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Abstract

Large language models (LLMs) often exhibit performance disparities across languages, with
naive multilingual fine-tuning frequently degrading performance due to negative cross-lingual
interference. To address this, we introduce COMPASS (COntinual Multilingual PEFT with
Adaptive Semantic Sampling), a novel data-centric framework for adapting LLMs to tar-
get languages. COMPASS leverages parameter-efficient fine-tuning (PEFT) by training
lightweight, language-specific adapters on a judiciously selected subset of auxiliary multi-
lingual data. The core of our method is a distribution-aware sampling strategy that uses
multilingual embeddings and clustering to identify semantic gaps between existing training
data and a target usage distribution. By prioritizing auxiliary data from under-represented
semantic clusters, COMPASS maximizes positive cross-lingual transfer while minimizing in-
terference. We extend this into a continual learning framework, COMPASS-ECDA, which
monitors for data distribution shifts in production and dynamically updates adapters to
prevent model staleness, balancing adaptation to new data with the preservation of exist-
ing knowledge. Across three different model architectures (Phi-4-Mini, Llama-3.1-8B, and
Qwen2.5-7B) and multiple challenging multilingual benchmarks (Global-MMLU, MMLU-
ProX), including unseen long-context tasks (OneRuler), we demonstrate that COMPASS
consistently outperforms baseline methods guided by linguistic similarity, providing an ef-
fective, efficient, and sustainable solution for developing and maintaining high-performing
multilingual models in dynamic environments.

1 Introduction

Large language models (LLMs) demonstrate remarkable capabilities across diverse natural language tasks,
but extending these to multiple languages, especially low-resource languages (LRLs), remains challenging.
State-of-the-art LLMs overfit to English, exhibiting noticeable biases (e.g., gender, race, caste, religion) and
unusual behaviors with less-represented languages not seen during training (Khandelwal et al.l |2023; |Kotek
et al., 2023} [Vashishtha et al.l |2023; [Khondaker et al., 2023]). Closed datasets monopolize LRLs (Longpre
et al.| 2024)), while open datasets and NLP breakthroughs consolidate around a few data-rich languages (Lucy
et al. 2024} |Zhang et al., [2022). The scarcity of openly available, high-quality, human-generated non-
English data widens the gap for under-represented languages (Longpre et al., 2024} [Lucy et al., 2024; |Zhang
et al., [2022; Sun et al., [2023; |Zampieri et all) 2017)). This data scarcity contributes to broader systemic
issues in multilingual NLP, including cross-lingual security vulnerabilities (Yong et al., [2024; [Deng et al.,
2024)), tokenization inefficiencies for non-Latin scripts (Cui et al 2024} Ji et al., [2023), privacy risks (Lukas
et all [2023 [Li et al., 2024), and cultural mismatches (e.g., overemphasizing Western-centric concepts)
or translation artifacts that arise when machine-translating English datasets (Vanmassenhove et al.l [2021}
Bizzoni et al.} [2020; |[Chen et al.,[2025)). While these challenges exacerbate inequities in global AI deployment,
they are diverse and multifaceted problems requiring distinct solutions. This work focuses on a specific but
fundamental challenge underlying poor LRL performance: distributional mismatch between training data
and real-world usage patterns.
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Fine-tuning on multilingual corpora for language adaptation offers a path to reducing linguistic inequal-
ity, but naive inclusion of data across multiple languages often degrades performance on the target lan-
guage (Wang et al.,2020b]). This negative interference stems from distributional misalignment: multilingual
model training data often differs from real-world usage patterns (i.e., live production interactions) due to
sampling biases, topical variations, or imbalanced language contributions. When training data over-exposes
models to irrelevant patterns and under-exposes them to crucial ones for the target language, the model
learns suboptimal representations. While linguistic differences (syntax, vocabulary, semantics) and cultural
factors (translational ambiguity, localization nuances) contribute to cross-lingual interference, the funda-
mental issue that COMPASS targets is that languages "compete" for model capacity when their training
distributions do not align with their respective usage distributions. Consequently, monolingual models often
outperform massively multilingual models on language-specific tasks (Mistral, 2025; |Pires et al., 2023; |Canete
et al., [2023}; [Sarti & Nissiml, 2022} [Martin et al. 2019} [Chan et al.| 2020} [Lee et al.l [2021; [Nguyen & Nguyen),
2020)).

A straightforward alternative is tuning individual models for each language using only monolingual data.
However, this one-model-per-language approach incurs large memory overhead, and diverse, human-curated
task data is scarce for many languages, especially those lacking sufficient native or fluent speaker involvement
in data creation. Discarding all non-target language data avoids interference but sacrifices the benefits of
cross-lingual transfer, where related language data can yield synergistic improvements.

A key research question emerges: can we selectively incorporate cross-lingual data to achieve positive transfer
for a target language while avoiding harmful interference? We posit the answer is yes — if additional data
are strategically chosen based on distributional similarity to the target language’s requirements. In practice,
multilingual model training data often differs distributionally from real-world usage data (i.e., live production
interactions) due to sampling biases, topical variations, or imbalanced language contributions. This mismatch
can over-expose models to irrelevant patterns and under-expose them to crucial ones for the target language.
Addressing this distributional mismatch is crucial for effective cross-lingual transfer and can be achieved
while still incorporating cross-lingual data for positive transfer.

We introduce COuntinual Multilingual PEFT with Adaptive Semantic Sampling (COMPASS), a novel data
sampling strategy to adapt pre-trained language models to specific target languages. COMPASS does not
directly tackle tokenization inefficiencies, safety vulnerabilities, or inherent linguistic structure differences —
these remain important open problems. Instead, COMPASS operates on the principle that better coverage
of the target distribution, achieved through semantically-guided auxiliary data selection, can improve model
performance by reducing task-irrelevant noise and ensuring exposure to under-represented usage patterns.
This improved distributional alignment may indirectly reduce some symptoms of linguistic interference (e.g.,
by filtering irrelevant cross-lingual examples), but the method is fundamentally task-distribution-driven
rather than linguistically-informed.

Recognizing that language use and data distributions are dynamic in real-world settings (e.g., new jargon,
shifting user preferences or user pools, seasonality), COMPASS is designed both for effective initial adaptation
and subsequent continual learning. We use parameter-efficient fine-tuning with weight-decomposed low-rank
adaptation (DoRA) (Liu et al., |2024), enabling a single shared base model with lightweight, language-
specific adjustments. This facilitates multi-adapter deployment without training a full model per language.
Our core idea is to fine-tune a DoRA adapter for each target language using a judiciously selected subset
of multilingual data. This selection is guided by analyzing the target language’s expected "live' usage
distribution, approximated using a proxy development set with simulated biases.

In production, an initial language adapter may perform well initially, but its performance can degrade over
time as incoming queries diverge from the offline training distribution. This is particularly relevant when
bootstrapping models for LRLs in production, where initial user data for emerging markets is scarce, and
model deployment is expected to generate more informative data for improvement. We propose a continual
learning extension that periodically updates adapters with fresh data to match distribution shifts observed
in incoming user requests. We simulate distribution shift scenarios (e.g., a sudden influx of queries on a new,
challenging topic) and demonstrate that our adaptive retraining procedure recovers performance on new
data while preserving it on original data. This transforms COMPASS from a one-time fine-tuning technique
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into a sustainable, long-term solution for multilingual model maintenance, fostering continuous improvement
through real-world usage.

Our contributions are: (1) a novel distribution-aware sampling strategy for multilingual model adaptation,
using clustering and embedding-based distribution comparison to guide cross-lingual data selection; (2)
application of this strategy to train adapters for multiple languages, achieving strong empirical gains on
multilingual, human-generated benchmarks across various architectures with minimal negative transfer; (3)
extensive experiments, including studies on language affinity, data budget optimization, cross-task general-
ization, and component-wise ablations to validate and analyze our approach; (4) an extension of the method
to adapt to distribution shifts over time.

2 Related Works

Our work is situated at the confluence of several research directions: mitigating negative cross-lingual trans-
fer, parameter-efficient model adaptation, dynamic data selection, and continual learning.

2.1 Mitigating Negative Cross-Lingual Transfer

A central challenge in building capable multilingual systems is the “curse of multilinguality”. While multi-
lingual models are trained on a vast number of languages, they exhibit degraded performance on specific,
especially lower-resource, languages when compared to their monolingual counterparts, underscoring the
need for more effective, language-specific adaptation strategies (Xu et al., |2025). This phenomenon arises
from an implicit competition among languages for a finite set of shared model parameters, which can lead
to destructive interference between linguistic representations and suboptimal performance for any single
language (Wang et al.| [2020b)).

A range of strategies has been developed to mitigate interference, including interventions in the optimization
process. Methods like Project Conflicting Gradients (PCGrad) (Yu et al., |2020) intervene during training
to project gradient updates into a space where they do not conflict between languages. More recently,
CONGRAD (Li et al., |2025) operationalizes this principle as a data selection strategy for multilingual
preference alignment. It computes an aggregated cross-lingual gradient direction and filters the training
data to retain only those samples whose individual gradients show high cosine similarity with this global
update vector. This approach is precise, but its reliance on gradient computation makes the selection process
computationally intensive.

Shifts towards architectural solutions that move away from monolithic, one-size-fits-all models represent more
modular or specialized architectures. The Cross-lingual Expert Language Models (X-ELM) framework, for
instance, mitigates parameter competition by training multiple, smaller “expert” models, each specialized
on a distinct cluster of languages (Blevins et al.,|2024). These clusters can be formed using either supervised
signals like linguistic typology or unsupervised methods based on TF-IDF text features, partitioning the
linguistic load to reduce interference. Another architectural approach, XTransplant, proposes a dynamic,
inference-time modification by “transplanting” specific model components, such as the feed-forward network
(FFN) layers known to store factual knowledge, from a strong source-language context (e.g., English) to a
weaker target-language context (Ye et al) 2025). These architectural solutions validate our premise that
specialization is key to overcoming the curse of multilinguality. However, they introduce significant overhead.
X-ELM requires training and storing multiple independent models, each of equivalent size to a seed language
model, while XTransplant involves an expensive search process at inference time.

Our work, COMPASS, embraces the principle of specialization via proactive, distribution-based selection with
considerations towards efficiency. By leveraging lightweight, language-specific adapters on a single shared
base model, we avoid substantial storage and training costs of full model ensembles. This architectural
choice positions COMPASS as a data-centric alternative that is more direct than representation alignment
methods, which often rely on parallel corpora (Liu & Niehues| [2025; Zhao et all [2025), and more efficient
than reactive gradient-based filtering.
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2.2 Parameter-Efficient Adaptation for Multilingualism

Parameter-Efficient Fine-Tuning (PEFT) has emerged as the standard methodology for adapting large pre-
trained models with minimal computational and memory overhead (Aggarwal et all [2024). Methods like
Low-Rank Adaptation (LoRA) can match full fine-tuning performance while updating a fraction of the
parameters (Razuvayevskaya et all [2024). Our work specifically builds upon Weight-Decomposed Low-
Rank Adaptation (DoRA), an evolution of LoRA that decouples the magnitude and direction of weight
updates to enable more stable and effective training.

The application of PEFT to multilingualism enables efficient language specialization on a shared base model.
The MAD-X framework introduced a modular approach with separate, stackable ‘language adapters’ and
‘task adapters, allowing for parameter-efficient transfer to new languages and tasks (Pfeiffer et al., [2020).
Similarly, Franken-Adapter proposes ‘embedding surgery’, where customized vocabularies are created for
target languages and only the embedding layer is tuned before being integrated with an instruction-tuned
base model (Jiang et al., |2025)). Mix-of-Language-Experts (MoLE) architecture formalizes this approach
for multilingual programming tasks by jointly optimizing a shared LoRA module for common knowledge
alongside a collection of programming language-specific LoRA modules (Zong et al., 2025).

The success of these modular, parameter-efficient architectures has shifted the research bottleneck from a
question of if we can efficiently create language-specific modules to the question of how we should train
them for optimal performance. These architectural solutions do not inherently prescribe a strategy for
selecting data from a heterogeneous, multilingual pool to train each language adapter. We posit that naively
fine-tuning adapters on all available data is suboptimal. Instead, COMPASS provides a distribution-guided
method to construct a judiciously selected training subset for any language-specific PEFT module — be it a
full adapter in MAD-X or a new embedding layer in Franken-Adapter. By doing so, COMPASS enhances the
entire ecosystem of modular multilingual models, maximizing positive cross-lingual transfer while actively
minimizing interference.

2.3 Data Selection for Cross-Lingual Fine-Tuning

Data quality over quantity is key to PEFT-based multilingual adaptation (Liu et al., [2025). Data selection
strategies range from static, heuristic-based filtering to dynamic, model-in-the-loop frameworks. Our work
falls into the latter category, using model-internal signals to guide selection.

A foundational line of work uses model training dynamics to score data. Dataset Cartography, for instance,
uses the model’s confidence and prediction variability across epochs to map a dataset into regions of "easy-
to-learn," "hard-to-learn," and "ambiguous" examples (Swayamdipta et al., |2020). This map serves as a
diagnostic tool, revealing that ambiguous examples are often crucial for out-of-distribution generalization.
Other methods like Variance of Gradients (VoG) and EL2N use gradient variance or error norms during
training to identify challenging or easy examples (Agarwal et all 2022)). While powerful, these methods
require at least a partial training run to derive their scores, posing a scalability challenge in a multi-adapter
setting where one would need to repeat the process for each target language.

More advanced frameworks learn a dynamic sampling policy. Differentiable Data Selection (MultiDDS)
learns a data sampling policy by optimizing for gradient alignment between sampled training data and a
small, trusted validation set (Wang et al. [2020a)), while Mixture-of-Skills (MoS) uses reinforcement learning
to adjust sampling probabilities across pre-defined datasets (“skills”) based on a set of hand-crafted reward
heuristics, such as inter-dataset similarity and learning difficulty (Wu et al., [2024]). MultiDDS optimizes for
an indirect proxy of generalization (gradient alignment), while MoS optimizes a set of heuristic rewards that
may not be robust across all data types.

In contrast, COMPASS formulates cross-lingual data selection as a problem of unsupervised domain adapta-
tion, where the goal is to minimize the distributional mismatch between the training data and a target usage
distribution. This aligns our work with prior methods that use embedding-based clustering for distribution
matching, but COMPASS’s novelty lies in its specific focus on identifying and filling under-represented se-
mantic clusters to guide cross-lingual transfer. It discovers latent topics via unsupervised clustering rather
than requiring pre-defined datasets (unlike MoS), and it uses the magnitude of the distributional gap itself as
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the primary, non-heuristic signal for selection (unlike MultiDDS or CONGRAD). Furthermore, COMPASS
unifies the goals of selecting for both similarity and diversity. By prioritizing under-represented clusters,
it inherently seeks semantic diversity; by prioritizing prototypical examples within those clusters, it en-
sures topical similarity and relevance. As data coverage increases, it gradually introduces more ambiguous
examples to enhance learning (Sorscher et al.l 2023).

2.4 Continual Learning for Adapting to Distribution Shifts

A one-time adaptation is insufficient for real-world deployment, where data distributions evolve over time
due to new topics, shifting user needs, or seasonality. Models must adapt to new data without suffering
from “catastrophic forgetting”, which entails degradation of performance on previously learned knowledge.
Rehearsal-based methods, which replay a small buffer of past data, and regularization-based methods like
Elastic Weight Consolidation (EWC), penalize changes to parameters deemed important for past tasks.
Recent work has also explored more advanced signals, such as leveraging model uncertainty to guide data
balancing, as seen in MultiUAT for machine translation (Wu et al. 2021)), or employing causal frameworks
to improve robustness (Wang & Huang, [2025)).

A significant portion of continual PEFT research focuses on task-incremental learning, where a model learns
a sequence of distinct tasks. Architectural methods, such as those that train separate PEFT modules for each
task and compose them with a router (Araujo et al.,|2024), are designed for this. While powerful, their core
mechanisms (e.g., task-specific routing or parameter subspaces) are suitable to task-incremental learning
and are not applicable to our problem. COMPASS tackles domain-incremental learning, where the task
remains constant (e.g., instruction-following for a specific language), but the underlying data distribution
shifts. Other architectural innovations like CURLoRA (Fawi, [2024]), which grounds the adapter update
in the original pre-trained weights via CUR decomposition, are less suited for continual adaptation where
preserving knowledge from the immediately preceding state is more critical than preserving knowledge from
the initial pre-trained state.

3 Distribution-Guided Sampling for Multilingual Adaptation

Our approach focuses on selecting relevant cross-lingual data that mirrors the target language’s usage pat-
terns, enriching the target language’s training data with this auxiliary data. The core insight of our approach
is that negative cross-lingual transfer occurs because the distribution of source language data differs from
the target language’s usage distribution. We address this by selectively sampling auxiliary language data
that aligns with the target language’s distribution gaps.

3.1 Problem Definition

We address the task of adapting a pre-trained multilingual language model to a specific target language
such that its performance on that language is maximized, leveraging auxiliary data from other languages.
Formally, assume we have a base model My, (with parameters ©) pretrained on many languages. We
define a target language ¢; for which we have a set of fine-tuning data Dy = {(x,v;)}1*; and evaluation data

E:,={ (ac;eval), y§eval))}§vﬁl which represents the model’s intended usage or test distribution in language ¢;.
Additionally, we have a pool of auxiliary training data Daux = |, ¢, De comprising data from a set of other
languages (and possibly including more data from ¢; itself beyond D;). Our goal is to use D; and a suitable
subset of D,ux to fine-tune the model such that performance on F; is maximized. Through a PEFT-based
approach, we train a small set of additional parameters ¢; (the adapter for language ¢;) while keeping ©

fixed, thus Madapted(-; ©, ¢¢) is the adapted model for language ¢;.

The distribution of D; (what the model sees during fine-tuning for ¢;) may differ from the distribution of
E, (what the model is evaluated on). In many cases, D; might be relatively small or collected in a certain
manner, whereas E; (or actual user inputs in ¢;) might cover a broader or different variety of content. We
denote by Piain(z]¢) the distribution over inputs z in the fine-tuning data for £;, and by Peya(2]¢:) the

distribution over inputs in the evaluation set (or actual use) for ¢;. Our approach assumes we can use F;

(eval (eval)

as a proxy for the latter (even if Y; ) labels are not used in training, the z; give an idea of what
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content is important). The challenge is then that Piain(2|¢;) may not adequately cover regions of Peyai(2|¢:).
Conversely, the auxiliary data pool D,.. (aggregated from many languages) is typically much larger and
more diverse; it likely covers F;’s domains, but indiscriminately adding all of D,y to training could introduce
irrelevant regions that are not in Peya1(z|¢;), thereby causing negative transfer. We need to find a subset
S C Daux such that training on D; U S best approximates training on data drawn from Peyai(z[6;).

3.1.1 Distribution Mismatch

We quantify distribution mismatch by dividing the input space into regions and comparing the density of
target data vs. auxiliary data in those regions. Let Z denote the space of input examples (e.g., the space
of all possible text prompts). We assume the existence of a feature mapping f : Z — R? that produces a
meaningful vector representation (embedding) of an input. Ideally, in this feature space, texts with similar
semantic content will be close together regardless of language. We do not require f to be perfectly language-
agnostic, but it should cluster data by topic/task more strongly than by language. In practice, f will be
a pretrained multilingual encoder that is not fine-tuned on our task labels, so f captures general semantic
information. Given this representation, we cluster the combined set of embeddings of D; U D,y U E;. Let
{C1,C4,...,Ck} be K clusters in the embedding space. These clusters represent regions of semantically
related content. For each cluster Cj, define:

o nf = |{z; € D;: f(x;) € Cx}|, the number of target-language training examples in cluster k.

o nf = |{x € Daux : f(z) € Ci}|, the number of auxiliary examples in cluster k.
e nk = |{m§eval) € By : f(x§eval)) € Ci}|, the number of eval examples in cluster k& (our proxy for
true usage in that cluster).
k k
We then approximate the cluster-level distributions: Piain (Ck|:) ~ ﬁ, and Peyal (Ci|ls) =~ Z:”C%
Tt ! “eval
Povar (Ca[t:) '
Pirain(Crlle)
represented in the training data relative to what the eval distribution would suggest (i.e., there’s a “hole” in

training coverage). If p; < 1, the training set has relatively more data in Cj than the eval distribution does
(possibly we are over-emphasizing that region). Our aim is to adjust the training distribution by adding
samples from D,y to better match Peya. Specifically, we want to sample more heavily from clusters with
pr > 1.

We measure mismatch in cluster k as the ratio of these: pr = If p > 1, cluster k is under-

We formalize the selection problem as finding a sampling distribution @ over D,,x (plus using all of D; by
default) such that for each cluster Cj, the effective training probability Piraintaux(Ck|¢t) moves closer to
Peya1 (Ck|¢:). However, we also must respect a limit on how much auxiliary data we add (for efficiency and to
avoid swamping the target data). Let B denote a budget factor (e.g., B = 1.0 means we will add an amount
of auxiliary data equal to |D;|, B = 2.0 means double the target data size in auxiliary examples, etc.). We
then require ) . Do, @) = B+ [Dy]. Our strategy will construct @ in two stages: first allocate weights to
clusters, then within each cluster allocate to individual examples.

3.2 Initial Adaptation Phase

Nlustrated in figure |1, COMPASS includes the following process: (1) obtain a semantically meaningful,
multilingual embedding-based representation of all data, (2) estimate distributional mismatches between the
target language’s training data and usage data (approximating the usage distribution with held-out data as
an initial proxy), (3) compensate for this mismatch by ranking clusters according to the degree of mismatch,
(4) weigh remaining instances with importance scores based on literature precedence, targeting prototypical
or “easy” examples when there is high mismatch and targeting more “ambiguous” examples as mismatch
decreases while accounting for diversity by discounting highly similar auxiliary pairs, (5) use the cluster-
level and instance-level weights to augment target language training data with auxiliary language data, (6)
fine-tune language-specific adapters for a shared based model, (7) route incoming queries to the appropriate
adapter with a language detection model at inference-time. Algorithm [I| provides a formal summary of the
core COMPASS sampling procedure.
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Figure 1: An overview of COMPASS for multilingual adaptation. (Top left) Data, including target language
training data, a proxy for live usage data, and an auxiliary multilingual data pool, are converted into semantic
representations by a multilingual embedding model. (Top right) We cluster the data into semantic groups,
which are used to compute cluster-level and instance-level importance weights that guide the stochastic
sampling of auxiliary data to address distributional gaps. (Bottom) Lightweight, language-specific adapters
are fine-tuned and deployed, with an identification model routing incoming queries. The COMPASS-ECDA
extension provides a continual learning loop that monitors for distribution shifts, triggering data re-sampling

and adapter updates to maintain performance.
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3.2.1 Embedding and Clustering

We use a pretrained multilingual embedding model f(-) to encode each candidate training example (both in
D, and D,,x) and each evaluation example in F;. We then run a clustering algorithm on these embeddings;
we explore several: K-means clustering, hierarchical agglomerative clustering, Taylor-Butina clustering, and
HDBScan. The result is K clusters {Cy }5_,, where each cluster can be thought of as a topic or latent facet
of the data (for example, one cluster might group legal/philosophical questions, etc., often with a mix of
languages present).

3.2.2 Cluster-level Weighting

Once clusters are formed, we calculate the target-vs-eval mismatch for each cluster k. Since we always
include the target’s own data D; in training, the simplest way to compensate a deficit in cluster k is to
include more auxiliary examples from that cluster. We assign a cluster weight wy, for sampling proportional
to the mismatch ratio py (or some monotonic function of it). In practice, we define:

k
Meval : k
nk4e’ if Noval =~ 0,

0, ifnk =0,

eval —

WE =

where € = 1.0 is a smoothing constant to avoid division by zero. This essentially says: if a cluster has eval
examples but no (or few) target training examples (n¥ small), wy will be large, signaling we badly need
examples of that type. If a cluster has no presence in eval (n’gVal = 0), we ideally don’t want to sample from
it at all (hence wy = 0). If both target and eval have proportional presence, wy =~ 1, meaning no special
up-weighting needed (we would include auxiliary roughly in proportion). We then normalize these weights to

get a probability distribution over clusters for auxiliary sampling: @, = Z}}"i’“ This importance sampling
Wy

=
scheme reshapes the auxiliary data distribution to closer match the eval distribution of clusters.

3.2.3 Practical Strategies for Bootstrapping E;

In our experiments, we use held-out evaluation sets (dev sets of Global-MMLU and MMLU-ProX) as proxies
for the live usage distribution F;. This approximation is pragmatic for research but raises practical questions
for real-world deployment, particularly in "cold-start" scenarios where a model is being adapted to a new
language without extensive prior user data.

For cold-start deployment, a practical approach is to collect a few hundred representative "seed" examples
through human curation. FE; must span the anticipated semantic space of user queries, as COMPASS’s
distribution-aware sampling requires diversity across semantic clusters rather than volume within clusters.
In the extreme case where no proxy is available, setting E; = D; (using the training data itself as the usage
proxy) provides a baseline. This reduces COMPASS to an approximately uniform-sampling regime in the
initial phase, as cluster weights become nearly equal when train and eval distributions are identical (pg ~ 1
for all clusters). While this eliminates distributional guidance initially, it does not harm performance relative
to target-only training and allows the COMPASS-ECDA extension to refine F; over time based on observed
usage. Alternatively, for languages within well-represented families and overlapping usage within defined
geographic locales, usage distributions from related languages can serve as initial proxies (e.g., Spanish for
Catalan within Spain), leveraging the multilingual embedding space’s cross-lingual semantic similarities to
borrow distributional knowledge from higher-resource relatives.

3.2.4 Instance-level Weighting & Sampling

Within each cluster C, not all examples are equally useful. Intuitively, examples very close to the cluster’s
centroid or densest region might be more representative of that cluster’s theme, whereas those on the fringe
might be less relevant or outliers. Thus, we score each candidate z € C}, from the auxiliary pool.

One simple choice is the inverse distance from the cluster centroid: s(z) = where py, is the

1
1+dist (f(2),px)
centroid of cluster &k in embedding space and dist( -, - ) uses cosine similarity with normalized embeddings.
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This s(x) gives higher weight to points near the center of the cluster. We would then probabilistically sample
examples from cluster k in proportion to s(z) until we fulfill that cluster’s quota. The cluster’s quota of
examples is determined by the cluster weight and overall budget B: we want g = (|W] + 7%) X B X |Dy|
examples from cluster k. 7 is a random variable that is 1 with probability wg — |@g |, 0 otherwise.

Based on work in |Sorscher et al.| (2023), computing instance weights using the distance of each instance’s
embedding to its cluster decision boundary serves as a proxy for example difficulty. Following their results,
it is advantageous to prioritize sampling of easier instances when there is little training data for the target
language cluster. As the fraction of sampled data increases, it becomes more informative to expand sampling
to more ambiguous instances further from the centroid, in the limit that instances near the decision boundary
are more likely to be irrelevant or misannotated.

Thus, within each cluster Cj, we employ an adaptive weighting scheme that dynamically adjusts sampling
preferences based on the cluster’s distribution mismatch. Our core insight is that when facing severe un-
derrepresentation (high py), we should prioritize prototypical examples that clearly represent the cluster’s
semantic content. As the mismatch decreases through sampling, we progressively favor more challenging
boundary cases to improve model robustness, while remaining conservative about boundary examples since
approximately 20% of examples closest to decision boundaries are expected to be hard-to-learn due to diffi-
culty or misannotations (Swayamdipta et al., [2020).

For each candidate z € C), from the auxiliary pool, we compute two complementary scores:

Prototypical score: spyo0(x) =
the cluster center.

m, where iy, is the cluster centroid. This favors examples near

Boundary score: Spoundary() = min{dist(f(z), u;) : j # k} — dist(f(z), nx), normalized to [0,1]. This
favors examples near decision boundaries.

The final instance weight interpolates between these scores based on the current sampling progress, with a
conservative skew towards prototypical examples:

s(2) = (1= 03) * Sproto(%) + O} * Shoundary (¥) (1)

sampled__count,
? target__quota,

where o = min (1 ) represents the fraction of the cluster’s quota already fulfilled. The

quadratic term o ensures that boundary examples receive reduced influence throughout the sampling pro-
cess, with prototypical examples maintaining dominance until the final stages of sampling. Initially (ay =~ 0),
we heavily favor prototypical examples. As sampling progresses («x — 1), we more cautiously incorporate
boundary cases, implementing a conservative curriculum from easy to hard examples.

Given the multilingual nature of our auxiliary data pool, containing parallel or near-parallel examples across
504+ languages, redundancy within clusters can be substantial. To ensure diverse sampling while maintaining
relevance to the target language, we penalize scores of instances in the same cluster that are above a similarity
threshold. We construct a similarity matrix Sim for all auxiliary examples within each cluster, where
each entry Sim;; quantifies the cosine similarity between a pair of embeddings. We establish a similarity
threshold 7, (empirically set to 0.90) and derive an adjacency matrix A where A;; = 1 if Sim; ; > Teim,
and 0 otherwise. This formulates an undirected graph where vertices represent auxiliary instances and edges
connect highly similar pairs. If an instance is sampled, we subtract a fixed penalty ¢ from the score s(z’) of
any remaining neighbors z’.

This process yields up to g examples from cluster k. In practice, some clusters might have fewer candidates
than gy, requiring further modifications to enforce ), |Sk| = B|D;|. We used a large pool of auxiliary data
sufficient to avoid this issue. To mitigate this issue in settings with insufficient auxiliary data, one strategy
would be to sample with replacement but institute a decay factor of 0.5" after an example has been sampled
n times, effectively limiting each instance to at most 3 selections.

3.2.5 Fine-Tuning with Augmented Data

The final selected training set for language ¢; is D; U S, where S = |J, Sy C Daux. By construction,
|S| ~ B|D;|. In our experiments, we set B in the range 0.2 to 2.0 (so the auxiliary data is at most double
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Algorithm 1 COMPASS: Distribution-Guided Auxiliary Data Sampling
Require: Target language data Dy, auxiliary data pool D,.x, usage proxy E;, budget B, embedding model

fC)
Ensure: Selected auxiliary set .S
// Step 1: Embed and Cluster
Embed all data: € «+ {f(z) : 2 € Dy U Doy U Ey }
Cluster embeddings into clusters: {C1,Cs,...,Ck} < HDBScan(&)

// Step 2: Compute Cluster Weights
for each cluster £ =1 to K do

nF « |[{x € Dy : 2 € Cy}| > Target data count in cluster k

nk 1 H{z e By x e Gyl > Usage proxy count in cluster &

eva.

Neval 3 k
0wy e {rbre e >0
0 otherwise

> Mismatch ratio

10: end for

11: Normalize: Wy < wy/ ZJK:1 w; > Cluster sampling probabilities
12:

13: // Step 3: Sample Auxiliary Data with Instance Weights

14: S+ 0

15: for each cluster £k =1 to K do

16: gr < (W] + 7x) X B x | Dy > Cluster quota (74 is Bernoulli)
17: sampled count; < 0

18: while sampled__count;, < g and |S| < B x |D| do

19: for each x € D,.x N Cy do

20: ay, + min(1,sampled__county,/qx) > Sampling progress
21: Sproto(z) <= 1/(1 + dist(f(x), pux)) > Prototypical score
22: Shoundary (%) — min, - dist(f(z), u;) — dist(f(x), pr) > Boundary score
23 s(z) (1= a2) - Sproto(T) + @3 * Sboundary ()

24: s(x) < s(x) =6 > cone, KISIm (2, o) > Tein] > Diversity penalty
25: end for

26: Sample x ~ Categorical({s(z)}) from Dayx N Ck

27 S« SU{z}; sampled__count,;, < sampled_ count,, + 1

28: end while

29: end for

30: return S

the target data size). This yields a small, efficient fine-tuning set compared to using the entire D,,x. We
always include all of D; (the target’s original data) to ensure no target-specific information is lost.

We fine-tune the base model on D; U S, instantiating a new adapter ¢; for the target language ¢;. During
training, © remains frozen, and only ¢;’s parameters are updated. After training, we have a specialized
adapter ¢; that encodes improvements for language /.

3.2.6 Muilti-language Routing

We repeat the above process for each target language of interest, obtaining adapters ¢, , ¢+,, ... for languages
by Ly, . ... At inference time, we load the base model Mya5.(0) and all the adapters. When an input comes
in, we detect its language using an inexpensive language ID model. Based on the detected language, we
attach the corresponding adapter to the model and process the input. Because these adapters are lightweight,
it’s feasible to store a large quantity of them. Switching adapters is also efficient as we’re swapping in a
small set of weight delta matrices. This design means each input is handled by a model that’s effectively
specialized for that language.

10
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3.3 Continual Adaptation Phase

Crucially, we extend COMPASS for continuous improvement. As language use and data distributions evolve
in real-world scenarios (e.g., emerging markets, shifting user bases or preferences, new language- or locale-
specific jargon, seasonality), we facilitate periodic updates to these adapters. Furthermore, offline proxies to
estimate "live usage distribution" may not reflect real-world usage patterns, leading to misaligned optimiza-
tion.

By comparing the distribution of incoming data, significant shifts can be detected, and COMPASS criteria
can be reapplied to select relevant new training examples (from the incoming stream or an updated pool) to
retrain or update the corresponding language-specific adapter when the clusters become stale. This allows
the system to adapt to new data patterns while the targeted nature of the update, guided by distributional
needs and localized to specific language adapters, might preserve performance on learned data patterns and
avoid interference.

Our enhancement of COMPASS with an Elastic Consolidation and Distributional Anchoring (ECDA) up-
date mechanism contributes not by inventing a new continual learning primitive, but through data-centric
integration of established techniques into a unified adaptation lifecycle, all governed by distributional signals.
First, the Jensen-Shannon divergence between cluster distributions serves as trigger for detecting significant
distribution shifts (Oh et al., |2025)). Second, when a shift is detected, our sampling algorithm is re-applied
to select the most relevant new data for the update. Third, our rehearsal buffer is not populated randomly
but with “distributional anchors” — prototypical examples from the centroids of stable, previously learned
clusters. This constitutes a principled form of rehearsal that is more targeted than random sampling (Isele
& Cosgun, 2018]).

3.3.1 Incremental Clustering

To enable meaningful distribution comparisons over time while accommodating evolving data patterns, we
implement a hierarchical clustering.

In the initial adaptation phase, experiments demonstrated that HDBSCAN and K-means provided the best
cluster quality. For continual adaptation, we leverage their incremental variants to maintain computational
efficiency while preserving cluster stability:

Incremental K-means We maintain cluster centroids from the previous iteration and update them using
mini-batch gradient descent on new data. The update rule for centroid p; at time ¢ is:

p Y = (1= ) + - mean(X}eY) (2)

where 7 is a learning rate controlling adaptation speed and X3V represents new points assigned to cluster

k.

Incremental HDBSCAN Following the transductive extension of HDBSCAN* we fix the condensed
tree structure from the initial training phase and assign new points to clusters based on where they would
fall in this fixed hierarchy. This preserves cluster identities while allowing membership updates. Specifically,
for each new point Xyew, we (1) compute its core distance relative to the existing point set, (2) determine
its position in the condensed tree without modifying the tree structure, and (3) assign it to the cluster
corresponding to its tree position.

3.3.2 Distribution Mismatch Trigger

To enable continuous adaptation, we detect when language-specific adapters require updates via distribu-

tional divergence. For each language adapter corresponding to target language ¢;, we maintain a reference

distribution Pr(fft) representing the cluster proportions from its most recent training cycle. Formally, if the

adapter was last trained using clusters {C1,Cs,...,Ck}, then:
1 aux,selected
P L Al s L
Preff (Ck) - K eval aux,selected (3)
Zj:l (nj +n; )

11
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where nzux’selecmd denotes the number of auxiliary examples selected from cluster k during the last training

cycle. We continuously compute a monitoring distribution Pr(ne&)l from recent incoming data Wiecent. For
each cluster Cl:

|{I S Wrecent : f(:l?) S Ck}‘

PY) (0, = 4
m n k) —
© ( ) |Wrecent‘ ( )
The Jensen-Shannon divergence between these distributions provides our primary shift detection signal:
1 )
IS(ELONPL) = 5 - KLELYIM) + 5 - KL(P) M) (5)

where M = (Pr(fft )+ P,&ﬁ;&) and KL(-||-) denotes the Kullback-Leibler divergence. An adapter update for
language /; is triggered when:

IS(PYY | P > 655 (6)

ref mon

where 65 is an empirically tuned threshold specific to each language.

3.3.3 Update: Incremental Fine-tuning with Distributional Guidance

Once the trigger condition is met, indicating a significant distribution shift for a target language l;, the
corresponding adapter ¢; is updated. A simple retraining on the new data could lead to catastrophic
forgetting of previously learned patterns. To balance adaptation to the new distribution with the preservation
of existing knowledge, we employ a hybrid strategy called Elastic Consolidation and Distributional Anchoring
(ECDA). This method combines parameter-space regularization with a targeted, distributionally-guided form
of rehearsal.

The update process involves incrementally fine-tuning the existing adapter ngt ) to produce an updated
version ¢t . The fine-tuning is performed on a new dataset D, which is selected from the recent data
window Wi .ecent using the COMPASS sampling criteria. To mitigate forgetting, the optimization is guided
by a composite loss function:

Liotal = Ltask(Dnew) + B - LDAR(Banchor) + LEwc (¢ o, gi_l))

This objective function consists of three key components:

1. Task Loss (Ltask): Cross-entropy loss on the new data D, driving adaptation to the new data
distribution.

2. Distributional Anchor Replay Loss (Lpar): This is the task loss computed on a small, fixed-
size memory buffer B,,cnor containing “distributional anchors” from the previous update cycle.
These anchors are prototypical examples selected from the centroids of high-density clusters of the
previous reference distribution. Targeted rehearsal provides stability by grounding the model in
previously learned knowledge (Rolnick et al.| [2019), with contribution of this loss weighted by a
hyperparameter 3.

3. Elastic Weight Consolidation Loss (Lgwc): Penalizes changes to the adapter parameters that
were important for the previous task distribution, providing parameter-level stability. It is adapted
from Elastic Weight Consolidation (EWC) (Kirkpatrick et al., [2017) and is defined as:

Lrwc = §ZFJ‘(9§')_9§ V)2
J

where §; is an individual parameter of the adapter ¢;, A is a regularization hyperparameter, and Fj
is the diagonal of the Fisher Information Matrix (FIM). FIM is computed using the examples in the
distributional anchor buffer B, chor, making the EWC component computationally tractable and
focused on protecting parameters crucial for the most representative past data (Zhang et al., 2025)).

Following each update, the anchor buffer B,,chor is repopulated with new prototypical examples from the
just-learned data distribution, preparing the system for the next cycle.

12
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4 Experiment Setup

4.1 Datasets

We use a variety of datasets for fine-tuning and evaluation, focusing on those that provide extensive multi-
lingual coverage. Appendix [B] describes the extent of language coverage, categorized across script, family,
subgrouping, and data resources, for each dataset.

o Aya Dataset (Singh et al., 2024): Our primary fine-tuning data source serving as the pool for
Daux. Aya is a large open multilingual instruction tuning dataset, consisting of 204K human-curated
instruction-response examples in 65 languages. It covers a wide range of tasks and domains, from
general knowledge Q&A to creative prompts. Aya was collected via an open annotation platform,
and it is currently one of the most comprehensive public datasets for aligning language models in
many languages. For each target language that we adapt to, we define D; as a subset of Aya (the
fine-tuning target data in that language). We set E; as the dev set of Global-MMLU or MMLU-
ProX questions in that language (for distribution analysis) and use the test sets of the evaluation
benchmarks (detailed below) for final scoring.

o Global MMLU (Singh et al., [2025): For primary evaluation of COMPASS, we use
Global-MMLU, which extends the Massive Multitask Language Understanding (MMLU) bench-
mark (Hendrycks et al., [2021)) to 42 languages. MMLU is a collection of multiple-choice questions
across b7 subjects (history, science, math, etc.) originally in English. Global-MMLU provides trans-
lations of these questions into many languages with the addition of culture-specific questions for each
language. We use the full Global-MMLU dataset, which consists of 792 culturally sensitive and 2,058
culturally agnostic instances per language (119,900 total instances) and a dev set of 285 instances
per language. This dataset is challenging as it tests knowledge and reasoning across domains. We
use it both as an evaluation benchmark and as a source to simulate distribution shifts (since it has
a dev and test split for each language, and content differences across languages).

o« MMLU-ProX (Xuan et al., 2025): MMLU-ProX offers another challenging evaluation dataset.
Expanding upon MMLU-Pro (Wang et al.|[2024)), which enhanced the original MMLU with increased
complexity and answer choices, MMLU-ProX covers 29 languages with approximately 11,829 ques-
tions per language. Similar to Global-MMLU, MMLU-ProX was validated by expert human annota-
tors for conceptual accuracy, terminological consistency, and cultural relevance. For MMLU-ProX,
we use each language’s available dev set and the test set of MMLU-ProX-Lite as a proxy for live
data to tune adapters on COMPASS-derived Aya training data, evaluating them on test samples
from the full MMLU-ProX data set (minus the test samples contained within MMLU-ProX-Lite).

o OneRuler (Kim et al.,2025): A multilingual benchmark designed to evaluate long-context under-
standing capabilities across 26 languages and context lengths of up to 128K tokens. OneRuler adapts
the English-only RULER benchmark framework, featuring seven synthetic needle-in-a-haystack
(NIAH) task variations: single NTAH, multi-key NTAH, multi-value NTAH, multi-query NIAH, nonex-
istent needle, and common word extraction (easy and hard versions).

e Other evaluation sets: We consider additional evaluations to probe specific aspects of our method-
ology in smaller capacities with limited language coverage. XNLI (Conneau et al., [2018)) is a cross-
lingual natural language inference dataset covering 15 languages, testing the model’s ability to under-
stand entailment, contradiction, and neutral relationships between sentences. XQuad (Artetxe et al.,
2020) is a QA dataset covering 11 languages, testing reading comprehension abilities. MGSM8k (Shi
et al.}|2022)) is a multilingual grade school math problem dataset covering 10 languages, testing math-
ematical reasoning capabilities. Respectively, we include each as tests of how well our adapted models
handle understanding semantics in multiple languages, improve on additional QA style interactions,
and whether the adapters have improved reasoning or just linguistic understanding. For evaluation
on these benchmarks, we use the COMPASS-derived adapters that used Global MMLU’s dev set as
a reference.
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4.2 Models

We evaluate our method on three pre-trained models to demonstrate its effectiveness and generality.

o Phi-4-Mini-Instruct-3.8B (Microsoft et al., |2025): a 3.8B parameter model that uses a
Mixture-of-LoRAs architecture for integrating modalities, but here we use its text-only version.
It has an expanded 200k vocabulary for multilingual support, but known regressions on non-English
tasks compared to the earlier Phi3 iteration, possibly due to less balanced training. We treat Phi-4-
mini as a primary subject for improvement, as it represents a smaller, more specialized model that
could benefit from targeted fine-tuning.

o LLaMA-3.1-Instruct-8B (Grattafiori et al., |2024): an 8B parameter model based on a dense
transformer model and known to have strong multilingual capability out-of-the-box on several high-
resource languages due to extensive pre-training.

e Qwen2.5-7B-Instruct (Qwen et al., |2025)): a 7B parameter model pre-trained on over 18T
tokens across 29 languages, including many low-resource languages in our evaluation set. Provides
insights into how COMPASS performs when the base model already has some exposure to target
languages versus completely unseen languages.

COMPASS requires specifying an embedding model to facilitate dataset sampling and a language identifica-
tion model to route inputs to the appropriate, language-specific adapter. We use Jina-Embeddings-v3-570M
(Jina) (Sturua et al. |2024)) to generate task-specific embeddings customized for semantic text similarity and
retrieval, supporting 100 languages (Appendix and context lengths of up to 8192 tokens. On semantic text
similarity tasks within the Massive Multilingual Text Embedding Benchmark (MMTEB; (Enevoldsen et al.,
2025)), Jina best captured semantic similarity across languages while being relatively robust to syntactic
and lexical differences, outperforming multilingual-e5-large-instruct (the best performing model in the initial
MMTEB release). For more details, we evaluate sensitivity to encoder choice and clustering parameters in
section 5.7.

In initial evaluations on COMPASS’ sensitive to the choice of encoder, we compared additional embedding
models (gte-multilingual-base-305M, distiluse-base-multilingual-cased-v2-135M, paraphrase-multilingual-
mpnet-base-v2-278M (Zhang et al.l [2024; |Reimers & Gurevych, |2019; [Yang et al} |2019))). Jina-Embeddings-
v3-570M provided the best cross-lingual alignment and language coverage (i.e., unsupported language sen-
tences might cluster oodly or be embedded erroneously near unrelated data points). Inference-time routing
uses GlotLID-v3 (Kargaran et al. |2023)) for language identification and loading of the correct adapter,
enabling a unified system for all languages. GlotLID supports more than 2000 languages, including all lan-
guages used in this study, and all evaluations of COMPASS use GlotLID for adapter loading. If the language
does not have a COMPASS-associated adapter, then it defaults to the pretrained model (if no fine-tuning
data is available) or to the target only adapter (if fine-tuning data is available but there is no dev set for
distribution matching).

4.3 Training Setup

We fine-tune DoRA adapters for each language in Global MMLU and MMLU-ProX, using all of the target
language’s data within Aya in conjunction with the COMPASS-sampled auxiliary data. To avoid data
leakage from the test set, distribution approximation is done to minimize distribution discrepancy between
the train and development data sets. DoRA hyperparameters were tuned on an aggregate subset of languages
representing different families and resource levels: Spanish, French, Russian, Arabic, Swahili, Vietnamese,
Bengali, Korean, Thai, and Yoruba. We target modules in the attention and feedforward layers with low-rank
decomposition matrices of rank r = 16 for Phi-4-mini and Qwen2.5-7B adapters, and r» = 8 for LLaMA-8B.
We use AdamW optimizer (8; = 0.9, B2 = 0.999), weight decay of 0.1, gradient clipping of 1, batch size
of 128, and with learning rate of 2e-4 for Phi-4-mini and le-4 for LLaMA-8B and Qwen2.5-7B, with a 0.1
warmup ratio and cosine scheduler in each setting. COMPASS with LoRA adapters achieved comparable
performance but using DoRA adapters resulted in more robust improvements across a broader range of
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hyperparameter combinations. We limit fine-tuning to 3 epochs with early stopping. After fine-tuning, we
have for each target language ¢; the adapter weights ¢;. We keep the base model weights © unchanged
(shared across all). During inference, we keep the base W separate and add AW on the fly when the adapter
is loaded.

We compare our approach to several baselines:

4.3.1

o Monolingual DoRA fine-tuning (Target): Fine-tune a DoRA adapter on D, alone (target language

data only). This represents the scenario of no cross-lingual transfer and avoids any possible inter-
ference. We expect our method to outperform this if cross-lingual transfer is beneficial, particularly
for smaller D;.

COMPASS full fine-tuning (COMPASS-FFT): Fine-tune the entire pretrained model on the
COMPASS-supplied datasets, leveraging the model’s full parameter space to improve at the task.
While this approach allows for maximum adaptation to the target language, it entails substantial
memory overhead to store a complete set of model parameters for each target language and increases
overfitting risk. Consistent with prior comparisons of learning rate sensitivity of LoRA-related meth-
ods to FFT (Biderman et al., [2024)), we identified optimal FFT performance with reduced learning
rates of 5e-5 for Phi-4-mini, le-5 for LLaMA-8B, and 2e-5 for Qwen2.5-7B, along with a reduced
warm-up ratio of 0.05 and a batch size of 16 across all models.

All-data multilingual fine-tuning (All): Fine-tune a DoRA adapter on the entire multilingual dataset
(Aya) for that task, i.e., combine all languages’ data. This is an extreme opposite of monolingual:
maximum exposure to other languages (and also much larger training set). This tests the effect of
indiscriminate multilingual training. In past research, this often hurts performance on individual
languages especially if the model capacity is limited, due to noise from unrelated languages. But
it could provide an upper bound in some cases if more data is always helpful. We apply DoRA
fine-tuning on the concatenation of D, plus all other languages in Aya. Note that this baseline
effectively trains a single adapter for all languages.

Random sampling (Random): Fine-tune on D; plus an equal amount of randomly sampled auxiliary
data (from D,,x). If our method selects 2000 auxiliary examples, then this baseline also uses 2000
auxiliary examples but chosen uniformly at random from the pool of other-language examples. This
isolates the effect of targeted selection vs. just adding more data.

LangRank-guided selection (LangRank) (Lin et al2019): Requires training a ranking model, depen-
dent on the tasks and datasets used for training, to exhaustively evaluate transfer potential across
many different languages, and recommends transfer languages from best to worst. For example,
picking the single best auxiliary language (K = 1) and using all its data in addition to the target
language’s data might equate to "just use Spanish data for Catalan'. We evaluate for values of K
from 1 to 3, inclusive, beyond which LangRank performance saturates.

Linguistic similarity-guided selection (LangSim) (Eronen et al., 2023)): Uses linguistic similar-
ity metrics to measure the distance between languages and choose optimal transfer language(s).
eLinguistics-derived similarity (Beaufils & Tomin) 2020 was reported to result in the highest cor-
relation with zero-shot performance on sentiment analysis, named-entity recognition, and depen-
dency parsing tasks, but calculates a genetic proximity score based on comparing consonants, which
fails in cross-script comparisons. Instead, we use an averaged vectors from lang2vec (Littell et al.,
2017), which represents languages as typological, phylogenetic, and geographical vectors derived
from multiple linguistic resources such as the World Atlas of Language Structures (WALS) (Dryer
& Haspelmath, 2013) and Ethnologue (Eberhard et al., [2025)).

Bias Simulation

In public data sets, the train data distribution often matches the test data distribution. To simulate distribu-
tion discrepancies when exposing a model to live data from real users, we simulate a subject-based sampling
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bias. Global MMLU and MMLU-ProX include a categorization into 57 subjects and 14 subjects, respectively.
We assign each subject to a low-sampling bucket with 20% probability. Subjects in the low-sampling bucket
are reduced to 20% of their original training data size by randomly removing 50% of instances belong to
the subject. Subjects not assigned to the low-sampling bucket have their training data unmodified. Bias
simulation is applied separately for each language, creating different training set distributions.

To replicate the real-life scenario where the training set is composed of different data sources with different
amounts of noise, we add out-of-distribution data to the Aya Data training set. We leverage the Aya
Collection, a large corpus of templated and machine-translated multilingual datasets into 101 languages,
and add their MLQA-en dataset (validation split), which was machine-translated using NLLB-3.3B (Team
et al., 2022). MLQA-en was chosen from the Aya Collection because it was the only supplemental dataset
that (1) covered all languages used in our evaluations and (2) had a high average approval ratio of 0.79 as
voted on by at least 20 human annotators (e.g., average approval ratio of 0.8 would indicates that 4 out of
every 5 annotations was perceived to be of good quality).

5 Results

5.1 COMPASS best balances cross-lingual transfer benefits and risks for all languages

COMPASS provides the most effective balance for multilingual adaptation, maximizing benefits of cross-
lingual transfer while minimizing risks of negative interference or the high costs associated with full model
fine-tuning. Table [I] shows that COMPASS effectively leverages auxiliary data selected via distribution ap-
proximation, yielding substantial gains over baseline (ZS) performance for all languages and models and
outperforming monolingual tuning (Target), particularly for lower-resource languages where targeted cross-
lingual transfer provides the most significant benefit by augmenting limited target-language data. Further-
more, COMPASS surpasses random auxiliary data sampling (Random), demonstrating the advantage of
strategic data selection over simply increasing training data volume.

Optimizing the auxiliary data distribution to match the target task distribution, as COMPASS aims to do,
may offer a more refined approach to maximizing positive transfer than relying solely on general linguis-
tic relatedness or past transfer performance rankings. While established cross-lingual transfer strategies like
LangRank and LangSim show improvements over monolingual and random baselines, COMPASS scores con-
sistently higher. Crucially, COMPASS avoids performance degradation observed with all-data multilingual
baseline (All), where indiscriminate mixing of all language data introduces substantial negative interference,
resulting in performance regressions across all tasks and models.

Phi-4-Mini-Instruct-3.8B Llama-3.1-Instruct-8B Qwen2.5-7B-Instruct
Global MMLU ~ MMLU-ProX Global MMLU MMLU-ProX Global MMLU MMLU-ProX
Pretrained (ZS) 43.5" 21.7° 49.1°7 22.8" 52.9 37.5"
COMPASS 52.4 28.7 55.2 26.9 59.6 43.6
Target 44.7 23.8" 50.8" 23.2" 54.6" 38.7"
COMPASS-FFT 49.9" 27.7 55.5 26.1 58.1 42.5
All 38.8" 185" 43.8" 19.6 48.0" 33.7"
Random 44.97 22.9 50.6" 23.7° 55.1" 38.4"
LangRank 47.3" 24.5" 51.8 24.4 56.7" 39.4"
LangSim 47.3" 24.2" 51.0" 24.0" 56.17 39.0"

Table 1: Global MMLU and MMLU-ProX benchmark scores in comparison with Phi, Llama, and Qwen
models across COMPASS and related methods. Superscripts denote statistical significance of COMPASS
vs. each baseline via permutation tests (10,000 iterations): % p<0.05.

Consistent performance gains across different base models suggest that the benefits of COMPASS approach
are robust and not specific to a single architecture. Phi4-Mini improved the most, signaling that COMPASS
recovers regressed multilingual performance that was previously reported on the related Multilingual-MMLU
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task as a regression from 55.4% (Phi3.5-Mini) to 49.3% (Phi4-Mini). Despite the increased difficulty, COM-
PASS also maintained its relative effectiveness on MMLU-ProX. Permutation tests confirm all COMPASS
improvements over Target baseline achieve p<0.05 across models and benchmarks, with medium-to-large ef-
fect sizes (Cohen’s d = 0.72-0.85 for Global-MMLU, d = 0.61-0.79 for MMLU-ProX). Importantly, COMPASS
significantly outperforms linguistically-informed baselines (p<0.05 vs. LangRank/LangSim with medium ef-
fect sizes d = 0.52-0.64), confirming that distribution-aware selection provides benefits beyond linguistic
similarity alone. Sign tests confirm that COMPASS improvements are broadly distributed across languages
rather than concentrated in a few outliers (binomial test p<0.05 for COMPASS compared to all baselines
except COMPASS-FFT).

Han- ® o® b +14.8% e Al @® Target LangSim COMPASS-FFT
Lati ° o ° +16.2% ® S ® Random LangRank ® COMPASS-PEFT
atin- 2%

Cyrillic- o oo ° +18.4% Italic- e eon-e +128%
Germanic- e e o +11.0%
Arabic- ¢ oo ° +19.8% Sino-Tibetan- e oow o +14.8%
Japanese- o 0w ceo +6.5% Balto-Slavic- e oo L +17.5%
Austronesian- [ ] [ ] L] +16.9%

2  Hangul ® oD we +8.3% Austroasiatic- o sco +7.2%
% Devanagari- o ow ° +21.5% ) Iranian: & omonve +20.2%

S Japonic o e (e +6.5%
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Figure 2: Performance of Phi4-Mini with COMPASS on Global MMLU, segmented by script categorization
(left) and by genus categorization (right). Indo-European language family was further split into subgroupings.

COMPASS nets greatest performance gains across each script and genus represented in Global MMLU,
and cross-lingual transfer was most beneficial to languages with less data (e.g., Swahili, Yoruba) where the
benefit of auxiliary data is higher. Figure [2| breaks Global MMLU performance down across language script
and genus categorizations. Regardless of their resource categorization, languages with no related language
by script nor language family (Greek, Japanese, Korean, Vietnamese) had marginal performance gains,
driven by COMPASS’ cluster-level weights facilitating targeted data enrichment. Compared to COMPASS-
FFT, COMPASS achieves comparable performance across most languages. While COMPASS-FFT elevates
performance for the highest-resource languages, COMPASS remains competitive with greater parameter
efficiency, reducing storage requirements and mitigating overfitting risks on mid- and low-resource languages,
especially for afroasiatic and atlantic-congo families (see Appendix [C| for per-language performance).

5.2 Impact of Auxiliary Data Budget on Performance

To understand the relationship between the amount of auxiliary data and model performance, we investi-
gate the effect of the budget B (ratio of auxiliary data to target language data). Figure [3| plots relative
improvement on Global MMLU for Phi4-mini using COMPASS, compared to a baseline fine-tuned only on
target language data. This analysis covers auxiliary budgets B ranging from 20% up to 200% (i.e., 2x) of
the target language data size.

The optimal amount of auxiliary data varies across languages, yet performance gains can be achieved with
a moderate auxiliary data budget, supporting the notion that COMPASS can reduce data overhead. This
result aligns with prior analyses in multilingual instruction fine-tuning that diversifying data mixtures with
multilinguality can increase data efficiency, with up to 10x fewer examples, while exhibiting comparable or
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superior performance Shaham et al. (2024]). For the 42 languages analyzed, the median optimal budget across
languages is B = 80% (19 languages) and languages that peak at B = 100% (10 languages) or B = 60% (5
languages) show substantial gains when B = 80%. Only 3 languages achieved peak performance at B > 100%
(Spanish, Portuguese, Telugu). Instead of requiring vast amounts of auxiliary data, COMPASS utilizes a
modest amount of strategically sampled data to enhance model performance, with many languages achieving
peak performance without auxiliary data volumes that exceed their own target data size (B < 100%).

The variability in optimal B may be attributed to several factors. Languages with a richer pool of high-affinity
languages within the available auxiliary data might benefit from or tolerate larger budgets as COMPASS has
more relevant examples to draw from. Conversely, for languages where the base model (Phi-4-mini) already
possesses stronger initial capabilities due to its pre-training, or where high-quality, highly similar auxiliary
data is less abundant, performance gains might saturate more quickly or decline with increasing B. For
instance, languages like Greek (el), English (en), Japanese (ja), and Korean (ko) show peak performance
at relatively low B values (20-40%) and exhibit diminishing returns or performance degradation beyond
B =100%. Japanese, for example, peaks at B = 20% (+4.92%) and shows a negative relative improvement
of -13.44% at B = 200%.

Auxiliary budget sensitivity pronounced for language isolates and languages with unique scripts, provid-
ing insight into why these languages show marginal improvements with COMPASS. These languages, e.g.,
Japanese (only Japonic language) and Korean (only Koreanic language), lack closely related family members
in our auxiliary data pool. This isolation manifests empirically in auxiliary budget saturation at lower thresh-
olds than the median optimal budget of B = 80% observed across all languages. Beyond these thresholds,
performance degrades sharply, where Japanese’s -13.44% regression at B = 200% exemplifies how additional
auxiliary data may become harmful. In contrast, well-represented families, such as Romance, Germanic, and
Indo-Aryan languages, sustain performance gains across broader budget ranges, suggesting that syntactic
and morphological similarities within language families enable more effective cross-lingual transfer.

While COMPASS’s semantic clustering identifies topically relevant auxiliary examples for language isolates,
which explains observed positive gains, we posit that syntactically incompatible examples contribute to
diminishing or negative returns. At low budgets (B = 20 —40%), COMPASS samples the most semantically
aligned examples, yielding meaningful improvements. At higher budgets, COMPASS exhausts high-quality
semantic matches and begins sampling examples that, despite semantic relevance, introduce syntactic noise
or conflicting structural patterns that interfere with target language learning. As a diagnostic tool, sharp
performance degradation beyond low budgets signals insufficient linguistic affinity in the auxiliary pool.

For remaining experiments, we adopted a uniform budget of B = 80%, which was near-optimal and outper-
formed monolingual fine-tuning across all languages. However, as indiscriminate addition of auxiliary data
can be counterproductive, production settings would benefit from budget tuning for each target language
to maximize potential gains. In evaluations for B values of 400%, 600%, 800%, and 1000%, performance
drop-offs were steep. As the volume of auxiliary data overshadowed the target language data, the adapters
optimized more for the characteristics of auxiliary language content, leading to eventual regression for each
target language. These diminishing returns are expected — as COMPASS samples more auxiliary data,
distribution mismatch lessens and gains from language cross-pollination will plateau.

5.3 COMPASS detects & leverages language synergies

Multilingual training has the potential to enhance target language performance by transferring beneficial
information from source languages. However, languages possess diverse properties, and their incorporation
can be either advantageous or detrimental. Limiting variety and quantity of source languages mitigates the
risk of negative cross-lingual transfer, but restricts potential for performance improvement.

COMPASS dynamically detects and leverages language synergies to sample data from the source language
pool, converging towards a distribution that enables optimal cross-lingual transfer for a given target language.
COMPASS achieves this without relying on any prior knowledge of known language synergies; all source
language data is available upfront. Figure [4] visualizes the distribution of source language data sampled for
each target language. Languages from the same family are selected more frequently, e.g., Italic, Germanic,
and Indo-Aryan languages show strong intra-family influence, suggesting that COMPASS exploits linguistic
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Figure 3: Global MMLU performance of Phi4-Mini with COMPASS, across a range of auxiliary budgets from
20% to 200% (i.e., 2x the size of target language fine-tuning data), relative to performance when fine-tuning
on just the target language data.

relationships. Notable exceptions, which draw significant contributions from other groups, include languages

within the Iranian, Sino-Tibetan, and Balto-Slavic families.

The Isolate family functions as a negative

control, where the observed lack of affinity is expected as none of these languages have a close linguistic
relation to any other language.
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Several source languages contribute to a large number of target languages without a clear family-based
pattern. These "indiscriminately sampled" languages include Malagasy, Malay, Tamil, Telugu, and Sinhala.
For instance, Malagasy (mg) is sampled across a wide range of target languages, including those from
Afro-Asiatic, Niger-Congo, and Austronesian families—language families with no demonstrable typological
relationship to Malagasy. While Jina3 supports these languages, their reported primary tuning efforts focused
on a set of 30 other languages that does not include any of the indiscriminately sampled languages. The
observed affect on the sampling process might be an artifact of less refined or lower-quality embeddings,
entailing less precise cross-lingual similarity assessments and spurious measures of linguistic similarity.
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Figure 4: Heatmap of language contribution from each source language (x-axis) to each target language
(y-axis). Indo-european languages were divided into further subgroupings. Isolates in this context refers
to languages that are not demonstrably related to any other language in this study. The source language
distribution reflects the optimum budget for the plurality of target languages.

5.4 COMPASS improves performance on multilingual long context tasks

We investigate whether guided fine-tuning with COMPASS and the Aya dataset (comprising short sequence
lengths under 1K tokens) improves cross-lingual semantic alignment within the models. We hypothesize that
this improved alignment will, in turn, enable the models’ pre-existing long-context architectural mechanisms,
which were predominantly trained on high-resource data, to be more effectively transferred and applied to
low-resource languages during inference.
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Our hypothesis is motivated by two lines of reasoning. First, multilingual models operate by learning shared
representations across languages; they map words and concepts with similar meanings to nearby points in
a shared vector space (Zhong et al., 2024]). As we observed on other tasks, COMPASS strengthens these
shared representations. Second, recent research in multilingual NMT has demonstrated that "a small amount
of long-context data in a few languages is sufficient for cross-lingual length generalization, thereby inducing
long-context capabilities" (Gumma et al.l |2025). This suggests that the ability to handle long contexts, once
learned and encoded into the model’s architecture (e.g., through adoption of relative positional embeddings),
can be transferred across languages. While the Aya dataset itself lacks long-context data, it provides sufficient
multilingual signal that may be a prerequisite for this transfer to occur. The fine-tuning process acts as a
form of continued pre-training focused on multilingual instruction following, which should solidify the cross-
lingual alignments necessary for the model to apply its HRL-trained long-context machinery within LRL
contexts.

HRL Performance. For HRLs (English, French, German, Spanish, Italian, Russian, Japanese), we observe
a mix of marginal improvement or regressions, with more pronounced regressions as context length increases.
These languages are already well-represented in each models’ extensive pre-training corpora, which include
vast amounts of long-context data (e.g., books, code repositories). Fine-tuning on the short-context Aya data
is unlikely to introduce any new long-range reasoning capabilities while risking disruption of the carefully
calibrated weights that govern long-context performance, leading to degradation. This is the exact problem
that advanced techniques like LongRoPE2’s mixed short/long training are designed to prevent (Shang et al.,
2025)), offering a future mitigation strategy. These slight variations in baseline performance confirm that
COMPASS fine-tuning neither significantly helps nor harms these already well-optimized languages, with
limited parameter modifications via DoRA contributing to observed high-resource stability. A small subset
of HRLs (Hindi, Polish, Portuguese, Dutch, Serbian) show more substantial improvements at 8K and 32K
context lengths before tapering off at longer context lengths.

LRL and MRL Performance. For LRLs and MRLs, the relative change in performance is tied to how well
the target language is initially supported by the base model, with gains being largest at shorter long-context
splits (8K and 32K) before consistently degrading at lengths of 64K and 128K. The baseline performance of
the models in these languages on OneRuler is significantly lower than in HRLs, creating substantial room for
improvement. Once the model can "think" more effectively in Swahili, it can apply its existing, but previously
dormant long-context architectural machinery to a Swahili problem. Qwen2.5-7B (Vietnamese, Korean,
Chinese, Swahili, Persian) and Phi4-Mini (Norwegian, Danish, Finnish, Czech, Ukrainian, Swedish, Chinese)
utilize COMPASS fine-tuning to incur performance improvements on substantially more languages than
Llama3.1-8B, possibly due to limitations in tokenization strategy or architectural bottlenecks. Hungarian
and Tamil, for which only synthetic fine-tuning data is available with no explicit support across any of the
base models, were the only languages with no improvement across any setting.

Cross-Model Analysis. While all models support a 128K token context length, they employ different
mechanisms for length extrapolation that empirically affect fine-tuning plasticity across context lengths.
Qwen2.5-7B provides the most robust bridge between short-context fine-tuning extrapolated to long-context
evaluation, whereas positive long-context transfer for Llama3.1-8B was non-existent in most OneRuler set-
tings. Despite its small size, Phi4-Mini’s large multilingual vocabulary mitigates LRL tokenization issues
that could plague other models. Furthermore, its usage of fractional RoPE, which leaves some attention
dimensions position-agnostic, could be a built-in defense against overfitting to the positional information in
the short-context training data. Despite architectural variations, the context decay pattern remains consis-
tent: any per-language improvements diminish as context length increases, becoming negligible or negative
at 128K tokens.

5.5 COMPASS-ECDA enables effective continual adaptation

We evaluate how different strategies perform when adapting COMPASS-trained multilingual adapters to
distribution shifts. Importantly, all dynamic methods leverage COMPASS’s distribution-guided selection
from the Aya dataset, differing only in their approach to the stability-plasticity dilemma, isolating the
adaptation mechanisms from the underlying data selection strategy.
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Figure 5: Relative change in performance between the baseline model with and without COMPASS on
OneRuler, across language and context settings. To remain consistent with OneRuler’s experimental settings,
we ensure that the total number of tokens shown to each model is identical, even if some models see more
text than others. Regardless, for a given model, its baseline and COMPASS augmented forms see the same
amount of text.

5.5.1 Single-Step Domain Adaptation

To investigate the inherent tension between learning new patterns and preserving existing knowledge, we
simulate a distribution shift scenario in multilingual deployment. We train COMPASS adapters for each
target language using a restricted subset of Global MMLU subjects. Specifically, we use only 27 of the 57
available subjects, deliberately excluding 30 subjects that will later appear in the distribution shift. The
initial training follows standard COMPASS methodology: for each language ¢;, we use the Global MMLU dev
set from the 27 included subjects to guide selection of training data from the training data pool, creating
language-specific adapters. This represents the scenario where models are initially trained on available
domain-specific data.

After initial training, we simulate a distribution shift by introducing MMLU-ProX data. Critically, we focus
on MMLU-ProX questions from the 30 subjects that were excluded from initial training. This ensures a
genuine shift encompassing new subject areas the model has not encountered.

All baseline methods begin from the same COMPASS-trained adapters and must adapt to the new distri-
bution. They differ in how they select new training data from Aya and whether they employ regularization
strategies. Static deployment provides a lower bound by using the original COMPASS adapter without any
updates. Naive fine-tuning applies COMPASS selection using only the MMLU-ProX set for distribution
guidance, ignoring the original Global MMLU distribution and representing aggressive adaptation without
preservation mechanisms. Full retraining applies COMPASS selection using the combined sets from both dis-
tributions, treating them equally to find Aya samples matching the joint distribution. EWC uses COMPASS
selection guided by MMLU-ProX but adds elastic weight consolidation, computing Fisher information on
the original Global MMLU training data to identify and protect important parameters. Random rehearsal
also uses COMPASS selection guided by MMLU-ProX, supplemented with 5% of the original training data
randomly sampled and mixed with the new data.

COMPASS-ECDA employs COMPASS selection guided by MMLU-ProX, enhanced with the synergistic
mechanisms defined in our ECDA methodology. We apply COMPASS-ECDA with a replay buffer of 5%
based on preliminary experiments reported in [D} Each method trains for 5 epochs on its selected data, with
the total data budget kept constant across methods through proportional scaling.

COMPASS-ECDA achieves Pareto-optimal performance across all strategies through its integrated approach.
Figure [6] presents the learning-forgetting trade-off when adapting from a subset of Global MMLU subjects
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Figure 6: Learning-forgetting trade-off across strategies. COMPASS-ECDA (dark blue) achieves Pareto-
optimal performance by combining distributional anchors with elastic regularization. Points represent per-
formance after 5 epochs of adaptation. The x-axis shows retention on original Global MMLU subjects, while
the y-axis shows adaptation to new MMLU-ProX domains.

to previously unseen MMLU-ProX domains. Since all non-static methods use COMPASS selection, the
performance differences reflect the effectiveness of their adaptation strategies.

Even with strategic data selection, adapting to new distributions requires explicit mechanisms to preserve
prior knowledge. Despite using COMPASS to select optimal training data for MMLU-ProX, naive fine-
tuning drops substantially on Global MMLU. Full retraining achieves moderate performance but at greater
computational cost and assuming access to all data from the initial adaptation stage, which may not be
available in practice. By itself, EWC reduces forgetting but remains suboptimal in performance, while
random rehearsal’s naive preservation of old data fails to preserve core training samples.

The relative advantage of COMPASS-ECDA is most pronounced on the smaller Phi4-Mini model.
COMPASS-ECDA achieves the highest adaptation rate while minimizing forgetting below a 5% perfor-
mance regression on Global MMLU. When model capacity is limited, the quality of preserved examples
via distributional anchors becomes crucial. The adaptive instance weighting within the new COMPASS
selection adapts sampling strategy based on cluster coverage, initially favoring prototypical examples and
progressively incorporating boundary cases to ensure stable learning of new domains.

5.5.2 Multi-Step Continual Learning

COMPASS-ECDA navigates multiple distribution shifts while maintaining knowledge accumulated across
temporal periods. Real-world deployment involves sequential distribution shifts as user needs evolve over
time. To evaluate COMPASS-ECDA’s ability to handle multiple temporal shifts, we simulate a deployment
trajectory spanning five distinct periods with evolving subject distributions.

We partition the 57 MMLU subjects into temporal phases representing usage evolution (detailed subject
allocation in Appendix @ Period T1 establishes initial deployment with 27 foundational subjects, followed
by shifts towards 10 advanced STEM domains (T2), 10 humanities and ethics subjects (T3), 10 professional
domains (T4), and, finally, a return to 10 subjects from the original T1 subject distribution, simulating
cyclical usage while testing retention of intervening knowledge from T2-T4.

Each period consists of approximately 2K samples per language and each transition is applied, and assessed,
over 4 increments of 500 samples each. At each transition, the JS divergence trigger detects the distribution
shift and initiates adapter updates (see Appendix @ for optimal trigger threshold setting). Performance is
tracked throughout the adaptation process, measuring ability to adapt to new tasks and retention of previous
knowledge.
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Figure [7] presents performance trajectories across the five periods for Qwen2.5-7B-Instruct. COMPASS-
ECDA maintains robust performance throughout the temporal sequence, maintaining greater accuracy on
MMLU-ProX than all methods aside from naive fine-tuning while preserving Global MMLU performance. In
contrast, naive fine-tuning adapts well to each new distribution but exhibits catastrophic forgetting on Global
MMLU. EWC and random rehearsal provide intermediate solutions, achieving moderate forgetting but
with weaker adaptation to new distributions than COMPASS-ECDA. Full retraining achieves the strongest
performance by leveraging all accumulated data at each period, but at multiples of computational cost.

Qwen2.5-7B-Instruct: Temporal Performance on New Tasks
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Figure 7: Temporal performance evolution for Qwen2.5-7B-Instruct. Note that time step 0 includes the
initial 500 samples from the time period transition of T1 to T2 (i.e., the increments are 0-indexed on the
X-axis.

The cyclical return in T5 provides insights into knowledge retention. COMPASS-ECDA recovers T1 perfor-
mance while maintaining T2-T4 knowledge, demonstrating that distributional anchors successfully preserve
knowledge across non-adjacent periods. Naive fine-tuning recovers T1 performance but has largely forgotten
T2-T4 subjects, regressing below its initial performance state relative to T1.

When considering performance across all temporal transitions, COMPASS-ECDA achieves a superior bal-
ance of forward and backward transfer. Against naive fine-tuning, COMPASS-ECDA achieves comparable
forward transfer while significantly reducing backward transfer per transition. Full retraining, despite access
to all historical data and comparable forward and backward transfer, underperforms on computational ef-
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ficiency (see Appendix . EWC and random rehearsal fail to match COMPASS-ECDA’s adaptation rates
per transition.

Model capacity influences continual learning dynamics in our experimental setting. The smaller Phi-4-Mini
model benefits most from COMPASS-ECDA'’s targeted preservation strategy, attributable to insufficient ca-
pacity to store essential information via DoRA, as it suffers from the largest regressions in backward transfer
when using methods such as naive fine-tuning. LLaMA-3.1 demonstrates similar patterns with enhanced sta-
bility, while Qwen2.5’s stronger multilingual pretraining amplifies COMPASS-ECDA’s effectiveness, yielding
the highest absolute performance across all periods.

The consistent pattern across architectures, aggregated over multiple target languages and averaged over 3
random seeds, validates the generalizability of COMPASS-ECDA’s approach. Complete temporal trajectories
and statistical comparisons for all models are provided in Appendix

5.6 COMPASS adaptation results in generalized multilingual benefits

The benefits of COMPASS generalize across other evaluation tasks, even without distribution matching (i.e.,
when cluster-level weights in COMPASS are not a dominant factor). The magnitude of improvement is most
pronounced for languages that were initially poorly performing (MGSM) and on tasks that are similar to
the fine-tuning objective (XQuAD)
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Figure 8: Model performance (Phi4-mini, LLaMA3.1, and Qwen2.5) across COMPASS, baselines, and com-
peting approaches on three diverse multilingual evaluation tasks: MGSM, XNLI, and XQuAD. Our focus is
on how performance shifts across different adaptation approaches for each model. The white dot and white
line of each violin plot represent the mean and median performance, respectively.
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XQuAD. XQuAD exhibits the most substantial performance gains among the evaluated benchmarks, un-
derscoring COMPASS’s effectiveness in adapting models for tasks that align closely with the instruction-
following format of the Aya fine-tuning data. The magnitude of improvement correlates strongly with the
baseline performance gap between languages. For Qwen2.5-7B, languages with weaker initial performance yet
some exposure in the model’s pre-training data, such as Arabic, Thai, and Vietnamese, showed exceptional
gains with COMPASS, while high-resource languages like English and Chinese demonstrated more moderate
but still substantial improvements. COMPASS consistently outperforms full fine-tuning on XQuAD across
all models, suggesting that the targeted cross-lingual transfer approach is particularly effective for question-
answering tasks where relevant knowledge may be distributed across languages. The LangRank and LangSim
baselines achieve only 60-70% of COMPASS’s gains, confirming that distribution-aware selection provides
superior transfer compared to linguistic similarity alone.

XNLI. On XNLI, COMPASS demonstrates consistent improvements across all three model architectures,
with the most salient improvements for languages with limited representation in the pre-training data. Bul-
garian, which only had synthetic training data available, was the only language that exhibited a performance
drop in the target-only setting, highlighting the challenges of fine-tuning only on data with questionable
machine-translation quality. COMPASS mitigates this issue by leveraging high-quality cross-lingual data,
maintaining performance even when target language data quality is questionable.

MGSM. MGSM results reveal differentiated patterns based on initial model capabilities and language
resources. For high-performing languages, COMPASS provides modest improvements across all models.
However, for languages with weak baseline performance, the gains are more variable. Performance on
MGSM highlights an important characteristic of COMPASS: its effectiveness scales with the availability of
relevant cross-lingual knowledge. Mathematical reasoning, being more language-agnostic than other tasks,
benefits from cross-lingual transfer when the target language lacks sufficient training examples, but shows
diminishing returns for well-resourced languages where the base model already performs adequately.

Cross-Model Analysis. Comparing across the three model architectures reveals consistent patterns. Phi4-
Mini has high relative improvements particularly on low-resource languages, suggesting that smaller models
benefit more from targeted cross-lingual transfer. The model’s initial multilingual regression (noted in
the Phi4 technical report) is mitigated by COMPASS. Llama3.1-8B demonstrates balanced improvements
across all tasks, with less variance between high- and low-resource languages. Qwen2.5-7B, despite extensive
multilingual pre-training, shows substantial uplift across the lower performing languages with COMPASS,
particularly for XQuAD. Even models with significant multilingual exposure benefit from distribution-aware
fine-tuning, especially when adapting to specific task formats.

5.7 Ablations

Embedding Model. COMPASS relies on the embedding model’s semantic representation capabilities,
and a combination of lower quality embeddings and lack of language coverage in the embedding model
deteriorates COMPASS’ data selection quality and downstream performance. GTE Multilingual Base is
competitive with Jina3, with a discrepancy in average performance of 2.8% and 1.2%, respectively, on Global
MMLU and MMLU-ProX that is in-line with its worse performance on MMTEB. The greater regression of
GTE Multilingual Base on Global MMLU may be driven by its lack of coverage for low-resource languages
such as Amharic (ge’ez script) and Hausa (latin script).

Cluster- and sample-level weights assume distance in the embedding space reflects semantic text similarity.
We posit that there is an inflection point where differences in embedding quality lead to a degradation in
cluster- and sample-level weight computation and a subsequent degradation in performance on par with
having neither cluster or sample level weights. To stress test COMPASS, we evaluate two more settings
for embedding generation, Paraphrase Mpnet and Distiluse Base, representing greater discrepancy in both
language coverage (lacking explicit coverage of one-third of Global MMLU languages and of Bengali, Swahili,
and Chinese in MMLU-ProX) and with > 10% performance discrepancy on STS tasks in MMTEB relative
to Jina3. Both result in performance reductions that mitigate the benefit of having fine-tuned on the target
language and, in the case of Distiluse Base, worsen performance relative to the pretrained model, which
is worse than the random sampling baseline. Standard deviations also increase by 3-4% due to associated
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regressions where both embedding models lack coverage. These regressions are worse than the random
sampling baseline, and indicate that poor embedding quality results in a net negative.

COMPASS-D vs. COMPASS-S. Both the deterministic (COMPASS-D) and stochastic (COMPASS-
S) algorithms improve over the baseline for all languages. While COMPASS-S outperforms COMPASS-D,
indicating value in training data diversity, COMPASS-D is effective without extra sampling overhead.

Global MMLU MMLU ProX
Component Varied Setting Mean SD Mean SD
Baseline Model

Phi4-Mini (3.8B) 435" 9.0 27.8" 10.9
COMPASS (Optimal) 52.4 84 334 10.6
Components: DoRA, Jina3, HDBScan, COMPASS-S
Ablation: PEFT Method

LoRA (r=16) 51.2  10.2 32.5 12.1
Ablation: Embedding Model

GTE Multilingual Base 496" 9.2 32.2 10.4

Distiluse Base 4117 125 2747 136

Paraphrase Mpnet 43.9™ 116 28.8"  13.1
Ablation: Clustering Method

KMeans 4717 10.8 2007 127

Agglomerative (Ward) 50.7° 8.9 3.7 113

Taylor-Butina 40.6™" 124 221" 135
Ablation: Sampling Strategy

COMPASS-D 51.0° 9.4 32.1 10.6
Ablation: Sampling Importance Weights

w/o sample-level w. 48.7" 8.8 313" 110

w/o cluster-level w. 473" 94 20.9"  11.6

Table 2: Performance of COMPASS and variants on Global MMLU and MMLU-ProX. Scores are reported
as the mean accuracy (%) across all languages. Standard deviation (SD) reflects variability of performance
across languages, indicating cross-lingual consistency. Superscripts denote statistical significance vs. COM-
PASS (Optimal) via permutation tests: * p<0.05, #* p<0.01, * * * p<0.001. All results are from single-seed
runs.

Sampling Weights. Cluster- and sample-level weights are both important to COMPASS, with the former
contributing most to performance. To ablate sample-level weights, we sample randomly within each cluster.
To ablate cluster-level weights, we ignore cluster mismatches and sample a fixed number of examples per
cluster evenly, picking the samples with highest semantic score in each.

Cluster weights benefit the model’s ability to prioritize groupings of source language samples that are more
representative of interactions with the target language’s users, as reflected by live traffic (or a suitable proxy).
Sample-level weights prioritize source language data that has greater affinity to the target language and that
are easy-to-learn in low data regimes. When we remove sample-level weights, performance drops by 3.7%
(Global MMLU) and 2.1% (MMLU-ProX), whereas removal of cluster-level weights reduces performance by
5.1% (Global MMLU) and 3.5% (MMLU-ProX).

Cluster selection (i.e., which topic to draw from) is more critical than sample-level weighting. Ignoring which
clusters are needed (i.e., just taking top examples from each cluster equally) wastes capacity on clusters that
already had target data reflective of live traffic, or spends too much on clusters that aren’t as useful. This
aligns with the intuition that ensuring the model sees the right coverage of topics is paramount; seeing the
absolute best example versus a moderately good example in a needed topic is secondary, and likely contributes
to performance if sufficient to filter out hard-to-learn or noisy examples existing along the cluster boundary.
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Clustering Method. HDBScan was effective at handling variable cluster shapes and densities and in fil-
tering noise points that were often dissimilar to others (for instance, some code-switched or garbage text
examples introduced by MLQA-en). KMeans and Taylor-Butina clustering both underperform relative to
HDBScan, with the latter regressing substantially. MMLU tasks are diverse and, when modified to reflect
cultural nuances, diverge further from neat, spherical clusters with consistent density. With KMeans, forcing
data into ill-fitting shapes across task/language boundaries with greater sensitive to outliers worsens perfor-
mance. Taylor-Butina clustering, while also a density-based method, is better suited for high-dimensional
binary representations with well-defined, often empirically-derived, pairwise similarity thresholds. Agglom-
erative clustering is most competitive with HDBScan, but is less robust to noise introduced by out-of-
distribution training data (MLQA-en).

DoRA vs. LoRA. Across both Global MMLU and MMLU-ProX, DoRA achieves 1.2% and 0.9% higher
average accuracy than LoRA (r=16), respectively. While this performance gain is marginal and not statis-
tically significant relative to using LoRA, we chose DoRA for greater demonstrated robustness both across
languages and hyperparameter configurations. The cross-lingual standard deviation for DoRA is 8.4% and
10.6% compared to LoRA’s 10.2% and 12.1% for Global MMLU and MMLU-ProX respectively, indicating
more consistent performance across diverse language families. To quantify hyperparameter sensitivity, we
evaluated both methods across a grid of learning rates (1e-6 to 2e-4) and rank values (8, 16, 32, 64), as shown
in Figure @ DoRA exhibited a broader optimal learning rate plateau (spanning le-5 to 5e-5), whereas LoRA
demonstrated sharper performance peaks requiring precise learning rate tuning.

While DoRA offers improved robustness, additional computations to perform weight decomposition into
magnitude and direction result in increased training time. In terms of parameter and inference efficiency,
DoRA adds a negligible number of parameters for the magnitude vector and does not increase inference
overhead relative to LoRA, as both magnitude and direction components can be merged into the pre-trained
weight after training (Liu et al. [2024). For COMPASS’s use case, the broader optimal hyperparameter
range of DoRA reduces the risk of failures when adapting to new languages. Moreover, DoRA’s stability,
compared to LoRA’s rank and learning rate sensitivity, obviates the need for as extensive hyperparameter
sweeps to offset the increased cost of an individual training run.

Phi4-Mini-3.8B, Global MMLU Phi4-Mini-3.8B, MMLU-ProX
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Figure 9: Learning rate sensitivity comparison between DoRA and LoRA across different ranks on (left)
Global MMLU and (right) MMLU-ProX. Solid lines with circles represent DoRA, dashed lines with squares
represent LoRA. DoRA exhibits a broader optimal plateau and maintains stable performance across learning
rates, while LoRA shows sharper peaks requiring precise tuning.

6 Discussion
COMPASS is effective for multilingual adaptation, outperforming baselines across diverse model architec-

tures and evaluation benchmarks. By proactively identifying and sampling from under-represented semantic
clusters in an auxiliary data pool, COMPASS minimizes the distributional mismatch between the training

28



Published in Transactions on Machine Learning Research (11/2025)

data and a target usage distribution. This data-centric approach stands in contrast to prior methods that
rely on reactive, computationally intensive gradient manipulation during training or static heuristics such as
linguistic similarity, which our experiments show to be less effective. The strategic selection of cross-lingual
data maximizes positive transfer while mitigating the negative interference that plagues naive multilingual
fine-tuning, a phenomenon starkly observed in the performance degradation of the "All" baseline.

COMPASS-ECDA elevates the framework from a static, one-time adaptation technique to a dynamic, sus-
tainable solution for real-world deployment, where data distributions are inherently non-stationary due to
evolving user needs, emerging topics, or shifting demographics. A key advantage is the decoupling of the
data selection process from the model training algorithm. The selection strategy, which operates on semantic
representations in a pre-processing step, is agnostic to the specific PEFT method employed for adaptation
(e.g., DoRA, LoRA). This modularity endows COMPASS with broad applicability, suggesting its potential
to enhance not only current but also future adaptation techniques.

6.1 Limitations

The performance of any fine-tuning method is ultimately constrained by the properties of the base model and
the data ecosystem. First, COMPASS is subject to a tokenization ceiling, where performance is capped by the
base model’s pre-trained tokenizer. For many LRLs, pre-trained vocabularies are dominated by high-resource
language tokens, leading to inefficient "over-fragmentation" where single LRL words are split into multiple
sub-word tokens and placing greater strain on the model’s context window (Nag et al.l |2025). This not only
increases sequence lengths and computational costs but can also lead to suboptimal learning (Nicholas &
Bhatial 2023). As our fine-tuning process does not alter the tokenizer, this inherent inefficiency persists.

While COMPASS optimizes the use of existing data, it cannot overcome the primacy of pre-training data
scarcity. The foundational reason for the performance gap in LRLs is the scarcity of high-quality, rep-
resentative data during the initial pre-training stage. Fine-tuning, even with a sophisticated method like
COMPASS, is a powerful but partial intervention when compensating for the imbalance in web-scale data
that forms the model’s core knowledge.

Our evaluation relies on benchmarks like Global-MMLU and MMLU-ProX, yet these still represent only a
fraction of the world’s linguistic and cultural diversity. The lack of quality, human-translated, and genuinely
localized evaluation suites remains a critical challenge for the field. Reliance on translated or synthetic data
can obscure a model’s true capabilities and risks, particularly for LRLs. These ecosystem-level constraints
form a challenging cycle: a lack of pre-training data leads to poor tokenizers, making fine-tuning less effective,
while a lack of good evaluation data hinders the measurement of progress. Algorithmic interventions like
COMPASS, which improve data efficiency, are a crucial step. However, their full potential can only be realized
in tandem with community-driven data curation efforts, which address the data scarcity and evaluation
problems directly.

Our framework is also built upon several assumptions. The initial adaptation phase relies on the "proxy for
live data" assumption, using a held-out evaluation set to approximate the true "live" usage distribution. This
is a pragmatic choice, but the proxy set may not perfectly reflect the topical or stylistic distribution of real-
world user queries. This potential mismatch is a primary motivation for the continual learning component
of our framework. COMPASS-ECDA is designed to be self-correcting; an imperfect initial adaptation can
be refined over time as the system monitors and adapts to the actual incoming data stream.

The continual update mechanism in COMPASS-ECDA is triggered by Jensen-Shannon (JS) divergence, a
measure of distribution shift. This trigger is performance-blind. A significant distribution shift might occur
that has no material impact on model performance (e.g., a new topic the model already handles well), leading
to unnecessary updates. Conversely, a subtle but critical shift, such as the emergence of new adversarial
phrasing, might not exceed the threshold, allowing performance to degrade silently.

Furthermore, the continual learning phase relies on incremental clustering implementations that threaten
long-term cluster stability. Over extended periods of significant distribution shift, the initial clusters may
become "stale," rendering the incremental updates less effective. There likely exists a threshold beyond which
performance cannot be improved without re-clustering the entire data pool from scratch (i.e., a "reset" of the
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adaptation process). The current work does not define or investigate this threshold, leaving open questions
about the framework’s stability over very long time horizons.

Finally, the entire data selection strategy is bottlenecked by encoder performance. The quality of the
multilingual embeddings produced by the encoder model is paramount. Our ablation studies confirm this
dependency, showing that lower-quality embeddings degrade performance. Any biases or weaknesses in the
encoder will be propagated and potentially amplified by the selection process.

Our empirical analysis reveals a specific manifestation of this encoder dependency: the "indiscriminate sam-
pling" phenomenon where languages such as Malagasy, Malay, Tamil, Telugu, and Sinhala, which were not
included in Jina3’s primary tuning set, were sampled disproportionately across unrelated target languages.
Consequently, examples from these under-tuned languages contaminate the auxiliary data selection for tar-
gets with which they share no linguistic or topical affinity.

This finding demonstrates that COMPASS’s sampling is systematically biased by encoder quality disparities
across languages. When the encoder fails to capture precise semantic distinctions for certain languages,
COMPASS’s cluster-based selection inherits and amplifies these flaws. It also highlights the hidden cost of
general-purpose multilingual encoders: even when a language is nominally "supported,” insufficient tuning
can render it harmful to the selection process. Encoder selection and evaluation beyond aggregate metrics
(e.g., average performance on MMTEB) would serve as a proactive diagnostic of per-language embedding
quality, which might be addressed by either developing encoder-aware sampling weights that down-weight
languages with known embedding deficiencies, or investigating whether fine-tuning the embedding model on
a subset of the auxiliary data pool could reduce indiscriminate sampling by improving representation quality
for under-tuned languages.

6.2 Future Work

The current framework’s modularity invites exploration into more sophisticated adapter architectures. In-
stead of treating adapters as monolithic, language-specific modules, future work could view them as carriers
of composable "semantic skills." For instance, an adapter trained on Spanish legal text learns both "Spanish
grammar" and "legal concepts." This perspective opens up several research directions. One is the develop-
ment of merged adapters, where router scores from a language identification model could be used to combine
multiple adapters at inference time. Another direction is the application of COMPASS to stacked adapters,
where a language-specific adapter could be composed with a task-specific one (e.g., Spanish adapter + medica
QA adapter) for more fine-grained specialization.

While COMPASS focuses on distributional alignment, its framework could be extended to tackle broader
systemic issues in multilingual NLP. For cross-lingual security, the distribution-guided approach could be
adapted to select training examples that explicitly cover safety-critical scenarios in multiple languages,
potentially reducing the jailbreaking success rates that can jump from < 1% to 79% when translating unsafe
inputs (Yong et all 2024). For tokenization efficiency, COMPASS could be combined with script-aware
sampling strategies that ensure balanced representation of non-Latin scripts during fine-tuning, potentially
mitigating token length discrepancies that lead to inefficient encoding and decoding of non-Latin inputs (Cui
et al.,[2024; |Ji et al., 2023)). Regarding privacy preservation, enhanced multilingual capabilities may improve
downstream multilingual preference alignment and safety tuning, strengthening defenses against sensitive
training data extraction, personally identifiable information (PII) reconstruction, membership inference,
and gradient leakage (Lukas et al.l 2023; |Li et al.| |2024; |[Nasr et al., |2023)).

The principles of distribution-guided sampling are also domain-agnostic and could be extended to new
applications. A compelling future direction is to adapt COMPASS for specialized multilingual domains such
as multilingual code generation. In this context, the "target distribution" could be defined by a specific
codebase, API, or programming style, and the framework could be used to select the most relevant code
snippets from a vast, multilingual corpus of open-source projects to fine-tune a code-generating model.

To address the "performance-blind" nature of the current update trigger, a multi-signal trigger system should
be developed. The decision to update an adapter could be based on a learned score that integrates multiple
signals: distribution divergence, performance degradation, uncertainty increase, and user feedback signals.
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Alternatively, consider that the data-centric approach of COMPASS-ECDA is complementary to parameter-
centric continual learning methods. A promising avenue is to integrate COMPASS-ECDA with the parameter
preservation mechanisms of methods like CURLoRA. A hybrid system combining targeted rehearsal of
distributional anchors with principled parameter regularization beyond EWC could prove highly robust.

Addressing bias propagation requires integrating fairness constraints into the sampling objective. Future
work should explore debiasing objectives that penalize selection of stereotypical associations and cluster-level
auditing to identify whether certain topics (e.g., gender, religion, socioeconomic status) are disproportionately
represented or omitted. Privacy-preserving Cluster interpretability methods, such as Clio [Tamkin et al.
(2024), may provide human oversight of the selection process in real-world applications.

Ultimately, the solution to the LRL data scarcity problem lies beyond any single algorithm, underscoring
the importance of large-scale, collaborative data creation and curation efforts. Initiatives like SeaCrowd,
which is building comprehensive, standardized corpora for nearly 1,000 Southeast Asian languages, are
essential high-quality, localized datasets and benchmarks needed to train and evaluate equitable multilingual
models (Lovenia et al.,[2025). While COMPASS provides an efficient framework for leveraging existing data,
the long-term solution requires expanding the multilingual data ecosystem itself.

Broader Impact Statement

The motivation for this work is to address and mitigate linguistic inequality prevalent in LLMs, thereby
making advanced technologies more accessible and effective for speakers of low-resource languages. By
improving model performance in a parameter- and data-efficient manner, our framework has the potential to
foster greater digital inclusion and enable development of culturally and contextually relevant Al applications
in underserved communities. Furthermore, enhancing the multilingual capabilities of base models is a crucial
prerequisite for developing robust and equitable cross-lingual safety and alignment mechanisms, reducing the
risk of users inadvertently bypassing safety guardrails when interacting in non-English languages.

However, improved multilingual generation could be leveraged for malicious purposes, such as creating more
convincing and targeted misinformation, spam, or propaganda across a wider range of languages, potentially
impacting communities that are not well-equipped to detect or counter such threats. Additionally, our data-
centric approach is dependent on the quality and composition of the underlying data sources and embedding
models. The framework could inadvertently amplify existing societal biases present in the auxiliary data
pool or in the multilingual text encoder used for semantic clustering. COMPASS does not explicitly audit
or correct for bias, meaning that if the target data distribution itself reflects biases, the model will learn to
replicate them.

Beyond encoder biases, COMPASS’s data selection strategy could amplify biases present in the auxiliary data
pool. High-performing semantic clusters are preferentially sampled, which may overrepresent majority view-
points or Western-centric content even within non-Western languages, potentially marginalizing alternative
cultural or institutional frameworks in affected communities.

Our distribution-aware sampling prioritizes auxiliary data matching target usage patterns, which may in-
advertently sample culturally sensitive content (e.g., indigenous knowledge, minority language expressions,
religious texts) without proper cultural context or community consent. While COMPASS does not modify
such content, the selection and repurposing of low-resource language data raises ethical questions about data
sovereignty and appropriate use that warrant engagement with linguistic communities, especially those that
have less agency in dictating data usage concerns.

Lastly, the continual adaptation paradigm in COMPASS-ECDA requires periodic retraining cycles, which
has associated environmental costs. While adapter-based approaches are more efficient than repeatedly
training full models, production deployments should carefully consider the environmental impact of update
frequency and explore strategies such as batching updates across multiple languages to reduce computational
overhead.
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A Model Language Exposure

See Table Note that Qwen2.5 advertises explicit support for 29 languages but not all of the supported
languages are listed in their documentation.
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Table 3: Language Support in Models (A = Supported)

Code Language Script Family Subgrouping

ara Arabic Arabic Afro-Asiatic Semitic A A A A
ces Czech Latin Indo-European Balto-Slavic A A A
deu German Latin Indo-European Germanic A A A A A
eng English Latin Indo-European Germanic A A A A A
eus Basque Latin Basque - A A
fra French Latin Indo-European Italic A A A A A
hin Hindi Devanagari Indo-European Indo-Aryan A A A
hun Hungarian Latin Uralic - A A A
ita Italian Latin Indo-European Italic A A A A A
jpn Japanese Japanese Japonic Japonic A A A A
nld Dutch Latin Indo-European Germanic A A A
pes Persian Arabic Indo-European Iranian A A A
pol Polish Latin Indo-European Balto-Slavic A A A
por Portuguese Latin Indo-European Italic A A A A A
rus Russian Cyrillic Indo-European Balto-Slavic A A A A
spa Spanish Latin Indo-European Ttalic A A A A A
srp Serbian Cyrillic Indo-European Balto-Slavic A A
tur Turkish Latin Turkic Common Turkic A A A A
vie Vietnamese Latin Austroasiatic Vietic A A A
zho Chinese Han Sino-Tibetan Sinitic A A A A
ben Bengali Bengali Indo-European Indo-Aryan A A A
bul Bulgarian Cyrillic Indo-European Balto-Slavic A A
ceb Cebuano Latin Austronesian Malayo-Polynesian A
dan Danish Latin Indo-European Germanic A A A
ell Greek Greek Indo-European Graeco-Phrygian A A A
fil Filipino Latin Austronesian Malayo-Polynesian A A
fin Finnish Latin Uralic Finnic A A A
heb Hebrew Hebrew Afro-Asiatic Semitic A A A
ind Indonesian Latin Austronesian Malayo-Polynesian A A A
kor Korean Hangul Koreanic Korean A A A A
lit Lithuanian Latin Indo-European Balto-Slavic A A
msa Malay Latin Austronesian Malayo-Polynesian A A
ron Romanian Latin Indo-European Italic A A
swe Swedish Latin Indo-European Germanic A A A
tam Tamil Tamil Dravidian South Dravidian A A
tha Thai Thai Tai-Kadai Kam-Tai A A A A A
ukr Ukrainian Cyrillic Indo-European Balto-Slavic A A A
urd Urdu Arabic Indo-European Indo-Aryan A A
amh Ambharic Ge’ez Afro-Asiatic Semitic A A A
gle Irish Latin Indo-European Celtic A A
guj Gujarati Gujarati Indo-European Indo-Aryan A A
hat Haitian Creole Latin Indo-European Italic A
hau Hausa Latin Afro-Asiatic Chadic A A A
ibo Igbo Latin Atlantic-Congo Benue-Congo A
jav Javanese Latin Austronesian Malayo-Polynesian A A
kan Kannada Kannada Dravidian South Dravidian A A
kir Kyrgyz Cyrillic Turkic Common Turkic A A
kur Kurdish Latin Indo-European Iranian A A
mal Malayalam Malayalam Dravidian South Dravidian A A
mar Marathi Devanagari Indo-European Indo-Aryan A A
mlg Malagasy Latin Austronesian Malayo-Polynesian A A
mya Burmese Myanmar Sino-Tibetan Burmo-Qiangic A A
nep Nepali Devanagari Indo-European Indo-Aryan A A
nor Norwegian Latin Indo-European Germanic A A A
nso Northern Sotho Latin Atlantic-Congo Benue-Congo A
ny Nyanja Latin Atlantic-Congo Benue-Congo A
pan Punjabi Gurmukhi Indo-European Indo-Aryan A A
pus Pashto Arabic Indo-European Iranian A A
sin Sinhala Sinhala Indo-European Indo-Aryan A A
sna Shona Latin Indo-European Indo-Aryan A
snd Sindhi Arabic Indo-European Indo-Aryan A A
som Somali Latin Afro-Asiatic Cushitic A A
sot Southern Sotho Latin Atlantic-Congo Benue-Congo A
sqi Albanian Latin Indo-European Albanian A A
sun Sundanese Latin Austronesian Malayo-Polynesian A A A
swa Swahili Latin Atlantic-Congo Benue-Congo A A A
tel Telugu Telugu Dravidian South Dravidian A A A
wol ‘Wolof Latin Atlantic-Congo North-Central Atlantic A
xho Xhosa Latin Atlantic-Congo Benue-Congo A A
yor Yoruba Latin Atlantic-Congo Benue-Congo A
zul Zulu Latin Atlantic-Congo Benue-Congo A

B Dataset Language Coverage

See Table [E
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Table 4: Language Resources and Translation Data
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Code Language Script Family Subgrouping Resources & ~ Q e 0? 2 5’4
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ara Arabic Arabic Afro-Asiatic Semitic High Al A Al A A
ces Czech Latin Indo-European Balto-Slavic High * Al Al Al
deu German Latin Indo-European Germanic High A0 A Ad A A A Al
eng English Latin Indo-European Germanic High A Ad Al A A A Al
eus Basque Latin Basque - High Al
fra French Latin Indo-European Italic High Ad A Ad A A A0
hin Hindi Devanagari Indo-European Indo-Aryan High Ad A AG A A A0
hun Hungarian Latin Uralic - High Ad Ad AN
ita Italian Latin Indo-European Ttalic High A0 A Ad Al
jpn Japanese Japanese Japonic Japonic High Al A Ad A Al
nld Dutch Latin Indo-European Germanic High Ad * N |
pes Persian Arabic Indo-European Iranian High A A Y |
pol Polish Latin Indo-European Balto-Slavic High Ad * AN
por Portuguese Latin Indo-European Italic High Ad A Ad AN
rus Russian Cyrillic Indo-European Balto-Slavic High Al Ad Al A A A Y|
spa Spanish Latin Indo-European Ttalic High Ad A A A A A N |
srp Serbian Cyrillic Indo-European Balto-Slavic High Ad ¢ Ad N |
tur Turkish Latin Turkic Common Turkic High Ad A A A
vie Vietnamese Latin Austroasiatic Vietic High Ad Ad AG A A A0
zho Chinese Han Sino-Tibetan Sinitic High Ad A AG A A A
ben Bengali Bengali Indo-European Indo-Aryan Mid Ad A AG A
bul Bulgarian Cyrillic Indo-European Balto-Slavic Mid * A
ceb Cebuano Latin Austronesian Malayo-Polynesian Mid Ad
dan Danish Latin Indo-European Germanic Mid Ad Al
ell Greek Greek Indo-European Graeco-Phrygian Mid Al ¢ A A
fil Filipino Latin Austronesian Malayo-Polynesian Mid Ad *
fin Finnish Latin Uralic Finnic Mid Ad Al
heb Hebrew Hebrew Afro-Asiatic Semitic Mid ¢ ¢
ind Indonesian Latin Austronesian Malayo-Polynesian Mid Al A Al
kor Korean Hangul Koreanic Korean Mid Ad A Ad Al
lit Lithuanian Latin Indo-European Balto-Slavic Mid Ad ¢
msa Malay Latin Austronesian Malayo-Polynesian Mid Ad Ad
ron Romanian Latin Indo-European Italic Mid ¢ Al A
swe Swedish Latin Indo-European Germanic Mid AG ¢ Al
tam Tamil Tamil Dravidian South Dravidian Mid Ad Al
tha Thai Thai Tai-Kadai Kam-Tai Mid Ad Ad A A A
ukr Ukrainian Cyrillic Indo-European Balto-Slavic Mid A Al A N |
urd Urdu Arabic Indo-European Indo-Aryan Mid Ad Ad A
amh Amharic Ge’ez Afro-Asiatic Semitic Low Al Ad
gle Irish Latin Indo-European Celtic Low Al
guj Gujarati Gujarati Indo-European Indo-Aryan Low b
hat Haitian Creole Latin Indo-European Italic Low Ad
hau Hausa Latin Afro-Asiatic Chadic Low Ad ¢
ibo Igbo Latin Atlantic-Congo Benue-Congo Low Ad *
jav Javanese Latin Austronesian Malayo-Polynesian Low Ad
kan Kannada Kannada Dravidian South Dravidian Low Ad
kir Kyrgyz Cyrillic Turkic Common Turkic Low Ad ¢
kur Kurdish Latin Indo-European Iranian Low Ad
mal Malayalam Malayalam Dravidian South Dravidian Low Ad
mar Marathi Devanagari Indo-European Indo-Aryan Low Al Al
mlg Malagasy Latin Austronesian Malayo-Polynesian Low Al *
mya Burmese Myanmar Sino-Tibetan Burmo-Qiangic Low b
nep Nepali Devanagari Indo-European Indo-Aryan Low Al * A
nor Norwegian Latin Indo-European Germanic Low * AN
nso Northern Sotho Latin Atlantic-Congo Benue-Congo Low Ad
ny Nyanja Latin Atlantic-Congo Benue-Congo Low . *
pan Punjabi Gurmukhi Indo-European Indo-Aryan Low b
pus Pashto Arabic Indo-European Iranian 40 Low A0
sin Sinhala Sinhala Indo-European Indo-Aryan Low Ad Ad
sna Shona Latin Indo-European Indo-Aryan Low Ad *
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C Per-Language Performance on Global MMLU & MMLU-ProX

See tables Bl to [0

Language ZS T 4+ COMPASS T F A T+R T+LR T+LS
Ambharic (am) 0.29 0.39 030 035 0.25 0.31 0.34 0.34
Arabic (ar) 0.44 0.54 0.45 0.51 0.39 0.46 0.49 0.48
Bengali (bn) 0.36 0.46 037 043 031 0.38 0.41 0.41
Czech (cs) 0.49 0.58 0.50 056 0.44 0.51 0.53 0.53
German (de) 0.56 0.64 0.57 0.63  0.51 0.57 0.59 0.59
Greek (el) 0.40 0.45 0.43 042 0.35 0.37 0.40 0.39
English (en) 0.69 0.75 069 074 0.64 0.69 0.70 0.70
Spanish (es) 0.57 0.65 0.58 0.64 0.52 0.58 0.60 0.60
Persian (fa) 0.40 0.50 0.41 0.47 0.35 0.42 0.45 0.44
Filipino (fil) 0.45 0.54 0.46 0.52 0.40 0.47 0.49 0.49
French (fr) 0.57 0.65 0.58 0.64 0.52 0.58 0.60 0.60
Hausa (ha) 0.32 0.42 0.33 0.38 0.28 0.34 0.37 0.37
Hebrew (he) 0.40 0.50 0.41 047  0.35 0.42 0.45 0.44
Hindi (hi) 0.41 0.51 0.42 0.48 0.36 0.43 0.46 0.46
Indonesian (id) 0.50 0.59 0.51 0.57  0.45 0.52 0.54 0.54
Igbo (ig) 0.33 0.43 034 039 0.29 0.35 0.38 0.38
Ttalian (it) 0.55 0.63 0.56 0.62  0.50 0.56 0.58 0.58
Japanese (ja) 0.49 0.53 0.52 051 0.44 0.46 0.48 0.48
Korean (ko) 0.44 0.49 0.47  0.51 0.39 0.41 0.41 0.43
Kyrgyz (ky) 0.37 0.47 038 044 032  0.39 0.42 0.42
Lithuanian (1t)  0.38 0.48 039 045 0.33 0.40 0.43 0.42
Malagasy (mg)  0.35 0.45 036 041 031 0.37 0.40 0.40
Malay (ms) 0.46 0.55 0.47 0.53 041 0.48 0.50 0.50
Nepali (ne) 0.37 0.47 038 044 0.32 0.39 0.42 0.42
Dutch (nl) 0.52 0.60 0.53 059 047 0.53 0.55 0.55
Nyanja (ny) 0.33 0.43 0.34 039 0.29 0.35 0.38 0.38
Polish (pl) 0.48 0.57 0.49 0.55 043 0.50 0.52 0.52
Portuguese (pt)  0.56 0.64 0.57 0.63 0.51 0.57 0.59 0.59
Romanian (ro) 0.49 0.58 0.50 0.56 0.44 0.51 0.53 0.53
Russian (ru) 0.51 0.60 0.52 0.58  0.46 0.53 0.55 0.55
Sinhala (si) 0.31 0.41 0.32 037 0.27 0.33 0.36 0.36
Shona (sn) 0.33 0.43 034 039 0.29 0.35 0.38 0.38
Somali (so) 0.31 0.41 032 037 027 0.33 0.36 0.36
Serbian (sr) 0.43 0.53 044 050 0.38 0.45 0.48 0.47
Swedish (sv) 0.51 0.60 0.52 058 0.46 0.53 0.55 0.55
Swahili (sw) 0.38 0.48 0.39 045 0.33 0.40 0.43 0.43
Telugu (te) 0.34 0.44 0.35 040 0.30 0.36 0.39 0.39
Turkish (tr) 0.46 0.55 0.47 0.53 041 0.48 0.50 0.50
Ukrainian (uk) 0.47 0.56 0.48 054 042 0.49 0.51 0.51
Vietnamese (vi) 0.45 0.49 048 0.46 0.40 0.43 0.45 0.46
Yoruba (yo) 0.31 0.41 0.32 037 0.27 0.33 0.36 0.36
Chinese (zh) 0.51 0.60 0.52 0.58  0.46 0.53 0.55 0.55
Average 0.435 0.524 0.447 0.499 0.388  0.449 0.473 0.473
St. Dev. 0.090 0.083 0.090 0.093 0.087 0.088 0.083 0.084

Table 5: Per-language performance on Global-MMLU (Phi-4-Mini-Instruct-3.8B)
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Language ZS T 4+ COMPASS T F A T+R T+LR T+LS
Ambharic (am) 0.31 0.39 0.33 038 0.27 0.33 0.37 0.36
Arabic (ar) 0.50 0.57 0.52 058 045 0.52 0.54 0.53
Bengali (bn) 0.42 0.49 0.44  0.49 0.37 0.44 0.46 0.45
Czech (cs) 0.56 0.62 0.58  0.63 0.51 0.57 0.59 0.58
German (de) 0.58 0.64 0.60  0.65 0.53 0.59 0.61 0.60
Greek (el) 0.51 0.58 0.53 059  0.46 0.53 0.55 0.54
English (en) 0.68 0.70 0.69 0.68 0.63 0.67 0.68 0.68
Spanish (es) 0.62 0.68 0.64 0.69 0.57 0.63 0.65 0.64
Persian (fa) 0.49 0.56 0.51  0.56 0.44 0.51 0.53 0.52
Filipino (fil) 0.52 0.58 0.54  0.59 0.47 0.53 0.55 0.54
French (fr) 0.61 0.67 0.63  0.68 0.56 0.62 0.64 0.63
Hausa (ha) 0.39 0.46 0.41 0.45 0.34 0.41 0.43 0.42
Hebrew (he) 0.45 0.52 0.47  0.52 0.40 0.47 0.49 0.48
Hindi (hi) 0.48 0.55 0.50 055 043 0.50 0.52 0.51
Indonesian (id) 0.57 0.63 0.59 0.64 0.52 0.58 0.60 0.59
Igho (ig) 0.39 0.46 041 045 034 041 0.43 0.42
Ttalian (it) 0.60 0.66 0.62 0.67 0.55 0.61 0.63 0.62
Japanese (ja) 0.52 0.58 0.54 059 047 0.53 0.55 0.54
Korean (ko) 0.51 0.58 0.53 058 0.46 0.53 0.55 0.54
Kyrgyz (ky) 0.43 0.50 045 050 038 045 0.47 0.46
Lithuanian (1t) 0.47 0.54 0.49 0.54 0.42 0.49 0.51 0.50
Malagasy (mg) 0.37 0.44 039 044 0.32 0.39 0.41 0.40
Malay (ms) 0.53 0.59 0.55 0.60 048 0.54 0.56 0.55
Nepali (ne) 0.44 0.51 0.46  0.51 0.39 0.46 0.48 0.47
Dutch (nl) 0.58 0.64 0.60 0.65 0.33 0.59 0.61 0.60
Nyanja (ny) 0.34 0.41 0.36 041 0.29 0.36 0.38 0.37
Polish (pl) 0.55 0.61 0.57  0.62 0.50 0.56 0.58 0.57
Portuguese (pt)  0.60 0.66 0.62 0.67 0.55 0.61 0.63 0.62
Romanian (ro) 0.57 0.63 0.59 0.64 0.52 0.58 0.60 0.59
Russian (ru) 0.57 0.63 0.59 0.64 0.52 0.58 0.60 0.59
Sinhala (si) 0.36 0.43 0.38 0.43 0.31 0.38 0.40 0.39
Shona (sn) 0.36 0.43 0.38 043 0.31 0.38 0.40 0.39
Somali (so) 0.34 0.41 0.36 041  0.29 0.36 0.38 0.37
Serbian (sr) 0.51 0.58 0.53 058 0.46 0.53 0.55 0.54
Swedish (sv) 0.56 0.62 0.58 063 0.51 0.57 0.59 0.58
Swahili (sw) 0.42 0.49 0.44 049 0.37 0.44 0.46 0.45
Telugu (te) 0.40 0.47 0.42 047 035 0.42 0.44 0.43
Turkish (tr) 0.53 0.59 0.55 0.60  0.48 0.54 0.56 0.55
Ukrainian (uk) 0.54 0.60 0.56 0.61 0.49 0.55 0.57 0.56
Vietnamese (vi)  0.55 0.61 0.57 0.62 0.50 0.56 0.58 0.57
Yoruba (yo) 0.33 0.40 0.35 040 0.28 0.35 0.37 0.36
Chinese (zh) 0.56 0.62 0.58 0.63 0.51 0.57 0.59 0.58
Average 0.491 0.555 0.508 0.559 0.438 0.510 0.522 0.513
St. Dev. 0.092 0.086 0.091 0.090 0.091 0.087 0.086 0.086

Table 6: Per-language performance on Global-MMLU (Llama-3.1-Instruct-8B)
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Language ZS T 4+ COMPASS T F A T+R T+LR T+LS
Ambharic (am) 0.317 0.388 0.334 0.370 0.281 0.339 0.365 0.359
Arabic (ar) 0.596 0.662 0.616 0.652 0.547 0.622 0.634 0.626
Bengali (bn) 0.471 0.540 0.491 0.531 0.422  0.497 0.513 0.506
Czech (cs) 0.615 0.683 0.635 0.673 0.565 0.644 0.655 0.648
German (de) 0.656 0.719 0.677 0.709 0.603 0.685 0.695 0.689
Greek (el) 0.504 0.556 0.521 0.545 0.464 0.526 0.535 0.529
English (en) 0.746 0.791 0.766 0.784 0.685 0.771 0.778 0.774
Spanish (es) 0.681 0.741 0.701 0.730 0.626  0.706 0.715 0.709
Persian (fa) 0.531 0.577 0.527 0.565 0.468 0.533 0.544 0.538
Filipino (fil) 0.556 0.619 0.575 0.610 0.511  0.582 0.592 0.586
French (fr) 0.674 0.743 0.696 0.732 0.620 0.702 0.713 0.706
Hausa (ha) 0.341 0.421 0.358 0.396 0.301 0.363 0.390 0.384
Hebrew (he) 0.536 0.599 0.554 0.587 0.493 0.561 0.571 0.565
Hindi (hi) 0.489 0.553 0.506 0.542 0.449 0.511 0.522 0.516
Indonesian (id)  0.645 0.711 0.665 0.697 0.593 0.672 0.683 0.676
Igbo (ig) 0.336 0.415 0.353 0.390 0.297  0.357 0.384 0.378
Ttalian (it) 0.671 0.731 0.691 0.721 0.617 0.696 0.706 0.700
Japanese (ja) 0.637 0.702 0.657 0.689 0.585 0.664 0.675 0.668
Korean (ko) 0.619 0.687 0.639 0.677 0.569  0.647 0.658 0.651
Kyrgyz (ky) 0.415 0.415 0.353 0.390 0.297  0.357 0.384 0.378
Lithuanian (1t) 0.494 0.563 0.511 0.549 0.454 0.517 0.529 0.523
Malagasy (mg)  0.351 0.431 0.368 0.406 0.310 0.373 0.399 0.393
Malay (ms) 0.607 0.702 0.628 0.683 0.541 0.638 0.658 0.650
Nepali (ne) 0.424 0.488 0.442 0.479 0.379 0.448 0.462 0.456
Dutch (nl) 0.646 0.709 0.667 0.699 0.594 0.674 0.685 0.679
Nyanja (ny) 0.342 0.422 0.359 0.397 0.302 0.364 0.391 0.385
Polish (pl) 0.611 0.684 0.636 0.674 0.566 0.644 0.655 0.648
Portuguese (pt) 0.680 0.747 0.701 0.735 0.625 0.707 0.719 0.712
Romanian (ro)  0.622 0.707 0.652 0.685 0.577 0.658 0.669 0.663
Russian (ru) 0.646 0.718 0.667 0.707 0.593 0.676 0.687 0.681
Sinhala (si) 0.340 0.419 0.357 0.395 0.300 0.362 0.389 0.383
Shona (sn) 0.351 0.431 0.368 0.406 0.310 0.373 0.399 0.393
Somali (so) 0.333 0.413 0.350 0.387 0.294 0.354 0.381 0.375
Serbian (sr) 0.568 0.633 0.587 0.623 0.522  0.593 0.604 0.598
Swedish (sv) 0.627 0.681 0.633 0.671 0.563 0.641 0.652 0.646
Swahili (sw) 0.364 0.444 0.381 0.419 0.322 0.386 0.412 0.406
Telugu (te) 0.356 0.436 0.373 0.411 0.315 0.378 0.404 0.398
Turkish (tr) 0.569 0.636 0.588 0.623 0.523 0.595 0.606 0.599
Ukrainian (uk)  0.602 0.662 0.614 0.651 0.546  0.620 0.632 0.625
Vietnamese (vi) 0.639 0.712 0.660 0.699 0.588  0.667 0.680 0.672
Yoruba (yo) 0.335 0.414 0.352 0.389 0.296 0.356 0.383 0.377
Chinese (zh) 0.683 0.737 0.702 0.729 0.627 0.705 0.712 0.707
Average 0.529 0.596 0.546 0.581 0.480 0.551 0.567 0.561
St. Dev. 0.130 0.127 0.133 0.132 0.127 0.135 0.128 0.128

Table 7: Per-language performance on Global-MMLU (Qwen2.5-7B-Instruct)
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Language ZS T+ COMPASS T F A T+R T+LR T+LS
English (en) 51.6 54.8 494 52.6 40.6 50.5 51.6 50.5
Chinese (zh) 35.3 43.3 374 433 311 38.4 39.5 39.5
Japanese (ja) 23.9 32.0 26.1 309 20.6 27.2 28.2 28.2
Korean (ko) 14.3 20.8 175 20.2 11.9 16.1 18.7 18.1
French (fr) 37.3 43.9 39.3 439 33.4 40.2 41.2 40.2
German (de) 36.8 44.5 388 445 338 39.8 40.8 40.8
Spanish (es) 37.9 44.8 39.9 448 33.8 41.0 42.0 41.0
Portuguese (pt) 37.7 44.7 39.8 447 335 40.8 41.9 40.8
Arabic (ar) 274 34.0 284  33.0 23.3 29.4 30.4 30.4
Thai (th) 17.6 28.2 20.1 278 13.8 214 22.6 214
Hindi (hi) 13.0 24.3 209 23.6 10.9 17.7 20.3 20.3
Bengali (bn) 11.7 20.9 16.0 19.9 8.8 14.6 16.6 16.5
Swahili (sw) 13.7 21.6 173 20.7 10.3 15.4 17.4 17.6
Czech (cs) 21.1 26.0 207 227 18.3 21.0 214 21.2
Hungarian (hu) 16.8 18.1 16.5 17.7 14.6 16.6 16.8 16.7
Indonesian (id)  14.0 17.1 13.7 149 12.2 13.9 14.1 14.0
Ttalian (it) 35.3 42.7 385 41.1  30.7 34.8 39.3 38.9
Marathi (mr) 12.7 21.0 152 20.3 11.0 12.6 16.9 16.7
Nepali (ne) 8.0 15.8 104 154 6.8 8.0 11.6 11.5
Russian (ru) 32.6 40.1 324  38.6 28.3 32.5 33.0 32.7
Serbian (sr) 24.4 30.1 25.5 289 21.2 24.2 26.2 25.9
Telugu (te) 14.9 23.0 16.5 21.5 12.4 15.2 17.8 17.6
Ukrainian (uk)  22.8 27.8 23.5  26.7 19.5 22.3 22.8 22.5
Urdu (ur) 14.0 20.0 153 194 12.1 14.1 15.7 15.5
Vietnamese (vi) 24.6 30.3 25.7 29.1 214 24.4 24.9 24.6
Wolof (wo) 3.3 5.6 4.1 5.6 0.4 1.1 1.3 3.0
Yoruba (yo) 3.4 17.9 10.2  15.8 2.8 3.6 7.2 7.1
Zulu (zu) 2.1 9.8 7.4 8.6 0.6 3.2 5.4 5.4
Overall 21.7 28.7 23.8 27.7 18.5 22.9 24.5 24.2
St. Dev. 12.3 12.0 115 12.12 10.95 12.8 12.5 12.1

Table 8: Per-language performance on MMLU-ProX (Phi4-Mini-Instruct-3.8B)
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Language ZS T+ COMPASS T F A T+R T+LR T+LS
English (en) 45.2 47.2 43.6 471 353 44.7 45.7 45.2
Chinese (zh) 31.9 38.8 334 384 277 34.4 35.3 34.9
Japanese (ja) 24.9 30.9 26.0 30.0 21.7 26.9 27.8 27.3
Korean (ko) 24 31.6 25.7 305 204 26.8 27.9 27.3
French (fr) 31.2 37.6 33.1 376 28.2 33.9 34.8 34.4
German (de) 32.2 39.1 342 391 29.0 35.1 36.1 35.6
Spanish (es) 20.7 24.8 21.7 248 18.6 22.3 22.9 22.6
Portuguese (pt) 37.8 45.7 39.8 452 33.6 41.0 42.1 41.6
Arabic (ar) 13.4 17.7 143 171 11.2 15.0 15.6 15.3
Thai (th) 27.9 34.8 29.1 338 245 30.1 31.2 30.7
Hindi (hi) 20.5 26.6 21.8 257 174 22.7 23.6 23.1
Bengali (bn) 18.8 254 202 245 154 21.2 22.2 21.7
Swahili (sw) 15.1 20.2 16.3 194 12.6 17.0 17.7 17.3
Czech (cs) 23.1 25.9 227 248 20.1 23.0 23.4 23.2
Hungarian (hu) 25.5 27.5 25.0 269 222 25.2 25.6 25.3
Indonesian (id)  22.6 25.1 222 240 19.6 22.4 22.8 22.6
Italian (it) 34.8 38.3 34.1 36.7 30.3 34.3 34.9 34.5
Marathi (mr) 19.7 22.5 194 215 17.1 19.6 20.1 19.8
Nepali (ne) 17.3 20.1 172 19.2 14.6 17.4 18.0 17.7
Russian (ru) 28.8 32.3 28.3 309 25.0 28.7 29.2 28.9
Serbian (sr) 27.1 30.5 26.7 29.2 23.6 26.9 27.5 27.2
Telugu (te) 14.2 17.5 142 161 11.9 14.4 15.4 15.2
Ukrainian (uk)  24.1 26.7 234 256 20.7 23.6 24.1 23.8
Urdu (ur) 14.2 15.9 14.0 153 123 14.1 14.4 14.2
Vietnamese (vi) 31.3 35.2 30.8 33.6 27.2 31.1 31.7 31.4
Wolof (wo) 0.4 0.5 04 05 03 0.4 0.5 0.4
Yoruba (yo) 6.4 8.1 64 73 53 6.5 7.0 6.9
Zulu (zu) 45 5.9 45 53 37 46 5.0 49
Overall 22.8 26.9 23.2 26.1 19.6 23.7 24.4 24.0
St. Dev. 9.9 11.0 10.0 11.0 8.5 10.2 10.4 10.3

Table 9: Per-language performance on MMLU-ProX (Llama-3.1-Instruct-8B)
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Language ZS T+ COMPASS T F A T+R T+LR T+LS
English (en) 57.5 62.8 58.1 624 525 58.6 59.4 59.1
Chinese (zh) 50.5 57.6 53.8 57.1 469  52.6 53.5 53.1
Japanese (ja) 43.6 50.8 46.8 49.9 40.5 45.6 46.5 46.1
Korean (ko) 41.5 48.9 44.8 47.8 382 435 44.4 44
French (fr) 48.9 55.3 52.3 553 459 50.8 51.5 51.2
German (de) 46.9 53.2 50.3 532 44 48.8 49.5 49.2
Spanish (es) 49.3 55.5 52.6 55.5 46.3 51.1 51.8 51.5
Portuguese (pt) 46.1 52.3 494 52 433 47.8 48.4 48.1
Arabic (ar) 40.2 47.5 41.5 46.6 37 42.1 42.8 42.5
Thai (th) 39.6 46.7 40.8 45.8 36.4 414 42.2 41.8
Hindi (hi) 34 41.7 354 408 309 36 36.9 36.4
Bengali (bn) 32.2 40.2 33.7 389 29 34.2 35.1 34.7
Swahili (sw) 23.2 31.3 244 292 20.7 25.1 25.9 25.6
Czech (cs) 42.3 47.8 42 459 37.2 42.6 43.4 42.9
Hungarian (hu) 31.3 34.1 31 333 27.5 31.2 31.7 314
Indonesian (id)  46.6 52.3 46.2 49.9 409  46.7 47.5 47
Italian (it) 49.1 54.5 48.6 52.3 432 48.9 49.7 49.2
Marathi (mr) 29.5 34 29.3 324 259 297 30.3 30
Nepali (ne) 27.3 32 274 305 233 27.7 28.7 28.3
Russian (ru) 46.3 52.4 46 50.2 40.7 46.6 474 46.9
Serbian (sr) 39.7 45 39.4 431 349 3938 40.7 40.2
Telugu (te) 23.4 29.1 23.6 26.8 19.8 23.9 25.6 25.2
Ukrainian (uk)  42.9 48 42 46  37.2 42.5 43.3 42.8
Urdu (ur) 25.7 31.1 25,5 299 226 25.8 26.3 26
Vietnamese (vi) 46.4 52.6 46.1 50.3 40.8  46.6 47.5 46.9
Wolof (wo) 11 19.6 13.3 20.2 8.9 11.5 13.6 14.4
Yoruba (yo) 21.1 27.5 243 263 178 21.6 23.3 22.9
Zulu (zu) 13.3 18.3 14.6 177 109 13.7 15 14.7
Overall 37.5 43.6 38.7 425 33.7 38.4 394 39
St. Dev. 11.7 11.7 11.9 117 11.2 12.0 11.7 11.6

Table 10: Per-language performance on MMLU-ProX (Qwen2.5-7B-Instruct)

D Continual Adaptation Experimental Design

D.1 Subject Allocation for Learning-Forgetting Experiments

For the controlled distribution shift experiments, we partition the 57 MMLU subjects into two groups.

Initial Training Subjects (27 subjects) The initial Global MMLU adapter training includes broad
coverage of basic knowledge while excluding advanced specialized topics that will constitute the distribu-
tion shift: Algebra, Elementary Mathematics, High School Biology, High School Chemistry, High School
Physics, High School Psychology, High School Statistics, High School US History, High School World His-
tory, High School Geography, Anatomy, Astronomy, Conceptual Physics, Facts, Human Aging, Nutrition,
Prehistory, Sociology, Miscellaneous, High School Government and Politics, High School Macroeconomics,
High School Microeconomics, Public Relations, Genetics, Virology, High School Computer Science, and
Elementary Mathematics.

Held-Out Subjects for MMLU-ProX Shift (30 subjects) The distribution shift introduces subjects
representing advanced and specialized knowledge: Business Ethics, Clinical Knowledge, Computer Science
(University), Mathematics (University), Medicine (University), Physics (University), Biology (University),
Chemistry (University), Psychology (Professional), Computer Security, Econometrics, Electrical Engineer-
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ing, International Law, Jurisprudence, Logical Fallacies, Machine Learning, Management, Marketing, Med-
ical Genetics, Moral Disputes, Moral Scenarios, Philosophy, Accounting (Professional), Law (Professional),
Medicine (Professional), Security Studies, US Foreign Policy, World Religions, Formal Logic, and Human
Sexuality.

D.2 Temporal Distribution Shift Subject Allocation

Real-world deployment involves sequential distribution shifts as user interests evolve. To evaluate the
COMPASS-ECDA trigger mechanism, we simulate temporal dynamics through subject-based distribution
changes reflecting natural query evolution across five distinct periods.

T1 - Initial Deployment (27 subjects) The initial period T1 establishes COMPASS adapters trained
on a subset of 27 Global MMLU subjects.

T2 - STEM Expansion (10 new subjects) Period T2 introduces a distribution shift toward advanced
STEM content from MMLU-ProX, including Computer Science (University), Mathematics (University),
Medicine (University), Physics (University), Biology (University), Chemistry (University), Computer Secu-
rity, Electrical Engineering, Genetics, and Machine Learning. This shift simulates users adopting the system
for advanced technical applications.

T3 - Humanities Diversification (10 new subjects) The user base diversifies to include: Philosophy,
World Religions, Moral Scenarios, Moral Disputes, Human Sexuality, Psychology (Professional), Formal
Logic, Business Ethics, Jurisprudence, and Logical Fallacies. This shift represents expansion into ethical,
legal, and philosophical domains previously absent from the training distribution.

T4 - Professional Integration (10 new subjects) Enterprise adoption brings professional domains:
Management, Marketing, Accounting (Professional), Medicine (Professional), Law (Professional), Clinical
Knowledge, Econometrics, Security Studies, US Foreign Policy, and International Law.

T5 - Cyclical Return (10 old subjects The distribution returns to the original T1 subject set assessed
on MMLU ProX samples, simulating a seasonal usage pattern. To control for data size, we randomly
selected 10 of the original 27 subjects, resulting in: Anatomy, Astronomy, Conceptual Physics, High School
Mathematics, High School Psychology, Miscellaneous, Nutrition, Prehistory, Public Relations, and Virology.

Table [[1] reveals the trade-offs across different threshold values, evaluated across a range from 0.05 to
0.30. Aggressive thresholds below 0.15 trigger excessive updates, with ;¢ = 0.05 producing a 66.7%
false positive rate where updates occur during stable distributions. This wastes computational resources
and risks destabilizing well-adapted models through unnecessary retraining. Conservative thresholds above
0.20 exhibit the opposite problem, failing to respond promptly to distribution shifts. At 6;5 = 0.30, the
system triggers only once across all five temporal periods, missing critical adaptation opportunities during
the T2 STEM expansion and T3 humanities diversification. The large sample average delay means the model
operates suboptimally for extended periods.

The threshold value of 0.15 emerges as optimal, achieving zero false positives while maintaining prompt
response to distribution shifts with an average delay of 2,180 samples. This threshold identifies all four
major distribution transitions (T1—T2, T2—T3, T3—T4, T4—T5) without spurious triggers during stable
periods. The computational cost remain manageable and comparable to the ideal setting of knowing the
fixed-intervals in advance. While 0.15 serves as a robust default, for practical deployment scenarios we
anticipate that language-specific calibration is desired, as low resource languages may benefit from higher
thresholds to avoid unstable updates with limited validation data.

47



Published in Transactions on Machine Learning Research (11/2025)

JS Threshold  Updates  Avg Delay False Pos
0ss Triggered  (samples) Rate (%)
0.05 12 0 66.7
0.10 7 100 42.9
0.15 4 400 0.0
0.20 3 900 0.0
0.25 2 1,500 0.0
0.30 1 1,800 0.0
Fixed 4 0 0.0

Table 11: Divergence threshold analysis on Qwen2.5-7B across temporal shifts T1-T5 added in 100 sample
increments. Updates Triggered counts adaptation events, Avg Delay measures samples between distribution
change and update trigger, rounded to nearest 100, False Positive Rate indicates updates without meaningful
distribution shift.

D.3 Multi-Step Continual Learning Results

This section provides comprehensive results from the multi-step continual learning experiments across all
three evaluated models. The temporal evolution spans five distinct periods (T1-T5) with each transition
representing a significant distribution shift in subject composition.

Figures [10| and [L1] complement the Qwen2.5-7B results presented in the main text, illustrating performance
evolution for Phi-4-Mini and LLaMA-3.1 models respectively. The consistent pattern across architectures
validates the generalizability of COMPASS-ECDA’s approach.

Tables and [I4]report mean accuracy with standard deviation across 3 random seeds for key checkpoints
(T1 and T5) and overall performance across the entire temporal span.

Method PROX T1 PROX T5 PROX Overall MMLU T1 MMLU T5 MMLU Overall
Naive Fine-tuning  0.2644+0.001 0.2704+0.024 0.27740.016 0.479£0.001  0.319+£0.058  0.363£0.085
Full Retraining 0.261+0.004  0.276£0.008 0.275+0.009 0.475+£0.002  0.471+0.003 0.470£0.004
EWC 0.25940.006  0.265+0.012  0.272£0.011 0.477£0.001  0.440+0.017 0.448+0.021
Random Rehearsal 0.2574+0.009 0.274+0.021 0.27040.018 0.481+£0.002  0.438+0.012  0.448+0.023
COMPASS-ECDA  0.2584+0.008 0.281+0.014 0.276£0.013 0.477£0.002  0.470+0.006 0.469£0.007

Table 12: Aggregate performance metrics for Phi-4-Mini-Instruct-3.8B.

Method

Naive Fine-tuning
Full Retraining
EWC

Random Rehearsal
COMPASS-ECDA

PROX T1

0.233£0.001
0.23440.002
0.23540.003
0.230£0.002
0.23240.001

PROX T5

0.246+0.028
0.251+0.011
0.241+0.014
0.236+0.010
0.252+0.012

PROX Overall

0.253£0.020
0.246+0.010
0.24540.010
0.239£0.009
0.25240.015

MMLU T1

0.519+0.002
0.517£0.002
0.520+£0.002
0.523+0.002
0.519£0.001

MMLU T5

0.391£0.044
0.50840.005
0.48440.013
0.485+0.013
0.506+0.008

MMLU Overall

0.428+0.067
0.511+0.006
0.494+0.018
0.493+0.020
0.509+0.007

Table 13: Aggregate performance metrics for LLaMA-3.1-Instruct-8B.

D.4 Memory-Performance Analysis

We investigate the relationship between distributional anchor buffer size and performance retention using

the Global MMLU to MMLU-ProX shift scenario.

The analysis explores buffer sizes ranging from 0%

representing pure regularization without rehearsal to 100% representing full rehearsal of all original training

data.
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Phi-4-Mini-Instruct-3.8B: Temporal Performance on New Tasks
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Figure 10: Temporal performance evolution for Phi-4-Mini-Instruct-3.8B across five distribution shifts. De-
spite limited model capacity, COMPASS-ECDA (dark blue) maintains stable adaptation with minimal for-
getting. The pronounced forgetting in naive fine-tuning (light blue) underscores the importance of explicit
retention mechanisms for smaller models.

Method PROX T1 PROX T5 PROX Overall MMLU T1 MMLU T5 MMLU Overall
Naive Fine-tuning  0.4064+0.002 0.4204+0.026  0.43040.023 0.604£0.002  0.491+£0.036  0.522+0.058
Full Retraining 0.4084+0.001  0.427+0.010 0.425+0.013 0.600£0.001  0.591+0.005 0.590£0.007
EWC 0.402+£0.001  0.418+0.016  0.422£0.016 0.603£0.001  0.576+£0.011  0.580+0.016
Random Rehearsal 0.4024+0.002 0.417+0.012 0.41840.013 0.600£0.002  0.570+0.010  0.579+0.014
COMPASS-ECDA  0.405+0.002 0.437£0.015 0.431£0.019 0.600£0.001  0.591+0.006 0.592+0.007

Table 14: Aggregate performance metrics for Qwen2.5-7B-Instruct.

Table [15] reveals diminishing returns beyond 5% distribution anchor buffer size in terms of mitigating for-
getting. Ultimately, the size of the buffer reflects how susceptible the network architecture is to catastrophic
forgetting, which remains low due to the nature of PEFT.

D.5 Hyperparameter Selection for COMPASS-ECDA

To determine optimal regularization strength EWC () and loss weight for the DAR buffer (3), we performed
a joint hyperparameter sweep over a predefined set of values for both hyperparameters. The search space for
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LLaMA-3.1-Instruct-8B: Temporal Performance on New Tasks
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Figure 11: Temporal performance evolution for LLaMA-3.1-Instruct-8B.

Buffer Global MMLU MMLU ProX

Size (%) A A

0 -10.9 +6.9
1 -5.0 +6.3
5) -1.6 +5.2
10 -1.0 +2.4
20 -0.7 +1.6

Table 15: Memory-performance trade-offs for distributional anchor buffers on Qwen2.5-7B. A shows change
from initial performance.

A was set to [0.1, 1, 2, 10, 100, 1000] to explore different orders of magnitude for the regularization penalty.
The search space for 5 was set to [0.001, 0.01, 0.1, 0.5] to evaluate different weights for the rehearsal loss.

For each pair of (A, 3), we trained the adapter on the distribution shift task, adapting from the initial Global
MMLU subjects to the new MMLU-ProX subjects. The optimal pair was selected based on its ability to
achieve the best Pareto-optimal trade-off on a held-out validation set, i.e., maximized performance on the
new MMLU-ProX subjects while ensuring performance degradation on the original Global MMLU subjects
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Figure 12: Distribution of optimal clustering parameters across 42 target languages. Left: K-means opti-
mal cluster number (K) selected by maximizing silhouette score. Middle: HDBSCAN optimal minimum
cluster size selected by maximizing DBCV score. Right: HDBSCAN optimal minimum samples parameter.
The balanced distribution between 5 and 10 indicates moderate density requirements for effective semantic
clustering.

remained minimal. This process identified A = 2 and 8 = 0.1 as the most effective combination. These
values were subsequently used for all COMPASS-ECDA experiments presented in the main paper.

E Clustering Methods

COMPASS’s performance depends on the quality of semantic clustering. We evaluated multiple clustering
algorithms and conducted parameter sweeps to identify optimal configurations for each target language.
For practical scenarios, we recommend conducting similar clustering hyperparameter investigations for each
language, considering additional hyperparameter values beyond the upper bounds considered in this study.
In this study, we use clustering metrics instead of downstream performance for efficiency, as fine-tuning each
adapter is relatively costly and labeled test data may not be available prior to deployment.

K-Means Clustering. Our K-means implementation was configured to test a range of clusters from K = 10
to K = 120 in steps of 5. We used the k-means++ initialization method with 10 different seeds for each
value of K and evaluated cosine distance metrics. The final number of clusters per target language was
selected by maximizing the silhouette score. Across all 42 languages, optimal K ranged from 80 to 120, with
no language achieving optimal performance below K = 80 (Figure left panel). The distribution is heavily
weighted toward higher values (K > 100) for 29 languages.

HDBSCAN Clustering. For HDBSCAN, we conducted a grid search over parameter combinations to find
optimal configurations, evaluating cluster quality using the Density-Based Clustering Validation (DBCV)
score, which accounts for varying cluster densities and shapes while penalizing noise points. We performed
a grid search over minimum cluster sizes of [5,10,15,20] and minimum samples of [1,5,10]. The optimal
minimum cluster size varied across languages (Figure middle panel), though the majority of languages
(22/42) achieved optimal clustering with min_cluster_size= 20. Only 4 languages required smaller values
of 10, corresponding to low-resource languages. The minimum samples parameter, which determines core
point density constraints, balanced between 5 and 10 (Figure right panel), with preference for 5 samples.
Only 4 languages (9.5%) achieved best performance with min_samples= 1. The preference for min_samplese
{5,10} indicates that COMPASS requires moderate density thresholds to distinguish meaningful semantic
clusters from noise, and larger minimums may net even better clustering.

Hierarchical Agglomerative Clustering. For hierarchical agglomerative clustering, we implemented a
two-step approach using Ward’s linkage method to build a hierarchical cluster tree and fcluster to cut the
dendrogram at an optimized number of clusters. After clustering, we compute cluster centers as the mean of
all embeddings in each cluster for allocating cluster assignments. We evaluated both Euclidean and cosine
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distance metrics. For cosine similarity, we normalize embeddings before computing the distance matrix. The
number of clusters was selected by maximizing the silhouette score over the range K = 80 to K = 120,
following from initial results on K-means. Optimal K values were distributed similarly to K-means, with
majority of languages optimized at values of K > 110.

Taylor-Butina Clustering. Taylor-Butina clustering is a density-based algorithm that iteratively: (1)
computes pairwise distances between all embeddings, (2) sorts points by their number of neighbors within
a threshold, (3) assigns points as cluster centers if they haven’t been claimed, and (4) assigns all neighbors
of a center to its cluster. We enhanced this with an adaptive threshold selection mechanism that uses
binary search to find the distance threshold within range [0.70,0.95] that yields an optimal number of
clusters. This approach iteratively adjusts the threshold between specified minimum and maximum values
until convergence, finding the threshold that produces the largest number of non-singleton clusters while
ensuring that at least 95% of the data points were assigned to a cluster.

F Computational Efficiency Analysis

Preprocessing Overhead. COMPASS incurs a one-time preprocessing cost for embedding generation and
clustering, which is amortized across all target languages. Using Jina-Embeddings-v3-570M (A100 GPU,
batch size 128), we embed 204K examples from Aya dataet in 42.4 minutes (averaged over 3 embedding
runs). HDBScan clustering on 204K 1024-dimensional embeddings required 2.2 hours on CPU. Amortized
over 42 target languages, the one-time cost of preprocessing was 4.15 minutes per language.

Per-Adapter Training Costs. Per-adapter training time for COMPASS for Phi4-Mini-3.8B, Llama-3.1-
8B, and Qwen2.5-7TB was 44.9, 104.7, and 86.3 minutes per language, respectively. Comparatively, per-
adapter training time was 17.9, 49.7, and 32.8 minutes per language, respectively, when only using the
target language training data and not incorporating the auxiliary training data. For full finetuning, we
observed increases in training time to 61.3, 133.2, and 110.6 minutes per language, respectively, for Phi4-
Mini-3.8B, Llama-3.1-8B, and Qwen2.5-7B. While rigorous comparison to full finetuning requires careful
experimental controls (batch size, rank) and depends on hardware configuration and usage of optimized
implementations, existing literature suggests LoRA and DoRA typically achieve up to 40% reductions in
peak memory compared to full finetuning, though there are certain settings where throughput can decrease
by up to 15% (Biderman et al, 2024; [Liu et al.| [2024)).

Inference Costs. COMPASS introduces minimal inference overhead through adapter loading and language
detection. Given sentence-length inputs, GlotLID-v3 latency averaged 6 milliseconds with the model already
loaded in memory. With all adapters pre-loaded, switching is less than 1 millisecond. In aggregate, these
add negligible overhead to typical LLM inference latency. When loaded dynamically, the DoRA adapters
introduced no more than 3% inference overhead compared to the base model across 3 runs on Global-
MMLU. Per-adapter memory overhead for Qwen2.5-7B-Instruct is approximately 40 MB (1.68 GB total for
42 adapters), representing roughly 10% additional storage relative to base model size.

Scaling Considerations. Adding support for a new language requires embedding the new language’s dev
set, computing cluster weights, sampling auxiliary data, and training one adapter. Assuming pre-computed
cluster assignments from the initial clustering run on the initial language set, supporting a new language
with a dev set of 3,000 examples required 496 seconds for the first three steps: embedding examples (248 sec),
computing cluster weights (174 sec), and sampling auxiliary data (74 sec). The primary bottleneck remains
adapter training (0.75 to 2.25 hours depending on the base model and data budget). While COMPASS-ECDA
update cycles add distribution shift detection and usage of incremental clustering, the scaling bottleneck
remains adapter retraining. Adding support for a new language entails linear scaling for storage ( 40 MB per
adapter) and constant inference overhead, as language detection and adapter loading times remain unaffected
by the total number of supported languages.

52



Published in Transactions on Machine Learning Research (11/2025)

G Statistical Testing

To assess statistical significance of performance differences between COMPASS and baseline methods, we
employ non-parametric statistical tests that leverage cross-language variance from our single-run experiments

across 42 languages (Global-MMLU) and 29 languages (MMLU-ProX).

Permutation tests. For each pairwise comparison (e.g., COMPASS vs. Target), we perform approximate
randomization tests by randomly shuffling the method labels across languages and recalculating the mean
performance difference. We repeat this process 10,000 times to construct an empirical null distribution under
the hypothesis of no systematic difference between methods. The p-value is computed as the proportion of
permutations yielding a difference as large or larger than the observed difference. This approach tests
whether COMPASS’s improvements are consistent across the language distribution or could arise from
random variation.

Effect sizes. We report Cohen’s d effect sizes to quantify the practical magnitude of improvements beyond
statistical significance. Effect sizes are calculated using the pooled standard deviation across languages and
interpreted using standard thresholds: small (d ~ 0.2), medium (d ~ 0.5), and large (d > 0.8). This addresses
the concern that with 42 languages, even small differences may achieve statistical significance despite limited
practical importance.

Sign tests. To evaluate whether improvements are distributed across languages rather than driven by
outliers, we use binomial sign tests that count how many languages improved with COMPASS versus how
many regressed. We test against the null hypothesis of equal probability (50%).
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