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Abstract: Learning robot manipulation from abundant human videos offers a1

scalable alternative to costly robot-specific data collection. However, domain gaps2

across visual, morphological, and physical aspects hinder direct imitation. To ef-3

fectively bridge the domain gap, we propose ImMimic, an embodiment-agnostic4

co-training framework that leverages both human videos and a small amount5

of teleoperated robot demonstrations. ImMimic uses Dynamic Time Warping6

(DTW) with either action- or visual-based mapping to map retargeted human hand7

poses to robot joints, followed by MixUp interpolation between paired human and8

robot trajectories. Our key insights are (1) retargeted human hand trajectories pro-9

vide informative action labels, and (2) interpolation over the mapped data creates10

intermediate domains that facilitate smooth domain adaptation during co-training.11

Evaluations on four real-world manipulation tasks (Pick and Place, Push, Ham-12

mer, Flip) across four robotic embodiments (Robotiq, Fin Ray, Allegro, Ability)13

show that ImMimic improves task success rates and execution smoothness, high-14

lighting its efficacy to bridge the domain gap for robust robot manipulation. The15

project website can be found at https://sites.google.com/view/immimic.16

Keywords: Learning from Human, Imitation learning, Dexterous Manipulation17

Figure 1: ImMimic enables embodiment-agnostic co-training between human and robot demonstra-
tions. It leverages large-scale human videos and a small amount of teleoperated robot data, using a
MixUp interpolation to enable smooth domain transfer. We validate ImMimic on four diverse ma-
nipulation tasks across four robotic embodiments.

1 Introduction18

Teaching robots to perform diverse manipulation tasks in real-world environments remains a signif-19

icant challenge because collecting robot-specific demonstration data is expensive. As an alternative,20
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human videos have emerged as a promising resource, offering abundant examples of people engag-21

ing in everyday manipulation activities [1, 2]. Leveraging these human videos for robot training22

provides a scalable and cost-effective approach to enhance robotic skills without extensive robot23

demonstration collection or simulation [3–5]. However, learning robot skills from human demon-24

stration videos still faces an inherent limitation: a substantial domain gap arising from stark differ-25

ences in visual appearance, embodiment structure, physical constraints, and other factors.26

In general, the challenge of enabling robots to learn human demonstrations can be formulated as27

a domain adaptation problem: the robot (representing the target domain) aims to emulate the be-28

haviour of the human demonstrator (representing the source domain). A relevant application of this29

concept can be seen in several recent, well-established vision-based teleoperation systems [6–8]30

where the human demonstrator often first practices with the teleoperation setup before being able to31

collect high-quality robot data. This process indeed reflects an instance of inverse adaptation, where32

the human demonstrator adapts to the robot system rather than the way around. However, such in-33

verse adaptation is absent in human demonstration videos, as human demonstrators do not consider34

the robot’s subsequent operation. Therefore, to enable effective adaptation when learning robot35

skills from such human data, recent works often preprocess the input data of both domains—for36

example, masking out embodiments in images [4, 9] to mitigate visual differences, or restricting the37

action space to only 3D translations to address the embodiment-specific action gap [3, 10]. Addi-38

tionally, another line of works encourages the adaptation of the latent spaces of visual inputs from39

both domains using unsupervised learning objectives [11–14], but often overlooks human actions,40

i.e., the hand trajectories, instead learning the action decoder solely from robot demonstrations.41

To develop a more generalizable adaptation method across diverse robot embodiments and ma-42

nipulation tasks, we introduce ImMimic (Interpolation-via-Mapping Mimic), an embodiment-43

agnostic co-training framework that learns jointly from human demonstration videos and robot tele-44

operations. Our key insights are: (1) beyond the visual contexts, the retargeted human hand trajec-45

tories can serve as action labels for human demonstrations, (2) creating intermediate domains via46

interpolation leads to robust adaptation, and (3) establishing an effective mapping between human47

and robot data for interpolation is essential for co-training. Specifically, we begin by retargeting hu-48

man hand poses into the robot’s action space. We then perform sequence-level mapping via Dynamic49

Time Warping (DTW), using either visual features or action distance to pair each human timestep50

with its best-matching robot timestep. Finally, inspired by MixUp-based adaptation [15, 16], we51

interpolate both condition and predicted actions along these DTW mapping, enabling adaptation52

through intermediate (human–robot) domains.53

To demonstrate the benefits of the ImMimic, we conduct comprehensive experiments across four54

different types of embodiments: Robotiq Gripper, FR Gripper [17–19], Allegro Hand, and Ability55

Hand. These embodiments are evaluated on four manipulation tasks: Pick and Place, Push, Hammer,56

and Flip. We show that ImMimic achieves higher success rates and smoother motions across all em-57

bodiments and tasks compared to baseline methods. We observe that action-based mapping provides58

greater improvements than visual-based mapping, suggesting that the rich action information of the59

human hand trajectories is equally, if not more, beneficial for co-training. Furthermore, we find that60

performance improves when the average action distance between human and robot is smaller, and61

interestingly, due to the factors such as hand-arm mounting conditions and arm kinematics, solely62

using a human-mimetic end-effector does not necessarily result in smaller action distances. Finally,63

we analyze failure cases in terms of hardware structure and algorithmic factors.64

2 Related Work65

Learning from Human Videos. Human videos offer an efficient and scalable source of supervision66

for robot learning. Retrieval-based approaches [11, 12, 14, 20, 21] search large video corpora for67

sequences that resemble the desired behavior for augmented learning, while typically relying on the68

robot’s own data for action decoding. To better utilize human videos, two-stage methods [3, 5, 22–69

25] first learn high-level policies on human data and then adapt to robot demonstrations, but limit70
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Figure 2: Overview of how we collect, map, and interpolate human and robot data. (a) Robot demon-
strations are collected via visual teleoperation. (b) Human actions are retargeted from videos. (c,
d) Visual or action based DTW maps retargeted human and robot trajectories. (e) MixUp: Mapped
human-robot pairs are interpolated in both the latent space and action space to generate interpolated
human data. Finally, we co-train the interpolated human data together with the robot data. See Fig. 3
for the co-training pipeline.

low-level action learning. To address this, co-training [4] jointly optimizes on human and robot71

data, yet typically relies on heavy visual preprocessing or simplified action spaces, leaving the core72

domain shift largely unaddressed. Our work adopts a co-training pipeline, and treating human videos73

as domain-adaptive supervision to smoothly address the domain shifts.74

Dexterous Retargeting. Dexterous retargeting translates human hand poses into robot joint poses,75

ensuring that human trajectories are mapped into the same action space used for robot execution.76

Most recent works adopt this technique to generate robot action commands for teleoperation by ob-77

serving a human demonstrator moving their own hand [6–8, 26, 27]. However, continuous guidance78

from the human demonstrator is crucial for the robot’s success during teleoperation [28]. Other79

works [5, 29–36] leverage retargeted robot trajectories to learn robot policies through bespoke re-80

finements tailored to dexterous grasping [29, 30], reinforcement learning [32–35], fine-tuning with81

additional robot data [5, 31], or human-in-the-loop corrections [36]. This additional process un-82

derscores the domain gap between retargeted trajectories and actual robot execution, which arises83

from various factors such as visual, kinematic, and physical differences. Our work handles such gap84

through a novel embodiment-agnostic co-training framework that smoothly adapts human demon-85

strations to the robot domain.86

Domain Adaptation. To bridge domain gap, classic methods include adversarial feature adapta-87

tion [37] and cycle-consistent data translation [38]. Recent work inserts intermediate domains via88

domain flow [39] with MixUp [15, 40, 41] to build the source-to-target path. In robotic imitation89

learning, methods learn domain-invariant representations—such as viewpoint-agnostic and visual-90

invariant encoders—to handle sim-to-real and human-to-robot perception gaps [42, 43]. Meta-91

learned and latent-policy adaptation approaches enable rapid embodiment transfer and observation-92

to-action alignment [44, 45]. Structural adaptation via optimal transport or point-cloud matching,93

combined with modality-invariant representations and MixUp-augmented offline RL [46], helps94

bridge domain gap [47–50]. We extend this line by applying MixUp to visual features and actions95

in latent space, yielding a continuous bridge from the human domain to the robot domain.96

3 Embodiment-Agnostic Co-Training Framework97

We aim to learn robotic manipulation policies from large-scale, easily collected human videos, with98

only a small number of teleoperated robot demonstrations. For each task, the model has access99

to a large corpus of human demonstrations {Ia,ht }Tt=1, where each frame Ia,ht ∈ RH×W×3 is an100

agent-view RGB image. In parallel, it also receives a smaller set of robot demonstrations, each101

containing agent-view video {Ia,rt }Tt=1, wrist-view video {Iw,r
t }Tt=1, and proprioception {rt}Tt=1,102

where rt ∈ RD includes end-effector pose and finger joint positions.103
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Figure 3: Overview of our embodiment-agnostic co-training framework ImMimic. For robot
demonstration, we train the policy using agent- and wrist-view images encoded with ResNet fθa ,
fθw , along with proprioception rt. All are combined into the observation condition zrt to predict fu-
ture actions. For human demonstration, we train the same diffusion policyPϕ using human videos.
A hand pose retargeting module generates retargeted robot actions ah→r

t , which serve as both the
future action and proprioception for training. Mapping with DTW, we apply MixUp (Fig. 2(e)) for
human data with paired robot data. The interpolation enables human data to smoothly adapt to the
robot data. The model is optimized upon the sum of reconstruction losses Lhuman and Lrobot.

This setting presents a domain adaptation challenge in the context of human-to-robot imitation learn-104

ing. Specifically, human (source domain) and robot (target domain) data differ in both visual and105

action: (1) a visual covariate shift between human and robot observations due to embodiment ap-106

pearance differences, and (2) an action gap arising from differences in embodiment structure and107

physical constraints, which can lead to variations in how the same task is performed. Our goal is to108

bridge these gaps to better adapt human demonstrations to robot execution, enabling the policy to109

effectively leverage both large-scale human videos and few-shot robot demonstrations.110

To achieve this, we first retarget estimated human hand trajectories from videos to the robot tra-111

jectories (Sec. 3.1). We then jointly train the policy on both human and robot demonstrations112

(Sec. 3.2). During co-training, to achieve a smooth domain adaptation from human to robot, we113

pair human-robot samples using DTW, and further perform MixUp with interpolation over mapped114

pairs (Sec. 3.3). An overview framework is shown in Fig. 3.115

3.1 Hand Pose Retargeting System116

To fully leverage human videos, we extract both visual context and human hand trajectories, and117

then retarget hand trajectories to robot embodiments following recent advanced methods [5, 6].118

Hand and Wrist Pose Estimation. We use MediaPipe [51] to localize and crop the human hand119

in each frame. Each patch is fed into FrankMocap [52], whose SMPL-X regressor produces precise120

3D positions for 21 hand joints in the local wrist frame. By projecting these joints into the depth121

map and solving a Perspective-n-Point problem, we recover the wrist 6D pose in camera frame.122

Retargeting. Following AnyTeleop [6], we map human keypoints pi
t to robot joint angles qt via123

min
qt

N∑
i=1

∥∥αpi
t − fi(qt)

∥∥2 + β
∥∥qt − qt−1

∥∥2, ql ≤ qt ≤ qu, (1)

where fi is the robot’s forward-kinematics, and α, β balance scale and temporal smoothness.124

3.2 Co-Training125

While prior work often treats human videos as auxiliary pretraining data [3, 5], recent studies such126

as EgoMimic [4] demonstrate the benefits of co-training on both human and robot data. Motivated127
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by this, we adopt a co-training strategy that treats human and robot demonstrations equally, allowing128

the policy to learn from both domains throughout a single training. Regarding the policy backbone,129

our framework builds on the Diffusion Policy [53].130

Robot Prediction Loss. At each timestep t, where images and proprioception are denoted as131

{(Ia,rt , Iw,r
t , rt)}, we incorporate temporal context using a history of length τ . Thus, the robot condi-132

tion at each timestep is: zrt =
[
za,rt−τ :t

∥∥ zw,r
t−τ :t

∥∥ rt−τ :t

]
∈ R(da+dw+da)×τ , where za,rt = fθa(I

a,r
t )133

and zw,r
t = fθw(I

w,r
t ) are feature embeddings extracted by separate ResNet18 [54] encoders fθa and134

fθw respectively.135

We denote the future action sequence as: a =
(
ah→r
t+1 , . . . ,ah→r

t+k

)
, where k is the prediction horizon.136

A diffusion policy Pϕ reconstructs a from a noisy action ã using denoising steps conditioned on zt.137

The training objective minimizes an ℓ2 loss: Lrobot(ϕ) =
∑k

i=1

∥∥art+i − ârt+i

∥∥2
2
, where ârt:t+k =138

Pϕ

(
ãrt:t+k

∣∣ zrt ) .139

Human Prediction Loss. For a human video {Ia,ht }
Tvid
t=1 , at each timestep t, the condition in-140

put includes both image features and retargeted actions: zht =
[
za,ht−τ :t

∥∥∥ 0t−τ :t

∥∥∥ ah→r
t−τ :t

]
∈141

R(da+dw+da)×τ , where each za,ht = fθh(I
a,h
t ) ∈ Rda is extracted using the same ResNet en-142

coder fθa , and ah→r
t is the retargeted action (from Sec. 3.1). Similarly, we compute the ℓ2 loss143

as Lhuman(ϕ) =
∑k

i=1

∥∥ah→r
t+i − âh→r

t+i

∥∥2
2
, where âh→r

t:t+k = Pϕ

(
ãh→r
t:t+k

∣∣ zht ) .144

Co-training Loss. During co-training, each batch includes an equal proportion of robot and human145

data, and the total loss is the sum of both: Ltotal(ϕ) = Lrobot(ϕ) + Lhuman(ϕ).146

3.3 Mapping-guided MixUp147

To create a continuum of intermediate domains in latent space such that the source and target domain148

on a smooth manifold [16], we propose a mapping-guided MixUp method.149

Mapping. To construct the affinity between human and robot demonstrations, we compute a map-150

pingMh→r between human demonstration Dh and robot demonstration Dr using Dynamic Time151

Warping (DTW) [55], based on either visual or action distance. MappingMh→r(t) denotes the set of152

given human timestep t mapped with robot timesteps across multiple demonstrations. This mapping153

assumes that mapped human and robot segments with similar visual or action patterns correspond to154

shared states [56]. Similar to retrieval-based methods [14], DTW ensures temporal consistency and155

avoids implausible supervision. We explore two mapping strategies: (1) Action-based Mapping. We156

define the action distance between a retargeted human demonstration and a robot demonstration as a157

weighted sum of several components: dact = ∥th→r−tr∥1+λ1∥ph→r−pr∥1+λ2 drot
(
oh→r,or

)
,158

where t denotes the translation, p the hand pose, o the orientation, drot the angular distance and159

λ1, λ2 are weighting coefficients, and (2) Visual-based Mapping. Here, we compute the frame-wise160

distance using extracted visual features and temporal alignment: dvis = ∥fh→r − fr∥2, where f161

represents visual features extracted from a pretrained encoder.162

MixUp-based Interpolation. After establishing the mapping, we apply MixUp [15] to interpo-163

late between original human and robot data, creating interpolated human data. During co-training,164

we train jointly on both the interpolated human data and the original robot data, serving as both165

regularization and augmentation.166

During training, we apply MixUp on both the condition inputs and the predicted actions. At each167

training iteration, for each human timestep t, we randomly sample a robot timestep t′ ∈ Mh→r(t)168

and construct the mixed condition input and predicted action as:169

zmix
t = α · zht + (1− α) · zrt′ , amix

t:t+k = α · ah→r
t:t+k + (1− α) · art′:t′+k (2)

where zht and ah→r
t:t+k are the condition input and retargeted action of the raw human data, and zrt′ ,170

art′:t′+k come from the mapped robot demonstration. Inspired by DLOW [16], we adopt a pro-171

gressive interpolation strategy that gradually decreases the coefficient α during training, enabling172

smoother domain adaptation.173
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Setting Pick and Place Push
Robotiq FR Allegro Ability Robotiq FR Allegro Ability

Robot Only 0.40 1.00 0.00 0.80 0.00 0.60 1.00 1.00
Co-Training 0.40 1.00 1.00 0.80 0.20 0.60 1.00 1.00
ImMimic-A 1.00 1.00 1.00 1.00 0.40 0.70 1.00 1.00

Setting Hammer Flip
Robotiq FR Allegro Ability Robotiq FR Allegro Ability

Robot Only 0.20 0.90 0.00 0.00 0.60 0.60 0.00 0.60
Co-Training 0.40 0.80 0.00 0.00 0.60 0.80 0.00 0.90
ImMimic-A 0.50 1.00 0.20 0.00 1.00 0.80 0.20 1.00

Table 1: Success rates of Robot-Only, Co-Training, and ImMimic-A across four embodiments and
four tasks. Policies are trained using 5 robot demonstrations and 100 human demonstrations.

3.4 Inference174

At test time, actions are predicted at a fixed inference frequency in the timestep of k. At each infer-175

ence step t, an upsample rate γ, which is calculated from the duration of teleoperation and consistent176

with the rate used in training, is applied to both observations and predicted actions (details in the177

Supp. A). The condition zrt is constructed using an observation history of length τ . A future action178

sequence a = (ât+1, . . . , ât+k) is predicted from random noise. For stability, temporal ensembling179

is applied with a decaying weight factor to average overlapping predictions across timesteps.180

4 Experiment Setups181

Hardware setup. We conduct experiments using a Franka Emika Panda robot arm equipped with182

four types of end-effectors (see Fig. 1): (1) Robotiq 2F-85 Fripper (2-finger), (2) Fin Ray Fripper (2-183

finger), (3) Allegro Hand (4-finger), and (4) Ability Hand (5-finger). These devices provide a range184

of dexterity and serve to evaluate embodiment transfer under different hardware configurations.185

Tasks. We introduce two categories of manipulation tasks, desinged to target increasing levels of186

control difficulty and embodiment demands: (1) Basic Object Manipulation. These tasks assess187

coarse end-effector control and general spatial positioning: Pick and Place: The robot must pick188

up a cube from a random initial position and place it precisely at a designated goal location. Push:189

The robot must push a cube across a tabletop surface into a specified goal region. (2) Tool-based190

Manipulation. These tasks evaluate the robot’s ability to manipulate external tools as a proxy for191

object interaction: Hammer: The robot picks up a hammer and strikes a target point. Flip: The192

robot uses a spatula to flip a bagel off the surface.193

Baselines. We compare against the following baselines in our experiments: Robot-only (Training194

diffusion policy using only robot data), Two-stage Fine-Tuning (Pretraining on human videos, fol-195

lowed by fine-tuning with robot data), Vanilla Co-Training (Simultanous training on both human and196

robot data), Random Mapping (Randomly pairing human and robot data for MixUp), Visual Map-197

ping (ImMimic-V, using DTW with visual feature for mapping), and Action Mapping (ImMimic-A,198

using DTW with action for mapping).199

Metrics. We evaluate performance using three key metrics: (1). Success Rate (SR). The proportion200

of 10 rollouts that successfully complete the task, scored in a binary manner (success or failure). (2).201

Trajectory Smoothness (SPARC). Trajectory smoothness is quantified using the Spectral Arc Length202

(SPARC) [57], which measures the smoothness in the frequency domain. (3). Action Distance (AD).203

The average distance of translation and orientation after DTW for trajectory similarity.204

5 Core Results205

Human videos enhance the robustness and smoothness of learned policies. Leveraging human206

videos substantially improves policy success rates as shown in Tab. 1. As shown in Tab. 2, policies207
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Setting Robotiq Ability
Pick and Place Flip Pick and Place Flip

Robot Only 0.40 0.60 0.80 0.60

Fine-Tuning 0.80 0.70 0.50 0.40
Co-Training 0.40 0.80 0.80 0.90

Random Mapping 0.40 0.50 0.80 0.50
ImMimic-V 1.00 0.50 0.90 0.70
ImMimic-A 1.00 1.00 1.00 1.00

Table 2: Comparison of success rate across two em-
bodiments (Robotiq, Ability) and two tasks (Pick
and Place, Flip), with 5 robot demos and 100 hu-
man demos.

Embodi-
ment

Rollout
(Robot Only)

Rollout
(Co-Training)

Rollout
(ImMimic-A)

Robotiq -12.7694 -9.6533 -9.4424
FR -24.4935 -14.3644 -15.6430

Ability -13.9228 -10.9241 -10.8409
Allegro N/A -17.1312 -13.8940

Table 3: Spectral Arc Length (SPARC)
smoothness scores (↑) on Pick and Place. A
higher score indicates a smoother trajectory.
We evaluate average scores on 5 successful
rollouts over 3 methods.
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Figure 4: Sample efficiency of ImMimic-A with
varying numbers of human demonstrations.

Figure 5: Sample efficiency of ImMimic-A
and Robot-Only with varying numbers of robot
demonstrations.

trained with ImMimic-A consistently achieve higher success rates across all tasks and embodiments208

compared to robot-only, two-stage fine-tuning, and co-training baselines. These results indicate that209

learning from human videos using our method improves the robustness of robot rollouts, as the210

interpolated human data effectively serves as data augmentation for the limited robot data. For211

example, ImMimic-A is more robust to variations in object positions (Fig. 7(c)). Furthermore,212

ImMimic improves action smoothness. In Tab. 3, we show that it achieves higher SPARC scores213

compared to robot-only policies, indicating smoother trajectories. It also outperforms vanilla co-214

training on three out of four embodiments. These results together suggest that our method effectively215

enhances the robot policy by leveraging prior knowledge from human demonstrations.216
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0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n 
Io

U

0.52

0.41

0.11
0.46

0.06

0.70
0.67

0.03

0.65

0.05

Visual
Action

Figure 6: Comparison of Mean IoU
across different disturbance settings.

Interpolation with Action-based Mapping leads to217

better performance. We compare action-based and218

visual-based mapping to evaluate their effectiveness in219

bridging human-robot domain gap. As shown in Tab. 2,220

action-based mapping (ImMimic-A) consistently outper-221

forms visual-based mapping (ImMimic-V) and random222

mapping. This performance gain is attributed to the fact223

that retargeted human actions, aligned via kinematic con-224

straints, are structurally more similar to robot actions than225

visual features are to robot observations. In a separate226

long-horizon video retrieval task (details in Supp. C), we227

extend DTW to retrieve robot-relevant subsequences from unsegmented human videos. The results228

in Fig. 6 show that action-based mapping can be more accurate and robust with visual and action229

disturbance. Fig. 7(e) shows ImMimic-V failing due to poor mapping, causing the robot to loop in230

place. Especially in task with subtle action transitions, weak visual mapping degrades performance,231

highlighting that mapping quality is critical, and training with action-based mapping leads to a more232

reliable robot policy.233

ImMimic leads to consistent improvement across embodiments. ImMimic consistently enhances234

policy performance across different end-effectors, regardless of their morphological similarity to235

the human hand. As shown in Tab. 1, ImMimic-A improves task success across all embodiments236

compared to the Robot-Only baseline, and outperforms or matches the performance of Co-Training.237

This demonstrates that ImMimic-A effectively adapts to various tasks and embodiments.238

However, for certain embodiment-task, success rates remain low despite using our method. For239

Hammer with Ability Hand (0.0 SR), Fig. 7(d) shows that the short thumb causes the index finger to240
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(a) (b) (c) (d) (e) (f) (g)

Desired
Behavior

Failure
Cases

Figure 7: Desired behavior and corresponding failure cases. (a) Unstable push due to thin tip. (b)
Unstable grasp from structural gap. (c) Grasp failure due to variations in object positions. (d) Poor
hammer grasp from bad initial contact. (e) Motion trap due to weak visual mapping. (f) Insufficient
gripping force under heavy hammer weight. (g) Infirm grasp of spatula due to large hand.

make unintended contact with the hammer, leading to misoriented grasp. For Flip with Allegro Hand241

(≤ 0.2 SR), Fig. 7(g) shows a failure case where the hand cannot firmly grasp the spatula due to its242

large size. These cases show the essential effects of embodiment structure on task performance.243

More human-mimetic embodiments don’t necessarily lead to better transfer. Intuitively speak-244

ing, human-mimetic embodiments should exhibit smaller action distance to human demonstrations,245

but our results show otherwise. Average AD (Action Distance) shows that two dexterous hands246

demonstrate larger action distances (Allegro: 0.078, Ability: 0.075) compared to the two grippers247

(Robotiq: 0.066, FR: 0.065). Moreover, Tab. 1 show that policies benefit more from human videos248

when the action distance is smaller, regardless of its mechanical structure. This is potentially due to249

the fact that in addition to hand design, mounting configuration and arm kinematics also influence250

the action retargeting and the way robot performs the task.251

These observations are likely to offer useful insights for end-effector design as well. In Fig. 7(a,b),252

Robotiq’s thin fingertips and palm gap cause unstable contact and slipping. In Fig. 7(d), Ability’s253

shorter thumb may contribute to misaligned grasps when position offsets are present. In Fig. 7(f,g),254

Allegro’s larger size appears to limit its ability to lift the heavy hammer or grasp the spatula firmly.255

Overall, features such as longer fingertips, extended thumb reach, and higher grasping force may256

support more robust performance across a range of manipulation tasks.257

The scale and diversity of human demonstrations enhance learning performance. Human258

videos exhibit greater diversity than robot data, as reflected by a higher intra-dataset Action Dis-259

tance (AD) (0.012 vs. 0.005). In Fig. 4, for Pick and Place, adding 50 human videos raises success260

rate (SR) from 0.4 to 1.0 for the Robotiq and from 0.8 to 0.9 for the Ability; both reach 1.0 by 100261

videos. Conversely, in Fig. 5, with 100 human videos fixed, ImMimic-A achieves 1.0 SR with only262

5 robot demonstrations, while the robot-only baseline requires 20 demos but still underperforms.263

These results suggest that incorporating human data can significantly improve sample efficiency264

when combined with a small amount of robot data.265

6 Conclusion266

We present ImMimic, a novel embodiment-agnostic co-training framework that unites large-scale267

human videos with few-shot robot demonstrations. To bridge the domain gap between human and268

robot data, ImMimic leverages DTW-based mapping and MixUp to interpolate between mapped269

human-robot pairs, creating intermediate domains that enable smooth domain adaptation during co-270

training. Evaluation on four tasks and four embodiments demonstrates consistent improvements in271

task success rate and rollout smoothness. Additionally, we find that mapping based on action similar-272

ity between retargeted human and robot actions, rather than visual context, leads to improved policy273

performance, suggesting that human hand trajectories offer rich supervision for robot learning. We274

also identify several failure cases, attributed to either hardware design or limitations in the learning275

method, and observe that a more human-like hand does not necessarily yield better performance.276
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7 Limitations277

Exisiting limitation of ImMimic includes: (1) Large domain gap leads to performance drop. Al-278

though ImMimic outperforms baselines across embodiments in most of the tasks, its performance is279

still degraded under even larger domain gaps, such as significant differences in average action dis-280

tances between embodiments and humans, or major visual appearance differences. Future directions281

may include improved representation learning to better align the features even across larger domain282

gaps. (2) Inconsistent gains across embodiments potentially indicate that policy performance is283

influenced by the robot’s structural design. While ImMimic consistently improves success rates284

and smoothness across all four embodiments shown in Tab. 1 and Tab. 2, the magnitude of these285

gains varies. In future work, we aim to empirically investigate how embodiment design impacts pol-286

icy performance when learning from human demonstrations, with the ultimate goal of developing a287

unified system that enables robots to more effectively acquire and adapt human skills.288
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Appendix289

A Demonstration Collection System290

The overall data collection system is illustrated in Fig. A.1. We collect both human demonstration291

videos and robot teleoperation data to establish a comprehensive dataset for our study. To minimize292

visual gap between human and robot demonstrations, we use the same RealSense D435 camera for293

both. Demonstrations are recorded from a fixed viewpoint that captures the entire workspace and294

clearly shows hand-object interactions.

Figure A.1: Overall data collection system. (1) For human demonstrations, only the agent-view
camera is used. (2) For robot demonstrations, both the agent-view and wrist-view cameras are used
to enable precise control. (3) For teleoperation, a separate workspace is placed to the left of the
robot, and a camera with identical intrinsics and calibration is used for vision-based control.

295

A.1 Data Collection Throughput296

As shown in Tab. A.1, we report the teleoperation throughput for each embodiment on each task in297

terms of: (1) Frequency – the average number of successful demonstrations recorded per minute,298

(2) Success Rate – the ratio of successful demonstrations to total attempts, and (3) Duration – the299

average length of all successful demonstrations. Due to structural differences and varying task dif-300

ficulty, these metrics differ across embodiments and tasks. These trends also strongly correlate with301

the final policy performance. For Hammer, using Allegro Hand and Ability Hand for teleoperation302

shows low success rates (≤ 0.3) and require longer durations due to the need for precise wrist an-303

gle adjustments during teleoperation. This aligns with the policy rollout results, where the policies304

learned with these embodiments also exhibit low rollout success rates (≤ 0.2). In contrast, for the305

same tasks, using the Robotiq Gripper and FR Gripper for teleoperation shows better performance,306

and the policies trained for these embodiments achieve higher performance.307

A.2 Sample Rate Normalization308

To enable consistent training and inference across human and robot demonstrations, we define a309

sample rate γ that compensates for the difference in demonstration durations. As shown in Tab. A.1,310

human demonstrations tend to be faster, while teleoperated robot demonstrations take longer time.311

To align their temporal coverage, we fix the action sequence length k = 32 for human demonstra-312

tions, then compute γ as the ratio of robot to human demonstration durations. Using this value, we313

uniformly subsample γ-spaced frames from each robot demonstration to produce a k-step sequence314

that spans a comparable duration.315

During training, we use an observation history length ϵ = 2, where the policy predicts k future316

actions based on ϵ past observations. For robot data, these observations are offset by γ, allowing317

the model to learn over a similar time horizon as in human data. This normalization helps mitigate318

issues caused by overly short prediction horizons in slower-paced robot trajectories.319
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Method Metric Pick and Place Push Hammer Flip

Human Demo
Frequency 5.4 6.7 2.8 3.4
Success Rate 1.00 1.00 1.00 0.98
Duration 2.66 1.59 4.66 2.52

Vision-based Teleop
(Robotiq)

Frequency 1.47 1.33 1.05 0.45
Success Rate 0.82 0.88 0.48 0.28
Duration 8.33 9.17 12.73 7.54

Vision-based Teleop
(FR)

Frequency 1.4 1.52 0.83 0.76
Success Rate 0.83 0.88 0.52 0.46
Duration 12.87 17.04 16.23 11.04

Vision-based Teleop
(Allegro)

Frequency 1.42 1.67 0.12 0.43
Success Rate 0.70 0.86 0.04 0.32
Duration 15.43 10.99 21.31 14.78

Vision-based Teleop
(Ability)

Frequency 1.21 2.05 0.38 0.59
Success Rate 0.68 0.91 0.22 0.45
Duration 16.09 10.12 18.28 13.86

Table A.1: Frequency (number of successful demonstrations collected per minute), Success Rate
(ratio of successful demonstrations) and Duration (average duration of all demonstrations) for human
demonstrations and vision-based teleoperation across four tasks using four different end-effectors:
Robotiq, Fin Ray, Allegro, Ability.

Method Pick and Place Push Hammer Flip
Human Demo 32 32 32 32

Robotiq 100 185 87 96

FR 155 343 112 140

Allegro 185 221 146 188

Ability 193 204 126 176
Table A.2: Sample rate γ used during training and inference. It is computed as the ratio between the
durations of human and robot demonstrations and is used to subsample robot data during training
and upsample predicted actions during inference.

At inference, we upsample the predicted k-step sequence using γ to recover the original robot ex-320

ecution speed. The model performs inference every k steps, and intermediate steps are filled via321

temporal ensembling of previously predicted actions with a decaying weight. This ensures smooth,322

continuous motion during rollout while maintaining consistency with the teleoperated control pace.323

A.3 Camera Calibration324

Accurate camera calibration is essential for both human and robot demonstrations. Before data325

collection, we calibrate the agent-view RealSense D435 camera used across our settings. For326

vision-based teleoperation, we use a separate RealSense D435 camera positioned over a dedicated327

workspace to the left of the robot for RGBD-based hand pose estimation and retargeting. This328

camera shares the same intrinsic parameters and calibration with the agent-view camera.329

We now describe the camera calibration method used to transform retargeted human trajectories330

(extracted from human demonstration videos) from the camera coordinate frame to the robot base331

frame. Specifically, we aim to estimate the rigid transformation that maps 3D points and orientations332

from the camera frame to the robot base frame, denoted as:333

baseTcam =

[
R t
0⊤ 1

]
, (A.1)
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where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation vector. In homogeneous coordi-334

nates, any point pcam in the camera frame is transformed to the robot base frame via:335 [
pbase

1

]
= baseTcam

[
pcam

1

]
. (A.2)

To perform calibration, we attach an AprilTag to a known location (Fig A.2a) such that its pose336

relative to the robot base is known, yielding baseTtag. The camera observes the tag, yielding tagTcam.337

Combining these yields:338

baseTcam = baseTtag
(tagTcam

)−1
, (A.3)

Multiple such measurements enable us to refine (R, t) using a best-fit procedure. Given N pairs339

of corresponding points pcam
i (in the camera frame) and prob

i (in the robot base frame), we estimate340

(R, t) by minimizing:341

L(R, t) =

N∑
i=1

∥prob
i − (Rpcam

i + t)∥2, (A.4)

s.t.RTR = I. (A.5)

We use a quaternion-based parameterization of R to enforce SO(3) constraint and solve the problem342

via nonlinear least squares. The overall calibration procedure is illustrated in Fig A.2b.343

(a) AprilTag used for camera calibration, enabling
precise estimation of its 6-DoF pose in the camera
frame.

(b) Calibration from the camera coordinate frame
to the robot base frame.

Figure A.2: Camera calibration process.

B Retargeting344

In both human videos processing and vision-based teleoperation for robot data collection, we per-345

form retargeting from human hand motion to robot actions. While the overall retargeting pipeline346

is shared across both settings, there are key differences. For human demonstration videos, we use347

offline retargeting based on RGB inputs and apply position retargeting, where absolute 3D joint348

positions are mapped to robot actions. For real-time vision-based teleoperation, we apply online349

retargeting that replaces wrist pose estimation with a more stable depth-based method and adopts350

vector retargeting [6], which aligns finger segment orientations rather than absolute positions for351

teleoperation. This section provides additional details on the retargeting process.352

Human Pose Estimation and Wrist Localization. To estimate human hand pose, we use Medi-353

aPipe [51], a real-time pipeline that provides robust hand bounding boxes. Each cropped hand re-354

gion is then passed to FrankMocap [52], which outputs shape and pose parameters for an SMPL-X355

model [58], resulting in accurate 3D coordinates for 21 knuckle joints in the local wrist frame.356
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(a) Baseline retrieval for a Pick and Place task, the same setting we used for training.

(b) Retrieval with visual disturbance: additional objects and background change.

(c) Retrieval with action disturbance: Pick and Place different objects.

Figure C.1: Comparison of visual- and action-based mapping methods under baseline, visual distur-
bance, and action disturbance conditions. The results indicate that visual-based mapping suffers a
more noticeable performance drop under visual disturbances, while action-based mapping remains
comparatively robust.

To improve spatial accuracy, particularly important for teleoperation, we replace FrankMocap’s es-357

timated wrist translation with a wrist point derived from depth data captured by an RGBD camera.358

For wrist orientation, we apply the Perspective-n-Point (PnP) algorithm [59], solving:359

R∗, t∗ = argmin
R,t

∑
i

∥pi −Π(RPi + t)∥2 (B.1)

where Pi are the 3D keypoints in the local frame, pi are their 2D projections, R ∈ SO(3) is the360

orientation matrix, t is the translation vector, and Π is the camera projection function. This yields a361

refined 6-DoF wrist pose that is consistent with the observed depth.362

Online Retargeting for Real-time Teleoperation. For real-time teleoperation, we adopt vector re-363

targeting to ensure responsiveness and avoid kinematic singularities. Instead of matching absolute364

joint positions, we optimize finger orientations to follow the directions of human keypoint vectors.365

Given keypoint vectors vi
t from MediaPipe [51], we solve for the robot joint configuration by mini-366

mizing:367

min
qt

N∑
i=1

∥∥αvi
t −R fi(qt)

∥∥2 + β
∥∥qt − qt−1

∥∥2, s.t. ql ≤ qt ≤ qu, (B.2)

where fi(·) maps to the corresponding robot finger vector, R aligns coordinate frames, and α, β368

control the scaling and temporal smoothness. We solve this constrained optimization problem in369

under 10 ms per frame. To further reduce latency and improve motion continuity, we apply a low-370

pass filter with a smoothing parameter of 0.2 to suppress sudden keypoint fluctuations. This enables371

stable control and recording at 30 Hz.372
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C Long Raw Human Video Retrieval373

C.1 Greedy Multi-Segment Subsequence DTW (GMS-SDTW).374

In our current setup, we use segmented human and robot demonstrations recorded in the same375

workspace while performing the same task. This controlled design minimizes the visual and ac-376

tion gap and simplifies the mapping process. In contrast, more practical scenario involves long,377

untrimmed human videos that include disturbances and task-irrelevant actions. In such cases, iden-378

tifying an accurate mapping strategy becomes even more critical. To extract useful segments from379

these raw videos, recent retrieval-based methods attempts to match human segments with corre-380

sponding robot behaviors, most often relying on visual features [14]. We formulate a retrieval task381

using long human videos, enabling a comparison between visual- and action-based mapping strate-382

gies to clarify which modality yields higher accuracy. To address this, we propose Greedy Multi-383

Segment Subsequence DTW (GMS-SDTW), an extension of our current mapping algorithm.384

Setting Method mIoU Acc@0.5

Baseline Visual 0.52 66.7
Action 0.70 71.4

+ Visual Disturb. Visual 0.41↓0.11 33.3↓33.4

Action 0.67↓0.03 66.7↓4.7

+ Action Disturb. Visual 0.46↓0.06 40.0↓26.7

Action 0.65↓0.05 75.0↑3.6

Table C.1: Comparison of mean IoU
and Acc@0.5 for visual- and action-
based mappings under different distur-
bance conditions on long raw videos.

Overview of GMS-SDTW. Given a long human tra-385

jectory H = {ht}Th
t=1 that contains an unknown num-386

ber of action subsequences, and a single robot trajectory387

R= {rs}Tr
s=1, our goal is to identify all the human sub-388

sequences that best match the robot trajectory. We ex-389

tend classical Subsequence DTW (S-DTW) by scanning390

through H using a sliding window method, greedily se-391

lecting mapped subsequences whose distance to the robot392

trajectory is below a predefined threshold ϵ. The slid-393

ing window length L is varied within a predefined range394

L∈ [Lmin, Lmax]. The algorithm is presented in Alg. 1.395

S-DTW. The cumulative distance matrix D(i, j) is initialized to support open-ended matching in396

the candidate sequence R:397

D(0, 0) =d(0, 0), D(i, 1) =

i∑
k=1

d(k, 1), D(1, j) = d(1, j)

for i = 1, . . . , Th and j = 1, . . . , Tr.

(C.1)

where d(i, j) is the pairwise distance between the i-th human frame and j-th robot frame.398

The recursive update is follows the standard DTW formulation:399

D(i, j) = d(i, j) + min {D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)} . (C.2)

The best-matching endpoint is chosen as j⋆ = argminj D(Th, j), and the start index is recovered400

via backtracking from (i, j⋆).401

Greedy search. Starting at frame t = 1, we evaluate subsequence Ht:t+L for lengths L ∈402

[Lmin, Lmax] via S-DTW, get the subsequence with the minimum distance, and store it if d⋆ < ϵ.403

Stored subsequences are recorded as segments (t, t + L⋆, k⋆, j⋆) and the search resumes from404

t= t+L⋆ +1. Otherwise we increment t← t+1. The algorithm runs in O
(
(Lmax −Lmin)Tr, Th

)
405

time, and each robot frame is only assessed within the S-DTW dynamic-programming table.406

Complexity. Each S-DTW distance has a time complexity of O(ThTr). With a linear scan over T407

frames and at most Lmax−Lmin +1 window lengths, the overall complexity isO
(
(Lmax−Lmin +408

1)TrTh

)
, which is tractable in practice since Lmax ≪ T .409

C.2 Visual- and Action-based Long Raw Video Retrieval410

As discussed in Core Results, action-based mapping tends to offer more robust performance than vi-411

sual mapping. To further compare their performance, we propose a long raw video retrieval task [60]412

as an intuitive way to assess the robustness of each mapping method under varying conditions. In413
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Algorithm 1 Greedy Multi-Segment Subsequence DTW (GMS-SDTW)

Require: Human trajectory H of length Th; robot trajectory R of length Tr;
1: window bounds Lmin, Lmax; distance threshold ϵ

Ensure: Set P of matched segments (hstart, hend, rstart, rend, d)
2: P ← ∅; t← 1
3: while t+ Lmin − 1 ≤ Th do
4: dbest ← +∞
5: for L = Lmin to min(Lmax, Th − t+ 1) do
6: q← Ht:t+L−1

7: (d, jstart, jend, )← S-DTW(q,R)
8: if d < dbest then
9: dbest ← d

10: L⋆ ← L
11: j⋆start ← jstart
12: j⋆end ← jend
13: end if
14: end for
15: if dbest < ϵ then
16: Add (t, t+ L⋆ − 1, j⋆start, j

⋆
end, dbest) to P

17: t← t+ L⋆ ▷ Skip matched subsequence
18: else
19: t← t+ 1
20: end if
21: end while
22: return P

addition to segmented human demos with well-defined start and end boundaries, we also explore414

extended videos containing multiple irrelevant visual and action segments.415

We evaluate the following three scenarios: (1) Baseline: Videos captured under standard clear con-416

ditions. (2) With Visual Disturbance: Videos that include background clutter or additional distract-417

ing objects, simulating more realistic visual environments. (3) With Action Disturbance: Videos418

where the demonstrated action is slightly altered (e.g., grasping a different object), introducing mi-419

nor motion variations.420

Our proposed GMS-SDTW method processes each long video to detect and maps subsequences421

corresponding to Pick and Place robot demonstration trajectory. As shown in Fig. C.1, action-422

based retrieval yields more precise results showing resilience to visual disturbances. Quantitative423

results, including mean Intersection over Union (mIoU) and accuracy at a threshold of 0.5, are424

presented in Tab. C.1. By focusing on action similarity, our system more accurately localizes the425

relevant segments while reducing sensitivity to irrelevant visual content. Overall, while visual-based426

mapping may suffer from real-world visual variations, action-based mapping remains robust and427

reliable.428

D Additional Baseline Comparison via Visual Retrieval429

We compare ImMimic-A with the current state-of-the-art retrieval-based method STRAP [14].430

STRAP leverages a strong vision foundation model, DINOv2 [61] to embed each video frame and431

employs S-DTW to retrieve relevant subtrajectories. Following STRAP, each robot demonstration is432

first segmented into variable-length sub-trajectories using the low-level end-effector motion heuris-433

tic. We then extract DINOv2 features from agent-view videos for both human and robot data. Treat-434

ing robot subtrajectories as a query, we apply S-DTW to locate matching subsequences in human435

videos. We cap the number of matches per query at K = 500 where K denotes the maximum436

number of matched segments per query. As shown in Tab. E.1, STRAP outperforms the Robot Only437

baseline, while ImMimic-A still achieves even higher performance. STRAP is designed for robot-438

to-robot transfer via retrieval-based matching and therefore does not explicitly address the domain439
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Setting Robotiq Ability
Pick and Place Flip Pick and Place Flip

Robot Only 0.40 0.60 0.80 0.60
Co-Training 0.40 0.80 0.80 0.90

STRAP 0.50 0.60 0.90 0.90
ImMimic-A 1.00 1.00 1.00 1.00

Table E.1: Comparison of success rates between Robot Only, Co-Training, STRAP, and our
ImMimic-A across two embodiments and two tasks, using 5 robot demonstrations and 100 human
demonstrations.

Setting Robotiq Ability
Pick and Place Flip Pick and Place Flip

ImMimic-A (β-dist) 0.90 0.90 0.90 1.00
ImMimic-A (linear) 1.00 1.00 1.00 1.00

Table E.2: Comparison between ImMimic-A (β-dist), which samples the MixUp ratio α from a β-
distribution, and ImMimic-A (linear), which uses a linearly decreasing schedule for α. Success rates
are reported across two embodiments and two tasks, using 5 robot demonstrations and 100 human
demonstrations.

distribution gap present in human-to-robot transfer. Moreover, while STRAP employs a strong vi-440

sual encoder for feature similarity, action information can offer more robust correspondence in the441

presence of a human-to-robot visual gap.442

E Additional Experimental Results and Details443

E.1 Domain Gap444

Learning from human videos poses two critical gaps that often hinder policy transfer to robots: the445

visual gap and the action gap [3, 4]. The visual gap arises due to significant differences in appear-446

ance between humans and robots. The action gap stems from differences in kinematic constraints,447

motion dynamics, embodiment size, and task execution strategies.448

Visual Gap. In Tab. E.4, we present sample demonstration clips highlighting how human and449

robot embodiments differ significantly in their visual observations. While a shared workspace setup450

can help reduce background-related visual discrepancies, notable appearance differences between451

human and robot demonstrations remain.452

Embodiment Pick and Place Push Hammer Flip AVG
Robotiq 0.031 0.067 0.085 0.083 0.066
FR 0.028 0.077 0.068 0.089 0.065

Allegro 0.063 0.065 0.089 0.094 0.078
Ability 0.047 0.056 0.091 0.106 0.075

Table E.3: Average action similarity across different embodiments and tasks. Grippers generally
exhibit a smaller action gap compared to dexterous hands.

Action Gap. Fig. E.1 shows human demonstration trajectories overlaid with their corresponding453

teleoperated robot trajectories. Despite structural differences in design, retargeting aligns human454

and robot motions by emphasizing underlying physical similarities. Tab E.3 further quantifies hu-455

man–robot action similarity.456

E.2 Visualization of the Mapping457

During MixUp, our mapping strategy ensures that interpolated demonstration pairs remain plausible458

to avoid generating infeasible demonstrations. Experimental results show that Random Mapping459
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(a) Pick and Place: Robo-
tiq

(b) Push: Robotiq (c) Hammer: Robotiq (d) Flip: Robotiq

(e) Pick and Place: Abil-
ity

(f) Push: Ability (g) Hammer: Ability (h) Flip: Ability

Figure E.1: Visualization of sample trajectories pairs: the human retargeted trajectory and the cor-
responding robot demonstration trajectory. Arrows indicate orientation.

fails to improve performance, and ImMimic-V with its lower mapping quality, underperforms com-460

pared to ImMimic-A. We visualize an example of our action mapping at certain timesteps for the461

Robotiq Gripper and Ability Hand performing Pick and Place (Fig E.2). By sampling at different462

rates, we minimize the speed discrepancy between human and robot demonstrations to match their463

average durations. As shown in the figure, our mapping strategy effectively mpas observations and464

future states across embodiments, ensuring task-relevant consistency.465

E.3 Visualization of Domain Flow466

To illustrate how our methods adapts the across domains, we visualize the t-SNE [62] embeddings467

of human and robot conditions in Fig. E.3. Each point in the scatter plot represents a condition at468

a specific timestep from either human or the robot dataset. Under Vanilla Co-Training, human and469

robot data distributions remain clearly separated, highlighting the domain gap. This separation be-470

tween the source (human) and target (robot) data indicates that, without explicit domain adaptation,471

the model cannot fully leverage human data for robot training. Similar to DLOW [16], which em-472

ploys a continuous “domainness” variable to transition from source to target domains, ImMimic-A473

uses the mixing coefficient α to control how far each sample is adapted toward the robot domain.474

E.4 MixUp with β-distribution475

In several MixUp-based approaches [15, 41], α is sampled from a β-distribution to augment the476

data distribution. In Tab. E.2 we compare ImMimic-A (β-dist) to ImMimic-A (linear), where α is477

sampled directly from a β-distribution. Our results show that ImMimic-A (linear), which uses a478

linearly decreasing α schedule, still outperforms ImMimic-A (β-dist).479

The results confirm that progressive MixUp scheduling enhances policy robustness across domains.480

Models trained with the linear α scheduler achieve better adaptation between human and robot dis-481

tributions, leading to smoother trajectories and improved task success compared to the β-distributed482

variant. This demonstrates that controlled, gradual interpolation not only bridges the domain gap483

but also yields more stable and effective robot behaviors.484

E.5 Success Rate Metrics485

Success Rate. The four tasks are designed to evaluate various aspects of robotic manipulation. Each486

task includes specific disturbances to test robustness.487
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Task Embodiment Agent view

Pick and Place

Human

FR

Robotiq

Allegro

Ability

Push

Human

FR

Robotiq

Allegro

Ability

Hammer

Human

FR

Robotiq

Allegro

Ability

Flip

Human

FR

Robotiq

Allegro

Ability
Table E.4: Agent-view visualization for human and four different embodiments (FR, Robotiq, Alle-
gro, Ability) performing four tasks (Pick and Place, Push, Hammer, Flip).
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Figure E.2: An example of mapped pairs at the same timestep used for MixUp. As shown in
Tab. A.2, we set sample rates γ (Human: 32/32, Robotiq: 100/32, Ability: 193/32) based on average
durations to ensure consistent execution speed.

Figure E.3: t-SNE visualization of input conditions at each timestep from human and robot datasets
during training. We compare ImMimic-A with Co-Training, showing that ImMimic-A generates a
smooth domain flow for the human data, enabling effective domain adaptation.

1. Basic Object Manipulation. (1) Pick and Place: The robot must pick up a cube from a start488

position and place it at a designated target location. The initial position of the cube is roughly fixed489

but includes a random offset within the start area. This task evaluates the robot’s ability to accurately490

grasp and relocate objects. The task is considered successful if the cube fully covers the target point.491

We consider the attempt successful if the cube fully covers the target point. (2) Push: The robot492

must push the object from the start position to the target region. This task primarily evaluates finger-493

free manipulation capabilities. Similar to the Pick and Place, a random offset is applied to the cube’s494

initial position. The task is considered successful if the object reaches the target region after the495

push. 2. Tool-based Manipulation. (1) Hammer: The robot must pick up a hammer and strike a496

target cube with its head. This task requires proper tool grasping and precise targeting. The hammer497

is initially placed on a cube, with its handle orientation randomly disturbed within a 45-degree range.498

The task is successful if the hammer’s head touches the top surface of the target cube. (2) Flip: The499

robot must flip a bagel using a spatula after lifting it. This task emphasizes precise wrist control and500

rotational dexterity. The spatula is placed at an angle within 45 degrees, and the bagel is positioned501

randomly on different parts of its head. Success is defined as the bagel being flipped over.502

Failure Cases. We summarize common failure modes observed across the four robotic embodi-503

ments.504
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Robotiq Gripper. In Push, Robotiq Gripper struggles to maintain a straight trajectory due to its505

thin fingertips, leading to unstable contact and frequent path corrections. In Flip, limited wrist506

articulation and low contact area make it difficult to control the spatula through the full rotation,507

resulting in intermittent slippage. Additionally, a structural gap above the fingertips can cause the508

gripper to grasp the spatula within this space, leading to an unstable grip. These issues are visually509

highlighted in Fig. 7(a,b), where Robotiq’s fingertip geometry and palm gap contribute to contact510

instability and slippage.511

Fin Ray Gripper. In Push, FR Gripper improves on Robotiq Gripper’s stability but still lacks the fine512

precision of multi-fingered hands. In Flip, its limited wrist articulation leads to occasional loss of513

control during dynamic movements.514

Allegro Hand. In Hammer, Allegro’s relatively large hand size reduces its ability to generate suffi-515

cient lift force, making it difficult to wield heavier tools effectively. In Flip, the same size limitation,516

combined with weak grip force, often results in the spatula slipping before the motion completes.517

These failures are illustrated in Fig. 7(f,g), where the hand struggles to maintain stable tool contact518

during high-torque actions.519

Ability Hand. In Pick and Place, the short thumb and limited wrist flexibility of the Panda arm often520

result in unstable grasps and frequent object drops. In Hammer, the same constraints hinder stable521

tool grasping and force transmission. As shown in Fig. 7(c,d), the shorter thumb may also contribute522

to misaligned grasps, especially when positional offsets are present.523

Mechanical Design Insights. Analysis of failure cases reveals that no single hand design is univer-524

sally optimal across all tasks. However, several general insights can inform more effective mechan-525

ical design of end-effector:526

(1) Increase thumb length relative to other fingers to expand the acceptable grasping margin and527

reduce off-center spinning (supported by biological evidence [63]). A longer thumb increases the528

moment arm and provides greater contact redundancy, improving robustness when objects shift529

under load.530

(2) Account for mounting and arm constraints. Most current end-effector mounts lack an additional531

wrist degree of freedom, limiting the ability to perform human-like reorientation. Introducing a532

swivel or universal joint at the mounting interface can restore this degree of freedom, enabling more533

favorable tool approaches without compromising the robot’s kinematic reach.534

(3) Enable firm, adaptive grasps by incorporating an adjustable thumb–finger aperture mechanism535

and compliant interface materials. A variable-spacing mechanism allows the hand to conform to536

different tool cross-sections, while soft, high-friction coatings compensate for local misalignments537

and absorb minor impacts, preventing slippage throughout the workspace.538

E.6 Smoothness Metrics539

Spectral Arc Length (SPARC) quantifies smoothness by measuring the arc length of the normalized540

magnitude spectrum of a trajectory’s speed profile in the frequency domain [57], building on the541

original Spectral Arc Length (SAL) [64]. Given a speed profile st, the normalized spectrum is542

defined as:543

Ŝ(ω) =
S(ω)

S(0)
(E.1)

The SAL metric is then computed as:544

SAL ≜ −
∫ ωc

0

√√√√( 1

ωc

)2

+

(
d Ŝ(ω)

dω

)2

dω (E.2)
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SPARC improves upon SAL by adaptively selecting the cutoff frequency ωc based on an amplitude545

threshold S and an upper frequency limit ωmax
c :546

ωc ≜ min

{
ωmax
c , min

{
ω
∣∣∣ Ŝ(γ) < S, ∀ γ > ω

}}
(E.3)

In our implementation, we apply zero-padding to the speed trajectory with a factor of K = 4, and set547

the parameters ωmax
c = 15, S = 0.05. A higher SPARC score corresponds to a smoother trajectory.548

With the metric, we are able to show that our ImMimic improves the smoothness for the rollout549

policy to both Robot-Only and Co-Training.550

E.7 Training Setup and Deployment Details551

All models are trained for 300 epochs using an NVIDIA A40 GPU, with a batch size of 128. For552

deployment, we perform policy rollout with both inference and control running at 30 Hz on a desktop553

equipped with an NVIDIA RTX 4090 GPU. All robot sensors operate at 30 Hz, while the Zed and554

RealSense cameras stream at 30 FPS.555
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