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ABSTRACT

Density ratio estimation (DRE) is a fundamental machine learning technique for
identifying relationships between two probability distributions. f -divergence loss
functions, derived from variational representations of f -divergence, are commonly
employed in DRE to achieve state-of-the-art results. This study presents a novel
perspective on DRE using f -divergence loss functions by deriving the upper and
lower bounds on Lp errors. These bounds apply to any estimator within a class
of Lipschitz continuous estimators, irrespective of the specific f -divergence loss
functions utilized. The bounds are formulated as a product of terms that include
the data dimension and the expected value of the density ratio raised to the power
of p. Notably, the lower bound incorporates an exponential term dependent on the
Kullback–Leibler divergence, indicating that the Lp error significantly increases
with the Kullback–Leibler divergence for p > 1, and this increase becomes more
pronounced as p increases. Furthermore, these theoretical findings are substantiated
through numerical experiments.

1 INTRODUCTION

Density ratio estimation (DRE) is a key technique in machine learning that calculates the density ratio
r∗(x) = q(x)/p(x) between two probability distributions based on samples drawn independently
from p and q. DRE is integral to various machine learning methods such as generative modeling
(???), mutual information estimation and representation learning (??), energy-based modeling (?),
and covariate shift and domain adaptation (??).

Recent advancements in DRE have been driven by neural network-based methods, which utilize
neural networks as density ratio estimators. These methods employ loss functions derived from
variational representations of f -divergence (??), where the optimal function corresponds to the
density ratio through the Legendre transform, achieving state-of-the-art results.

Amidst their success, ongoing research has started to elucidate the theoretical relationship between
the optimization of f -divergence loss functions and DRE accuracy. For integral probability metric
(IPM) loss functions, the upper and lower bounds of the Lp error in DRE have been established as
the minimax bounds of their optimization(??). More recent studies have focused on f -divergence
loss functions to derive the upper bounds (?) and the minimax upper and lower bounds for the
optimization of Shannon divergence loss (??).

However, several aspects of this relationship remain unresolved. First, the minimax lower bounds
do not represent the true lower bound of estimation accuracy for the actual density ratio. Second,
the connection between the true magnitudes of f -divergences and the sample size requirements for
DRE using divergence loss functions is not completely understood. Specifically, the impact of the
true amount of Kullback–Leibler (KL) divergence on the sample size needed for DRE using the
KL-loss function is unclear, despite known exponential increases in sample size requirements for KL-
divergence estimation as the true KL-divergence widens (???). Finally, it is not understood whether
the Lp errors, e.g., the root mean square errors (RMSE), of DRE are statistically equivalent, regardless
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of the choice of f -divergence loss function, such as the total variation loss or the KL-divergence loss
function.

This study aims to address uncertainties in DRE using f -divergence loss functions by deriving the
upper and lower bounds that are independent of the choice of f -divergence. However, the theoretical
optimization of f -divergence loss functions is challenging owing to their reliance on sample sets
from two distributions. The lack of overlap in these sample sets leads to unstable optimization
points, causing the losses to fall below their theoretical optimal values. Practically, this issue is often
mitigated by implementing early stopping while monitoring validation losses.

We integrate this practical approach into our theoretical analysis framework through a conceptual
reformulation of the loss functions, thus bridging the gap between practical and theoretical behaviors
of these functions. Subsequently, we derive upper and lower bounds for the Lp error in DRE by
optimizing f -divergence loss functions. These bounds are derived from the expectation of the distance
between the nearest neighbors in observations, assuming the L-Lipschitz continuity of the energy
function of the distributions and the compactness of the support.

The upper and lower bounds are formulated as a product of terms involving the data dimension and
the expectation of the density ratio raised to the power of p. Notably, the lower bound includes an
exponential term of the KL-divergence, indicating that the Lp error significantly increases as the
KL-divergence increases for p > 1, with the rate of increase accelerating for larger values of p.
These bounds are applicable to a group of Lipschitz continuous estimators, irrespective of the specific
f -divergence loss functions employed. The theoretical implications are validated through numerical
experiments.

To summarize, the key contributions of this study are as follows: (1) We provide common upper
and lower bounds for the Lp error in DRE through optimizations of variational representations of
f -divergences, introducing a novel understanding of DRE using f -divergence loss functions. (2) We
empirically investigate the relationship between KL-divergence, data dimension, and the estimation
accuracy of DRE through optimizations of variational representations of f -divergences. Specifically,
we discover that the Lp error significantly increases with the rise in KL-divergence when p > 1, and
this increase is exacerbated by the magnitude of the order p.

Related Work. This study provides upper and lower bounds on convergence rates for nonparametric
density ratio estimation using f -divergence optimization. Relevant prior work includes studies on
the minimax convergence rates for density estimation within the context of GAN optimization,
specifically for Wasserstein GANs (?) and vanilla GANs (?). For Wasserstein GAN optimization,
? and ? established the minimax convergence rates for the IPW loss, which encompasses the total
variation among f -divergences. Additionally, ? extended these results to the Wasserstein-p distance
for p > 1. In the context of vanilla GAN optimization, ? and ? presented minimax upper and
lower convergence rates for the Shannon divergence loss, providing an upper bound for the L2

error. Beyond GAN-related research, ? presented an upper bound for the Hellinger distance in DRE
using the KL-divergence loss, thereby providing a minimax upper bound for the L1 error in DRE.
Additionally, foundational work by ? established a minimax convergence rate for nonparametric
regression, which is also applicable to an upper bound for the L1 error in nonparametric density
estimation.

2 PRELIMINARIES: NOTATION, SETUP, AND f -DIVERGENCE LOSS
FUNCTIONS

In this section, we introduce the notation, problem setup, and the variational representation of f -
divergence, along with the corresponding loss functions that underpin the analysis in subsequent
sections.

2.1 NOTATION, PRELIMINARY CONCEPTS, AND SETUP

Notation. Random variables are denoted by uppercase letters, such as X . Lowercase letters represent
specific values of these random variables; for instance, x denotes a value of the random variable
X . Boldface letters, X and x, denote the sets of random variables and their corresponding values,
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respectively. ∥y − x∥∞ denotes the maximum norm in Rd. i.e., ∥y − x∥∞ = max1≤i≤d |yi − xi|
for y = (y1, y2, . . . , yd) and x = (x1, x2, . . . , xd). diag(Ω) denotes the diameter of Ω. Specifically,
let diag(B) = infr∈R{B ⊆ ∆(a, r) | ∃a ∈ B}, where ∆(a, r) denotes the d-dimensional interval
centered at a with each side of length r: ∆(a, r) = {x ∈ Rd| ∥x− a∥∞ < r/2}. Op (an) denotes
stochastic boundedness with rate an in µ. i.e., X = Op(an) (as N → ∞) ⇔ for all ε > 0, there
exist δ(ε) > 0 and N(ε) > 0 such that µ (|X| /an ≥ δ(ε)) < ε for all n ≥ N(ε).

Preliminary Concepts. P and Q are used as the probability measures on (Ω,F ), where F denotes
the σ-algebra on Ω. P is called absolutely continuous with respect to Q, P (A) = 0 whenever
Q(A) = 0 for any A ∈ F , which is represented as P ≪ Q. dP

dQ denotes the Radon–Nikodým
derivative of P with respect to Q for P and Q with P ≪ Q. µ denotes a probability measure on Ω
with P ≪ µ and Q≪ µ. An example of µ is (P +Q)/2. EP [·] denotes the expectation under the
distribution P , i.e., EP [ϕ(x)] =

∫
Ωp
ϕ(x)dP (x), where ϕ(x) represents a measurable function over

Ω.

Setup. P and Q are probability distributions on Ω ⊂ Rd with unknown probability densities p and q,
respectively. We assume p(x) > 0 ⇔ q(x) > 0 almost everywhere x ∈ Ω. 1

2.2 DRE WITH f -DIVERGENCE VARIATIONAL REPRESENTATION

Herein, we introduce the f -divergence variational representation along with the corresponding loss
functions used for DRE.

Definition 2.1 (f -divergence). The f -divergence Df between two probability measures P and Q
is induced by a convex function f that satisfies f(1) = 0, which can be defined as Df (Q||P ) =
EP [f(dQ/dP (x))].

Various divergences are specific instances derived by choosing an appropriate generator function f .
For example, the function f(u) = u · log u yields the Kullback–Leibler divergence.

We then derive the variational representations of f -divergences using the Legendre transform of the
convex conjugate of a twice differentiable convex function f , f∗(ψ) = supu∈R{ψ · u− f(u)} (?):

Df (Q||P ) = sup
ϕ≥0

{
EQ

[
f ′(ϕ)

]
− EP

[
f∗(f ′(ϕ))

]}
, (1)

where the supremum is required over all measurable functions ϕ : Ω → R with EQ[ |f ′(ϕ)| ] <∞
and EP [ |f∗(f ′(ϕ))| ] < ∞. The maximum value is achieved at ϕ(x) = dQ/dP (x). Pairs of the
terms f ′(ϕ) and f∗(f ′(ϕ)) in Equation (1) for major f -divergences, along with their corresponding
convex functions f , are provided in Table 2 in the Appendix.

By substituting ϕ with a neural network model ϕθ and replacing the expectationE with sample means
Ê, the optimal function for Equation (1) is trained through back-propagation using an f -divergence
loss function.

Lf (ϕθ) = −
{
ÊQ

[
f ′(ϕθ)

]
− ÊP

[
f∗(f ′(ϕθ))

]}
. (2)

Formally, we define the f -divergence loss function within a probabilistic theoretical framework as
follows:

Definition 2.2 (f -Divergence Loss). Let X̂P [R] = {X1
P ,X

2
P , . . . ,X

R
P }, Xi

P
iid∼ P denote R i.i.d.

random variables from P , and let X̂Q[S] = {X1
Q,X

2
Q, . . . ,X

S
Q}, Xi

Q
iid∼ Q denote S i.i.d. random

variables fromQ. Thereafter, for a twice differentiable convex function f , f -divergence loss L(R,S)
f (·)

is defined as follows:

L(R,S)
f (ϕ) =

1

S
·

S∑
i=1

−f ′
(
ϕ(Xi

Q)
)
+

1

R

R∑
i=1

f∗
(
f ′
(
ϕ(Xi

P )
))
, (3)

where ϕ denotes a measurable function over Ω such that ϕ : Ω → R>0.
1In this study, q(x)/p(x) is written for dQ

dP
(x) using the Radon–Nikodým density representation for read-

ability.
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3 MAIN RESULTS

The key findings of this study are twofold. First, we establish common upper and lower bounds for
the Lp error in DRE by employing variational f -divergence optimization. Second, we empirically
investigate the relationship between KL-divergence, data dimension, and the estimation accuracy
of DRE through variational f -divergence optimization. Specifically, we discover that the Lp error
significantly increases with the rise in KL-divergence when p > 1, and this increase is exacerbated
by the magnitude of the order p.

3.1 THEORETICAL RESULTS.

In this study, we outline the assumptions necessary for deriving the upper and lower bounds of the
DRE. The assumptions are straightforward and primarily involve the consideration of Lipschitz
continuous estimators. Specifically, we assume the L-Lipschitz continuity of the energy function of
the distributions, T ∗(x) = − log dQ/dP (x).
Assumption 3.1 (Assumption for the Upper Bound). The following assumption is imposed on the
probability distributions P and Q.

U1. T ∗(x) = − log dQ/dP (x) is L-Lipschitz continuous with L > 0 on Ω.
Assumption 3.2 (Assumptions for the Lower Bound). The following assumptions are imposed on
the probability distributions P and Q.

L1. T ∗(x) = − log dQ/dP (x) is L-bi-Lipschitz continuous with L > 1 on Ω.

L2. EP

[(
dQ/dP

)p]
<∞ where p ≤ d.

For the probability distributions P and Q, Assumption L1 is crucial for deriving the lower bound of
the Lp error in DRE. Further details on this assumption can be found in Remark 4.6 in Section 4.2.

Additionally, Assumptions 3.3 and 3.4 are necessary for deriving both the upper and lower bounds of
the DRE.
Assumption 3.3 (Assumptions for the Convex Function f ). The convex function f is assumed to
satisfy the following: (F1) f is three-times differentiable; (F2) f ′′(u) > 0 for all u > 0; and (F3)
EP

[
f ′′(dQ/dP )

]
<∞.

Assumption 3.4 (Assumption for the Support). The support Ω is assumed to satisfy the following:
(O1) diag(Ω) <∞.

Under these conditions, we obtain the upper and lower bounds for the Lp error in DRE through
variational f -divergence optimization.
Theorem 3.5 (Informal. See Theorem 4.5 and 4.8). Assume Ω is a compact set in Rd, where
d ≥ 3, and f satisfies Assumption 3.3. Let P and Q denote the probability measures on Ω, and
let ϕ represent a K-Lipschitz function that minimizes the f -divergence loss functions. Let ϕ be a
K-Lipschitz function that minimizes the f -divergence loss functions L(R,S)

f (·) defined as Equation
(3) using early stopping. Additionally, let N = min{R,S}.

(Upper Bound) Assume Assumption 3.1: Thereafter, Equation (4) holds for 1 ≤ p ≤ d/2 such that∥∥∥∥q(x)p(x)
− ϕ(x)

∥∥∥∥
Lp(Ω,P )

≲
diag(Ω)

N1/d
·

L · E

[(
dQ

dP

)2·p
]1/(2·p)

+K

 . (4)

(Lower Bound) Assume Assumption 3.2: Equations (5) and (6) hold for 1 ≤ p ≤ d such that

EX1
P ···XN

P

[ ∥∥∥∥q(x)p(x)
− ϕ(x)

∥∥∥∥
Lp(Ω,P )

]
≳

1

N1/d
·

{
1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diag(Ω)

}
(5)

≳
1

N1/d
·
{
1

L
· e

(p−1)
p ·KL(P ||Q)−1 −K · diag(Ω)

}
, (6)
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where ∥ ·∥Lp(Ω,P ) denotes the Lp norm on Ω and the Lebesgue integral on P andKL(P ||Q) denotes
the KL-divergence between P and Q.

These bounds are applicable to all K-Lipschitz continuous estimators optimized using the f -
divergence loss functions with early stopping, as discussed in Section 4.3 and supported by Theorem
4.8.

Theorem 3.5 indicates that the curse of dimensionality occurs when p = 1. For p > 1, both the curse
of dimensionality and the large sample requirement for high KL-divergence data occur concurrently.
Equation (6) demonstrates that the Lp error escalates significantly with increasing KL-divergence for
p > 1, and this increase accelerates as p increases. These theoretical findings are corroborated by
numerical experiments, which are discussed in the subsequent section.

3.2 EXPERIMENTAL RESULTS.

We empirically verified the relationship among KL-divergence, data dimension, and estimation
accuracy of DRE through variational f -divergence optimization. The results, which support the
implications of Theorem 3.5, are detailed in Section D in the Appendix.

Lp Errors vs. the KL-Divergence in Data We conducted the experiments on the relationship
between L1, L2, and L3 errors in DRE and the KL-divergence of the data. In the experiments, we
generated 100 sets of 5-dimensional datasets with the KL-divergence of 1, 2, 4, 6, 8, 10, 12, and 14.
For each dataset, DRE was conducted using α-divergence and KL-divergence loss functions, then L1,
L2, and L3 errors were observed. We reported the results as Figure 1. The details of the experimental
settings and neural network training are provided in Section D in the Appendix.

As displayed in Figure 1, the estimation errors for p > 0 increased significantly, which accelerates as
p becomes larger. In contrast, when p = 0, a relatively mild increase was observed. As indicated by
Theorem 3.5, these results highlight the impact of the KL-divergence in the data on Lp error with
p > 1 in DRE f -divergence loss functions.

Lp Errors vs. the Dimensions of Data We conducted experiments to investigate the relationship
between L1, L2, and L3 errors in DRE and the dimensionality of the data. In the experiments, we
generated 100 sets of datasets of 50, 100 and 200 dimensions with the KL-divergence amounts of 3.
For each dataset, DRE was conducted using α-divergence and KL-divergence loss functions, then L1,
L2, and L3 errors were observed. We reported the results as Figure 2. The details of the experimental
settings and neural network training are provided in Section D in the Appendix.

As depicted in Figure 2, the estimation errors L1, L2, and L3 for p > 0 increased as the data
dimensionality increased for both the α-divergence and KL-divergence loss functions. These results
indicate that the curse of dimensionality occurs equally across the Lp errors, as stated by Theorem
3.5.

4 OVERVIEW OF UPPER AND LOWER BOUND DERIVATIONS

In this section, we outline the derivation of the upper and lower bounds. We begin by introducing a
conceptual reformulation of the f -divergence loss function, which forms the basis of our theoretical
framework. Next, we derive the upper and lower bounds for DRE in terms of LP error, based on this
reformulation. Finally, we extend these results to the optimization of the f -divergence loss function,
incorporating early stopping and monitoring validation losses, which constitutes the core theoretical
contribution of this study. Detailed statements and proofs for the theorems mentioned in this section
are provided in Section C of the Appendix.

4.1 CONCEPTUAL REFORMULATION OF THE f -DIVERGENCE LOSS FUNCTIONS

The optimization of f -divergence loss functions, denoted as L(R,S)
f (ϕ) in Equation (3), presents both

practical and theoretical challenges owing to their tendency to overfit the training data.

To more deeply understand this issue, let us consider a deterministic setting as described in Definition
2.2, where (x1

P ,x
2
P , . . . ,x

R
P ) = (1, 2, . . . , R) and (x1

Q,x
2
Q, . . . ,x

S
Q) = (R + 1, R + 2, . . . , R +
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S). Notably, {xi
P }Ri=1 ∩ {xi

Q}Si=1 = ∅. In this setup, we observe that L̂(R,S)
f (ϕ) → −∞ as

f∗
(
f ′
(
ϕ(xi

P )
))

→ −∞ and −f ′
(
ϕ(xj

Q)
)
→ −∞ for all 1 ≤ i ≤ R and 1 ≤ j ≤ S. In

practice, this issue is addressed by implementing early stopping based on monitoring validation losses
during optimization. The present theoretical framework accommodates this practical strategy, which
facilitates an analysis of both the optimization process and its implications for downstream tasks such
as DRE.

To reconcile the practical and theoretical behaviors of f -divergence loss functions within our frame-
work, we introduce a conceptual reformulation of the loss function.
Definition 4.1 (µ-Representation f -Divergence Loss). Let µ be a probability measure with P ≪ µ

and Q≪ µ, and let X̂µ[N ] = {X1
µ, . . . ,X

N
µ } denote N i.i.d. random variables from µ. For a twice

differentiable convex function f , let

l̃f (u;x) = −f ′ (u) · dQ
dµ

(x) + f∗ (f ′ (u)) · dP
dµ

(x), (7)

where f∗ denotes the Legendre transform of f : f∗(ψ) = supu∈R{ψ · u− f(u)}. Additionally, let
N = min{R,S}.

The µ-representation of the f -divergence loss L(R,S)
f (·) in Equation (3) at the points X̂µ[N ] is defined

as

L̃(N)
f (ϕ) =

1

N
·

N∑
i=1

l̃f (ϕ;X
i
µ), (8)

where ϕ is a measurable function over Ω such that ϕ : Ω → R>0.

This representation introduces an error of 1/
√
N between the practical f -divergence loss function

L(R,S)
f (ϕ) and the µ-representation f -divergence loss L̃(N)

f (ϕ). However, this error is negligible
when d ≥ 3, which will be discussed in Section 4.3.

The optimization properties of this conceptual loss function are encapsulated in Proposition 4.2.

Proposition 4.2. Assume that f satisfies Assumption 3.3. Let ϕ∗ = argminϕ:Ω→R>0 L̃
(N)
f (ϕ). Then,

ϕ∗(X
i
µ) =

dQ
dP (Xi

µ), for i = 1, 2, . . . , N .

This reformulation ensures that the conceptual loss function does not diverge. Furthermore, all
optimal points in the conceptual loss function are aligned with the ideal density ratios.

4.2 DERIVATION OF UPPER AND LOWER BOUNDS FOR OPTIMAL FUNCTIONS OF THE
µ-REPRESENTATION f -DIVERGENCE LOSS FUNCTIONS

In this section, we derive upper and lower bounds for the Lp error in DRE for the optimal function of
L(N)
f (·) defined in the previous section, based on the expected distance between the nearest neighbors

of each Xi
µ, 1 ≤ N .

Hereafter, X(1)
µ[N ](x) denotes the nearest neighbor of x in X̂µ[N ] = {X1

µ, . . . ,X
N
µ }. Specifically,

define X
(1)
µ[N ](x) as Xi

µ in X̂µ[N ] such that ∥Xl
µ − x∥∞ > ∥Xi

µ − x∥∞, for all l < i, and ∥Xu
µ −

x∥∞ ≥ ∥Xi
µ − x∥∞ for all u > i. As in the previous section, let ϕ∗ = argminϕ:Ω→R>0

L̃(N)
f (ϕ).

As presented in Proposition 4.2, the optimal points of the µ-representation f -divergence loss functions
L̃(N)
f (ϕ) coincide with the ideal density ratios. This fact provides the following equation, serving as

the key bridge between the density ratio and its estimation.

ϕ∗
(
Xi

µ

)
=
dQ

dP

(
Xi

µ

)
=
dQ

dP

(
X

(1)
µ[N ]

(
Xi

µ

))
. (9)

Based on this equation, we can obtain∣∣∣∣ϕ∗(X(1)
µ[N ](x)

)
− ϕ∗(x)

∣∣∣∣p =

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ∗(x)

∣∣∣∣p . (10)
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Using the triangle inequality in the Lp norm for the density ratios at x and its nearest neighbor, we
obtain{

EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

−
{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ∗(x)

∣∣∣∣p}1/p

≤
{
EP

∣∣∣∣dQdP (x)− ϕ∗(x)

∣∣∣∣p}1/p

≤
{
EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

+

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ∗(x)

∣∣∣∣p}1/p

. (11)

Assuming the L-bi-Lipschitz continuity of the energy function of the density ratio, T ∗(x) =
− log q(x)/p(x), we yield

1

Lp

(
dQ

dP

(
x
))p ∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

+Op

(
1

N1/(2d)

)
≤
∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p
≤ Lp ·

(
dQ

dP

(
x
))p ∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

+Op

(
1

N1/(2d)

)
. (12)

Additionally, from the K-Lipschitz continuity of ϕ∗(·) and Equation (9),∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ∗(x)

∣∣∣∣p =
∣∣∣ϕ∗(X(1)

µ[N ](x)
)
− ϕ∗(x)

∣∣∣p ≤ Kp ·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞
. (13)

Equations (12) and (13) provide the upper and lower bounds of the difference in density ratios
between x and its nearest neighbor X(1)

µ[N ](x) using their distance.

To evaluate the expectation of the distance between x and its nearest neighbor X(1)
µ[N ](x), we present

the following theorems: Theorem 4.3 provides an upper bound for the expectation on the right side of
Equation (12); Theorem 4.4 establishes a lower bound for the expectation on the left-hand side.

Theorem 4.3. Assume that Ω is a compact set. Then, for 1 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ diag(Ω) ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

. (14)

Theorem 4.4. Let P and Q be probability measures on a compact set Ω in Rd with d ≥ 1. Assume
that P ≪ λ and Q≪ λ, where λ denotes the Lebesgue measure on Rd. Let p be a positive constant
such that p ≥ 1. Assume E[(dQ/dP )p] <∞. Then,

lim
N→∞

N1/d ·
{
EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]}1/p

≥ e−1 ·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

, (15)

where EX̂P [N]
[·] denotes the expectation over each variable in X̂P [N ] = {X1

P ,X
2
P , . . . ,X

N
P }.
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Notably, using Jensen’s inequality on the right-hand side of Equation (15) in Theorem 4.4, the
KL-divergence between P and Q appears in the lower bound such that

e−1 ·
{
EP

[{
dQ

dP
(x)

}p]}1/p

= e−1 ·

{
EQ

[{
dQ

dP
(x)

}p−1
]}1/p

= e−1 ·
{
EQ

[
e(p−1)·log dQ

dP (x)−1

]}1/p

≥ e−1 ·
{
eEQ

[
(p−1)·log dQ

dP (x)
]}1/p

= e
p−1
p ·KL(Q||P )−1. (16)

We derive the upper and lower bounds for the Lp error in DRE for the optimally estimated functions
L̃(N)
f (·), as stated in Theorem 4.5.

Theorem 4.5. Assume Ω is a compact set in Rd with d ≥ 3, and that f satisfies Assumption
3.3. Let P and Q be probability measures on Ω, assuming that P ≪ λ and Q ≪ λ, where λ
denotes the Lebesgue measure on Rd. Let T ∗(x) be the energy function of dQ/dP (x) defined as
T ∗(x) = − log dQ/dP (x). Let F̃ (N)

K-Lip denote the set of all K-Lipschitz continuous functions on Ω

that minimize L̃(N)
f (·). Specifically, define

F̃ (N) =

{
ϕ∗ : Ω → R>0

∣∣∣ L̃(N)
f (ϕ∗) = min

ϕ
L̃(N)
f (ϕ)

}
, (17)

and
FK-Lip =

{
ϕ : Ω → R>0

∣∣∣ ∣∣ϕ(y)− ϕ(x)
∣∣ ≤ K ·

∥∥y − x
∥∥
∞ for all y,x ∈ Ω

}
. (18)

Subsequently, let F̃ (N)
K-Lip = F̃ (N) ∩ FK-Lip .

(Upper Bound) Assume that T ∗(x) satisfies Assumption 3.1. Thereafter, Equation (19) holds for
1 ≤ p ≤ d/2, such that for any ϕ ∈ F̃ (N)

K-Lip , such that

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

≤ L · diag(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diag(Ω). (19)

(Lower Bound) Assume that T ∗(x) satisfies Assumption 3.2. Then, Equations (20) and (21) hold for
any ϕ ∈ F̃ (N)

K-Lip , such that

lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p
]

≥ 1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diag(Ω) (20)

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 −K · diag(Ω) (21)

Remark 4.6. Equation (12) when L = 1 suggests that
∣∣dQ/dP (y) − dQ/dP (x)

∣∣ = ∥∥y − x
∥∥
∞,

for all x and y in Ω. This typical case is when dQ/dP (x1, x2, . . . , xd) ≡ dQ/dP (x1, x2, . . . , xd′)
with d′ < d. Therefore, this case typically occurs when dQ/dP (x) is a replication of its lower-
dimensional distribution. In this case, the upper and lower bounds for the Lp error in DRE are
considered to follow the lower dimension.

4.3 DERIVATION OF UPPER AND LOWER BOUNDS FOR OPTIMAL FUNCTIONS OF THE
f -DIVERGENCE LOSS FUNCTIONS

To establish upper and lower bounds for practical DRE using f -divergence loss function optimization,
we initially statistically evaluate the discrepancy between the outputs from the practically optimized

8
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functions L(R,S)
f (·), employing early stopping based on validation losses, and the theoretically

optimized functions L̃(N)
f (·). Next, we demonstrate that this discrepancy is negligible when d ≥ 3.

Finally, the upper and lower bounds for DRE are expressed in terms of Lp error for the f -divergence
loss function optimization using early stopping, which constitutes the final theoretical result of this
study.

First, according to the central limit theorem, an error of order 1/
√
N in probability occurs when

measuring validation losses.

L(R,S)
f (ϕ)− Eµ

[
L(R,S)
f (ϕ)

]
= Op

(
1√
N

)
. (22)

Equation (22) implies that there is an error margin of Op

(
1√
N

)
when monitoring the validation

losses for early stopping in the optimization of L(R,S)
f (ϕ).

Subsequently, we utilize the following theorem to demonstrate that the optimization of Equation
(22), employing early stopping based on validation losses, is governed by the optimization of the
µ-representation f -divergence loss functions L̃(N)

f (·).
Theorem 4.7. Assume the same assumptions as in Proposition 4.2. Let ϕ∗ =

argminϕ:Ω→R>0
L̃(N)
f (ϕ). Therefore, for any measurable function ϕ : Ω → R>0,

ϕ(Xi
µ)− ϕ∗(X

i
µ) = Op

(
1√
N

)
, for 1 ≤ i ≤ N,

⇐⇒ L(R,S)
f (ϕ)− min

ϕ:Ω→R>0

Eµ

[
L(R,S)
f (ϕ)

]
= Op

(
1√
N

)
, (23)

where {X1
µ,X

2
µ, . . . ,X

N
µ } is defined in Definition 4.1.

In Equation (23), the first term on the right-hand side denotes the empirical risk of L(R,S)
f (ϕ) using

validation data, whereas the second term represents the minimum value of its true error. This equation
illustrates that when L(R,S)

f (ϕ) is within the actual early stopping margin, specifically Op

(
1√
N

)
,

the function ϕ deviates from the optimal function of L̃(N)
f (ϕ) by no more than Op

(
1√
N

)
.

Based on Equation (23), we define the optimal function of L(R,S)
f (ϕ) for use with early stopping

while monitoring validation losses as follows:

ϕval is optimal in the optimization of L(R,S)
f (ϕ) using early stopping

≜ ϕ∗ +Op

(
1√
N

)
, where ϕ∗ = arg min

ϕ:Ω→R>0

Eµ

[
L̃(N)
f (ϕ)

]
. (24)

The difference Op

(
1√
N

)
, appearing in Equation (24), is negligible for DRE when d ≥ 3. Indeed,

using the triangle inequality in the Lp norm for ϕ∗ = argminϕ:Ω→R>0 L̃
(N)
f (ϕ) and Equation (20),

we observe{
EP

∣∣∣∣dQdP (x)− ϕval(x)

∣∣∣∣p}1/p

≥
{
EP

∣∣∣∣dQdP (x)− ϕ∗(x)

∣∣∣∣p}1/p

︸ ︷︷ ︸
=O

(
1

N1/d

)
−
{
EP

∣∣∣∣ϕval(x)− ϕ∗(x)

∣∣∣∣p}1/p

︸ ︷︷ ︸
=O

(
1√
N

)
≪ 1

N1/d

.

(25)

Therefore, we finally obtain the following Theorem 4.8.
Theorem 4.8. Assume the same assumptions and notations as in Theorem 4.5. Additionally, define

F (N)
K-Lip =

{
ϕ ∈ FK-Lip

∣∣∣ ∃ϕ∗ ∈ F̃ (N)
K-Lip such that ϕ = ϕ∗ +Op

(
1√
N

)}
. (26)

That is, F (N)
K-Lip denotes the set of all functions that differ by at most Op

(
1√
N

)
from some functions

that minimize L̃(N)
f (·). Therefore, the same results as in Theorem 4.5 hold for all ϕ ∈ F (N)

K-Lip .

9
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5 CONCLUSIONS

We have established upper and lower bounds on the Lp errors in DRE through the optimization of
f -divergence loss functions. These bounds are applicable to any member of a group of Lipschitz con-
tinuous estimators, regardless of the specific f -divergence loss function used. These bounds provide
new insights into how the dimensionality of data and the KL divergence between distributions affect
the accuracy of DRE. Furthermore, the numerical experiments corroborate these theoretical findings,
demonstrating that the relationship between Lp errors, KL divergence, and data dimensionality aligns
with the theoretical implications derived from the bounds. This research faces limitations, particularly
in high-dimensional settings where the curse of dimensionality and large sample requirements pose
challenges. Future studies could refine the theoretical framework to explore loss functions that
improve DRE in complex, high-dimensional tasks.

10
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A ORGANIZATION OF THE SUPPLEMENTARY DOCUMENT

This supplementary document is organized as follows: Section B provides a list of notations used in
this study. Section C presents the proofs referenced in Sections 3 and 4. Section D provides details of
the experiments conducted. Section E explores further discussions related to this study.

Additionally, the code used for the numerical experiments is included as supplementary material.

B NOTATIONS

We list all notations used in the Appendix of this study in Table 1.

C PROOFS

In this section, we present the theorems and proofs referenced in this study. We begin by summarizing
all the definitions and assumptions stated in previous sections, and then provide the theorems and
proofs used throughout this study.

C.1 DEFINITIONS AND ASSUMPTIONS IN SECTIONS 2, 3, AND 4

C.1.1 DEFINITIONS

Definition C.1 (f -Divergence (Definition 2.1 restated)). The f -divergence Df between two proba-
bility measures P and Q, which is induced by a convex function f satisfying f(1) = 0, is defined as
Df (Q||P ) = EP [f(q(x)/p(x))].

Definition C.2 (f -Divergence Loss (Definition 2.2 restated)). Let X̂P [R] = {X1
P ,X

2
P , . . . ,X

R
P },

Xi
P

iid∼ P denote R i.i.d. random variables from P , and let X̂Q[S] = {X1
Q,X

2
Q, . . . ,X

S
Q}, Xi

Q
iid∼ Q

denote S i.i.d. random variables from Q. Then, for a twice differentiable convex function f ,
f -divergence loss L(R,S)

f (·) is defined as follows:

L(R,S)
f (ϕ) =

1

S
·

S∑
i=1

−f ′
(
ϕ(Xi

Q)
)
+

1

R

R∑
i=1

f∗
(
f ′
(
ϕ(Xi

P )
))
, (27)

where ϕ is a measurable function over Ω such that ϕ : Ω → R>0.
Definition C.3 (µ-Representation f -Divergence Loss (Definition 4.1 restated)). Let f be a twice
differentiable convex function f . Then, µ-representation function of f for u > 0 at a point x ∈ Ω,
which is written for l̃f (u) in an abbreviated form, is defined as

l̃f (u;x) = −f ′ (u) · dQ
dµ

(x) + f∗ (f ′ (u)) · dP
dµ

(x), (28)

where f∗ denotes the Legendre transform of f : f∗(ψ) = supu∈R{ψ·u−f(u)}. LetN = min{R,S},
and let X̂µ[N ] = {X1

µ, . . . ,X
N
µ } denote N i.i.d. random variables from µ. Then, µ-representation of

the f -divergence loss L(R,S)
f (·) in Equation (27) at the points X̂µ[N ] is defined as

L̃(N)
f (ϕ) =

1

N
·

N∑
i=1

l̃f (u;X
i
µ) (29)

where ϕ is a measurable function over Ω such that ϕ : Ω → R>0.

C.1.2 ASSUMPTIONS

Assumption C.4 (Assumption for the Upper Bound (Assumption 3.1 restated)). The following
assumption is imposed on the probability distributions P and Q.

U1. T ∗(x) = − log dQ/dP (x) is L-Lipschitz continuous with L > 0 on Ω. i.e., ∃L > 0 s.t.∣∣T ∗(y)− T ∗(x)
∣∣ ≤ L ·

∥∥y − x
∥∥
∞ for any y,x ∈ Ω.

11
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Table 1: Notations and definitions used in the proofs
Notations Definitions, Meanings

(Capital, small, and bold let-
ters)

Random variables are denoted by capital letters; for example,
A. Small letters are used for values of the random variables
corresponding to the capital letters. Bold letters A and a represent
sets of random variables and their values.

R, Rd The set of all real numbers and the d-dimensional vector space
over the real numbers, respectively.

R>0 The set of all positive real numbers: R>0 = {x ∈ R | x > 0}.
Ω A subset of Rd: Ω ⊂ Rd.
f(x) = O(g(x)), as x→ a Asymptotic boundedness with rate g(x) as x → a: f(x) =

O(g(x)) ⇔ lim supx→a |f(x)/g(x)| ≤ C, where C > 0.
f(x) = o(g(x)), as x→ a Asymptotic domination with rate g(x) as x → a: f(x) =

o(g(x)) ⇔ limx→a f(x)/g(x) = 0.
X = Op(aN ), as N → ∞ Stochastic boundedness with rate aN in µ: X = Op(aN ) ⇔

for all ε > 0, there exist δ(ε) > 0 and N(ε) > 0 such that
µ (|X| /aN ≥ δ(ε)) < ε for all N ≥ N(ε).

X = op(aN ), as N → ∞ Convergence in probability with rate aN in µ: X = op(aN ) ⇔
for all ε > 0, for all δ > 0, there exists N(ε, δ) > 0 such that
µ(|X|/aN ≥ δ) < ε for all N ≥ N(ε).

P ≪ Q P is absolutely continuous with respect to Q.
P , Q A pair of probability measures with P ≪ Q and Q≪ P .
µ A probability measure with P ≪ µ and Q≪ µ.
dP
dQ The Radon–Nikodým derivative of P with respect to Q.
X̂P [R] R i.i.d. random variables from P : X̂P [R] = {X1

P ,X
2
P , . . . ,X

R
P },

where Xi
P

iid∼ P .
X̂Q[S] S i.i.d. random variables from Q: X̂Q[S] = {X1

Q,X
2
Q, . . . ,X

S
Q},

where Xi
Q

iid∼ Q.
N N = min{R,S}.
X̂µ[N ] N i.i.d. random variables from µ: X̂µ[N ] = {X1

µ,X
2
µ, . . . ,X

N
µ },

where Xi
µ

iid∼ µ.
X

(1)
µ[N ](x) The nearest neighbor variable of x in X̂µ[N ]: X

(1)
µ[N ](x) is the Xi

µ

such that ∥Xi
µ − x∥ < ∥Xj

µ − x∥ for all j ̸= i.
Df (Q||P ) f -divergence: Df (Q||P ) = EP [f(q(x)/p(x))]. See Definition

C.1.
L(R,S)
f (·) f -divergence loss function. See Definition C.2.

l̃f (u;x) µ-representation of the f -divergence loss function at x:
l̃f (u;x) = −f ′ (u) · dQ

dµ (x) + f∗ (f ′ (u)) · dP
dµ (x).

L̃(N)
f (·) µ-representation of the f -divergence loss function L(R,S)

f (·). See
Definition 4.1.

Lf (ϕ) The expectation of the µ-representation of the f -divergence loss
on µ. See Lemma C.11.

∥ · ∥ The Euclidean norm.
∥ · ∥∞ The maximum norm in Rd: ∥y − x∥∞ = max1≤i≤d |yi − xi|.
∆(a, r) The d-dimensional interval centered at a with each side of length

r: ∆(a, r) = {x ∈ Rd|∥x− a∥∞ < r/2}.
diag(B) The diameter of B: diag(B) = infr∈R{B ⊆ ∆(a, r) | ∃a ∈ B}.

12
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Assumption C.5 (Assumptions for the Lower Bound (Assumption 3.2 restated)). The following
assumptions are imposed on the probability distributions P and Q.

L1. T ∗(x) = − log dQ/dP (x) is L-bi-Lipschitz continuous on Ω. i.e., ∃L > 1 s.t. (1/L) ≤∣∣T ∗(y)− T ∗(x)
∣∣ ≤ L ·

∥∥y − x
∥∥
∞ for any y,x ∈ Ω.

L2. EP

[(
dQ/dP

)p]
<∞ where p ≤ d.

Assumption C.6 (Assumptions for the Convex Function f (Assmption 3.3 restated)). The following
assumptions are assumed for the convex function f .

F1. f is three-time differentiable.

F2. f ′′(u) > 0 for all u > 0.

F3. EP

[
f ′′(dQ/dP )

]
<∞.

Assumption C.7 (Assumption for the Support (Assmption 3.4 restated)). The following assumption
is assumed for Ω.

O1. diag(Ω) <∞.

C.2 THEOREMS AND PROOFS IN SECTIONS 2, 3, AND 4

Lemma C.8. Let f be a twice differentiable function. Consider l̃f (u;x) defined as in Equation (28).
Then, the first derivative of l̃f (u;x) with respect to u is given by:

d

du
l̃f (u;x) =

{
u− dQ

dP
(x)

}
· f ′′(u) · dP

dµ
(x). (30)

Additionally, if l̃f (u;x) is thrice differentiable, the second derivative with respect to u is given by:

d2

du2
l̃f (u;x) =

{(
u− dQ

dP
(x)

)
· f ′′′(u) + f ′′(u)

}
· dP
dµ

(x). (31)

Proof of Lemma C.8. First, note that

l̃f (u;x) = −f ′ (u) · dQ
dµ

(x) + f∗ (f ′ (u)) · dP
dµ

(x)

= −f ′(u) · dQ
dµ

(x) + {f ′(u) · u− f(u)} · dP
dµ

(x). (32)

Differentiating Equation (32) with respect to u, we obtain the first and second derivatives of l̃f (u;x)
as follows:

d

du
l̃f (u;x) = −f ′′(u) · dQ

dµ
(x) + u · f ′′(u) · dP

dµ
(x)

=

{
u− dQ

dP
(x)

}
· f ′′(u) · dP

dµ
(x), (33)

and

d2

du2
l̃f (u;x) = −f ′′′(u) · dQ

dµ
(x) + f ′′(u) · dP

dµ
(x) + u · f ′′′(u) · dP

dµ
(x)

=

{(
u− dQ

dP
(x)

)
· f ′′′(u) + f ′′(u)

}
· dP
dµ

(x). (34)

This completes the proof.

13
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Theorem C.9. Assume that f satisfies Assumption C.6. Then, l̃f (u;x), as defined in Equation (28),
is minimized only when u∗(x) = dQ

dP (x). In addition, for u > 0, the following holds:

l̃f (u;x)− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) ·
∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2 + o

(∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
)
, (35)

where f(a) = o(a) (as a→ 0) denotes asymptotic domination such that lima→0
f(a)
a → 0.

Proof of Theorem C.9. Let sign(x) denote the sign of the value x: specifically, sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0, and sign(x) = 0 if x = 0.

From Equation (30) in Lemma C.8, we have

sign
(
d

du
l̃f (u;x)

)
= sign

({
u− dQ

dP
(x)

}
· f ′′(u) · dP

dµ
(x)

)
= sign

({
u− dQ

dP
(x)

})
· sign (f ′′(u)) · sign

(
dP

dµ
(x)

)
= sign

(
u− dQ

dP
(x)

)
. (36)

Thus, l̃f (u;x) is minimized only when u∗ = dQ
dP (x).

Next, from Equation (30),

d

du
l̃f

(
dQ

dP
(x);x

)
= 0, (37)

and from Equation (31),

d2

du2
l̃f

(
dQ

dP
(x);x

)
= f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x). (38)

Thus, using the second-order Taylor expansion of l̃f (u;x) around u = dQ
dP (x), we have

l̃f (u;x)− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) ·
∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2 + o

(∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
)
. (39)

This completes the proof.

Proposition C.10 (Proposition 4.2 restated). Assume that f satisfies Assumption C.6. Let L̃(N)
f (ϕ)

denote the µ-representation f -divergence loss as defined in Definition C.3. Then, the minimum value
of L̃(N)

f (ϕ) over all measurable functions ϕ : Ω → R>0 is achieved if and only if ϕ satisfies

ϕ(Xi
µ) =

dQ

dP
(Xi

µ), for i = 1, 2, . . . , N. (40)

proof of Proposition C.10. From Theorem C.9, we observe that, for i = 1, 2, . . . , N ,

min
u>0

l̃f
(
u;Xi

µ

)
= l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
, (41)

where the minimum value is archived only at u = dQ
dP (Xi

µ).

14
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Thus,

min
ϕ:Ω→R>0

L̃(N)
f (ϕ) = min

ϕ:Ω→R>0

1

N
·

N∑
i=1

l̃f (ϕ(X
i
µ);X

i
µ)

= min
ϕ(Xi

µ)>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (ϕ(X
i
µ);X

i
µ)

= min
ui>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (ui;X
i
µ)

=
1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
. (42)

Suppose that ϕ̃(x) is a function on Ω that satisfies Equation (40), we have, from Equation (42),

L̃(N)
f

(
ϕ̃
)
− min

ϕ:Ω→R>0

L̃(N)
f (ϕ)

=
1

N
·

N∑
i=1

l̃f

(
ϕ̃(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)

=
1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
= 0. (43)

Here, we show that the minimum value of L̃(N)
f (ϕ) over all measurable functions ϕ : Ω → R>0 is

archived if ϕ : Ω → R>0 satisfies Equation (40).

Next, we show that the minimum value of L̃(N)
f (ϕ) over all measurable functions ϕ : Ω → R>0 is

archived only if ϕ : Ω → R>0 satisfies Equation (40).

We have, for any function ϕ : Ω → (0,∞),

L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

L̃(N)
f (ϕ)

=
1

N
·

N∑
i=1

l̃f

(
ϕ(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

min
ui>0,

i=1,2,...,N

l̃f (ui;X
i
µ)

=
1

N
·

N∑
i=1

{
l̃f

(
ϕ(Xi

µ);X
i
µ

)
−min

u>0
l̃f (u;X

i
µ)

}
. (44)

Suppose that ϕ(Xi
µ) ̸=

dQ
dP (Xi

µ). Then, from Equation (41), we have

l̃f
(
ϕ(Xi

µ);X
i
µ

)
> min

u>0
l̃f (u;X

i
µ). (45)

From Equations (44) and (45), we observe that

L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

L̃(N)
f (ϕ)

=
1

N
·

N∑
i=1

{
l̃f

(
ϕ(Xi

µ);X
i
µ

)
−min

u>0
l̃f (u;X

i
µ)

}
≥ 1

N
·
{
l̃f

(
ϕ(Xi

µ);X
i
µ

)
−min

u>0
l̃f (u;X

i
µ)

}
> 0 (46)
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Thus, we see that the minimum value of L̃(N)
f (ϕ) over all measurable functions ϕ : Ω → R>0 is

archived only if ϕ : Ω → R>0 satisfies Equation (40).

This completes the proof.

Lemma C.11. Assume that f satisfies Assumption C.6. Let L̃(N)
f (ϕ) denote the µ-representation

f -divergence loss as defined in Definition C.3. Define

Lf (ϕ) = Eµ

[
L̃(N)
f (ϕ)

]
=

1

N
·

N∑
i=1

Eµ

[
−f ′ (ϕ(xi)) ·

dQ

dµ
(xi)

]

+
1

N
·

N∑
i=1

Eµ

[
f∗ (f ′ (ϕ(xi))) ·

dP

dµ
(xi)

]
. (47)

Then,

Eµ

[
min

ϕ:Ω→R>0

L̃(N)
f (ϕ)

]
= min

ϕ:Ω→R>0

Lf (ϕ) = min
ϕ:Ω→R>0

Eµ

[
L(R,S)
f (ϕ)

]
, (48)

where the infimum are taken over all measurable functions ϕ : Ω → R>0 such that EP [f(ϕ(X))] <

∞. Additionally, the equality in Equation (48) hold when ϕ(x) = dQ
dP (x).

proof of Lemma C.11. Let, l̃∗f (x) = minu∈R>0 l̃f (u;x). From Theorem C.9, we see l̃∗f (x) =

l̃f (dQ/dP (x);x). Then, we have

l̃∗f (x) = l̃f

(
dQ

dP
(x);x

)
= −f ′

(
dQ

dP
(x)

)
· dQ
dµ

(x) +

{
f ′
(
dQ

dP
(x)

)
· dQ
dP

(x)− f

(
dQ

dP
(x)

)}
· dP
dµ

(x)

= −f
(
dQ

dP
(x)

)
· dP
dµ

(x). (49)

Now, we have

min
ϕ:Ω→R>0

L̃(N)
f (ϕ) = min

ϕ:Ω→R>0

1

N
·

N∑
i=1

l̃f (ϕ(X
i
µ);X

i
µ)

= min
ϕ(Xi

µ)>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (ϕ(X
i
µ);X

i
µ)

= min
ui>0,

i=1,2,...,N

1

N
·

N∑
i=1

l̃f (ui;X
i
µ)

=
1

N
·

N∑
i=1

l̃∗f (X
i
µ). (50)

Additionally, we have

Eµ

[
L̃(N)
f (ϕ)

]
= Eµ

[
1

N
·

N∑
i=1

−f ′ (ϕ(xi)) ·
dQ

dµ
(xi)

+
1

N
·

N∑
i=1

f∗ (f ′ (ϕ(xi))) ·
dP

dµ
(xi)

]
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= − 1

N
·

N∑
i=1

Eµ

[
f ′ (ϕ(xi)) ·

dQ

dµ
(xi)

]

+
1

N
·

N∑
i=1

Eµ

[
f∗ (f ′ (ϕ(xi))) ·

dP

dµ
(xi)

]

= − 1

N
·

N∑
i=1

EQ [f ′ (ϕ)] +
1

N
·

N∑
i=1

EP [f∗ (f ′ (ϕ))]

= −EQ [f ′ (ϕ)] + EP [f∗ (f ′ (ϕ))] , (51)

and

E
[
L(R,S)
f (ϕ)

]
= E

[
1

R
·

S∑
i=1

−f ′ (ϕ(xq
i ))

+
1

S
·

R∑
i=1

f∗ (f ′ (ϕ(xp
i )))]

= − 1

S
·

S∑
i=1

EQ [f ′ (ϕ(xi))]

+
1

R
·

R∑
i=1

EP [f∗ (f ′ (ϕ(xi)))]

= − 1

S
·

S∑
i=1

EQ [f ′ (ϕ)] +
1

R
·

R∑
i=1

EP [f∗ (f ′ (ϕ))]

= −EQ [f ′ (ϕ)] + EP [f∗ (f ′ (ϕ))] . (52)

Now, note that, from Equation (1) (?), we see

min
ϕ:Ω→R>0

−EQ [f ′ (ϕ)] + EP [f∗ (f ′ (ϕ))] = −Df (Q||P ), (53)

where Df (Q||P ) denotes f -divergence defined in Definition C.1 and the equality in Equation (53)
holds for ϕ(x) = dQ/dP (x).

From Equations (51), (52) and (53), we have

min
ϕ:Ω→R>0

Eµ

[
L̃(N)
f (ϕ)

]
= min

ϕ:Ω→R>0

E
[
L(R,S)
f (ϕ)

]
= −Df (Q||P ), (54)

and the equality in Equation (54) holds for ϕ(x) = dQ/dP (x).

Substituting Equation (49) into Equation (50), we have

min
ϕ:Ω→R>0

L̃(N)
f (ϕ) =

1

N
·

N∑
i=1

l̃∗f (X
i
µ)

=
1

N
·

N∑
i=1

−f
(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ). (55)

Thus,

Eµ

[
min

ϕ:Ω→R>0

L̃(N)
f (ϕ)

]
= Eµ

[
1

N
·

N∑
i=1

−f
(
dQ

dP
(xi)

)
· dP
dµ

(xi)

]

= − 1

N
·

N∑
i=1

Eµ

[
f

(
dQ

dP
(xi)

)
· dP
dµ

(xi)

]
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= − 1

N
·

N∑
i=1

Df (Q||P )

= −Df (Q||P ), (56)

From Equations (54) and (56), we have

Eµ

[
min

ϕ:Ω→R>0

L̃(N)
f (ϕ)

]
= min

ϕ:Ω→R>0

Lf (ϕ) = min
ϕ:Ω→R>0

Eµ

[
L(R,S)
f (ϕ)

]
, (57)

and the equality in each Equation (57) holds for ϕ(x) = dQ/dP (x).

This completes the proof.

The following theorem presents the convergence rate of the expected value of the distance between
two neighboring samples. Similar theorems have been presented in studies on order statistics of
multidimensional continuous random variables (e.g., ?, p. 17, Theorem 2.1).

Theorem C.12 (Theorem 4.3 restated). Assume that Ω is a compact set , as stated in Assumption
C.7. Let X(1)

µ[N ](x) denote the nearest neighbor of x in X̂µ[N ]. Specifically, let X(1)
µ[N ](x) be Xi

µ in

X̂µ[N ] such that

∥Xi
µ − x∥∞ < ∥Xj

µ − x∥∞ (∀ j < i), and ∥Xi
µ − x∥∞ ≤ ∥Xj

µ − x∥∞ (∀ j > i). (58)

Additionally, let diag(Ω) denote the diameter of Ω. i.e, diag(B) = infr∈R{B ⊆ ∆(a, r) | ∃a ∈ B},
where ∆(a, r) denotes the d-dimensional interval centered at a with each side of length r: ∆(a, r) =
{x ∈ Rd| ∥x− a∥∞ < r/2}.

Then, for 1 ≤ κ ≤ d,

Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

≤ diag(Ω)κ ·
(

1

N + 1

)κ/d

, for all N ≥ 1. (59)

proof of Theorem C.12. Let we rewrite x in Equation (59) as XN+1
µ . Subsequently, let X̂µ[N+1] =

X̂µ[N ]∪{XN+1
µ }. Let ∆i = Ω∩∆(Xi

µ, ∥X
(1)
µ[N ](X

i
µ)−Xi

µ∥∞), where ∆(a, r) = {x ∈ Rd | ∥x−
a∥∞ < r/2}. Note that, ∆i ∩∆j = ϕ if i ̸= j. Thus, ⊔N+1

i=1 ∆i ⊆ Ω.

Now, let λ denote the Lebesgue measure on Rd. Then, we have

N+1∑
i=1

λ (∆i) = λ
(
⊔N+1
i=1 ∆i

)
≤ λ (Ω) ≤ diag(Ω)d, (60)

Subsequently, since λ (∆i) =
∥∥∥X(1)

µ[N ](X
i
µ)−Xi

µ

∥∥∥d
∞

, we have

N+1∑
i=1

λ (∆i) =

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞
. (61)

Thus, from Equations (60) and (61), we have

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞

≤ diag(Ω)d. (62)

Note that, it follows from Jensen’s inequality that

1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥κ
∞

≤

{
1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞

}κ/d

. (63)
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From Equations (62) and (63), we have

1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥κ
∞

≤

{
1

N + 1

N+1∑
i=1

∥∥∥X(1)
µ[N ](X

i
µ)−Xi

µ

∥∥∥d
∞

}κ/d

≤
{

1

N + 1
· diag(Ω)d

}κ/d

= diag(Ω)κ ·
(

1

N + 1

)κ/d

.

(64)

Thus,
1

N + 1

N+1∑
i=1

EXi
µ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

≤ diag(Ω)κ ·
(

1

N + 1

)κ/d

, (65)

where EXi
µ

∥∥∥X(1)
µ[N ](x)−x

∥∥∥κ
∞

denotes the expectation of
∥∥∥X(1)

µ[N ](X
i
µ)−Xi

µ

∥∥∥κ
∞

with respect to Xi
µ.

Note that,
Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

= EXi
µ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞
. (66)

Therefore,

Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

=
1

N + 1

N+1∑
i=1

EXi
µ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞
. (67)

Finally, from Equations (65) and (67), we have

Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

=
1

N + 1

N+1∑
i=1

EXi
µ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥κ
∞

≤ diag(Ω)κ ·
(

1

N + 1

)κ/d

. (68)

This completes the proof.

Corollary C.13. Assume the same assumption as in Theorem C.12. Then, for 1 ≤ p ≤ d,

lim
N→∞

N1/d ·
{
Eµ

[ ∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

]}1/p

≤ diag(Ω). (69)

proof of Corollary C.13. First, from Theorem C.12 when κ = p,

Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

≤ diag(Ω)p ·
(

1

N + 1

)p/d

, for all N ≥ 1. (70)

Thus, for for all N ≥ 1,{
Eµ

∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

}1/p

≤

{
diag(Ω)p ·

(
1

N + 1

)p/d
}1/p

= diag(Ω) ·
(

1

N + 1

)1/d

(71)

Taking limN→∞ on both sides of the above inequality, we have

lim
N→∞

N1/d ·
{
Eµ

[∥∥∥X(1)
µ[N ](x)− x

∥∥∥p
∞

]}1/p

≤ lim
N→∞

{
N1/d · ·diag(Ω) ·

(
1

N + 1

)1/d
}

= diag(Ω). (72)

This completes the proof.
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Corollary C.14. Assume the same assumption as in Theorem C.12. Then, for 1 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ diag(Ω) ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

. (73)

proof of Corollary C.14. First from Theorem C.12 when κ = 2 · p and µ = P ,

EP

∥∥∥X(1)
P [N ](x)− x

∥∥∥2·p
∞

≤ diag(Ω)2·p ·
(

1

N + 1

)2·p/d

, for all N ≥ 1. (74)

Thus, for for all N ≥ 1,{
EP

∥∥∥X(1)
P [N ](x)− x

∥∥∥2·p
∞

}1/(2·p)

≤

{
diag(Ω)2·p ·

(
1

N + 1

)2·p/d
}1/(2·p)

= diag(Ω) ·
(

1

N + 1

)1/d

(75)

Now, using Hölder’s inequality, we have

EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]

≤

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

·
(
EP

[∥∥∥X(1)
P [N ](x)− x

∥∥∥2·p
∞

])1/(2·p)

≤

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

· diag(Ω) ·
(

1

N + 1

)1/d

(76)

Taking limN→∞ on both sides of the above inequality, we have

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ lim
N→∞

N1/d ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

· diag(Ω) ·
(

1

N + 1

)1/d


= diag(Ω) ·

(
EP

[{
dQ

dP
(x)

}2·p
])1/(2·p)

(77)

This completes the proof.

Lemma C.15. Let µ be a probability measure on Rd with d ≥ 1. Assume that µ ≪ λ, where λ
denotes the Lebesgue measure on Rd. Let ∥ · ∥∞ denote the maximum norm in Rd: ∥y − x∥∞ =
max1≤i≤d |yi − xi|, where y = (y1, y2, . . . , yN ) and x = (x1, x2, . . . , xN ). Additionally, let
∆(x, r) denote the d-dimensional interval centered at x with each side of length r: ∆(x, r) = {x′ ∈
Rd | ∥x′ − x∥∞ ≤ r/2}.

Then, for any interior point x in Ω,

µ
(
∆(x, r)

)
=
dµ

dλ
(x) · rd + o

(
rd
)
, as r → 0, (78)

where f(r) = o(g(r)), as r → 0, denotes asymptotic domination such that limr→0 f(r)/g(r) = 0.
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proof of Lemma C.15. Note that, if x is an interior point in Ω, it holds that

lim
r→∞

µ
(
∆(x, r)

)
λ
(
∆(x, r)

) =
dµ

dλ
(x). (79)

From Equation (79), we have

lim
r→∞

µ
(
∆(x, r)

)
rd

= lim
r→∞

µ
(
∆(x, r)

)
rd

= lim
r→∞

µ
(
∆(x, r)

)
λ
(
∆(x, r)

) (80)

=
dµ

dλ

(
x
)
. (81)

Here, we use an equation such that λ(∆(x, r)) = rd in Equation (80).

From Equation (81), we observe that

µ
(
∆(x, r)

)
=
dµ

dλ
(x) · rd + o

(
rd
)
, as r → 0. (82)

This completes the proof.

Corollary C.16. Assume the same assumptions as in Lemma C.15. Let X be a random variable
drawn from µ, and let EX denote the expectation with respect to X.

Then, for any interior point x0 in Ω,

EX

[∥∥x0 −X
∥∥p
∞ · I

(
∆(x0, r)

)
(X)

]
=
dµ

dλ
(x0) · rp+d+1 + o

(
rp+d+1

)
, as r → 0, (83)

where I
(
A
)
(·) is the indicator function for A: I(A)(x) = 1 if x ∈ A, and 0 otherwise.

proof of Corollary C.16. Consider the integration variable from x to r such that∥∥x0 − x
∥∥p
∞ = r. (84)

Then, from Lemma C.15, we have, as r → 0,

I
(
∆(x0, r)

)
(x) · dµ

dλ
(x) dx =

dµ

dλ
(x0) · rd + o

(
rd
)
. (85)

From the definition of expectation with the density dµ/dλ and Equation (85), we have, as r → 0,

EX

[∥∥x0 −X
∥∥p
∞ · I

(
∆(x0, r)

)
(X)

]
=

∫ ∥∥x0 − x
∥∥p
∞ · I

(
∆(x0, r)

)
(x) · dµ

dλ
(x) dx

=

∫
rp ·

(
dµ

dλ
(x0) · rd + o

(
rd
))

dr

=
dµ

dλ
(x0) · rp+d+1 + o

(
rp+d+1

)
. (86)

This completes the proof.

Theorem C.17 (Theorem 4.4 restated). Let P and Q be probability measures on a compact set Ω in
Rd with d ≥ 1. Assume that P ≪ λ and Q≪ λ, where λ denotes the Lebesgue measure on Rd. Let
p be positive constant such that p ≥ 1. Assume E[(dQ/dP )p] <∞.

Then,

lim
N→∞

N1/d ·
{
EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]}1/p
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≥ e−1 ·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

, (87)

where EX̂P [N]
[·] denotes the expectation on each variable in X̂P [N ] = {X1

P ,X
2
P , . . . ,X

N
P }.

proof of Theorem C.17. Let

Bi =

{
x ∈ Ω

∣∣∣ ∥∥∥Xi
P − x

∥∥∥
∞

≤
(

1

N

)1/d
}
. (88)

Since X
(1)
P [N ](x) is the nearest neighbor in

{
X1

P ,X
2
P , . . . ,X

N
P

}
for x,

1 ≤ ∃i ≤ N s.t.
∥∥∥Xi

P − x
∥∥∥
∞

≤
(

1

N

)1/d

⇐⇒
∥∥∥X(1)

P [N ](x)− x
∥∥∥
∞

≤
(

1

N

)1/d

(89)

Thus, {
x ∈ Ω

∣∣∣ ∥∥∥X(1)
P [N ](x)− x

∥∥∥
∞

≤
(

1

N

)1/d
}

=

N⋃
i=1

{
x ∈ Ω

∣∣∣ ∥∥∥Xi
P − x

∥∥∥
∞

≤
(

1

N

)1/d
}

=

N⋃
i=1

Bi (90)

Next, define

ZN (x) =

N∑
i=1

I (Bi) (x). (91)

Let XP be a random variable drawn from P with XP ⊥⊥ Xi
P , for 1 ≤ i ≤ N .

From Lemma C.15,

P
(
I (Bi) (XP ) = 1

)
= P

(
Bi

)
=
dP

dλ
(XP ) ·

(
1

N1/d

)d

+ o

(
1

N1/d

)d

=
dP

dλ
(XP ) ·

1

N
+ o

(
1

N

)
=

1

N
+ o

(
1

N

)
, (92)

and I (Bi) (XP ) ∈ {0, 1} and I (Bi) (XP ) ⊥⊥ I (Bj) (XP ) for i ̸= j. Namely, ZN

(
XP

)
follows

a binomial distribution with the number of trials N and success probability for each trial 1/N +
o(1/N).

Then, we obtain

EX̂P [N]

[
I
(
{ZN (XP ) = 0}

)]
=

(
1− 1

N
− o

(
1

N

))N

. (93)

Since limN→∞ 1− 1
N − o

(
1
N

)
= 1, we have(

1− 1

N
− o

(
1

N

))N

=

(
1− 1

N
− o

(
1

N

))N−1

,
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as as N −→ ∞.

Thus,

EX̂P [N]

[
I
(
{ZN (XP ) = 0}

)]
=

(
1− 1

N
− o

(
1

N

))N−1

(as N −→ ∞). (94)

Additionally, note that

ZN (x) ≥ I

(
N⋃
i=1

Bi

)
(x),

and

ZN (x) ≥ 1 =⇒ I

(
N⋃
i=1

Bi

)
(x) = 1.

In particular,

ZN (x) = 1 =⇒
N∑
i=1

I (Bi) (x) = 1.

Therefore,

ZN (x) = 1 ⇐⇒
N∑
i=1

I (Bi) (x) = 1. (95)

Now, we obtain

Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]
≥ Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

× I

({
x ∈ Ω

∣∣∣ ∥∥∥X(1)
P [N ](x)− x

∥∥∥
∞

≤
(

1

N

)1/d
})

× I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

})]
= Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

× I

(
N⋃
i=1

Bi

)
· I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
(by Equation (90))

= Np/d · EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

×
N∑
i=1

I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
(by Equation (95))

= Np/d ·
N∑
i=1

EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
= Np/d ·

N∑
i=1

EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞
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× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]
. (96)

Now, let

Z−j
N (x) =

N∑
i ̸=j

I (Bi) (x).

Then,

I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

})
= I (Bi) · I

({
x ∈ Ω

∣∣∣ Z−i
N (x) = 0

})
.

(97)

Additionally, let X̂−i
P [N ] denote the subset of X̂P [N ] excluding Xi

P . i.e., X̂−i
P [N ] = X̂P [N ] \ {Xi

P }.

Let E−i
N [·] denote the expectation over the variables in X̂−i

P [N ], which is equivalent to EX̂−i
P [N]

.

From Equation (94),

E−i
N

[
I (Bi) · I

({
x ∈ Ω

∣∣∣ Z−i
N (x) = 0

})]
=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2

.

(98)

From Equations (97) and (98), we have

E−i
N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]
= E−i

N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x)−i = 0

}) ]]
= EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · E−i
N

[
I
({

x ∈ Ω
∣∣∣ ZN (x)−i = 0

}) ]]
= EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi)×
(
1− 1

N − 1
− o

(
1

N − 1

))N−2
]

=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2

× EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi)

]
.

(99)

From Corollary C.16, we have

EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi)

]
=

{
dQ

dP

(
Xi

P

)}p

·

{
dP

dµ

(
Xi

P

)
·
(

1

N1/d

)p+d+1

+ o

((
1

N1/d

)p+d+1
)}

=
dP

dµ

(
Xi

P

)
·
{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)

=

{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)
. (100)

From Equations (99) and (100), we obtain

E−i
N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]
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=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2

×
{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)
. (101)

From Equations (96) and (101), we obtain, as N −→ ∞,

Np/d · EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]
≥ Np/d · EX̂P [N]

[
N∑
i=1

EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]
=

N∑
i=1

Np/d · EXi
P

[
E−i

N

[
EP

[{
dQ

dP

(
Xi

P

)}p

·
∥∥∥Xi

P − x
∥∥∥p
∞

× I (Bi) · I
({

x ∈ Ω
∣∣∣ ZN (x) = 1

}) ]]]
(by Equation (96))

=

N∑
i=1

Np/d · EXi
P

[(
1− 1

N − 1
− o

(
1

N − 1

))N−2

×
{
dQ

dP

(
Xi

P

)}p

·
(

1

N

)1+p/d

+ o

((
1

N

)1+p/d
)]

= N ·

{(
1− 1

N − 1
− o

(
1

N − 1

))N−2

× EP

[{
dQ

dP
(x)

}p]
·
(

1

N

)
+ o

(
1

N

)}
(by Equation (101))

=

(
1− 1

N − 1
− o

(
1

N − 1

))N−2

·
{
EP

[{
dQ

dP
(x)

}p]
+ o (1)

}
.

(102)

As N → ∞, we observe (
1− 1

N − 1
− o

(
1

N − 1

))N−2

−→ e−1. (103)

Then, we obtain, from Equation (102)

lim
N→∞

Np/d · EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]
≥ e−1 · EP

[{
dQ

dP
(x)

}p]
. (104)

This completes the proof.

Theorem C.18. Assume that f satisfies Assumption C.6. For L̃(N)
f (ϕ) defined in Defined C.3, let

ϕ
(N)
∗ = argminϕ:Ω→R>0 L̃

(N)
f (ϕ).

Then, for any measurable function ϕ : Ω → R>0, the following equivalence holds:

ϕ(Xi
µ)− ϕ

(N)
∗ (Xi

µ) = Op

(
1√
N

)
, for 1 ≤ i ≤ N
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⇐⇒ L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

Lf (ϕ) = Op

(
1√
N

)
, (105)

where {X1
µ,X

2
µ, . . . ,X

N
µ } is defined in Definition C.3, and Lf (ϕ) is defined in Lemma C.11.

proof of Theorem C.18. First, we enumerate several facts used in this proof.

I. From the Central Limit Theorem, we have:

L̃(N)
f

(
ϕ
(N)
∗

)
− Eµ

[
L̃(N)
f

(
ϕ
(N)
∗

) ]
= Op

(
1√
N

)
. (106)

II. From Proposition C.10, we have, for all x ∈ X̂µ[N ]:

ϕ
(N)
∗ (x) =

dQ

dP
(x), (107)

where X̂µ[N ] is defined in Definition C.3.

III. From Equation (107), it follows that:

L̃(N)
f

(
ϕ
(N)
∗

)
= L̃(N)

f

(
dQ

dP

)
, (108)

and

Eµ

[
L̃(N)
f

(
ϕ
(N)
∗

) ]
= Eµ

[
L̃(N)
f

(
dQ

dP

)]
. (109)

IV. From Lemma C.11, we have:

min
ϕ:Ω→R>0

Lf (ϕ) = Lf

(
dQ

dP

)
= Eµ

[
L̃(N)
f

(
dQ

dP

)]
. (110)

V. From Lemma C.8, for l̃f (u;x) defined in Equation (28), we obtain:

d

du
l̃f

(
dQ

dP
(x);x

)
= 0, (111)

and

d2

du2
l̃f

(
dQ

dP
(x);x

)
= f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x). (112)

VI. From Theorem C.9, we have:

l̃f (u;x)− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) ·
∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
+ o

(∣∣∣∣u− dQ

dP
(x)

∣∣∣∣2
)
, (113)

where f(a) = o(a) (as a→ 0) denotes asymptotic domination such that lima→0 f(a)/a =
0.

VII. From the assumption that EP [f
′′(dQ/dP )] <∞,

f ′′
(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ) = Op (1) , as N → ∞. (114)
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Now, we show the direction “=⇒” in Equation (105).

Assume that ϕ(Xi
µ) = ϕ

(N)
∗ (Xi

µ) +Op

(
1/
√
N
)

for 1 ≤ i ≤ N .

From Equations (35) in Theorem C.9 and (114), we have

l̃f
(
ϕ(Xi

µ);X
i
µ

)
− l̃f

(
ϕ
(N)
∗ (Xi

µ);X
i
µ

)
= l̃f

(
ϕ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)
=

1

2
· f ′′

(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ) ·

∣∣∣∣ϕ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣2 + o

(∣∣∣∣ϕ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣2
)

=
1

2
· f ′′

(
dQ

dP
(Xi

µ)

)
· dP
dµ

(Xi
µ) ·

∣∣∣ϕ(Xi
µ)− ϕ

(N)
∗ (Xi

µ)
∣∣∣2 + o

(∣∣∣ϕ(Xi
µ)− ϕ

(N)
∗ (Xi

µ)
∣∣∣2)

= Op (1) ·Op

({
1√
N

}2
)

= Op

(
1

N

)
. (115)

Thus, we have:

L̃(N)
f (ϕ)− L̃(N)

f

(
ϕ
(N)
∗

)
=

1

N
·

N∑
i=1

{
l̃f
(
ϕ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)}

=
1

N
·

N∑
i=1

Op

(
1

N

)
= Op

(
1

N

)
. (116)

From Equations (106), (108), (110), and (116), we obtain:

L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

Lf (ϕ)

=
{
L̃(N)
f (ϕ)− L̃(N)

f

(
ϕ
(N)
∗

)}
+

{
L̃(N)
f

(
ϕ
(N)
∗

)
− min

ϕ:Ω→R>0

Lf (ϕ)

}
=
{
L̃(N)
f (ϕ)− L̃(N)

f

(
ϕ
(N)
∗

)}
+

{
L̃(N)
f

(
dQ

dP

)
− min

ϕ:Ω→R>0

Lf (ϕ)

}
(by Equation (108))

=
{
L̃(N)
f (ϕ)− L̃(N)

f

(
ϕ
(N)
∗

)}
+

{
L̃(N)
f

(
dQ

dP

)
− E

[
L̃(N)
f

(
dQ

dP

)]}
(by Equation (110))

=
{
L̃(N)
f (ϕ)− L̃(N)

f

(
ϕ
(N)
∗

)}
+
{
L̃(N)
f

(
ϕ
(N)
∗

)
− E

[
L̃(N)
f

(
ϕ
(N)
∗

) ]}
(by Equation (108))

= Op

(
1

N

)
+Op

(
1√
N

)
(by Equations (106) and (116))

= Op

(
1√
N

)
. (117)

Thus, we have proved “=⇒”.

Next, we prove the direction “⇐=” in Equation (105).

Suppose

L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

Lf (ϕ) = Op

(
1√
N

)
. (118)
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From Equations (106), (110), (109), and (118), we obtain

L̃(N)
f (ϕ)− L̃(N)

f

(
ϕ
(N)
∗

)
=

{
L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

Lf (ϕ)

}
+

{
min

ϕ:Ω→R>0

Lf (ϕ)− L̃(N)
f

(
ϕ
(N)
∗

)}
=

{
L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

Lf (ϕ)

}
+

{
E
[
L̃(N)
f

(
dQ

dP

)]
− L̃(N)

f

(
ϕ
(N)
∗

)}
(by Equation (110))

=

{
L̃(N)
f (ϕ)− min

ϕ:Ω→R>0

Lf (ϕ)

}
+
{
E
[
L̃(N)
f

(
ϕ
(N)
∗

) ]
− L̃(N)

f

(
ϕ
(N)
∗

)}
(by Equation (109))

= Op

(
1√
N

)
+Op

(
1√
N

)
(by Equations (106) and (118))

= Op

(
1√
N

)
. (119)

From Equation (107), we have

L̃(N)
f (ϕ)− L̃(N)

f

(
ϕ
(N)
∗

)
=

1

N
·

N∑
i=1

l̃f

(
ϕ(Xi

µ);X
i
µ

)
− 1

N
·

N∑
i=1

l̃f

(
ϕ
(N)
∗ (Xi

µ);X
i
µ

)
=

1

N
·

N∑
i=1

{
l̃f

(
ϕ(Xi

µ);X
i
µ

)
− l̃f

(
ϕ
(N)
∗ (Xi

µ);X
i
µ

)}
.

(120)

From Equations (119) and (120), we have

1

N
·

N∑
i=1

{
l̃f

(
ϕ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)}
= Op

(
1√
N

)
. (121)

Let aiN = EP

[∣∣∣ϕ(Xi
µ)− ϕ

(k)
∗ (Xi

µ)
∣∣∣]. Since Xi

µ is identically distributed for 1 ≤ i ≤ N , we have

aiN = a1N for any 1 ≤ i ≤ N . Thus, define AN = supk≥N aik = supk≥N a1k.

Using Chebyshev’s inequality, we have for any ε > 0,

P

(∣∣∣ϕ(Xi
µ)− ϕ

(k)
∗ (Xi

µ)
∣∣∣ /AN >

1

ε

)

≤
ε · EP

[∣∣∣ϕ(Xi
µ)− ϕ

(k)
∗ (Xi

µ)
∣∣∣]

AN

≤ ε · aiN
AN

≤ ε. (122)

Thus, ϕ(Xi
µ)− ϕ

(k)
∗ (Xi

µ) = Op(AN ).

Now, we calculate

1

N

N∑
i=1

{
l̃f

(
ϕ(Xi

µ);X
i
µ

)
− l̃f

(
ϕ
(N)
∗ (Xi

µ);X
i
µ

)}
=

1

N

N∑
i=1

{
l̃f

(
ϕ(Xi

µ);X
i
µ

)
− l̃f

(
dQ

dP
(Xi

µ);X
i
µ

)}

=
1

N

N∑
i=1

{
1

2
· λ(Xi

µ) ·Op

(∣∣∣∣ϕ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣2
)

+ op

(∣∣∣∣ϕ(Xi
µ)−

dQ

dP
(Xi

µ)

∣∣∣∣4
)}
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=
1

N

N∑
i=1

{
1

2
· λ(Xi

µ) ·Op

(∣∣∣ϕ(Xi
µ)− ϕ

(N)
∗ (Xi

µ)
∣∣∣2)+ op

(∣∣∣ϕ(Xi
µ)− ϕ

(N)
∗ (Xi

µ)
∣∣∣4)}

=
1

N
·N · 1

2
·Op

(√
N
)
·Op

(
A2

N

)
+

1

N
·N · 1

2
· op

(
A4

N

)
= Op

(√
N
)
·Op

(
A2

N

)
+ op

(
A4

N

)
. (123)

Here, X = op(aN ) denotes the convergence in probability with rate aN in µ as N → ∞: X =
op(aN ) (asN → ∞) ⇔∀ε, ∀δ > 0, ∃N(ε, δ) > 0 such that µ(|X|/aN ≥ δ) < ε for ∀N ≥ N(ε, δ).

From Equations (121) and (123), we have

Op

(
1√
N

)
≥ Op

(√
N
)
·Op

(
A2

N

)
+ op

(
A4

N

)
. (124)

From the definition of AN , we observe that AN decreases as N increases. Thus, limN→∞AN exists
and 0 ≤ limN→∞AN <∞.

Suppose that limN→∞AN > 0. Then, we have

Op

(√
N
)
·Op

(
A2

N

)
+ op

(
A4

N

)
= Op

(√
N
)
+ op (1) . (125)

This contradicts Equation (124). Therefore, limN→∞AN = 0.

From Equation (124), we have

Op

(
1

N

)
≥ Op

(
A2

N

)
+ op

(
A4

N√
N

)
= Op

(
A2

N

)
. (126)

Thus, AN = O
(
1/
√
N
)

.

Finally, we have

ϕ(Xi
µ)− ϕ

(N)
∗ (Xi

µ) = Op (AN ) = Op

(
1√
N

)
. (127)

Here, we have proved the direction “⇐=”.

This completes the proof.

Corollary C.19 (Theorem 4.7 restated). Assume the same assumption as in Theorem C.18. let
ϕ
(N)
∗ = argminϕ:Ω→R>0 L̃

(N)
f (ϕ).

Then, for any measurable function ϕ : Ω → R>0,

ϕ(Xi
µ)− ϕ

(N)
∗ (Xi

µ) = Op

(
1√
N

)
, for 1 ≤ i ≤ N.

⇐⇒ L(R,S)
f (ϕ)− inf

ϕ:Ω→R>0

Eµ

[
L(R,S)
f (ϕ)

]
= Op

(
1√
N

)
, (128)

where {X1
µ,X

2
µ, . . . ,X

N
µ } is defined in Definition C.3, and L(R,S)

f (ϕ) is defined in Definition C.2.

proof of Corollary C.19. From Lemma C.11, we have L(R,S)
f (ϕ) = Lf (ϕ).

Therefore, Equation (128) follows directly from Equation (105).

This completes the proof.
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Theorem C.20 (Theorem 4.5 restated). Assume that Ω is a compact set in Rd with d ≥ 3 and
that f satisfies Assumption C.6. Let P and Q be probability measures on Ω. Assume that P ≪ λ
and Q ≪ λ, where λ denotes the Lebesgue measure on Rd. Let T ∗(x) be the energy function of
dQ/dP (x) defined as T ∗(x) = − log dQ/dP (x).

Let F̃ (N)
K-Lip denote the set of all K-Lipschitz continuous functions on Ω that minimize L̃(N)

f (·).
Specifically, define

F̃ (N) =

{
ϕ∗ : Ω → R>0

∣∣∣ L̃(N)
f (ϕ∗) = min

ϕ
L̃(N)
f (ϕ)

}
, (129)

and

FK-Lip =
{
ϕ : Ω → R>0

∣∣∣ ∣∣ϕ(y)− ϕ(x)
∣∣ ≤ K ·

∥∥y − x
∥∥
∞ for all y,x ∈ Ω

}
. (130)

Subsequently, let
F̃ (N)

K-Lip = F̃ (N) ∩ FK-Lip . (131)

(Upper Bound) Assume Assumption C.4: there exists L > 0 such that
∣∣T ∗(y)− T ∗(x)

∣∣ ≤ L · ∥y −
x∥∞ for any y,x ∈ Ω, i.e., T ∗(x) is L-Lipschitz continuous on Ω.

Then, Equation (132) holds for 1 ≤ p ≤ d/2, such that for any ϕ ∈ F̃ (N)
K-Lip ,

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

≤ L · diag(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diag(Ω). (132)

(Lower Bound) Assume Assumption C.5: there exists L > 1 such that (1/L) · ∥y − x∥∞ ≤∣∣T ∗(y)− T ∗(x)
∣∣ ≤ L · ∥y − x∥∞ for any y,x ∈ Ω, i.e., T ∗(x) is L-bi-Lipschitz continuous on Ω;

and EP [dQ/dP ] <∞ with 1 ≤ p ≤ d.

Then, Equation (133) holds for any ϕ ∈ F̃ (N)
K-Lip , such that

lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p
]

≥ 1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diag(Ω) (133)

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 −K · diag(Ω) (134)

proof of Theorem C.20. First, we list the equations used in this proof.

I. By Taylor’s theorem for the second-order Taylor polynomial of e−t, we have

e−t = 1− t+
1

2
· e−c(t) · t2, where 0 ≤ |c(t)| ≤ |t|. (135)

II. From Equation (135), it follows that∣∣∣∣dQdP (y)− dQ

dP
(x)

∣∣∣∣
= e−T∗(y) ·

∣∣∣1− eT
∗(y)−T∗(x)

∣∣∣
= e−T∗(y)

{
(T ∗(y)− T ∗(x)) +

1

2
· eC(y,x,T∗) · (T ∗(y)− T ∗(x))

2

}
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=
dQ

dP
(y)

{
(T ∗(y)− T ∗(x)) +

1

2
· eC(y,x,T∗) · (T ∗(y)− T ∗(x))

2

}
,

where 0 ≤ |C(y,x, T ∗)| ≤ |T ∗(y)− T ∗(x)|. (136)

III. From Corollary C.13, for 0 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

∥∥∥∥X(1)
µ[N ](x)− x

∥∥∥∥p
∞

}1/p

≤ diag(Ω).

(137)

IV. From Corollary C.14, for 0 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]}1/p

≤ diag(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

(138)

V. From Equation (138), for 0 ≤ p ≤ d/2,

lim
N→∞

N1/d ·
{
EP

[{
dQ

dP
(x)

}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥2·p
∞

]}1/p

≤ lim
N→∞

N1/d ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p){

EP

[ ∥∥∥X(1)
P [N ](x)− x

∥∥∥4·p
∞

]}1/(2·p)

≤

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

· diag(Ω) · lim
N→∞

N1/d

N2/d

= 0. (139)

VI. From Theorem C.17, for 0 ≤ p ≤ d,

lim
N→∞

N1/d ·
{
EX̂P [N]

[
EP

[{
dQ

dP

(
X

(1)
P [N ](x)

)}p

·
∥∥∥X(1)

P [N ](x)− x
∥∥∥p
∞

]]}1/p

≥ e−1 ·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

, (140)

where EX̂P [N]
[·] denotes the expectation on each variable in X̂P [N ] = {X1

P ,X
2
P , . . . ,X

N
P }.

VII. Let X̂µ[N ] denote the set of random variables defined in Proposition C.10. From Proposition
C.10,

ϕ ∈ F̃ (N)
K-Lip ⇐⇒ ϕ(Xi

µ) =
dQ

dP
(Xi

µ), for 1 ≤ ∀i ≤ N. (141)

Now, we prove Equation (132). Let ϕ(x) be a member of F̃ (N)
K-Lip .

By applying the triangle inequality in the Lp norm, we have{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

≤
{
EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

+

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ(x)

∣∣∣∣p}1/p

.

(142)
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From the K-Lipschitz continuity of ϕ and Equation (141),{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ(x)

∣∣∣∣p}1/p

=

{
EP

∣∣∣∣ϕ(X(1)
µ[N ](x)

)
− ϕ(x)

∣∣∣∣p}1/p

(by Equation 141)

≤ K ·
{
EP

∥∥∥∥X(1)
µ[N ](x)− x

∥∥∥∥p
∞

}1/p

. (143)

From Equations (137) and (143),

lim
N→∞

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ(x)

∣∣∣∣p}1/p

≤ K · diag(Ω). (144)

Next, by substituting y = X
(1)
µ[N ](x) and multiplying by dP

dµ (x) in Equation (136), and using the
L-Lipschitz continuity of T ∗, we have{

EP

∣∣∣∣dQdP (X
(1)
µ[N ](x))−

dQ

dP
(x)

∣∣∣∣p}1/p

=

[
EP

∣∣∣∣dQdP (x) ×
{(

T ∗(X
(1)
µ[N ](x))− T ∗(x)

)
+

1

2
· eC1(x) ·

(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)2}∣∣∣∣p]1/p ,
where 0 ≤ C1(x) ≤

∣∣∣T ∗(X(1)
µ[N ](x)

)
− T ∗(x)

∣∣∣.
=

{
EP

∣∣∣∣dQdP (x)×
{(

T ∗(X
(1)
µ[N ](x))− T ∗(x)

)}
+

dQ

dP

(
x
)
×
{
1

2
· eC1(x) ·

(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)2}∣∣∣∣p}1/p

≤
{
EP

[{
dQ

dP

(
x
)}p

·
∣∣∣T ∗(X

(1)
µ[N ](x))− T ∗(x)

∣∣∣p]}1/p

+

{
EP

[{
dQ

dP

(
x
)}p

· 1

2p
· ep·C1(x) ·

∣∣∣T ∗(X(1)
µ[N ](x)

)
− T ∗(x)

∣∣∣2·p]}1/p

≤
{
EP

[{
dQ

dP

(
x
)}p

·
∣∣∣T ∗(X

(1)
µ[N ](x))− T ∗(x)

∣∣∣p]}1/p

+

{
EP

[{
dQ

dP

(
x)
)}p

× 1

2p
· ep·

∣∣T∗(X
(1)

µ[N]
(x))−T∗(x)

∣∣
·
∣∣∣T ∗(X(1)

µ[N ](x)
)
− T ∗(x)

∣∣∣2·p]}1/p

(
∴ C1(x) ≤

∣∣∣T ∗(X(1)
µ[N ](x)

)
− T ∗(x)

∣∣∣)
≤
{
EP

[{
dQ

dP

(
x)
)}p

· Lp ·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

+

{
EP

[{
dQ

dP

(
x)
)}p

× 1

2p
· ep·L·

∥∥X(1)

µ[N]
(x)−x

∥∥
∞ · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

≤
{
EP

[{
dQ

dP

(
x)
)}p

· Lp ·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p
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+

{
EP

[{
dQ

dP

(
x
)}p

× 1

2p
· ep·L·diag(Ω) · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

= L ·
{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

+
1

2
· eL·diag(Ω) ·

{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

]}1/p

(145)

From Equations (138), (139) and (145), we have

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− ϕ
(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

≤ lim
N→∞

N1/d · L ·
{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

+ lim
N →∞

N1/d · 1
2
· eL·diag(Ω) ·

{
EP

[{
dQ

dP

(
x
)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

]}1/p

= L · diag(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

. (146)

Finally, from Equations (144), (142), and (146), we have

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

≤ L · diag(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+ diag(Ω) ·K. (147)

Thus, it is shown that Equation (132) holds.

Next, we prove Equation (133). By applying the triangle inequality in the Lp norm, we have{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

≥
{
EP

∣∣∣∣dQdP (x)− dQ

dP

(
X

(1)
µ[N ](x)

)∣∣∣∣p}1/p

−
{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
− ϕ(x)

∣∣∣∣p}1/p

.

(148)

By substituting y = X
(1)
µ[N ](x) and multiplying by dP

dµ (x) in Equation (136) and the L-bi-Lipschitz
continuity of T ∗, we have{

EP

∣∣∣∣dQdP (X
(1)
µ[N ](x))−

dQ

dP
(x)

∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (X(1)
µ[N ](x)

)
×
{(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)
+

1

2
· eC1(x) ·

(
T ∗(X

(1)
µ[N ](x))− T ∗(x)

)2}∣∣∣∣p}1/p
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where 0 ≤ C1(x) ≤
∣∣∣T ∗(X(1)

µ[N ](x)
)
− T ∗(x)

∣∣∣
≥
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∣∣∣T ∗(X

(1)
µ[N ](x))− T ∗(x)

∣∣∣p]}1/p

−
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

× 1

2p
· ep·

∣∣T∗(X
(1)

µ[N]
(x))−T∗(x)

∣∣
·
∣∣∣T ∗(X(1)

µ[N ](x)
)
− T ∗(x)

∣∣∣2·p]}1/p

≥
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

· 1

Lp
·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

−
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

× 1

2p
· ep·L·

∥∥X(1)

µ[N]
(x)−x

∥∥
∞ · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

≥
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

· 1

Lp
·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

−
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

× 1

2p
· ep·L·diag(Ω) · Lp ·

∥∥∥X(1)
µ[N ](x)− x

∥∥∥2·p
∞

]}1/p

=
1

L
·
{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

]}1/p

− 1

2
· ediag(Ω) · L ·

{
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

]}1/p

(149)

From Equations (138), (139) and (149), we have

lim
N→∞

N1/d ·

{
EX̂P [N]

[(
EP

∣∣∣∣dQdP (x)− ϕ
(
X

(1)
µ[N ](x)

)∣∣∣∣p )1/p
]}

≥ lim
N→∞

N1/d ·

{
EX̂P [N]

[
1

Lp
·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

])1/p

−1

2
· ediag(Ω) · L ·

(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

])1/p
]}

≥ lim
N→∞

N1/d ·

{
EX̂P [N]

[
1

L
·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

])1/p
]}

− lim
N→∞

N1/d ·

{
EX̂P [N]

[
1

2
· ediag(Ω)

×L ·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

])1/p
]}

≥ lim
N→∞

N1/d · EX̂P [N]

[
1

L
·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥p
∞

])1/p
]
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− EX̂P [N]

[
lim

N→∞
N1/d ·

{
1

2
· ediag(Ω)

×L ·
(
EP

[{
dQ

dP

(
X

(1)
µ[N ](x)

)}p

·
∥∥∥X(1)

µ[N ](x)− x
∥∥∥2·p
∞

])1/p
}]

= e−1 · 1
L

·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

. (150)

Finally, from Equations (144), (148), and (150), we have

lim
N→∞

Np/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p
]

≥ e−1 · 1
L

·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

− diag(Ω) ·K. (151)

Thus, it is shown that Equation (133) holds.

Next, we prove Equation (134).

First, we have

{
EP

[{
dQ

dP
(x)

}p]}1/p

=

{
EP

[
dQ

dP
(x) ·

{
dQ

dP
(x)

}p−1
]}1/p

=

{
EQ

[{
dQ

dP
(x)

}p−1
]}1/p

=

{
EQ

[
e(p−1)·log dQ

dP (x)

]}1/p

. (152)

From Jensen’s inequality,{
EQ

[
e(p−1)·log dQ

dP (x)

]}1/p

≥
{
eEQ

[
(p−1)·log dQ

dP (x)
]}1/p

=

{
e (p−1)·EQ

[
log dQ

dP (x)
]}1/p

= e
p−1
p ·EQ

[
log dQ

dP (x)
]

= e
p−1
p ·KL(Q||P ). (153)

From Equations (151), (152) and (153),

lim
N→∞

Np/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p
]

≥ e−1 · 1
L

·
{
EP

[{
dQ

dP
(x)

}p ]}1/p

− diag(Ω) ·K

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 − diag(Ω) ·K. (154)

This completes the proof.

Theorem C.21 (Theorem 4.8 restated). Assume the same assumptions and notations as in Theorem
C.20. Additionally, define

F (N)
K-Lip =

{
ϕ ∈ FK-Lip

∣∣∣ ∃ϕ∗ ∈ F̃ (N)
K-Lip such that ϕ = ϕ∗ +Op

(
1√
N

)}
. (155)
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That is, F (N)
K-Lip denotes the set of all functions that differ by at most Op(1/

√
N) from some functions

that minimize L̃(N)
f (·).

Then, the same results as in Theorem C.20 hold for all ϕ ∈ F (N)
K-Lip . Specifically:

(Upper Bound) Under Assumption C.4, Equation (132) holds for 1 ≤ p ≤ d/2 such that for any
ϕ ∈ F (N)

K-Lip ,

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

≤ L · diag(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diag(Ω). (156)

(Lower Bound) Under Assumption C.5, Equation (133) holds for any ϕ ∈ F (N)
K-Lip , such that

lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p
]

≥ 1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diag(Ω) (157)

≥ 1

L
· e

p−1
p ·KL(Q||P )−1 −K · diag(Ω) (158)

Proof of Theorem C.21. First, we prove Equation (156).

Let ϕ̃ be a member of F (N)
K-Lip . Then, there exists ϕ ∈ F (N)

K-Lip such that ϕ̃ = ϕ+Op(1/
√
N).

Using the triangle inequality in the Lp norm, we obtain{
EP

∣∣∣∣dQdP (x)− ϕ̃(x)

∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (x)− ϕ(x) +Op

(
1√
N

)∣∣∣∣p}1/p

≤
{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

+

{
EP

∣∣∣∣Op

(
1√
N

)∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

+O

(
1√
N

)
. (159)

From Equations (132) and (159), we have

lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− ϕ̃(x)

∣∣∣∣p}1/p

≤ lim
N→∞

N1/d ·

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

+O

(
1√
N

)]

= lim
N→∞

N1/d ·
{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

+ lim
N→∞

N1/d ·O
(

1√
N

)
= lim

N→∞
N1/d ·

{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

= L · diag(Ω) ·

{
EP

[{
dQ

dP
(x)

}2·p
]}1/(2·p)

+K · diag(Ω). (160)

Therefore, Equation (156) is proven.
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Next, we prove Equation (157).

By applying the triangle inequality in the Lp norm, we obtain{
EP

∣∣∣∣dQdP (x)− ϕ̃(x)

∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (x)− ϕ(x) +Op

(
1√
N

)∣∣∣∣p}1/p

≥
{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

−
{
EP

∣∣∣∣Op

(
1√
N

)∣∣∣∣p}1/p

=

{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

−O

(
1√
N

)
. (161)

In a similar manner to the derivation of Equation (160), we have

lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ̃(x)

∣∣∣∣p}1/p
]

≥ lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p

−O

(
1√
N

)]

= lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p
]
− lim

N→∞
N1/d ·O

(
1√
N

)

= lim
N→∞

N1/d · EX̂P [N]

[{
EP

∣∣∣∣dQdP (x)− ϕ(x)

∣∣∣∣p}1/p
]

=
1

L
·
{
EP

[{
dQ

dP
(x)

}p]}1/p

−K · diag(Ω). (162)

Therefore, Equation (157) is proven.

Equation (158) is obtained in the same manner as in the proof of Theorem C.20.

This completes the proof.

D DETAILS OF THE EXPERIMENTS IN SECTION 3

In this section, we provide details of the experiments reported in Section 3. Each dataset, experimental
method, experimental result, and the neural network settings used in the experiments are described in
separate subsections.

D.1 DATASETS.

In both experiments investigating the relationship between Lp errors and KL-divergence in the data,
and the relationship between Lp errors and the dimensionality of the data, the datasets were generated
from the following distributions: the numerator distribution is a multidimensional multimodal normal
distribution, and the denominator distribution is a multidimensional standard normal distribution.

Denominator Distribution: The denominator datasets X̂P [R] = {X1
P ,X

2
P , . . . ,X

R
P } were gener-

ated from the following d-dimensional standard normal distribution:

Xi
P

iid∼ N (0, Id), (163)

where Id denotes the d-dimensional identity matrix.

Numerator Distribution: The numerator datasets X̂Q[S] = {X1
Q,X

2
Q, . . . ,X

S
Q} were generated

from the following d-dimensional, M -multimodal normal distribution:

Xi
Q

iid∼
M∏

m=1

N (µ · rm, Id)Zm , (164)

where for each mode m:
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• Zm ∼ Bernoulli(1/M) and
∑M

m=1 Zm = 1.

• rm ∼ Uniform(Sd−1).

Here, Bernoulli(1/M) denotes the Bernoulli distribution with parameter 1/M , and Uniform(Sd−1)
denotes the uniform distribution on the d-dimensional unit surface Sd−1 =

{
x ∈ Rd : ∥x∥ = 1

}
.

In the aforementioned setting when M = 1, the KL-divergence of the datasets is calculated as:

KL(P ||Q) = EP

[
log

(
dP

dQ

)]
= EN (0,Id)

[
log

(
N (0, Id)

N (µ · rm, Id)

)]
=

1

2
·
[
log

|Σp|
|Σq|

− d+Tr(Σ−1
p · Σq) + (µp − µq)

T · Σ−1
p · (µp − µq)

]
=

1

2
·
[
log

|Id|
|Id|

− d+Tr(Id · Id) + (µ · rm)T · Id · (µ · rm)

]
=

1

2
·
(
0− d+ d+ µ2 · rTm · rm

)
=

1

2
· µ2. (165)

From Equation (165), the KL-divergence of the datasets for M > 1 is calculated as:

KL(P ||Q) = EP

[
log

(
dP

dQ

)]
= EN (0,Id)EZm∼Bernoulli(1/M)

[
log

(
N (0, Id)∏M

m=1 N (µ · rm, Id)Zm

)]

= EN (0,Id)EZm∼Bernoulli(1/M)

[
log

M∏
m=1

(
N (0, Id)

N (µ · rm, Id)

)Zm
]

= EN (0,Id)EZm∼Bernoulli(1/M)

[
M∑

m=1

log

(
N (0, Id)

N (µ · rm, Id)

)]

= EN (0,Id)

[
log

(
N (0, Id)

N (µ · rm, Id)

)]
=

1

2
· µ2. (166)

Thus, we set µ =
√

2 ·KL(P ||Q) in Equation (164) for M = 1, 2, 3, and 4, where KL(P ||Q)
denotes the KL-divergence of the datasets.

D.2 EXPERIMENTAL PROCEDURE.

We trained neural networks using the training datasets by optimizing KL-divergence and α-divergence
loss functions. Details of the two functions used in the experiments are provided below.

KL-divergence loss function. We used the following KL-divergence loss function, LKL(·), in our
experiments:

LKL(T ) = ÊP

[
eT
]
− ÊQ [T ]

=
1

S
·

S∑
i=1

eT (Xi
Q) − 1

R
·

R∑
i=1

T (Xi
P ). (167)
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α-divergence loss function. We utilized an α-divergence loss function proposed in a separate
unpublished study, currently under anonymous review. The α-divergence loss function is defined as:

L(R,S)
α-divergence(T ; α) =

1

α
· ÊQ[S]

[
eα·Tθ

]
+

1

1− α
· ÊP [R]

[
e(α−1)·Tθ

]
=

1

α
· 1
S

·
S∑

i=1

eα·T (Xi
Q) +

1

1− α
· 1

R
·

R∑
i=1

e(α−1)·T (Xi
P ). (168)

For further details and theoretical derivations of the loss function, we refer the reader to the
anonymized supplementary material included in this submission (see ?). This material contains a full
explanation of the theoretical framework and the optimization process of the loss function used here.

Lp Errors vs. KL-Divergence in Data. We initially created 100 training, validation, and test
datasets, each consisting of 10000 samples, with a data dimensionality of 5 and KL-divergence values
of 1, 2, 4, 8, 10, 12, and 14, and the numerator datasets of modalities of 1, 2, 3, and 4. The numerator
datasets had modalities of 1, 2, 3, and 4, generated from the aforementioned distributions. We trained
neural networks using the training datasets by optimizing both the α-divergence and KL-divergence
loss functions. Training was halted if the validation loss, measured using the validation datasets, did
not improve over an entire epoch. After training the neural networks, we measured the Lp errors of
the estimated density ratios for p = 1, 2, and 3, using the test datasets. A total of 100 trials were
conducted, and we reported the median Lp errors along with the interquartile range (25th to 75th
percentiles) for each KL-divergence and α-divergence function.

Lp Errors vs. the Dimensions of Data. We initially created 100 training datasets, each consisting
of 20000 samples, and 100 validation and test datasets, each consisting of 5000 samples, with data
dimensionalities of 50, 100, and 200, and a KL-divergence value of 3. We trained neural networks
using the training datasets of sizes 1000, 2000, 4000, 8000, and 16000, by optimizing both the
α-divergence and KL-divergence loss functions. The numerator datasets had modalities of 1, 2, 3,
and 4, generated from the aforementioned distributions. Training was halted if the validation loss,
measured using the validation datasets, did not improve over an entire epoch. After training the neural
networks, we measured the Lp errors of the estimated density ratios for p = 1, 2, and 3, using the test
datasets. A total of 100 trials were conducted, and we reported the median Lp errors along with the
interquartile range (25th to 75th percentiles) for each KL-divergence and α-divergence function.

D.3 RESULTS.

Lp Errors vs. the KL-Divergence in Data. The results for each multimodal case M = 1, 2, 3, and
4 of the numerator datasets are shown in Figure 3. The results of M = 1 were reported in Section 3.

As shown in Figure 3, the estimation errors for p > 0 increased significantly, which accelerates as p
becomes larger. In contrast, when p = 0, a relatively mild increase was observed. As indicated by
Theorem 3.5, these results highlight the impact of the KL-divergence in the data on Lp error with
p > 1 in DRE f -divergence loss functions. Additionally, little difference was observed in the results
among the modalities of the numerator datasets.

Lp Errors vs. the Dimensions of Data. The results for each multimodal case M = 1, 2, 3, and 4
of the numerator datasets are shown in Figure 4 and 5. The results of M = 1 (the first and second
rows in Figure 4) were reported in Section 3.

As shown in Figure 2, the L1, L2, and L3 errors in DRE deteriorated as the data dimensionality
increases for both the α-divergence and KL-divergence loss functions. These results indicate that the
curse of dimensionality occurs equally across theLp errors, as indicated by Theorem 3.5. Additionally,
little difference was observed in the results among the modalities of the numerator datasets.

D.4 NEURAL NETWORK ARCHITECTURE, OPTIMIZATION ALGORITHM, AND
HYPERPARAMETERS.

Lp Errors vs. the KL-Divergence in Data. The same neural network architecture, optimization
algorithm, and hyperparameters were used for both the KL-divergence and α-divergence loss func-
tions. A 6-layer perceptron with ReLU activation was employed, with each hidden layer consisting of
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1024 nodes. For optimization with the both the KL-divergence and α-divergence loss functions, the
learning rate was 0.0001, and the batch size was 128. Early stopping was applied with a patience of 3
epochs, and the maximum number of epochs was set to 5000. the value of α for the α-divergence
loss function was set to 0.5, Pytorch (?) library in Python was used to implement all models for
DRE, with the Adam optimizer (?) in PyTorch and an NVIDIA T4 GPU used for training the neural
networks.

Lp Errors vs. the Dimensions of Data. The same neural network architecture, optimization
algorithm, and hyperparameters were used for the KL-divergence and α-divergence loss functions
A 6-layer perceptron with ReLU activation was employed, with each hidden layer consisting of
1024 nodes. For optimization with the both the KL-divergence and α-divergence loss functions, the
learning rate was 0.0001, and the batch size was 128. Early stopping was applied with a patience of 1
epochs, and the maximum number of epochs was set to 5000. the value of α for the α-divergence
loss function was set to 0.5, Pytorch (?) library in Python was used to implement all models for
DRE, with the Adam optimizer (?) in PyTorch and an NVIDIA T4 GPU used for training the neural
networks.
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Figure 1: Experimental results of Lp errors versus the amount of KL-divergence in the data are
presented, as detailed in Section 3.2. The x-axis represents the amount of KL-divergence in synthetic
datasets of fixed dimension. The y-axes of the left, center, and right graphs correspond to the L1,
L2, and L3 errors in DRE, respectively. The plots show the median y-axis values, while the error
bars represent the interquartile range (25th to 75th percentiles). The blue line shows errors using the
α-divergence loss function, and the orange line shows errors using the KL-divergence loss function.
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Figure 2: Experimental results on Lp errors versus the dimensionality of the data are presented, as
detailed in Section 3.2. The top row displays results using the α-divergence loss function, whereas
the bottom row presents results using the KL-divergence loss function. The x-axis represents the
logarithm of the number of samples utilized in the optimizations of DRE. The y-axes of the left,
center, and right graphs correspond to the L1, L2, and L3 errors in DRE, respectively. The plots
show the median y-axis values, while the error bars represent the interquartile range (25th to 75th
percentiles). The blue, orange, and green lines show results for data dimensions of 50, 100, and 200,
respectively.
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Figure 3: Experimental results of Lp errors versus the KL-divergence in the data for each multimodal
case M = 1, 2, 3, and 4 of the numerator datasets, as discussed in Sections 3 and D. The results for
M = 1 were reported in Section 3. The x-axis represents the KL-divergence of synthetic datasets
with fixed dimension. The y-axes of the left, center, and right graphs represent the L1, L2, and L3

errors in DRE, respectively. The blue line represents errors using the α-divergence loss function, and
the orange line represents errors using the KL-divergence loss function. The error bars represent the
interquartile range (25th to 75th percentiles) of the y-axis values. The plots show the median y-axis
values corresponding to the KL-divergence levels in the synthetic datasets.
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Figure 4: Experimental results of Lp errors versus the dimensionality of the data for the multimodal
case M = 1 and 2 in the numerator datasets, as discussed in Sections 3 and D. The results for M = 1
were reported in Section 3. The top row shows the results using the α-divergence loss function, and
the bottom the results using the KL-divergence loss function. The x-axis represents the logarithm of
the number of samples used for the optimizations for DRE. The y-axes of the left, center, and right
graphs represent the L1, L2, and L3 errors in DRE, respectively. The blue, orange, and green lines
represent the results for data dimensionalities of 50, 100, and 200, respectively. The plots show the
median y-axis values, and the error bars indicate the interquartile range (25th to 75th percentiles) of
the y-axis values for the logarithm of the number of samples used for the optimizations of DRE.
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Figure 5: Experimental results of Lp errors versus the dimensionality of the data for the multimodal
case M = 3 and 4 in the numerator datasets, as discussed in Sections D. The top row shows the
results using the α-divergence loss function, and the bottom the results using the KL-divergence loss
function. The x-axis represents the logarithm of the number of samples used for the optimizations
for DRE. The y-axes of the left, center, and right graphs represent the L1, L2, and L3 errors in
DRE, respectively. Blue, orange, and green lines represent the results for data dimensionalities of 50,
100, and 200, respectively. The plots show the median y-axis values, and the error bars indicate the
interquartile range (25th to 75th percentiles) of the y-axis values for the logarithm of the number of
samples used for the optimizations of DRE.
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E FURTHER DISCUSSIONS RELATED TO THIS STUDY

In this section, we explore further discussions related to this study. First, we compare the upper
DRE bound derived in this study with those reported in previous research. Next, we provide remarks
on Assumption 3.3, comparing it with related assumptions in prior work. Finally, we highlight the
potential applications suggested by this study.

E.1 COMPARISON WITH EXISTING DRE BOUNDS

In this section, we compare our Lp upper bound in Equation (4) in Theorem 3.5 to known DRE
bounds from other methods.

The terms related to data dimensionality in our upper bound are tighter than the existing non-
parametric minimax upper bounds in DRE. Additionally, to the best of our knowledge, no prior work
has provided a term like ours regarding the exponential of the KL-divergence in Equation (6) in
Theorem 3.5.

? presented a minimax upper bound rate of O(1/N
1

2+d ) for the Hellinger distance between the
true and estimated density ratio, obtained by optimizing a KL-divergence loss function. Since the
Hellinger distance serves as an upper bound for the total variation distance (?), the result from ?
provides an upper bound on the L1 error in DRE using the KL-divergence loss function. ? provided
an upper bound of O(1/N

1
2+d ) for DRE using kernel unconstrained least-squares importance fitting

(KuLSIF), their proposed DRE method. Under an assumption on the β-Hölder continuity of the
probability ratio function, ? presented an upper bound of OP (logN/N

β
β+d ) for DRE using an

empirical distribution-based estimator, where our case corresponds to β = 1. A recent study (?)
provided L1 and L2 error upper bounds of O(1/N

1
2+d ) in DRE for an estimator using the M -th

nearest neighbor, as M increases along with the sample size.

In terms of comparison with our Lp lower bound, a minimax L1 lower bound of O(1/N
1

2+d ), for
example, was provided by ?. This lower bound is larger than our lower bound in Equation (5) in
Theorem 3.5 and appears tighter than ours. However, minimax lower bounds may not represent the
true lower bounds and cannot be directly compared to our lower bound, as discussed in Section 1.

E.2 REMARKS ON ASSUMPTION 3.3 AND RELATED ASSUMPTIONS IN PRIOR WORK

In this section, we provide remarks on Assumption 3.3 by comparing it with related assumptions in
prior work.

An assumption closely related to Assumption 3.3 can be found in the pseudo self-concordance
property of losses introduced by ?. While the pseudo self-concordance assumption guarantees that the
original loss function is smooth and strongly convex proportional to its second derivative, Assumption
3.3 ensures the same properties only for the expectation of the loss function.

First, we briefly review the pseudo self-concordance assumption, along with a key property of loss
functions that follows from it. ? introduced the following pseudo self-concordance assumption. 2

Assumption E.1 (Pseudo self-concordance). For any u > 0 and for any r ∈ R, the loss g(u) satisfies

|g′′′(u+ r)| ≤ R · r2 · g′′(u), (169)
for some R > 0.

According to Proposition 1 in ?, under Assumption E.1, we have, for a sufficiently small r0 > 0,

e−R·r2 ≤ g′′(u+ r)

g′′(u)
≤ eR·r2 , for 0 < r < r0. (170)

Now, let Gu(r) = {g(u+ r)− g(u)}/g′′(u). From Equation (170),
1

L
≤ G′′

u(r) ≤ L, for 0 < r < r0, (171)

2In our discussion, we consider the pseudo self-concordance assumption only for loss functions defined on a
one-dimensional variable, whereas ? introduced it for loss functions in a multidimensional domain. For a precise
formulation, please refer to Propositions 1 and 2 in ?.
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where L = eR·r20 .

Therefore, the pseudo self-concordance property implies that Gu(r) is both L-smooth and 1/L-
strongly convex on any interval of fixed length r0, with L independent of u, which is believed to be a
key property of loss functions under the pseudo self-concordance assumption.

Next, we discuss the properties of the loss function derived from our assumptions. Theorem C.9 in
the appendix characterizes the local convexity of the loss function as follows:

l̃f

(
dQ

dP
(x) + r;x

)
− l̃f

(
dQ

dP
(x);x

)
=

1

2
· f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x) · r2 + o
(
r2
)
. (172)

Additionally, from Theorem C.8,

l̃′′f

(
dQ

dP
(x);x

)
= f ′′

(
dQ

dP
(x)

)
· dP
dµ

(x), (173)

where

l̃′′f (u;x) =
d2

dr2
l̃f (u+ r;x)

∣∣∣
r=0

.

From Equations (172) and (173), as r → 0,

l̃f

(
dQ
dP (x) + r;x

)
− l̃f

(
dQ
dP (x);x

)
l̃′′f

(
dQ
dP (x);x

) =
r2

2
+ ox (1) , (174)

where ox(1) denotes a quantity that converges to 0 as r → 0, though not uniformly in x; that is,
f(r) = ox(1) if and only if, for every ε > 0, there exists δx > 0 (depending on x) such that
|f(r)| < ε for all 0 < r < δx.

Now, letGu(x)(r) =
{
l̃f (u(x)+r;x)− l̃f (u(x);x)

}
/ l̃′′f (u(x);x), where u(x) = dQ/dP (x). From

Equation (174), we have, for some δx > 0 and Lx ≥ 1,

1

Lx
≤ G′′

u(x)(r) ≤ Lx, for 0 < r < δx, (175)

where δx > 0 and Lx ≥ 1 are determined at each point x ∈ Ω. Because δx and Lx depend on x,
Equation (175) does not imply that Gu(x) is L-smooth or 1/L-strongly convex on any interval of a
fixed length.

However, taking the expectation with respect to µ on both sides of Equation (172) yields

Eµ

[
l̃f

(
dQ

dP
(x) + r;x

)]
− Eµ

[
l̃f

(
dQ

dP
(x);x

)]
=

1

2
· EP

[
f ′′
(
dQ

dP

)]
· r2 + o

(
r2
)
. (176)

From Equation (176), we have

d2

dr2

{
Eµ

[
l̃f

(
dQ

dP
(x) + r;x

)]}∣∣∣
r=0

= EP

[
f ′′
(
dQ

dP

)]
. (177)

Thus,

G(r) =
r2

2
+

o
(
r2
)

EP

[
f ′′
(

dQ
dP

)] , (178)

where

G(r) =
Eµ

[
l̃f

(
dQ
dP (x) + r;x

) ]
− Eµ

[
l̃f

(
dQ
dP (x);x

) ]
d2

dr2

{
Eµ

[
l̃f

(
dQ
dP (x) + r;x

) ]}∣∣
r=0

.
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From Equation (178), we deduce that, for some r0 > 0,

G′′(r) =
1

2
, for 0 < r < r0. (179)

Equation (179) implies that the expectation of the loss function is locally both smooth and strongly
convex, with magnitudes proportional to its second derivative. In contrast, under the pseudo self-
concordance assumption, the original loss function is guaranteed to possess these properties (see
Equation (171)).

In summary, under Assumption 3.3, the expectation of the loss function exhibits the same local
smoothness and strong convexity properties (proportional to its second derivative) as those guaranteed
by the pseudo self-concordance assumption.

Furthermore, we note that the expression EP [f
′′(dQ/dP )] in Assumption 3.3 resembles the Fisher

information when f(u) = − log u, as shown in Equations (176) and (177). Thus, as an alternative
perspective, we propose that Assumption 3.3 establishes an information-theoretic bound for estimation
using f -divergence optimization.

E.3 APPLICATIONS OF THIS STUDY

In this section, we provide a brief discussion of potential applications highlighted by our findings.
The following two key applications can be derived from our results.

Selecting a benchmark index for evaluating DRE methods. When evaluating the accuracy of
DRE methods using synthetic datasets, the root mean squared error (RMSE) or mean squared error
(MSE) is recommended rather than the mean absolute error (MAE). Prior works did not carefully
consider the differences in their behavior regarding the KL divergence of the datasets. For example, ?
used MAE, whereas ? used MSE.

Fitting the distribution of base noise for f -GAN and Normalizing Flow. Optimization of f -
GANs (?) could benefit from adjusting the base noise distribution to better match the data. Since the
optimization of f -GANs is equivalent to DRE by optimizing the f -divergence (?), the accuracy of
generative models could be improved by fitting the base parametric models to the data in terms of KL
divergence minimization (i.e., likelihood maximization). A similar approach could also be applied to
the base models in Normalizing Flow (?).
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Table 2: List of f ′(ϕ) and f∗(f ′(ϕ)) in Equation (1) together with convex functions, as discussed
Section 2.2. Part of the list of divergences and their convex functions is based on ?.

Name convex function f f ′(ϕ) f∗(f ′(ϕ))

KL u · log u log
(
ϕ
)
+ 1 ϕ

Pearson χ2
(
u− 1

)2
2 · ϕ− 2 ϕ2 − 1

Squared Hellinger
(√
u− 1

)2
1− ϕ−1/2 ϕ1/2 − 1

GAN u · log u−
(
u+ 1

)
· log

(
u+ 1

)
− log

(
1 + ϕ−1

)
log
(
1 + ϕ

)
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