regularization has become a common technique for redundancy removal, even extending beyond Ef-
ficient 3DGS tasks (Papantonakis et al., 2024; Lee et al., 2024; Kheradmand et al., 2024; Liu et al.,
2025a; Svitov et al., 2024).

Optimizing redundancy and training efficiency constitute a subtopic of efficient 3DGS, correspond-
ing to acceleration in inference and training (with partial overlap between the two). For inference,
approaches include vector quantization (Lee et al., 2024), knowledge distillation (Fan et al., 2024),
and entropy coding (Huang et al., 2025). For training, efforts target backward acceleration and loss
redesign (Mallick et al., 2024). These topics fall beyond the scope of this work: for fair comparison,
we maintain the same loss function and refrain from using additional compression techniques.

Optimizer and Regularization The development of adaptive first-order optimizers can be traced
back to RProp (Riedmiller & Braun, 1993). AdaGrad (Duchi et al., 2011) adapted the learning rate
of features by estimated geometry and assigns larger learning rate to infrequent features. RMSProp
(Hinton et al., 2012) further stabilized training by normalizing updates with an exponential moving
average of squared gradients. Building on this, Adam (Kinga et al., 2015) incorporated momentum
into RMSProp through an exponential average of gradients, quickly becoming the default optimizer
for modern DNNs (Vaswani et al., 2017). Numerous refinements and extensions to Adam have since
been proposed(You et al., 2019; Chen et al., 2023). Regularization has long been recognized as a key
technique to improve model generalization and has also been employed as a tool to facilitate more
effective optimization (Srivastava et al., 2014; Shalev-Shwartz & Ben-David, 2014; Andriushchenko
et al., 2023; Brown et al., 2020; Radford et al., 2021). Importantly, Loshchilov & Hutter (2017)
demonstrated that L2 regularization and weight decay are not equivalent, and further showed that
weight decay provides a more appropriate formulation for Adam.

Optimization for 3DGS Sparse Adam (Mallick et al., 2024) introduces asynchronous updates
that improve efficiency, yet the insufficient recognition of update-step coupling results in degraded
performance. 3DGS-LM (Höllein et al., 2025) proposes a tailored Levenberg-Marquardt optimizer
for acceleration. However, it still relies on Adam for the initialization or densification. Although
Adam has become a de facto indispensable optimizer for 3DGS, our understanding of its behavior in
this context remains limited. A similar situation arises for regularization: despite the widespread use

21

Published as a conference paper at ICLR 2026

Table 12: Quantitative results in Mip360 of 3DGS-MCMC + Sparse Adam with different opacity
regularization.

Methods Cite λo
Outdoor Indoor All

PSNR SSIM LPIPS ∆Na PSNR SSIM LPIPS ∆Na PSNR SSIM LPIPS ∆Na

|o|1
MC2 0.01 25.160 0.754 0.212 3.92% 31.546 0.930 0.183 4.74% 27.998 0.832 0.199 4.28%

MC101 0.1 17.379 0.400 0.604 -77.8% 29.957 0.906 0.220 -40.7% 22.969 0.625 0.433 -59.3%
MC102 0.001 24.585 0.731 0.220 5.18% 31.342 0.930 0.179 8.1% 27.588 0.819 0.202 6.28%

AdamW o
MC103 0.1 24.298 0.714 0.242 5.79% 30.687 0.921 0.193 -2.08% 27.138 0.806 0.220 2.83%
MC104 1 24.155 0.698 0.288 3.80% 30.326 0.917 0.203 -7.47% 26.898 0.795 0.250 5.43%
MC105 10 17.031 0.350 0.654 -19.8% 20.134 0.680 0.457 -11.6% 18.410 0.497 0.567 -16.1%

AdamW o MC106 0.1 24.239 0.713 0.242 5.77% 30.992 0.928 0.182 9.66% 27.240 0.808 0.215 7.50%
+ clip MC107 1 24.381 0.713 0.260 5.08% 30.850 0.922 0.194 8.76% 27.256 0.806 0.231 6.71%

(max 10) MC108 10 19.358 0.440 0.560 2.69% 21.901 0.727 0.436 7.99% 20.488 0.568 0.505 5.04%

of various regularization techniques in 3DGS, there is currently little work examining the interplay
between regularization and the optimizer, even though this has already been explored in the deep
neural networks (Loshchilov & Hutter, 2017).

I PREPARATION FOR DECOUPLED ATTRIBUTE REGULARIZATION

I.1 HYPERPARAMETER ADJUSTMENT

This section discusses the influence of hyperparameters on regularization. For both opacity and
scaling regularization in 3DGS-MCMC, a default value of 0.01 is adopted. Here, we vary only
the opacity hyperparameter by scaling it up or down by a factor of 10, with the results summa-
rized in Table 12. When increased to 0.1, the stronger regularization leads to severe degradation
in reconstruction quality. Conversely, reducing it to 0.001 weakens the regularization effect to the
extent that the primitive reallocation process is significantly disrupted, also resulting in quality loss.
These results suggest that hyperparameters alone are insufficient to effectively regulate the strength
of regularization

I.2 ADAMW STYLE DECOUPLING

The AdamW-style decoupling implies an equal penalty applied to attributes, which can be formally
expressed in Eq. 15 and Eq. 16. This formulation is equivalent to imposing a constant penalty on
opacity (Rota Bulò et al., 2025). Within the 3DGS-MCMC framework, we apply AdamW-style
decoupling to opacity and evaluate it under three hyperparameter settings representing different
strengths. To disentangle the effect of magnitude, we also experiment with constraining the magni-
tude of the AdamW-style decoupling, as given in Eq. 17. The results are summarized in Table 12.
Consistent with the findings in Appendix Sec. I.1, excessively large hyperparameters hinder conver-
gence, while overly small values render the regularization ineffective. A key limitation of AdamW-
style decoupling is that it enforces uniform penalties across all primitives, despite their varying
importance.

m(θ)′t = β′
1×m(θ)′t−1+(1−β′

1)×
∇ℓ(θ)

NI
v(θ)′t = β′

2× v(θ)′t−1+(1−β′
2)× (

∇ℓ(θ)

NI
)2 (15)

θt+1 = θt − η × (
m̂(θ)′t√
v̂(θ)′t + ϵ

+ λ∇R(θ)) (16)

θt+1 = θt − η × (
m̂(θ)′t√
v̂(θ)′t + ϵ

+min(λ∇R(θ), Ct)) (17)

I.3 ADDITIONAL DISCUSSION REGARDING THE FORMULATION IN EQ.8

A thorough decoupling—i.e., activation via the second moment of ∇R—is unreasonable: be-
sides extra computational and memory cost, it reduces regularization to a trivial attribute-dependent
penalty (e.g., higher opacity automatically incurs stronger regularization).

22

Published as a conference paper at ICLR 2026

I.4 DISCUSSION RELATED TO IMPLICIT UPDATE

Ineffective when stable: Implicit updates allow primitives in invisible viewpoints to be updated
based on their current moment. Our reasoning, grounded in experimental results, is as follows.
When primitives are in a stable state—more precisely, at saddle points, which are abundant in 3DGS
when no external perturbation is applied (Wang et al., 2025)—implicit updates are largely ineffective
while incurring additional computational cost. In vanilla 3DGS, we implemented AIU (see GS4 and
GS3 in Sec. K), and observed negligible improvement.

Less controllable when unstable: In contrast, when primitives are unstable, such as during the early
training phase (e.g., densification, where newly generated primitives often have zero moment), or
when the update step is relatively large, or when moment is rescaled, implicit updates can become
problematic. We designed several experiments to highlight their uncontrollability. For instance,
adopting AIU during densification in vanilla 3DGS with Sparse Adam can lead to more primitives
but worse performance, as shown in GS6 in Appendix Sec. K, as even small update steps for in-
visible primitives introduce instability. Based on Obsidian 1, Sparse Adam tends to be stable, with
which fewer primitives meet the gradient condition. AIU disrupts this stability: when primitives
overfit certain views due to implicit updates, they induce larger gradients in other views, triggering
unnecessary densification. The additional primitives do not necessarily improve rendering quality.
In the Appendix Sec.K, we provide multiple AIU configurations: although in some cases the qual-
ity approaches that of vanilla 3DGS, the more common results are in worse quality, confirming the
uncontrollable nature of implicit updates.

Another related phenomenon is the dead primitives or more reallocated primitives (see Sec.5.1).
The comparison between GS1 and GS3 in Table 1 (or can be found in Appendix Sec. K) shows
that more dead primitives are caused by Adam (0.232m vs. 0.048m). A natural conjecture is that
when the update step, in a certain viewpoint, encourages primitives to become dead primitives, the
implicit update accelerates this process, thereby producing more dead primitives. We provide some
comparative experiments in Appendix Sec. K. (1) MC2 vs. MC3 in Appendix Sec. K, comparing
the original 3DGSMCMC with Sparse Adam against the original 3DGSMCMC with Sparse Adam
+ AIU. (2) Similar comparisons can be found in GS3 and GS4, examining the effect of AIU on
dead primitives when Sparse Adam is applied after densification ends. We observe that using AIU
results in additional dead primitives. (3) Figure 3 likewise shows that adding AIU leads to more
reallocated primitives during the densification stage of 3DGSMCMC. For certain scenes, such as
Kitchen, the corresponding reconstruction quality decreases, further reflecting the increased number
of dead primitives. This also indicates that the phenomenon is not part of a normal optimization
process; in Sec. 5.1, we relate this behavior to over-effective regularization. (4) The comparison
between MC6 and MC7 in Appendix Sec. K similarly shows that adding AIU after densification
produces additional dead primitives as well; note that in our application RSR is only added during
densification. (5) When training MaskGaussian with AdamW-GS, MaskGaussian will not suffer
from the quality risk.

J IMPLEMENTATION DETAILS

J.1 ADAMW-GS

Specifically, each parameter of the optimizer can be expressed in the form:

Since both opacity and scaling are strictly positive, the gradient of the L1 regularization reduces to
a constant value of +1.

For opacity:

o = σ(τ) =
1

1 + e−τ
∇σ(τ) = σ(τ)(1− σ(τ)) (18)

τt+1 = τt − ητ × [
m̂(τ)′t√
v̂(τ)′t + ϵ

+min(λo
∇σ(τ)/NI√
v̂(τ)′t + ϵ

, Ct)] (19)

For scaling:
s = exp(κ) ∇exp(κ) = exp(κ) (20)

23

Published as a conference paper at ICLR 2026

Warm-
up

500 15000iteration:

Stage:

Optimization
Detail:

30000

Densification Pure Optimization(P-Op) Warm-
up

500 26000 30000

Densification P-Op

(a) Vanilla 3DGS Framework (b) 3DGS-MCMC Framework

New Primitives Sampling/Dead Primitives ReallocationAdaptive Density Control(ADC)

(c) StSS in Vanilla 3DGS (d) StSS in 3DGS-MCMC

Noise/Opacity L1 Regularization/Scaling L1 Regularization/AdamAdam

Figure 9: a-b:: This illustrates the training pipeline of 3DGS and 3DGS-MCMC. Since our method
encourages more primitive reallocations, we postpone the densification stage by 1000 iterations
compared to the original 3DGS-MCMC. In contrast, the original 3DGS-MCMC at 25k iterations
produces almost no dead primitives. c-d: This shows the StSS used in this paper.

κt+1 = κt − ηκ × [
m̂(κ)′t√
v̂(κ)′t + ϵ

+min(λs
∇exp(κ)/NI√

v̂(κ)′t + ϵ
, Ct)] (21)

For position:
Rµ = ηµ · σ(−λµ(o− λt)) ·Σγ γ ∼ N (0, I) (22)

µt+1 = µt − ηµ × [
m̂(µ)′t√
v̂(µ)′t + ϵ

+
ηRo

ηµ
Rµ] (23)

For the other:

θt+1 = θt − ηθ × [
m̂(θ)′t√
v̂(θ)′t + ϵ

] (24)

J.2 HYPERPARAMETER SELECTION

For vanilla 3DGS(Kerbl et al., 2023) and 3DGS-MCMC(Kheradmand et al., 2024), all pipeline
parameters follow the original settings, with noise parameters identical to those in 3DGS-MCMC.
Operation for the opacity is similar as (Rota Bulò et al., 2025).

θt+1 = θt − η × [
m̂(θ)′t√
v̂(θ)′t + ϵ

+min(λθ
∇R(θ)/NI√
v̂(θ)′t + ϵ

, Ct)] (25)

StSS in RSR We fix the sampling interval at 100. Currently, StSS is manually set. StSS is used
to sample the current set of primitives, followed by RSR rescaling. The configuration of StSS
must take into account the generation and reallocation behavior in the pipeline, as these processes
typically introduce additional primitives with zero state. When such zero-state primitives constitute
a large proportion of the population, a smaller sampling ratio is generally preferred. In the main text,
Figure 3 and Figure 2 respectively show the number of reallocated primitives for 3DGS-MCMC and
the evolution of the primitive count under different scenes for 3DGS. Understanding these curves
provides useful guidance for designing an effective StSS strategy.

In general, the differences between these schedules arise from two main factors: (1) variations in
the underlying pipelines (e.g., 3DGS vs. 3DGS-MCMC), which naturally require distinct schedules;
and (2) variations across scenes, where different schedules are needed to obtain the best performance
on indoor versus outdoor datasets. The discrepancies introduced by the pipelines themselves are un-
avoidable. Nevertheless, for each pipeline we design a conservative schedule—denoted StSSGS1
and StSSMC1—under which both 3DGS and 3DGS-MCMC outperform their original configura-
tions. For outdoor scenes, which typically involve higher primitive generation or reallocation rates,
we find that a more aggressive schedule further improves performance. All StSS schedules used in
this paper are illustrated in Figure 9. Appendix Sec.K summarizes the results obtained by applying
different StSS configurations across various pipelines and scenes.

24

Published as a conference paper at ICLR 2026

Scaling in RSR The three existing or designed operations provide guidance for selecting the pa-
rameters α1 and α2 in RSR. (1) The states of newly generated primitives in 3DGS, or reallocated
primitives in 3DGS-MCMC, can be viewed as naturally constrained by an RSR with α1 = α2 = 0.
(2) To properly control the magnitude of the update step m̂(θ)′t√

v̂(θ)′t+ϵ
, it is necessary to impose the

relation α2 = α2
1. (3) A very small α2 is consistent with the design philosophy of DAR, as we rely

on such a small value to rescale the second moment and thereby activate regularization. Therefore,
when α1 and α2 are chosen to be sufficiently small while satisfying α2 = α2

1, the configuration
is safe. We conducted a search over different combinations of α1 and α2. For larger configura-
tions—for example, α1 = 0.5, α2 = 0.25—RSR becomes less effective, and some combinations
even lead to gradient explosion. For smaller values of α1 and α2, the performance differences are
minor, and we find that α1 = 0.2, α2 = 0.04 generally performs best. In Appendix Sec.K, we
report results for both α1 = α2 = 0 and α1 = 0.2, α2 = 0.04, cited as MC19 and MC18. Hence,
we adopt α1 = 0.2, α2 = 0.04 as default in all experiments.

DAR We use two DAR variants: opacity and scaling regularization. Regularization is constrained
to the densification stage, as no clear benefit is observed in P-Op. This is consistent with the smaller
max magnitude of adaptive gradients in P-Op (Figure 1). Opacity regularization starts after 3000
iterations, since a large percent of generated primitives initially have zero moment, motivating a
delayed start.

For the two hyperparameters, we select values by considering activation derivatives, original set-
tings, and Adam’s parameters. We set λo = 0.001 and, since scaling activations are two orders
larger than opacity, λs = 1e−5. Comparative DAR experiments with λs = 0.001 and λs = 1e−5
show that 1e−5 performs better (see experiments MC14 and MC17 in Appendix Sec. K). In our
application, only the most significant digit of NI is retained and then scaled down by one order of
magnitude.

For opacity, Ct is set to 10, guided by the max magnitude of adaptive gradients in Figure 1. Without
Ct, over-effective regularization occurs (see MC9 in Appendix Sec. K). Smaller values (e.g., 5 or
1) reduce reallocated primitives, leading to slight drops in PSNR and SSIM, though the MCMC
framework still explores effectively. For scaling, we adopt Ct = 10 by analogy with opacity, which
yields good results; scaling is less sensitive to Ct (e.g., Ct = 1 shows little change in reconstruction
quality; see MC8–MC17 in Appendix Sec. K).

K ALL RESULTS

More rendering visualization can be found in Fig.10.

25

Published as a conference paper at ICLR 2026

vanilla 3DGS + AdamW-GS vanilla 3DGS Ground Truth

'

3DGSMCMC + AdamW-GS original 3DGSMCMC Ground Truth

Figure 10: Rendering visualization comparison.

26

Published as a conference paper at ICLR 2026

K.1 BICYCLE FROM MIPNERF-360

Table 13: Quantitative results in Bicycle from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise reset Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - ✓ - 25.238 0.765 0.211 5.438 0.548 -
GS2 ✓ - - - - ✓ - 25.142 0.752 0.235 4.052 0.100 -25.5%
GS3 Half - - - - ✓ - 25.260 0.766 0.211 5.879 0.109 8.11%
GS0 ✓ - - - - ✓ StSSGS1RSR 25.337 0.770 0.213 3.929 0.038 -28.4%
GS4 Half [15,30] 0.5 [0.1][15] - ✓ - 25.284 0.766 0.210 5.832 0.176 7.24%

GS15 Half [15,30] 1.0 [0.1][15] - ✓ - 25.256 0.766 0.210 5.651 0.285 3.91%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - ✓ - 25.145 0.756 0.227 5.245 0.105 -3.54%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - ✓ - 25.166 0.755 0.228 5.026 0.103 -7.57%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - ✓ - 25.166 0.757 0.226 5.290 0.102 -2.72%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - ✓ - 25.133 0.754 0.229 4.726 0.097 -13.1%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - ✓ - 25.116 0.756 0.226 5.343 0.103 -1.74%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - ✓ - 25.206 0.760 0.220 6.087 0.203 11.9%
GS9 ✓ - - - ✓ x StSSGS2 25.481 0.776 0.219 3.116 0.013 -42.7%
GS7 ✓ - - - ✓ x StSSGS5 25.470 0.775 0.223 3.066 0.011 -43.6%

GS10 ✓ - - - ✓ ✓ StSSGS1 25.514 0.780 0.215 2.853 0.021 -47.5%
GS8 ✓ - - - ✓ ✓ StSSGS2 25.454 0.778 0.219 2.717 0.018 -50.0%

Table 14: Quantitative results in Bicycle from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 13). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 25.537 0.794 0.181 5.189 0.790 -4.57%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 25.630 0.793 0.178 5.835 0.145 7.30%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 25.649 0.794 0.177 5.819 0.161 7.0%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 25.746 0.803 0.167 5.645 0.335 3.80%
MC5 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 24.930 0.798 0.163 5.764 0.216 5.99%
MC6 ✓ [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 10−5/10 25.298 0.801 0.161 5.789 0.191 6.45%
MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 25.779 0.804 0.170 5.734 0.246 5.44%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 25.777 0.803 0.166 5.722 0.258 5.22%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 25.539 0.795 0.180 5.189 0.791 -4.57%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 25.766 0.803 0.167 5.715 0.265 5.09%
MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 25.768 0.804 0.160 5.840 0.139 7.4%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 25.813 0.807 0.158 5.835 0.144 7.31%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 25.753 0.804 0.159 5.843 0.137 7.44%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 25.666 0.800 0.162 5.871 0.109 7.96%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 25.727 0.803 0.159 5.873 0.107 7.99%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 25.743 0.804 0.159 5.863 0.117 7.81%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 25.791 0.806 0.158 5.807 0.173 6.78%
MC17 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 25.781 0.806 0.158 5.807 0.173 6.78%
MC7 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 25.826 0.807 0.158 5.799 0.181 6.63%
MC8 ✓ - - StSSMC3 DAR 0.001/10 DAR 10−5/10 25.874 0.809 0.158 5.781 0.199 6.30%

27

Published as a conference paper at ICLR 2026

K.2 FLOWERS FROM MIPNERF-360

Table 15: Quantitative results in Flowers from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise reset Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - ✓ - 21.527 0.605 0.336 3.421 0.239 -
GS2 ✓ - - - - ✓ - 21.463 0.598 0.346 2.737 0.030 -19.9%
GS3 Half - - - - ✓ - 21.589 0.605 0.337 3.616 0.033 5.70%
GS0 ✓ - - - - ✓ StSSGS1RSR 21.698 0.610 0.336 2.506 0.011 -26.7%
GS4 Half [15,30] 0.5 [0.1][15] - ✓ - 21.598 0.606 0.336 3.581 0.056 4.67%
GS15 Half [15,30] 1.0 [0.1][15] - ✓ - 21.585 0.605 0.336 3.518 0.098 2.83%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - ✓ - 21.488 0.600 0.343 3.198 0.032 -6.51%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - ✓ - 21.535 0.600 0.342 3.153 0.032 -7.83%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - ✓ - 21.563 0.601 0.342 3.240 0.032 -5.29%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - ✓ - 21.524 0.599 0.344 2.940 0.029 -14.0%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - ✓ - 21.548 0.601 0.342 3.330 0.003 -2.66%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - ✓ - 21.551 0.601 0.340 3.599 0.077 5.20%
GS9 ✓ - - - ✓ x StSSGS2 21.762 0.609 0.343 2.026 0.004 -40.7%
GS7 ✓ - - - ✓ x StSSGS5 21.718 0.606 0.349 1.951 0.003 -42.9%
GS10 ✓ - - - ✓ ✓ StSSGS1 21.708 0.612 0.339 1.917 0.007 -43.9%
GS8 ✓ - - - ✓ ✓ StSSGS2 21.711 0.610 0.344 1.832 0.005 -46.4%

Table 16: Quantitative results in Flowers from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 15). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 22.028 0.641 0.296 3.352 0.248 -2.01%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 21.966 0.635 0.304 3.534 0.066 3.30%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 22.072 0.638 0.301 3.529 0.071 3.15%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 22.039 0.651 0.274 3.486 0.114 0.19%
MC5 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 21.750 0.650 0.271 3.520 0.08 2.89%
MC6 ✓ [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 10−5/10 21.511 0.646 0.275 3.524 0.076 3.01%
MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 22.195 0.649 0.292 3.510 0.090 2.60%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 22.038 0.650 0.277 3.524 0.076 3.01%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 22.017 0.641 0.295 3.352 0.248 -2.01%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 21.288 0.588 0.349 - - -
MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 21.887 0.650 0.268 3.551 0.049 3.80%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 22.017 0.656 0.268 3.548 0.052 3.71%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 21.876 0.650 0.266 3.554 0.046 3.88%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 21.726 0.646 0.264 3.565 0.035 4.20%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 21.923 0.650 0.269 3.563 0.037 4.15%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 21.962 0.650 0.270 3.561 0.039 4.15%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 21.936 0.651 0.271 3.537 0.063 3.39%
MC17 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 22.034 0.653 0.270 3.539 0.061 3.44%
MC7 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 22.003 0.654 0.267 3.535 0.065 3.33%
MC8 ✓ - - StSSMC3 DAR 0.001/10 DAR 10−5/10 22.108 0.658 0.268 3.525 0.075 3.04%

28

Published as a conference paper at ICLR 2026

K.3 GARDEN FROM MIPNERF-360

Table 17: Quantitative results in Garden from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after
3k, and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. . Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise reset Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - ✓ - 27.334 0.865 0.108 5.614 0.318 -
GS2 ✓ - - - - ✓ - 27.237 0.860 0.117 4.064 0.059 -27.6%
GS3 Half - - - - ✓ - 27.409 0.866 0.107 5.878 0.059 4.70%
GS0 ✓ - - - - ✓ StSSGS1RSR 27.318 0.865 0.109 3.026 0.019 -46.9%
GS4 Half [15,30] 0.5 [0.1][15] - ✓ - 27.436 0.866 0.107 5.827 0.112 3.79%
GS15 Half [15,30] 1.0 [0.1][15] - ✓ - 27.455 0.866 0.107 5.672 0.265 1.03%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - ✓ - 27.268 0.862 0.114 5.138 0.068 -8.47%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - ✓ - 27.304 0.862 0.113 5.225 0.066 -6.92%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - ✓ - 27.298 0.862 0.113 5.363 0.069 -4.47%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - ✓ - 27.234 0.861 0.114 4.652 0.061 -17.1%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - ✓ - 27.352 0.863 0.112 5.548 0.069 -1.17%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - ✓ - 27.263 0.862 0.112 5.877 0.162 4.68%
GS9 ✓ - - - ✓ x StSSGS2 27.438 0.864 0.123 2.076 0.006 -63.0%
GS7 ✓ - - - ✓ x StSSGS5 27.590 0.864 0.127 1.983 0.005 -64.7%
GS10 ✓ - - - ✓ ✓ StSSGS1 27.370 0.863 0.122 2.145 0.016 -61.8%
GS8 ✓ - - - ✓ ✓ StSSGS2 27.170 0.862 0.124 2.075 0.012 -63.0%

Table 18: Quantitative results in Garden from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 17). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 27.862 0.879 0.094 5.466 0.433 -2.63%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 27.889 0.878 0.096 5.785 0.115 3.04%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 27.896 0.878 0.095 5.770 0.13 2.77%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 28.032 0.883 0.089 5.627 0.273 0.23%
MC5 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 25.235 0.864 0.107 5.645 0.255 0.55%
MC6 ✓ [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 10−5/10 24.993 0.825 0.149 5.651 0.249 0.65%
MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 28.010 0.882 0.090 5.726 0.174 1.99%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 28.028 0.882 0.089 5.705 0.195 1.62%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 27.877 0.879 0.094 5.714 0.186 1.78%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 28.037 0.882 0.093 5.632 0.268 0.32%
MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 28.087 0.884 0.088 5.752 0.148 2.24%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 28.065 0.884 0.088 5.740 0.160 2.24%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 28.072 0.884 0.088 5.756 0.144 2.52%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 28.021 0.883 0.089 5.807 0.093 3.43%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 28.045 0.883 0.088 5.805 0.095 3.40%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 28.018 0.883 0.088 5.796 0.104 3.24%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 28.081 0.884 0.088 5.725 0.175 1.97%
MC17 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 28.104 0.884 0.088 5.726 0.174 1.99%
MC7 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 28.109 0.884 0.088 5.714 0.186 1.78%
MC8 ✓ - - StSSMC3 DAR 0.001/10 DAR 10−5/10 28.144 0.885 0.088 5.687 0.213 1.30%

29

Published as a conference paper at ICLR 2026

K.4 STUMP FROM MIPNERF-360

Table 19: Quantitative results in Stump from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise reset Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - ✓ - 26.606 0.772 0.216 4.542 0.232 -
GS2 ✓ - - - - ✓ - 26.511 0.762 0.233 3.751 0.026 -17.4%
GS3 Half - - - - ✓ - 26.730 0.774 0.215 4.774 0.029 5.10%
GS0 ✓ - - - - ✓ StSSGS1RSR 26.624 0.782 0.210 3.644 0.016 -19.7%
GS4 Half [15,30] 0.5 [0.1][15] - ✓ - 26.710 0.773 0.215 4.928 0.094 8.49%
GS15 Half [15,30] 1.0 [0.1][15] - ✓ - 26.759 0.774 0.214 4.596 0.270 1.18%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - ✓ - 26.534 0.766 0.226 4.974 0.029 9.51%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - ✓ - 26.475 0.764 0.227 5.010 0.030 10.3%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - ✓ - 26.611 0.768 0.224 4.811 0.026 5.94%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - ✓ - 26.633 0.767 0.226 4.830 0.026 6.34%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - ✓ - 26.630 0.767 0.224 5.165 0.026 13.7%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - ✓ - 26.601 0.768 0.222 5.274 0.125 16.1%
GS9 ✓ - - - ✓ x StSSGS2 27.175 0.796 0.211 2.894 0.014 -36.3%
GS7 ✓ - - - ✓ x StSSGS5 27.271 0.798 0.211 2.677 0.009 -41.0%
GS10 ✓ - - - ✓ ✓ StSSGS1 27.033 0.800 0.206 2.567 0.023 -43.5%
GS8 ✓ - - - ✓ ✓ StSSGS2 27.045 0.800 0.206 2.470 0.020 -45.6%

Table 20: Quantitative results in Stump from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 19). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 27.204 0.805 0.183 4.245 0.555 -6.53%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 27.293 0.805 0.182 4.718 0.082 3.84%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 27.273 0.805 0.182 4.698 0.102 3.43%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 27.131 0.806 0.177 4.535 0.265 -0.154%
MC5 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 20.854 0.687 0.284 4.621 0.179 1.73%
MC6 ✓ [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 10−5/10 25.509 0.782 0.195 4.615 0.185 1.60%
MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 27.064 0.805 0.179 4.620 0.180 1.71%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 27.172 0.807 0.176 4.631 0.169 1.93%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 27.170 0.796 0.190 4.673 0.127 2.88%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 26.943 0.796 0.191 4.620 0.180 1.71%
MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 27.041 0.800 0.178 4.713 0.087 3.76%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 27.064 0.803 0.176 4.705 0.095 3.58%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 27.070 0.799 0.179 4.712 0.088 3.74%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 26.853 0.793 0.184 4.741 0.059 4.38%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 26.966 0.797 0.180 4.724 0.076 4.00%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 27.108 0.801 0.177 4.717 0.083 3.85%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 27.088 0.801 0.178 4.683 0.117 3.10%
MC17 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 27.101 0.802 0.178 4.681 0.119 3.06%
MC7 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 27.159 0.805 0.175 4.673 0.127 2.88%
MC8 ✓ - - StSSMC3 DAR 0.001/10 DAR 10−5/10 27.245 0.808 0.174 4.650 0.150 2.37%

30

Published as a conference paper at ICLR 2026

K.5 TREEHILL FROM MIPNERF-360

Table 21: Quantitative results in TreeHill from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise reset Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - ✓ - 22.534 0.633 0.326 3.547 0.228 -
GS2 ✓ - - - - ✓ - 22.477 0.629 0.340 2.701 0.027 -23.8%
GS3 Half - - - - ✓ - 22.558 0.634 0.327 3.820 0.031 7.69%
GS0 ✓ - - - - ✓ StSSGS1RSR 22.447 0.638 0.320 2.887 0.016 -18.6%
GS4 Half [15,30] 0.5 [0.1][15] - ✓ - 22.538 0.633 0.327 3.732 0.052 5.21%

GS15 Half [15,30] 1.0 [0.1][15] - ✓ - 22.577 0.634 0.325 3.726 0.083 5.04%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - ✓ - 22.480 0.630 0.335 3.488 0.030 -1.66%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - ✓ - 22.633 0.631 0.335 3.304 0.029 -6.85%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - ✓ - 22.509 0.631 0.334 3.490 0.030 -1.60%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - ✓ - 22.537 0.630 0.335 3.131 0.026 -11.7%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - ✓ - 22.558 0.631 0.334 3.553 0.029 0.169%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - ✓ - 22.484 0.631 0.331 4.074 0.080 14.8%
GS9 ✓ - - - ✓ x StSSGS2 22.791 0.646 0.322 2.616 0.003 -26.2%
GS7 ✓ - - - ✓ x StSSGS5 22.691 0.644 0.328 2.553 0.002 -28.0%

GS10 ✓ - - - ✓ ✓ StSSGS1 22.905 0.650 0.322 2.335 0.006 -34.1%
GS8 ✓ - - - ✓ ✓ StSSGS2 22.891 0.651 0.325 2.231 0.005 -37.1%

Table 22: Quantitative results in TreeHill from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 21). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 22.894 0.655 0.310 3.329 0.37 -6.14%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 23.023 0.659 0.300 3.621 0.079 2.08%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 23.012 0.658 0.302 3.612 0.088 1.83%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 22.858 0.663 0.284 3.555 0.145 0.22%
MC5 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 22.788 0.659 0.270 3.616 0.084 1.94%
MC6 ✓ [26,30] 0.01/1 StSSMC2 DAR 0.001/10 DAR 10−5/10 22.715 0.660 0.268 3.622 0.078 2.11%
MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 22.930 0.663 0.291 3.591 0.109 1.21%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 22.918 0.663 0.285 3.580 0.120 0.93%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 22.953 0.654 0.312 3.323 0.377 -6.32%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- - - - - - -
MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 22.771 0.657 0.270 3.653 0.047 2.98%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 22.740 0.660 0.268 3.654 0.046 3.01%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 22.684 0.655 0.271 3.654 0.046 3.01%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 22.533 0.652 0.274 3.663 0.037 3.27%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 22.690 0.655 0.270 3.663 0.037 3.27%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 22.692 0.656 0.270 3.661 0.039 3.21%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 22.800 0.658 0.270 3.638 0.062 2.56%
MC17 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 22.806 0.658 0.270 3.639 0.061 2.59%
MC7 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 22.836 0.661 0.268 3.637 0.063 2.53%
MC8 ✓ - - StSSMC3 DAR 0.001/10 DAR 10−5/10 22.866 0.662 0.265 3.630 0.07 2.34%

31

Published as a conference paper at ICLR 2026

K.6 ROOM FROM MIPNERF-360

Table 23: Quantitative results in Room from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - - 31.500 0.920 0.221 1.374 0.202 -
GS2 ✓ - - - - - 31.096 0.917 0.231 1.131 0.031 -17.6%
GS3 Half - - - - - 31.607 0.921 0.220 1.537 0.041 11.8%
GS0 ✓ - - - - StSSGS1RSR 31.541 0.921 0.220 0.994 0.017 -28.8%
GS4 Half [15,30] 0.5 [0.1][15] - - 31.719 0.921 0.220 1.496 0.111 8.87%
GS15 Half [15,30] 1.0 [0.1][15] - - 31.614 0.921 0.220 1.466 0.113 6.69%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - - 31.389 0.919 0.228 1.447 0.034 5.31%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - - 31.539 0.919 0.227 1.441 0.036 2.25%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - - 31.379 0.918 0.227 1.473 0.037 7.20%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - - 31.476 0.919 0.228 1.342 0.034 -2.32%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - - 31.509 0.919 0.226 1.504 0.036 9.46%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - - 31.259 0.917 0.228 1.549 0.066 12.7%
GS13 ✓ - - - - StSSGS3 31.768 0.920 0.227 0.617 0.006 -55.1%

GS7/GS8 ✓ - - - - StSSGS1 31.741 0.921 0.222 0.624 0.005 -54.6%
GS14 ✓ - - - - StSSGS4 31.753 0.920 0.222 0.632 0.005 -54.0%

Table 24: Quantitative results in Room from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 23). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 32.034 0.927 0.210 1.320 0.250 -3.93%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 32.417 0.929 0.209 1.472 0.098 7.13%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 32.493 0.930 0.207 1.438 0.132 4.65%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 32.498 0.930 0.204 1.351 0.219 -1.67%
MC6 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 19.068 0.734 0.387 1.505 0.065 9.53%

MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 32.328 0.929 0.207 1.428 0.142 3.93%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 32.514 0.930 0.205 1.430 0.140 4.07%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 31.179 0.922 0.213 1.126 0.444 -18.4%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 32.498 0.930 0.204 1.351 0.219 -1.67%

MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 32.600 0.933 0.196 1.536 0.034 11.7%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 32.542 0.933 0.197 1.535 0.035 11.7%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 32.611 0.933 0.197 1.536 0.034 11.7%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 32.317 0.932 0.197 1.546 0.024 12.5%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 32.547 0.933 0.195 1.528 0.042 11.2%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 32.586 0.933 0.196 1.528 0.042 11.2%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 32.647 0.933 0.197 1.515 0.055 10.2%

MC8/MC7 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 32.651 0.933 0.196 1.515 0.055 10.2%
MC21 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 32.647 0.933 0.197 1.512 0.058 10.0%

32

Published as a conference paper at ICLR 2026

K.7 COUNTER FROM MIPNERF-360

Table 25: Quantitative results in Counter from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - - 29.046 0.909 0.201 1.092 0.097 -
GS2 ✓ - - - - - 28.979 0.907 0.205 1.005 0.034 -7.96%
GS3 Half - - - - - 29.065 0.909 0.201 1.115 0.076 2.10%
GS0 ✓ - - - - StSSGS1RSR 29.026 0.909 0.202 0.768 0.011 -30.6%
GS4 Half [15,30] 0.5 [0.1][15] - - 29.060 0.909 0.201 1.124 0.067 2.93%

GS15 Half [15,30] 1.0 [0.1][15] - - 29.079 0.909 0.201 1.067 0.116 -2.28%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - - 28.947 0.908 0.204 1.163 0.035 6.50%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - - 28.974 0.908 0.204 1.175 0.036 7.60%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - - 29.010 0.908 0.203 1.199 0.036 9.97%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - - 28.972 0.908 0.203 1.118 0.033 2.38%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - - 28.998 0.908 0.202 1.221 0.036 11.81%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - - 28.974 0.908 0.202 1.257 0.058 15.1%

GS13 ✓ - - - - StSSGS3 29.084 0.907 0.204 0.579 0.005 -46.9%
GS7/GS8 ✓ - - - - StSSGS1 29.112 0.907 0.206 0.535 0.004 -51.0%

GS14 ✓ - - - - StSSGS4 29.077 0.907 0.203 0.535 0.003 -51.0%

Table 26: Quantitative results in Counter from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 25). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 29.229 0.914 0.195 1.084 0.106 -0.73%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 29.180 0.912 0.198 1.148 0.042 5.12%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 29.194 0.914 0.196 1.140 0.05 4.39%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 29.345 0.916 0.190 1.098 0.092 0.54%
MC6 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 28.791 0.916 0.186 1.148 0.042 5.12%

MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 29.274 0.914 0.196 1.160 0.03 6.22%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 29.291 0.916 0.191 1.151 0.039 5.40%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 29.069 0.911 0.199 0.967 0.223 -11.4%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 29.075 0.910 0.202 1.13 0.060 3.47%

MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 29.476 0.919 0.184 1.172 0.018 7.32%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 29.495 0.919 0.183 1.171 0.019 7.23%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 29.470 0.919 0.184 1.143 0.047 4.67%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 29.450 0.919 0.183 1.181 0.009 8.15%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 29.455 0.919 0.182 1.172 0.018 7.32%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 29.486 0.919 0.183 1.171 0.019 7.23%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 29.475 0.919 0.184 1.163 0.027 6.50%

MC8/MC7 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 29.515 0.919 0.183 1.163 0.027 6.50%
MC21 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 29.506 0.919 0.184 1.161 0.029 6.31%

33

Published as a conference paper at ICLR 2026

K.8 KITCHEN FROM MIPNERF-360

Table 27: Quantitative results in Kitchen from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - - 31.505 0.928 0.127 1.699 0.116 -
GS2 ✓ - - - - - 31.053 0.926 0.131 1.621 0.036 -4.59%
GS3 Half - - - - - 31.564 0.929 0.127 1.774 0.040 4.41%
GS0 ✓ - - - - StSSGS1RSR 31.072 0.922 0.133 0.930 0.013 -45.2%
GS4 Half [15,30] 0.5 [0.1][15] - - 31.531 0.929 0.127 1.721 0.089 1.29%
GS15 Half [15,30] 1.0 [0.1][15] - - 31.509 0.929 0.127 1.602 0.237 -5.70%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - - 31.110 0.926 0.130 1.766 0.035 3.94%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - - 31.389 0.927 0.129 1.740 0.037 2.41%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - - 30.997 0.926 0.129 1.769 0.035 4.12%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - - 31.330 0.927 0.129 1.724 0.035 1.47%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - - 31.355 0.927 0.129 1.772 0.036 4.29%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - - 31.404 0.928 0.128 1.782 0.069 4.88%
GS13 ✓ - - - - StSSGS3 31.770 0.927 0.131 0.692 0.005 -59.3%

GS7/GS8 ✓ - - - - StSSGS1 31.728 0.927 0.132 0.667 0.004 -60.7%
GS14 ✓ - - - - StSSGS4 31.741 0.926 0.133 0.667 0.004 -60.7%

Table 28: Quantitative results in Kitchen from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 27). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 32.173 0.933 0.122 1.661 0.149 -2.23%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 32.079 0.934 0.122 1.753 0.057 3.17%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 32.286 0.934 0.122 1.743 0.067 2.58%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 31.765 0.909 0.137 1.681 0.129 -1.05%
MC6 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 21.787 0.820 0.234 1.729 0.081 1.76%

MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 32.363 0.346 0.120 1.72 0.09 1.23%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 32.289 0.934 0.119 1.714 0.096 0.88%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 31.924 0.931 0.124 1.495 0.315 -12.0%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 32.342 0.934 0.121 1.703 0.107 2.35%

MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 32.570 0.937 0.117 1.765 0.045 3.88%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 32.397 0.935 0.118 1.763 0.047 3.76%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 32.443 0.936 0.118 1.767 0.043 4.00%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 32.458 0.935 0.118 1.786 0.024 5.12%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 32.466 0.936 0.117 1.766 0.044 3.94%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 32.173 0.935 0.118 1.766 0.044 3.94%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 32.521 0.936 0.117 1.756 1.756 3.35%

MC8/MC7 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 32.546 0.937 0.117 1.755 1.755 3.29%
MC21 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 32.298 0.936 0.117 1.753 0.057 3.17%

34

Published as a conference paper at ICLR 2026

K.9 BOSAI FROM MIPNERF-360

Table 29: Quantitative results in Bosai from MipBerf-360 with different components for vanilla
3DGS pipeline. For AIU, the brackets denote its active iteration range (e.g., [15,30] means 15k–30k
iterations). ProAIU is the sampling probability of primitives, and ηAIU constrains the extra update
step applied to sampled primitives. [·][·] denote the scale value and the iteration at which it takes
effect. For example, [0.5,0.1][0.1,3] means ηAIU = 0.5 after 0.1k iterations, ηAIU = 0.1 after 3k,
and ηAIU = 0 before 0.1k. In Ours, AdamW-GS uses the same configuration but different StSS
settings. Sparse denotes using Sparse Adam or Adam, and Half means using Adam in densification
but Sparse Adam in P-Op. RSR here means only adding RSR to the pipeline.

cite Sparse AIU ProAIU ηAIU noise Ours PSNR SSIM LPIPS Na/m Nd/m ∆Na

GS1 x - - - - - 32.269 0.943 0.207 1.159 0.115 -
GS2 ✓ - - - - - 31.610 0.931 0.216 1.230 0.016 6.12%
GS3 Half - - - - - 32.325 0.943 0.206 1.256 0.017 8.36%
GS0 ✓ - - - - StSSGS1RSR 32.284 0.942 0.205 1.003 0.011 -13.4%
GS4 Half [15,30] 0.5 [0.1][15] - - 32.382 0.943 0.206 1.230 0.037 6.12%
GS15 Half [15,30] 1.0 [0.1][15] - - 32.406 0.943 0.206 1.208 0.072 4.22%
GS16 ✓ [0.1,15] 0.5 [0.1][0.1] - - 32.243 0.942 0.209 1.360 0.016 17.3%
GS17 ✓ [0.1,7] 0.2 [0.5][0.1] - - 32.106 0.942 0.208 1.353 0.017 16.7%

GS18 ✓ [0.1,15] 0.2 [0.2,0.5,0.1] - - 32.293 0.943 0.208 1.370 0.015 18.2%[0.1,1,7]

GS19 ✓ [0.1,15] 0.2 [0.5,0.1] - - 32.260 0.941 0.209 1.283 0.015 10.6%[0.1,3]

GS5 ✓ [0.1,15] 0.2 [0.8,0.5,0.1] - - 32.260 0.943 0.208 1.378 0.016 18.8%[0.1,3,7]
GS6 ✓ [0.1,30] 1.0 [0.1][0.1] - - 32.251 0.942 0.208 1.428 0.034 23.2%
GS13 ✓ - - - - StSSGS3 32.409 0.942 0.204 0.807 0.004 -30.3%

GS7/GS8 ✓ - - - - StSSGS1 32.251 0.942 0.205 0.747 0.004 -35.5%
GS14 ✓ - - - - StSSGS4 32.279 0.941 0.206 0.735 0.003 -36.5%

Table 30: Quantitative results in Bosai from MipBerf-360 with different components for 3DGS-
MCMC pipeline. AIU definitions follow the table description above (Table 29). For RSR, the
sampler defaults to uniform (interval = 100) except StSS. R denotes the form of regularization, λ
its hyperparameter, and max corresponds to Ct in the paper; other parameters remain default. 0 in
StSSMC1 denotes using α1 = α2 = 0 here.

cite Sparse AIU ProAIU/ηAIU RSR Ro λo/maxo Rs λs/maxs PSNR SSIM LPIPS Na/m Nd/m ∆Na

MC1 x - - - L1 0.01/- L1 0.01/- 32.572 0.946 0.200 1.101 0.169 -5.00%
MC2 ✓ - - - L1 0.01/- L1 0.01/- 32.508 0.945 0.203 1.200 0.070 3.53%
MC3 ✓ [0.1,30] 0.1/0.1 - L1 0.01/- L1 0.01/- 32.578 0.946 0.202 1.191 0.079 2.76%
MC4 ✓ [3,30] 0.1/0.1 StSSMC1 L1 0.01/- L1 0.01/- 32.742 0.947 0.198 1.130 0.140 -2.50%
MC6 ✓ [26,30] 0.01/1 StSSMC1 DAR 0.001/10 DAR 10−5/10 29.919 0.922 0.213 1.204 0.066 3.88%

MC18 ✓ - - StSSMC10 L1 0.01/- L1 0.01/- 32.527 0.946 0.201 1.205 0.065 3.96%
MC19 ✓ - - StSSMC1 L1 0.01/- L1 0.01/- 32.645 0.947 0.199 1.201 0.069 3.62%
MC20 ✓ - - StSSMC2 L1 0.01/- L1 0.01/- 32.417 0.944 0.204 0.959 0.311 -17.2%
MC9 ✓ - - StSSMC1 DAR 0.001/- L1 0.01/- 32.513 0.943 0.206 1.184 0.086 2.15%

MC10 ✓ - - StSSMC1 DAR 0.001/10 L1 0.01/- 33.006 0.950 0.191 1.221 0.049 5.34%
MC11 ✓ - - StSSMC2 DAR 0.001/10 L1 0.01/- 32.990 0.950 0.189 1.234 0.036 6.47%
MC12 ✓ - - StSSMC1 DAR 0.001/5 L1 0.01/- 32.990 0.950 0.189 1.237 0.033 6.72%
MC13 ✓ - - StSSMC1 DAR 0.001/1 L1 0.01/- 32.921 0.950 0.190 1.252 0.018 8.02%
MC14 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/10 32.916 0.950 0.189 1.233 0.037 6.38%
MC15 ✓ - - StSSMC1 DAR 0.001/10 DAR 0.001/1 32.906 0.950 0.189 1.232 0.038 6.29%
MC16 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/1 32.990 0.950 0.190 1.220 0.050 5.26%

MC8/MC7 ✓ - - StSSMC1 DAR 0.001/10 DAR 10−5/10 33.022 0.950 0.190 1.220 0.050 5.26%
MC21 ✓ - - StSSMC2 DAR 0.001/10 DAR 10−5/10 33.007 0.950 0.190 1.219 0.051 5.17%

35

	Introduction
	Related Work
	Preliminary: 3DGS(-MCMC) and Adam
	Methodology
	Characteristics of Sparse Adam
	Update-step decoupling: Re-State Regularization
	Gradient Decoupling: Decoupled Attribute Regularization
	Recoupling: AdamW-GS

	Experiments
	Results and Analysis

	Discussion and Conclusion
	Reproducibility
	The Use of Large Language Models (LLMs)
	Time Cost Analysis
	Preliminary
	More Pipeline Variants with AdamW-GS or Experiments on Different Datasets
	MaskGaussian with AdamW-GS: More Stable Updating of Mask Score
	Taming-3DGS with AdamW-GS
	Deformable Beta Splatting with AdamW-GS
	Vanilla 3DGS or 3DGSMCMC with AdamW-GS on OMMO Datasets

	Exploration Strategies
	Failure Cases
	More about Related Work
	Preparation for Decoupled Attribute Regularization
	Hyperparameter Adjustment
	AdamW Style Decoupling
	Additional discussion regarding the formulation in Eq.8
	Discussion Related to Implicit Update

	Implementation Details
	AdamW-GS
	Hyperparameter Selection

	All Results
	Bicycle from MipNerf-360
	Flowers from MipNerf-360
	Garden from MipNerf-360
	Stump from MipNerf-360
	TreeHill from MipNerf-360
	Room from MipNerf-360
	Counter from MipNerf-360
	Kitchen from MipNerf-360
	Bosai from MipNerf-360

