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ABSTRACT

Humans can generalise from past experiences to novel situations as well as revise
prior knowledge to flexibly adapt to changing contexts and goals. The representa-
tional geometry framework formalises how information is structured in the brain
and suggests that abstraction involves a trade-off between generalisation and flexi-
bility. However, how the geometry of task representations evolves across learning
and how it corresponds to behaviour remains unclear. Here, we tested the hypothe-
sis that task representations become compressed throughout learning, trading flex-
ibility for task efficiency. Using an extra-dimensional shifting task, we manipu-
lated the pretraining length to control the degree of compression. In both humans
and artificial neural networks, longer pretraining was associated with decreased
flexibility. Analysis of network dynamics suggest that greater compression incurs
a higher representational reorganisation cost, restricting flexibility. However, the
introduction of an auxiliary reconstruction loss maintains higher dimensionality,
mitigating the impairment of flexibility. Our findings point towards a represen-
tational geometry-based mechanism that explains how representational compres-
sion constrains flexibility, and how preserving representational richness enhances
flexibility.

1 INTRODUCTION

Humans acquire abstract knowledge by integrating information across experiences, which is essen-
tial for generalisation. However, abstraction entails information loss, potentially limiting flexibility
in adapting to environmental changes or shifting goals, suggesting a trade-off between generalisation
and flexibility.

Humans can exhibit both high flexibility and strong generalisation depending on the context. In
contrast, artificial neural networks (ANNs) typically excel at in-domain generalisation but display
limited flexibility, tending to overfit to the domain of the training data (Weiss et al., 2016) and suf-
fering from catastrophic forgetting (French, 1999; Parisi et al., 2019). Recent work has shown that
certain network modifications can overcome these limitations (Benna & Fusi, 2016; Kirkpatrick
et al., 2017; Flesch et al., 2023), offering insights into potential biological mechanisms that support
flexibility. Studying ANNs provides an opportunity to explore the flexibility-generalisation trade-
off with full access to internal representations. This not only refines our understanding of artificial
systems, but also informs hypotheses about biological learning (Saxe et al., 2021; Lillicrap & Kord-
ing, 2019). By identifying computational learning principles shared across biological and artificial
agents, we work toward a more unified understanding of learning in intelligent systems.

The representational geometry framework formalises how activity patterns encode information. For
example, the response evoked by a stimulus in the brain can be recorded as a neural activity vector.
Each stimulus response can be represented as a point in neural space, with axes corresponding to
the activity of each neuron (Fusi et al., 2016). The geometry of a set of responses in neural-space
can provide insights into the perceived relational structure between stimuli, and offers a way to
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quantitatively characterise task representations. Crucially, it enables comparison of representations
across individuals, species and with artificial systems.

A key property of representational geometry is dimensionality, which refers to the number of di-
mensions required to capture the variation of a set of responses in neural-space (Fusi et al., 2016).
Low dimensional representations compress irrelevant information, enhancing robustness and gener-
alisation to novel stimuli, but reducing input separability and the diversity of downstream readouts
(Badre et al., 2010; Collins & Frank, 2013; Anselmi et al., 2015; Badre et al., 2021). By contrast,
high dimensional representations retain richer detail, supporting input separability (Fusi et al., 2016)
and behavioural diversity, but at the cost of increased sensitivity to input noise and poorer general-
isation to novel inputs (Cohen et al., 2020; Rigotti et al., 2013). This suggests representational
dimensionality mediates a trade-off between generalisation and flexibility (Badre et al., 2021).

Here, we focus on control representations, primarily associated with the prefrontal cortex (PFC)
(Miller & Cohen, 2001), which integrate sensory inputs with memory, goals, and context to guide
behaviour (Badre et al., 2021; Kikumoto et al., 2023). While experimental work has largely fo-
cused on the properties of static representational geometries, control representations are inherently
dynamic, evolving over the course of learning (Mill & Cole, 2023; Wójcik et al., 2023), as the envi-
ronment and goals vary (Kikumoto & Mayr, 2020), and within the timescale of a task trial (Bernardi
et al., 2020; Shi et al., 2023; Kikumoto et al., 2023; Shi et al., 2023).

It has been theorised that early in learning, high dimensional representations may be optimal for ex-
ploration (Enel et al., 2016; Fusi et al., 2016). Later in learning, task irrelevant dimensions may be-
come compressed to minimise energy demand (Musslick & Cohen, 2021; Barak et al., 2013; Wójcik
et al., 2023), improving robustness and generalisation (Bernardi et al., 2020). Wójcik et al. (2023)
showed that the dimensionality of macaque PFC neural representations decreased over the course
of learning a task. However, they did not directly test how the representational geometry relates to
behaviour. How task representations are acquired over time, and how they constrain behaviour and
future learning, remain open questions.

We hypothesise that representational compression reduces flexibility by limiting the ability to re-
integrate previously compressed features. To test this, we designed an extra-dimensional shifting
task and we manipulated the pretraining length to control the degree of representational compres-
sion. First we simulated the task in artificial neural networks and analysed the hidden layer rep-
resentations to gain mechanistic insight into how geometry influences flexibility in adapting to the
shift. Next we collected behavioural data from humans and compared their performance to ANN
simulations.

2 RESULTS

2.1 TASK DESIGN

To test the hypothesis that representational compression impairs flexibility, we designed an extra-
dimensional shifting task for both humans and ANNs. The task was designed to investigate how
prior learning affects the ability to adapt when the relevant feature shifts.

In the human version of the task, participants learned to predict the locations (either North or South)
of symbols on a map. In each trial, they were shown a symbol and freely clicked on the map
to make their prediction (Figure 1A). A symbol set was defined by two features (e.g. colour and
shape). During the pretraining phase, feature A determined the location of the symbol (Figure 1B).
However, partway through the task, the relevant feature switched to feature B. During the post-shift
phase, participants would have to shift their attention to feature B in order to learn the new rule.
Continued use of the pretraining rule yields 50% accuracy as the locations for half the symbols are
“flipped” after the rule change (Figure 1B).

Participants learned the locations of 2 sets of symbols, M1 and M2 (Figure 1C), each was defined
by a distinct pair of visual features (abstract shape and pattern, or pictorial image and colour) and
was associated with a unique map. M1 received longer pretraining than M2 before the shift-point,
where the rule changed (Figure 1D).
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Figure 1: (A) Schematic of an example trial of the human task. (B) Symbol sets defined by two
features, here shape and colour. Task A locations determined by feature A (left) and task B based
on feature B (right), with “flipped” symbols changing location between the tasks. (C) M1 symbols
defined by picture and colour, and M2 defined by pattern and geometric shape. (D) Schematic of
curriculum. During pretraining, participants learned task A (5 M1 and 1 M2 block). After the shift-
point (dashed line), they learned task B with alternating M1 and M2 blocks.

This design allowed us to compare the effect of pretraining length on post-shift flexibility within-
subject. We hypothesised that the irrelevant feature (feature B) would be compressed over the course
of pretraining. Therefore, we would expect M2 representations to be higher dimensional at the shift-
point, facilitating better adaptation to the rule shift compared to M1.

3 ARTIFICIAL NEURAL NETWORKS

We first simulated a binary classification version of the task in multilayer perceptrons (MLPs) to
formalise predictions about the impact of pretraining length on flexibility. Crucially, full access
to the networks’ hidden layer representations enabled us to directly measure representational di-
mensionality across learning. By examining how the representational geometry evolved across the
extra-dimensional shift, we gained mechanistic insight into how dimensionality influences flexibil-
ity.

3.1 SETUP

Previous work has shown that weight initialisations influence the dimensionality of representations
in neural networks. Networks initialised with low-variance weights (rich regime) tend to discover
task relevant features, forming low dimensional representations. In contrast, networks initialised
with high-variance weights (lazy regime) tend to undergo minimal weight changes during learning
to form high dimensional representations (Chizat et al., 2018; Flesch et al., 2021). We simulated
networks initialised in both regimes to compare how representational geometry evolved at these
two extremes of dimensionality. We expected the Rich networks to correspond most closely to
human learning as we reasoned humans would solve the task by extracting the relevant feature. The
Lazy networks served as a control, illustrating learning in the absence of significant representational
change.

Additionally, we reasoned that humans would only partially compress representations, as their strong
prior knowledge of the distinct stimulus features would prevent them from completely discarding in-
formation about the irrelevant feature within the time frame of the task. In order to instil similar prior
knowledge in the MLPs, we first trained them to reconstruct the inputs before the classification task.
A classification loss was applied to one output unit responsible for North/South classification, and a
reconstruction loss was applied to the remaining 16 output units responsible for input reconstruction
(Figure 2B). The classification and reconstruction losses were scaled by the constants αclass and
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Figure 2: (A) Input two-hot vectors representing the feature values. (B) MLP architecture schematic.
(C) MLP curriculum for recMLPs. Orange and green blocks indicate training on M1 and M2 inputs
respectively. (D) Accuracy across epochs for rich (middle) and lazy (left) MLPs, and recMLPs
(right) across the task. Vertical and horizontal dashed lines indicate the shift-point and chance
accuracy respectively. (E) Mean accuracy for initial pretraining block (left) and across post-shift
blocks (right). Black dots represent individual mean values. Stars denote Wilcoxon signed rank test
significance (0.05 *, 0.01 ** , 0.001 ***, <0.000 ****).

αrec respectively. During the Nrec blocks of reconstruction training, we applied L2 regularisation
to the weights to keep them small, ensuring that the networks began the task in the rich regime.

We simulated the task under three conditions:

1. Lazy MLPs were initialised in the lazy regime, and received no reconstruction training
(Nrec = 0; αrec = 0).

2. Rich MLPs were initialised in the rich regime, and received no reconstruction training
(Nrec = 0; αrec = 0).

3. recMLPs were initialised in the rich regime, and trained on 20 blocks of the reconstruction
task (Nrec = 20; αrec = 1).

3.2 PERFORMANCE

In each condition, a set of MLPs (n = 80 to match the human cohort size) were trained on a binary
classification version of the symbol task. The inputs were two-hot encoded vectors representing the
feature values of the stimulus (Figure 2A).

We compared M1 vs. M2 performance during the initial block of pretraining to assess whether the
MLPs generalised the task structure across maps. Only recMLPs exhibited evidence for generali-
sation, with greater initial block accuracy for M2 vs. M1 (BF10 = 1.961 × 106; Wilcoxon signed
rank test: V = 511, p-value = 1.771× 10−7). A Bayesian paired t-test provided moderate evidence
for no difference in initial learning of M1 vs M2 in Rich MLPs (BF10 = 0.1245; Wilcoxon signed
rank test: V = 1584, p-value = 0.8648), indicating there was no generalisation across maps. The
Lazy MLPs displayed slower initial learning of M2 vs M1 (BF10 = 145.9; Wilcoxon signed rank
test: V = 2405, p-value = 1.681× 10−4), implying that learning M1 interfered with learning of M2.

Our primary interest was how pretraining length affected flexibility, therefore, we compared M1
and M2 performance across the post-shift phase (Figure 2E). Rich MLPs exhibited greater mean
accuracy across the post-shift phase for M2 vs. M1 (BF10 = 2.072× 10101; Wilcoxon signed rank
test: V = 0, p-value = 7.983×10−15), indicating that pretraining length impaired flexibility. Greater
M2 vs. M1 post-shift accuracy was also observed in recMLPs (BF10 = 1.344 × 1019; Wilcoxon
signed rank test: V = 0, p-value = 1.169× 10−14), although, this performance difference was more
subtle. For the Lazy MLPs, a Bayesian paired t-test provided moderate evidence for no difference
in M1 vs M2 post-shift performance (BF10 = 0.160; Wilcoxon signed rank test: V = 1759, p-value
= 0.3844), suggesting that pretraining length had no effect on flexibility.
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Figure 3: (A) Cosine similarity between weights and each time point and the final weights for layer
1 (blue) and layer 2 (pink). (B) Participation ratio of MLP hidden layer activations across the task
for M1 (green) and M2 (orange) inputs, and all 32 inputs (grey). Black and grey vertical dashed
lines indicate the shift-point and start of M2 learning respectively.

In summary, longer pretraining resulted in greater switch costs in Rich MLPs, whereas there was
no such difference for Lazy networks. Additionally, during pretraining, Rich MLPs exhibited no
difference in initial learning of M1 vs M2, while Lazy MLPs displayed interference between them.

3.3 REPRESENTATIONAL GEOMETRY

The use of MLPs enabled us to analyse the geometry of the hidden layer activations and examine how
task representations evolved across learning and rule shifting. We visualised these representations
at various stages of the task using multidimensional scaling (MDS). After each epoch, we extracted
the hidden layer activations for the input set and applied MDS to activations across all epochs to
track how representational distances between inputs evolved over time. We also calculated the
participation ratio, PR, (see Methods) as a measure of the effective dimensionality of the hidden
layer representations.

Post-shiftPretraining

A

B C D

Figure 4: Multidimensional scaling (MDS) visualisations for M1 (orange background circle) and
M2 (green background circle) symbol hidden layer representations. (A) Rich MLP MDS plots at
stages during pretraining and the post-shift phase. (B) Rich recMLPs and (C) lazy MLPs MDS plots
at the end of pretraining (left) and the end of the post-shift phase (right).

3.3.1 RICH MLPS

Figure 4A displays the hidden representations in Rich MLPs across the task. During pretraining,
the symbol representations divided into 2 clusters based on the class label (North/South). After the
rule shift, the flipped symbols migrated across the decision boundary to join the alternate cluster.
Figure 3A confirms that the dimensionality decreased across the task, approaching 1, as the input
representations clustered into two groups along the relevant feature dimension. Furthermore, the
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total dimensionality of both M1 and M2 inputs also approached 1, indicating the representations of
both maps became aligned in a common subspace.

To quantify how much the weights changed across the task, we calculated the cosine similarity be-
tween the weights after each epoch and the final weights. Figure 3B shows that the readout weights
(W2) learned during pretraining remained stable across the post-shift phase, while the embedding
weights (W1) changed significantly after the shift point. Together, these results suggest that reor-
ganisation of the embedding weights drove post-shift adaptation, consistent with the hidden layer
visualisations.

This analysis provides a geometric explanation for the flexibility difference between M1 and M2
in Rich MLPs: the symbol representations were more expanded along the relevant dimension, re-
quiring a greater degree of reorganisation to move across the decision boundary. This suggests that
compression imposes a representational reorganisation cost.

3.3.2 RECMLPS

In line with our predictions, the recMLPs maintained higher dimensional representations than Rich
MLPs, reaching a PR of approximately 3 compared to 1 (Figure 3A). After the shift-point, M1
dimensionality expanded indicating that representational reorganisation was not constrained to the
compressed subspace. MDS visualisations (Figure 4C) show that the embedding geometry changed
across the post-shift phase. Additionally, the weight similarity dynamics (Figure 3B) indicate that
both the readout and embedding weights changed after the shift-point, although the readout weights
exhibited only minor adjustments. Additionally, the degree of embedding weight change was smaller
in the recMLPs compared to the Rich MLPs. Together, these findings suggest that reconstruction
training resulted in higher dimensional embeddings, which maintained access to both relevant and
irrelevant features. Therefore, less representational reorganisation was required to adapt to the extra-
dimensional shift, and so a smaller flexibility impairment resulted from longer pretraining. This
suggests that the structured priors acquired through reconstruction training enabled the networks to
retain task-general information, which supported both generalisation and flexibility.

3.3.3 LAZY MLPS

In contrast to the Rich MLPs, Lazy MLPs maintained high dimensional representations through-
out the task (Figure 3B). MDS visualisations show minimal changes in embedding geometry after
the rule shift. Figure 3A shows that the embedding weights remained stable throughout the task
and post-shift adaptation was driven by readout weight changes. As hidden layer representations
remained static, no representational reorganisation cost was incurred. This supports the hypothesis
that compression impairs flexibility, as in the absence of compression differences, no difference in
flexibility was observed.

3.4 HUMANS

3.4.1 PERFORMANCE

A B C

Figure 5: (A) Human accuracy for M1 (green) and M2 (orange) trials. Shaded ribbon represents the
standard error. Vertical and horizontal dashed lines indicated the shift-point and chance accuracy
respectively. (B, C) Mean accuracy for the initial block of pretraining and across reversal blocks.
Black dots show individual means connected by lines. Stars denote Wilcoxon signed rank test
significance (0.01 ** , 0.001 ***).
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Eighty adult human participants completed the online task (Figure 5A). During the initial block of
pretraining, participants learned M2 faster than M1, achieving greater mean accuracy (Wilcoxon
signed-rank test: Z = 924, p = 0.0008) (Figure 5B, C). This suggests that participants generalised
the task structure from M1 to M2, mirroring the behaviour of the recMLPs.

To assess the effect of pretraining length on flexibility, we compared M1 and M2 performance during
the post-shift phase. Participants showed higher mean accuracy for M2 vs. M1 (Wilcoxon signed
rank test: Z = 992, p = 0.0026) (Figure 5C). This pattern was observed in both Rich MLPs and
recMLPs, though the small difference in humans more closely resembles the recMLPs.

Together, these human behavioural signatures align most closely with the recMLP simulations,
which similarly exhibit positive transfer from M1 to M2 during pretraining as well as the subtle
difference in switch cost with longer pretraining.

3.4.2 EVIDENCE FOR COMPRESSION IN HUMANS

While we could not directly measure representational geometry in humans from the behavioural
data, reaction times can provide indirect behavioural evidence for representational compression.
Prior work suggests that selective attention distorts representational geometries (Chapman &
Störmer, 2024), which we expected would contribute to representational compression in this task
(Mack et al., 2020). Therefore, we investigated whether participants displayed selective attention to
the relevant feature, as this would imply compression of the irrelevant feature.

Task-switching psychology research has shown that RTs are longer on task-switching trials com-
pared to task-repetition trials (Monsell, 2003; Kiesel et al., 2010), as there is a local switch cost
incurred when changing strategy. In this task, a repetition (match) trial was defined as a trial where
the attended symbol feature value matched that of the previous trial, while switch trials were defined
as trials where the value differed (Figure 6A).

We calculated the difference between Switch and Match trial mean RTs (SMRT) for a given feature,
across each block. We expected the magnitude of the SMRT to reflect the degree of attention to
that feature, i.e. the SMRT would be positive if the participant was attending to the feature, and
zero if they were not. Next we subtracted the feature B SMRT from that of feature A to obtain
the SMRT difference (∆SMRT), a measure of selective attention to feature A over B (∆SMRT =
SMRTA − SMRTB).

A B C

Figure 6: Schematic of switch and match trials. For a given feature, match trials refer to trials where
the symbol feature value matches that of the previous trial. Switch trials refer to those where the
feature value differs to that of the previous trial. For example, a blue star following a blue triangle is a
feature A (colour) match, and a feature B (shape) switch. (B) Switch - Match Reaction Time (SMRT)
difference (SMRTA − SMRTB) for each block across the task, as a measure of selective attention
to Feature A over B. Horizontal line indicates zero difference, and the vertical line represents the
shift-point. (C) M1 vs M2 mean SMRT difference during the block prior to the shift-point. Black
dots represent individual mean values. The stars indicate the Wilcoxon signed rank test significance.
Significance codes: 0.05 *, 0.01 ** , 0.001 ***, <0.000 ****.

Figure 6B shows that ∆SMRT increased across pretraining for M1, indicating that participants
learned to selectively attend to the relevant feature (A) across this phase of the task. After the shift-
point, ∆SMRT for both M1 and M2 began to fall and became increasingly negative, indicating that
participants shifted their attention from feature A to feature B. This implies the compression of the
irrelevant feature across each phase of the task. Importantly, in the block preceding the shift-point,
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∆SMRT for M1 was greater than M2 (Wilcoxon signed rank test: Z = 848, p = 0.0003), suggesting
that the more extensive pretraining on M1 resulted in greater selective attention to the relevant fea-
ture relative to M2 (Figure 6C). This analysis provides indirect evidence for greater compression of
M1 vs M2 representations prior to the rule-shift, which is consistent with our hypothesis that greater
compression of M1 representations contributed to the greater switch cost.

In summary, the recMLP behavioural signatures of human performance align most closely with
the recMLP simulations: the positive transfer from M1 to M2 during training as well as the subtle
difference in switch cost with longer pretraining.

4 DISCUSSION

We set out to test the hypothesis that representational compression across learning impairs flexi-
bility by comparing extra-dimensional shifting in two stimulus sets (M1 and M2) that differed in
pretraining duration.

First we simulated the task in multilayer perceptrons (MLPs) and analysed how representational ge-
ometry evolved under different learning conditions to investigate how representational compression
impaired flexibility. In Rich MLPs, dimensionality decreased across pretraining, requiring greater
representational reorganisation for rule-shift adaptation, leading to impaired flexibility. In contrast,
MLPs first trained to reconstruct the inputs (recMLPs) maintained higher dimensional representa-
tions, requiring a smaller degree of representational reorganisation after the rule shift, reducing the
flexibility cost. These networks displayed only modest flexibility differences based on pretraining
length. Lazy networks served as a control; their representations remained uncompressed, and they
showed no flexibility impairment. Together, these results suggest that high dimensional represen-
tations promote flexibility, supporting the idea that compression drives the flexibility impairment
associated with pretraining length.

Both rich and lazy networks overfit to the initial task, yet rich networks adapted more slowly to the
rule shift, suggesting that compressed representations were more rigid. Higher dimensionality may
enhance flexibility by allowing for a greater diversity of downstream readouts (Badre et al., 2021;
Kaufman et al., 2022) and making the representational space more accessible by providing more
avenues for representational change. This is consistent with biological studies demonstrating that
high dimensional representations support faster learning (Tang et al., 2019), efficient task switching
(Ritz et al., 2024), and flexible action selection (Kikumoto et al., 2023).

Our findings indicate that representational compression incurs a cost on flexibility, as adaptation
to an extra-dimensional shift requires the reconfiguration of representations to incorporate previ-
ously compressed features. According to this account, post-shift adaptation is primarily driven
by changes in the representation embedding, while the downstream readout remains largely stable.
This mechanism is consistent with work by Jahn et al. (2024), which showed that primate attentional
template representations were incrementally updated as the target changed in a visual search task.
They suggest that smooth changes in neural population activity may underlie the adaptation to new
tasks. Moreover, Sadtler et al. (2014) demonstrated, using a brain-computer interface paradigm, that
in-manifold perturbations are more easily learned than out-of-manifold perturbations in macaques.
These findings highlight that existing neural representations constrain the space for reconfiguration,
indicating that flexibility is influenced by the capacity for reorganisation within the manifold. To-
gether, these studies lend support to the idea that representational compression impairs flexibility by
limiting the space accessible for representational reorganisation.

We collected human behavioural data for the task and found that longer pretraining (M1) was associ-
ated with lower post-shift performance, mirroring the patterns observed in Rich MLPs and recMLPs,
and supporting the idea that flexibility decreases across learning. Human behavioural signatures
aligned most closely with the recMLPs, showing both positive transfer from M1 to M2 during pre-
training as well as the subtle difference in switch cost with longer pretraining. This suggests that
the structured priors acquired through reconstruction training enabled the networks to retain task-
general information, thereby promoting both generalisation and flexibility. The parallels between
human and MLP behaviour support the idea that prior knowledge plays a critical role in enabling
flexible behaviour in biological systems (Behrens et al., 2018; Tenenbaum et al., 2011), and high-
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light structured priors as a promising avenue for improving flexibility in artificial systems (Lake
et al., 2016).

While we could not directly examine representational geometry in humans from the behavioural
data, we leveraged reaction times to infer patterns of selective attention to the stimulus features.
We reasoned that increasing selective attention to the relevant feature over time would correspond
to representational compression. Consistent with this prediction, our analyses suggest that partic-
ipants showed increasing selective attention to the relevant feature across each phase of the task.
Critically, we found that participants’ selectivity for feature A was greater for M1 than M2 prior to
the shift-point, suggesting that M1 representations were more compressed. These findings provide
indirect evidence that learning induces representational compression, with longer training resulting
in attentional narrowing and the impairment of flexibility.

As we did not directly measure neural activity in this study, future research is needed to deter-
mine whether the representational reorganisation cost observed here aligns with biological neural
dynamics. While our study focused on a simple, extra-dimensional shifting task, further work could
explore the trade-off between compression and flexibility in more complex, noisy, and naturalistic
settings where the separation of dimensions is less clear. Furthermore, here we used simple, linear,
feedforward networks to maximise interpretability, however, it remains to be established whether
the relationship between compression and flexibility extends to more complex architectures.

In summary, this experiment demonstrated that pretraining length impaired flexibility in an extra-
dimensional shift task. MLP simulations indicated that the compression of representations across
learning hindered adaptation to the rule shift, as it increased the degree of representational reorgani-
sation required. However, networks with prior knowledge of the inputs retained higher dimensional
representations, which mitigated the impact of pretraining on flexibility. This suggests that main-
taining representational richness enhances flexibility. These findings contribute to the development
of a representational account of cognitive flexibility across biological and artificial systems.

5 METHODS

5.1 HUMAN TASK

We recruited participants using the online platform Prolific, restricting selection to adults fluent in
English, aged between 18-40 years, and without colour-blindness. Participants completed a pre-
screening 2-back test and were invited to take part in the experiment if they achieved at least 80%
true positive accuracy and 80 % overall accuracy. 80 adults (32 female and 48 male) aged 30.9 ±
10 years completed the task. All participants provided informed consent and were paid £9/hour.

On each trial, a symbol was presented on screen for a maximum duration of 1.5 s. On train trials,
0.6 s elapsed between prediction and feedback. The feedback (“Correct” or “Incorrect” alongside
the true location) was presented for 1s, with 0.1 s interval between trials. Each block consisted
of 32 trials (3 repetitions of the 8 train symbols and 1 repetition of the 8 test symbols, with the
order randomised). The pretraining phase consisted of 5 M1 blocks and 1 M2 block. The post-shift
phase consisted of alternating M1 and M2 blocks (4 each). Responses were considered correct if the
participant clicked within the correct half of the map (North/South or East/West - randomised per
participant).

5.2 MLP SETUP

The MLP architecture consisted of an input layer with 16 units, a hidden layer with 30 units, and
a 17 unit output layer (1 classification unit and 16 reconstruction inputs). A classification and re-
construction loss was applied to the corresponding units, and were each scaled a scaling factor. The
networks were fully linear, with no activation functions or biases applied. All MLPs were trained
using the Adam optimizer and the binary cross entropy loss function. The learning rate was set
to 0.004. MLPs were initialised with weights drawn from a Xavier normal distribution with scale
factor of 0.1 for rich MLPs and 50 for lazy MLPs (for the embedding weights only).

The human task was adapted into a binary classification task for the MLPs, with the input data was
represented as two-hot vectors. The MLPs were trained on a curriculum similar to that used in the
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human task, where each block consisting of 3 epochs of the training trials, with a batch size of 1.
For recMLPs, the classification loss scaling factor was set to 0 for the 20 blocks of reconstruction
training, then set to 1, and reconstruction scaling factor set to 1 throughout. For the rich and lazy
MLPs, the reconstruction scaling factor was set to 0 throughout the task.

5.3 MULTIDIMENSIONAL SCALING

We used the MDS function from the scikit-learn package to visualise the MLP representations. We
extracted the input representations at different stages of the task, computed the pairwise Euclidean
distances between all representation vectors across all time points, and applied MDS to the resulting
distance matrix.

5.4 PARTICIPATION RATIO

The effective dimension of a set of inputs was estimated by computing the participation ratio:

PR =
(
∑

i λi)
2∑

i λ
2
i

(1)

Where λi correspond to the eigenvalues of the covariance matrix. We used the scikit-dimension
python module to calculate PR.
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A APPENDIX

A.1 GENERALISED MIXED-EFFECTS MODELLING

Generalised mixed-effects modelling (GLMM) analyses were conducted in R (Version
2024.04.2+764) (R Core Team, 2023) using the lme4 package (Bates et al., 2015). For each analysis,
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we selected the data over the task period of interest and normalised the trial indices to a range of 0 to
1 for each map. We then fit the GLMM to the accuracy data, where accuracy was a binary outcome
indicating whether a participant’s response was correct. Models were specified with a binomial
family and the optimiser was set to “bobyqa”.

A.1.1 INITIAL PRETRAINING BLOCK GLMM

We fit the following GLMM to the trial-by-trial accuracy data:

Accuracy ∼ Trial ∗ Map + (1 + Trial + Map | Participant) (2)

Accuracy is a binary outcome (correct/incorrect), t represents trial number and Map indicates M1
or M2. The final term accounts for random effects over participants.

Table 1: GLMM results for human initial pretraining block accuracy data.

Fixed effect Estimate Std. err z value Pr(> |z|)
β0 0.131 0.124 1.052 0.293
t 0.619 0.205 3.027 0.002 *
MapM2 -0.015 0.181 -0.083 0.933
t ∗MapM2 0.988 0.259 3.815 < 0.001 ***

Table 1 shows that trial number (t) was a positive predictor of accuracy, indicating that accuracy
increased across trials. Additionally, there was a positive, significant interaction effect between M2
and trial number (t∗MapM2), indicating faster learning for M2 than M1 during the initial pretraining
block. This suggests that participants generalised the task structure from M1 to M2.

A.1.2 POST-SHIFT GLMM

We fit the following GLMM to the post-shift accuracy data:

Accuracy ∼ Trial ∗ Map + Type
+ (1 + Trial ∗ Map + Type | Participant)

(3)

Accuracy is a binary outcome (correct/incorrect), t represents trial number, Map indicates M1 or
M2, and Type denotes flipped or unflipped trials after the rule shift. The final term accounts for
random effects over participants.

Table 2: GLMM results for human post-shift accuracy data.

Fixed effect Estimate Std. err z value Pr(> |z|)
β0 -0.210 0.078 -2.707 0.008
t 2.314 0.263 8.808 < 0.000
MapM2 -0.002 0.106 -0.015 0.988
Typeunflipped 0.587 0.062 9.532 < 0.000
t ∗MapM2 0.718 0.266 2.700 0.007

The GLMM results (Table 2) show that trial number (t) and trial type (Typeunflipped) were signifi-
cant positive predictors of accuracy, indicating that accuracy increased over trials and was higher for
unflipped trials. A significant, positive interaction effect between trial number (t) and M2 (MapM2)
suggests faster learning of M2 than M1, supporting our hypothesis that longer pretraining impairs
flexibility.
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