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Back to the Future: Towards Explainable Temporal Reasoning
with Large Language Models

Anonymous Author(s)

ABSTRACT
Temporal reasoning is a crucial natural language processing (NLP)
task, providing a nuanced understanding of time-sensitive contexts
within textual data. Although recent advancements in Large Lan-
guageModels (LLMs) have demonstrated their potential in temporal
reasoning, the predominant focus has been on tasks such as tem-
poral expression detection, normalization, and temporal relation
extraction. These tasks are primarily designed for the extraction of
direct and past temporal cues from given contexts and to engage in
simple reasoning processes. A significant gap remains when con-
sidering complex reasoning tasks such as event forecasting, which
requires multi-step temporal reasoning on events and prediction
on the future timestamp. Another notable limitation of existing
methods is their incapability to illustrate their reasoning process
for explaining their prediction, hindering explainability. In this pa-
per, we introduce the first task of explainable temporal reasoning,
to predict an event’s occurrence at a future timestamp based on
context which requires multiple reasoning over multiple events,
and subsequently provide a clear explanation for their prediction.
Our task offers a comprehensive evaluation of both the LLMs’ com-
plex temporal reasoning ability, the future event prediction ability,
and explainability—a critical attribute for AI applications. To sup-
port this task, we present the first instruction-tuning dataset of
explainable temporal reasoning (ExpTime) with 26k derived from
the temporal knowledge graph datasets, using a novel knowledge-
graph-instructed-generation strategy. Based on the dataset, we
propose the first open-source LLM series TimeLlaMA based on the
foundation LLM LlaMA2, with the ability of instruction following
for explainable temporal reasoning. We compare the performance
of our method and a variety of LLMs, where our method achieves
the state-of-the-art performance of temporal prediction and expla-
nation generation. We also explore the impact of instruction tuning
and different training sizes of instruction-tuning data, highlighting
LLM’s capabilities and limitations in complex temporal prediction
and explanation generation.
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1 INTRODUCTION
Temporal reasoning is a crucial research area in natural language
processing (NLP), referring to a model’s capability of accurately
understand, represent, and predict time-sensitive contexts [13, 31,
33, 54]. This ability is critical for many web-based applications
today that rely on processing time-sensitive data, including news
article aggregation [21], E-commerce services [49], and search en-
gine recommendation [39]. Existing studies have focused on tasks
of temporal relation extraction: predicting the temporal ordering
of events [12, 38], temporal knowledge graph (KG) reasoning: in-
ferring missing facts at past and future timestamps [31, 33], and
temporal question answering (QA): answering questions requiring
multiple steps of temporal relational reasoning [19, 20]. In recent
years, the performance of these tasks has been greatly improved
by advanced NLP and machine learning methods including graph
neural networks (GNNs) [17, 24, 33, 46] and pre-trained language
models (PLMs) [34, 45, 57]. Latest, large language models (LLMs)
have shown remarkable abilities to understand natural language
and human-like text generation [2]. Compared with PLMs, LLMs
have a significantly largermodel size and pre-training data, and thus
show the emergent ability of in-context learning, enabling them
to perform unseen tasks without task-specific training data [59].
Inspired by the great promise of LLMs, recent studies have explored
the temporal reasoning ability of LLMs [5, 30, 51, 63].

Although these methods have explored the potential and limita-
tions of LLMs, two significant challenges remain conspicuous as
shown in Table. 1. Firstly, current methods [5, 30, 51, 63] mainly
focused on tasks such as temporal expression detection, normaliza-
tion, and temporal relation extraction, which are primarily designed
for the extraction of direct and historical temporal cues from given
contexts and to engage in simple reasoning processes. Therefore,
it is still unclear the potential of LLMs for more challenging tasks
such as event forecasting [67], which requires multi-step temporal
reasoning and the prediction of future timestamps. Secondly, even
as LLMs exhibit emergent abilities for in-context learning [59], the
area of explainable temporal reasoning – which involves predicting
future events from context and explaining the associated reason-
ing – remains underexplored. It is crucial for models to not only
make predictions but also to clearly justify their decisions, to im-
prove transparency. In light of these gaps, we posit the following
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Explanation Event Forecasting Model Multi-hop Reasoning Instruction Finetuning Context Infer

TEMPLAMA [11] ✗ ✗ T5 ✗ ✗ ✗

TEMPREASON [51] ✗ ✗ T5 ✗ ✗ ✓

AutoCast [67] ✗ ✓ T5 ✓ ✗ ✗

ExpTime ✓ ✓ Llama2-7b/13b ✓ ✓ ✓

Table 1: The comparison between temporal reasoning datasets and corresponding finetuned models. “Context Infer” denotes if
inference based on context is required and “multi-hop reasoning” means engaging in multi-step reasoning is required to arrive
at the correct answer.

research questions (RQ) to guide our study: 1) RQ 1: Can LLMs be
effective in predicting future events by considering the context’s
complex relations among events, and how do they compare with
traditional methods? 2) RQ 2: What impact does instruction tuning
have, particularly when using our new dataset derived from tem-
poral knowledge graphs, on the temporal prediction capabilities of
LLMs? 3) RQ 3: How effectively can LLMs clarify their prediction
and reasoning process, thereby enhancing their transparency in
temporal reasoning tasks?

To address these challenges, our study aims to explore LLMs’
capabilities in complex temporal reasoning, future event predic-
tion, and, importantly, explainability—an essential aspect of AI
applications. We propose the pioneering task of explainable tem-
poral reasoning, aiming to predict the occurrence of future events
based on context, demanding reasoning across multiple events, and
subsequently, providing a coherent explanation for the prediction.
To support this task, we propose the first-of-its-kind multi-source
instruction tuning dataset ExpTime, fostering improvement and
assessment of LLMs. ExpTime comprises 26k entries, built from
a variety of event forecasting datasets and their derived temporal
reasoning paths.

Our methodology begins with aggregating data from various
recognized datasets, encompassing diverse sources. For each data
point, explanations are generated, drawing inspiration from the
proven self-instruct approach [58]. However, we observed that
merely prompting LLMs, such as ChatGPT [41], yielded suboptimal
results in terms of coherence and accuracy. Recognizing this limita-
tion, we pivoted to a novel Temporal Knowledge Graph-Instructed
Generation (GIG) approach. We extract explainable reasoning paths
and context from the temporal knowledge graph for each dataset’s
future event prediction query. We then design prompts to guide
LLMs to convert these paths and contexts into coherent expla-
nations. This results in triples of <query, context, answer>, with
each answer containing the original prediction and LLM-generated
explanation. To ensure the reliability of the dataset, the human
evaluation is performed on a subset of the collected data with a
carefully designed annotation scheme, evaluating their correctness,
completeness, and fluency. We then build a golden-standard testing
dataset with human annotation.

Using ExpTime, we propose the TimeLlaMA series, an innova-
tive open-source LLM ensemble based on the LlaMA2 [53], using
instruction fine-tuning. Specifically, we fine-tune four TimeLlaMA
models: TimeLlaMA-7B, ChatTimeLlaMA-7B, TimeLlaMA-13B, and
ChatTimeLlaMA-13B. Our empirical results compare the Tempo-
raLLaMA with other LLMs, highlighting its superior performance

in terms of temporal prediction and explanation generation. Our
experiments demonstrate that with proper instruction tuning using
even a small volume of high-quality data, the temporal reasoning
capabilities of LLMs can be substantially improved. Model size
does not necessarily correlate with performance gains in tempo-
ral reasoning when employing instruction tuning under 13 billion
parameters.

To encapsulate, our contributions are manifold: 1) We pioneer
the first task of explainable temporal reasoning, setting the stage for
subsequent research, 2) We introduce ExpTime, the first instruction-
tuning dataset to improve and evaluate LLMs’ ability of explain-
able temporal reasoning, 3) We propose a novel knowledge graph-
instructed generation (GIG) method, for generating explainable
temporal reasoning data with LLMs from temporal knowledge
graphs, 4) We propose TimeLlaMA, an open-source LLM series
tailored for this specific task, achieves SOTA performance, 5) We
conduct a holistic evaluation of our method and various LLMs in
the realm of temporal reasoning, critically analyze the strengths
and limitations of LLMs, providing directions for future research 1.

2 RELATEDWORK
2.1 Temporal Reasoning in NLP
Based on the level of difficulty, temporal reasoning in NLP can be
categorized into three tasks: temporal expression detection and
normalization, temporal relation extraction, and event forecasting.
The temporal expression detection task aims to detect the phrases in
the text that describe the temporal information, such as “yesterday”
and “last year” [28]. After the detection, the model is required
to normalize the temporal expression into a TimeML standard
format, such as “2013-01-06”. The temporal expression detection
and normalization task was first introduced in TempEval-2 [56],
where the most successful models are rule-based, such as SUTime
and NavyTime [4, 6]. The normalization task was further improved
by incorporating pre-trained embeddings later [25, 60].

When time expressions can be detected, the next level of tem-
poral reasoning is to determine the chronological order of events
described in the text, namely temporal relation extraction. The
temporal relation extraction task was first introduced in TempE-
val [55]. Initially, this task was tackled by leveraging the sequen-
tial neural networks, such as LSTM and RNN, to detect temporal
order [12, 34, 40]. Later, GNN was introduced to better capture

1We will release our models, datasets, and evaluation metrics to the broader research
community.
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the dependency explicitly between the events and time expres-
sions [3, 38, 62]. As LLMs become popular, some work also investi-
gated the zero-shot ability of LLM in temporal relation extraction
and reported that the zero-shot performance is worse than super-
vised models [5, 63].

With the acquisition of a chronological order of events, the final
level of temporal reasoning is event forecasting. The goal of this
task is to determine if a specific event will happen in the future
given the context events described in the text [21]. Some work
has designed a dataset to train the model [67], in which the model
can access the context information through links. However, the
exploration of this task is still limited despite the importance of
this task.

2.2 Temporal Knowledge Graph Event Forecast
There are two settings in the temporal knowledge graph reason-
ing (TKGR) task: extrapolation and interpolation. Extrapolation
focuses on predicting whether events will occur in future times-
tamps, while interpolation aims to complete the temporal knowl-
edge graph within a given timespan [31, 33]. Some works also
refer to the extrapolation setting as event forecasting in temporal
knowledge graph [16, 37]. A key difference between event fore-
casting in NLP and TKG is the input format - NLP uses textual
context, whereas TKG relies on graph structure. To enhance ex-
plainability, some methods for TKGR produce predictions along
with validated reasons. The explainable methods can be roughly
summarized into three categories: logic rule-based approach, rein-
forcement learning-based approach, and attention network-based
approach. For example, TLogic mines logic rules from temporal
knowledge graphs for forecasting [37]. Lin et al. proposed graph
and logic encoders to incorporate graph information into rules [36].
In reinforcement learning-based (RL) approaches, Sun et al. used
an RL agent to travel on the graph to predict events, explaining
the prediction [50]. Similarly, Li et al. found event clusters and
then searched them with an RL agent [32]. Some models expand an
initial query graph via attention until the query entity is reached,
using the subgraphs as explanations [16]. Jung et al. also used an at-
tention GNN to iteratively propagate towards the target entity [23].
As explainable TGKR models provide structural reasoning steps on
the graph, we leveraged the RL-based and logic-based models to
instruct the LLM explanation generation to construct the ExpTime
dataset.

2.3 Temporal Reasoning in LLM
As growth took place in pre-trained LLMs, a natural question is if
LLM is capable of serving as a temporal knowledge base [11, 65].
The pivotal concept of this task is to understand the context under
temporal expression and perform temporal-sensitive reasoning to
predict missing entities [7]. Temporal datasets have been devel-
oped to evaluate LLM on temporal understanding, like Custom-
News which evaluates if LLMs can predict masked entities given
timestamps [26]. Dhingra et al. then proposed TEMPLAMA which
emphasizes temporal questions as (ℎ, 𝑟, ?, 𝑡1) and (ℎ, 𝑟, ?, 𝑡2) where
the answers differ due to different timestamps [11]. TemporalWiki
addresses temporal misalignment in LLMs similarly [18]. Tan et al.

expanded TEMPLAMA’s time range and addedmore time-unrelated
questions [51].

Some work also further investigated the capability of LLM in the
event forecasting task, which is more challenging than temporal-
sensitive learning as it requires a full understanding of time and
logic. Zhou et al. constructed an Autocast dataset that consists
of question-and-answer pairs about future events [67]. Lee et al.
tested the zero-shot event forecasting ability of LLM on a temporal
knowledge graph and demonstrated that only through in-context
learning, LLMs can achieve comparable performance w.r.t current
supervised TKG methods [27]. Similarly, Xu et al. designed various
prompts to query LLM for temporal knowledge graph completion
task [61]. This ability was further improved by few-shot abductive
reasoning over LLM and temporal knowledge graph [47]. However,
these studies did not evaluate or improve the textual temporal rea-
soning skills of LLMs. Additionally, the lack of explainability in
these LLMs is concerning given their importance in temporal rea-
soning tasks. To the best of our knowledge, our proposed ExpTime
is the first dataset that evaluates and improves the explainability
and textual temporal reasoning ability of LLMs.

3 METHOD
The objective of this work is to assess and enhance the complex
temporal reasoning capabilities of large languagemodels (LLMs). To
accomplish this goal, we propose the explainable event forecasting
task for complex temporal reasoning and construct the first dataset
of its kind: the Explainable Temporal Event Forecasting (ExpTime)
dataset. We benchmark the performance of popular LLMs using this
new dataset. We then propose the novel LLM series: TimeLlaMA,
by instruction finetuning a series of Llama2 models, with the aim
of improving the temporal reasoning abilities of LLMs.

3.1 Task Definition
We define the explainable temporal reasoning task as follows: given
an input document 𝐷 describing events E𝑡1∼𝑡2 = {𝑒1, 𝑒2, · · · , 𝑒𝑛}
occurring during time interval 𝑡1 ∼ 𝑡2, the task is to predict the
probability 𝑃 = 𝑝 (𝑒𝑘 |E𝑡1∼𝑡2 ) that event 𝑒𝑘 will occur at future time
𝑡3, where 𝑡3 > 𝑡2 ≥ 𝑡1. Additionally, the LLM must also generate an
explanation 𝐹 that demonstrates its reasoning for the prediction.
Each training instance T𝑟𝑖 for fine-tuning the language model
consists of the input document 𝐷𝑖 , question 𝑄𝑖 , prediction answer
𝑃𝑖 , and explanation 𝐹𝑖 : T𝑟𝑖 = {𝐷𝑖 , 𝑄𝑖 , 𝑃𝑖 , 𝐹𝑖 }.

3.2 Graph-Instruct-Generation: Construct
ExpTime Dataset

Recent work has explored using LLMs like ChatGPT to generate
datasets by prompting the model to produce answers [48]. However,
directly prompting LLMs to generate temporal reasoning data re-
sults in low-quality explanations, as we demonstrate in Section 4.2.2.
To address this issue, we propose a novel framework called Tem-
poral Knowledge Graph-instructed Generation (GIG) to produce
more coherent and accurate reasoning explanations.

The key insight behind our approach is to leverage temporal
knowledge graphs (TKGs), which have been effectively utilized for
explainable event forecasting. As illustrated in Figure 1, we first
apply explainable TKG reasoning models to generate reasoning

3
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intent to cooperate      praise or endorse
intent to cooperate

host a visit
(China, host a visit,
Barack Obama(?),

2014-11-10)

(Iran, sign formal agreement, Barack Obama, 11-06-2014)
(China, consult, France, 11-07-2014)

......

Between November 4th and November 7th, 2014, there were
several notable events.... First, . ...... These events indicate...

Based on ..., it is plausible that .... Here are my reasons: 1:
Iran sign formal agreement Barack Obama on 11-06-2014,

and 2: .... Therefore, it is plausible......

Temporal Knowledge Graph

Forecast Event

Reasoning Paths

Template Synthesized Explaination

Polish Prompts Revision Prompts

Yes. Based on ..., it is plausible to predict that .... Here's  ...: 1. China has a
history of hosting visits by foreign leaders. For instance, China hosted a visit
by Michael Sata on January 2nd, 2014. 2....... 3. Later, ......  Therefore, ...

Explainable TKGR

Context Quadruples

KG2NL

Context Document (D)

Rule-based
Generation

Answer & Explaination (A&E)

Question
Prompts

TKG Context
Extractor

LLM Prompting

D A&EQ

(China, withdraw visiting
invitations, Barack

Obama(?), 2014-11-10)

(Egypt, host a visit,
Turkey(?), 2014-11-10)

inverse
relation

unrelated
entity sample

D A&EQ

D A&EQ

Unsure
Prompts

Constructed Dataset

Pos sample

Neg sample

Neu sample

Figure 1: The pipeline of generating ExpTime dataset. The pos, neg, and neu denote the positive sample, negative sample, and
neutral sample, respectively.

paths for a given query about a future event. We then convert
these paths into natural language explanations 𝐹𝑖 using a two-level
prompting technique we developed. Next, we identify relevant con-
text quadruples from the TKG and reasoning paths to construct
a context quadruple set, which is transformed into a coherent
natural language document 𝐷𝑖 . Finally, we convert the original
query into a question 𝑄𝑖 to produce a complete training instance
T𝑟𝑖 = {𝐷𝑖 , 𝐹𝑖 , 𝑃𝑖 , 𝑄𝑖 }. In this way, our GIG framework overcomes
the limitations of directly prompting LLMs by leveraging struc-
tured knowledge in TKGs to generate high-quality explanations.
The technical details of each step are provided in the following
sections.

Reasoning Paths Generation. As discussed in Section 2.2, tem-
poral knowledge graph reasoning models can be categorized into
three main types. In this work, we select two popular methods rep-
resenting the most common approaches: TimeTraveler [50], which
uses a reinforcement learning-based approach, and TLogic [37],
which employs logic rules. We chose these models because they pro-
vide high quality and human-readable reasoning chains, as shown
in the following equation:

(𝐸1, 𝑅𝑐 , 𝐸𝑚+1,𝑇𝑚+1) ← ∧𝑚𝑖=1 (𝐸𝑖 , 𝑅𝑖 , 𝐸𝑖+1,𝑇𝑖 ) (1)

where 𝐸𝑖 , 𝑇𝑖 , and 𝑅𝑖 are the i-th entity, timestamp, and relation,
respectively. For example, Fig. 1 shows that given the query quadru-
ple, the explainable TKGR model generates the following reasoning
path:

𝐼𝑟𝑎𝑛
sign formal agreement, 11-06-2014
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎

express intent to meet or negotiate, 11-04-2014
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐶ℎ𝑖𝑛𝑎

host visit, 11-10-2014−−−−−−−−−−−−−−−−−→ 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎

(2)

To leverage the reasoning chains from these models, we take the
average confidence scores (or probability values) of the predictions
from the two models and select the reasoning paths 𝑃𝑎 with the
highest confidence.

Context Document Generation. Given a query quadruple
𝑞𝑢 = (𝑒1, 𝑟 , 𝑒2, 𝑡𝑖 ), we first extract relevant quadruples from the

TKG to form the context quadruple set, and then transform them
into natural language sentences. Specifically, to extract relevant
information, we obtain quadruples𝑞 that meet two criteria: 1) either
entity 𝑒1 or 𝑒2 from the original query is present in 𝑞, and 2) the
occurrence time 𝑡𝑞 of 𝑞 falls within a defined time span from the
query time 𝑡𝑖 to time 𝑡 𝑗 . Formally, we extract quadruples 𝑞 where
(𝑒1 ∈ 𝑞 ∨ 𝑒2 ∈ 𝑞) ∧ (𝑡𝑞 > 𝑡𝑖 ∧ 𝑡𝑞 < 𝑡 𝑗 ). We also add the quadruples
along the reasoning path 𝑃𝑎𝑖 to the context set.

Once we have the context quadruple set Q, the next step is to
convert Q into natural language sentences. Prior work such as
KELM [1] and GAP [9] have proposed rule-based or pipeline meth-
ods, but these cannot generate sufficiently diverse documents from
knowledge graphs. Therefore, we designed a prompt to leverage
the generative capabilities of ChatGPT to produce more diverse
and coherent context documents from Q. The prompt is defined as
follows:

Please generate a coherent paragraph to describe the
following quadruples and the time should be precise
to dates: [Q]

In this way, we use the response from ChatGPT as the input docu-
ment 𝐷𝑖 for each training instance T𝑟𝑖 .

Explanation Generation. Recall that for each query quadruple
𝑞𝑢 = (𝑒1, 𝑟 , 𝑒2, 𝑡𝑖 ), we have obtained the reasoning path 𝑃𝑎𝑖 . First,
we automatically generate a template-based explanation 𝐹 ′

𝑖
for

each query quadruple 𝑞𝑢 = (𝑒1, 𝑟 , 𝑒2, 𝑡𝑖 ) using the corresponding
reasoning path 𝑃𝑎𝑖 obtained from the above steps. This explanation
template aims to concisely describe the prediction and the reasoning
steps in natural language:

Based on the information provided by the document,
it is plausible that 𝑒1 will 𝑟 𝑒2 in 𝑡𝑖 . Here are my
reasons: 𝑃𝑎1, and 𝑃𝑎2,· · · , therefore, it is plausible
that 𝑒1 will 𝑟 𝑒2 in 𝑡𝑖 .

We refer to this as the template synthesized explanation 𝐹 ′
𝑖
.

However, these template-generated explanations 𝐹 ′
𝑖
may lack

coherence or omit critical reasoning details. To improve the quality
of explanations, we implement a two-step chain-of-thought (CoT)
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prompting approach using LLMs like ChatGPT. First, we prompt
ChatGPT to evaluate the correctness of the template explanation
𝐹 ′
𝑖
and provide a brief justification, e.g.:

Given the text, 𝐹 ′
𝑖
, please evaluate the correctness of

the prediction...

We provide detailed prompt in Appendix B.1 for this and all sub-
sequent prompts. If ChatGPT concludes that the explanation 𝐹 ′

𝑖
is

correct, we propose a “polish prompt” to ChatGPT:

Can you make the text more coherent and readable
by expanding the explanation of each reasoning step?

However, if ChatGPT determines that the template explanation 𝐹 ′
𝑖

contains flawed reasoning leading to an incorrect prediction, we
provide a “revision prompt” asking ChatGPT to correct the flaws
by considering additional context quadruple information from 𝑄 :

Please revise ... You can add information from the
following quadruples... [Q]

In this way, the ChatGPT response represents the final, improved
explanation 𝐹𝑖 for each training instance. This CoT prompting
approach allows us to leverage the reasoning and language capa-
bilities of LLMs to enhance the quality of automatically generated
explanations.

Negative and Neutral Samples. Note that by following the
previously introduced steps, we can easily acquire positive training
instances, i.e., the prediction is that the event will happen. However,
using only positive examples to fine-tune language models can
lead to highly skewed and imbalanced training. Therefore, we also
propose two methods to generate negative and neutral samples
individually.

The negative samples represent counterfactual events that did
not occur. For each positive training instance T𝑟𝑖 = {𝐷𝑖 , 𝐹𝑖 , 𝑃𝑖 },
we generate a negative example by replacing the relation 𝑟𝑖 in the
query quadruple 𝑞𝑢 with an opposite relation 𝑟 ′

𝑖
such that the mean-

ing of 𝑟 ′
𝑖
should be as opposite as possible to the original one. For

example, we replaced (Africa, Host a visit, Rex Tillerson, 2018-03-10)
with (Africa, withdraw visiting invitations, Rex Tillerson, 2018-03-10).
The resulting negative example quadruple is 𝑞′𝑢 = (𝑒1, 𝑟 ′, 𝑒2, 𝑡𝑖 ). In
this way, as the original event did actually happen, the newly syn-
thesized event should be highly unlikely to happen. We manually
designed 546 opposite relations for all 265 relations in the temporal
knowledge graph. Details are illustrated in Appendix C.

Then, similar to the explanation generation, we first generate a
simple template synthesized explanation and then query ChatGPT
if the synthesized explanation is correct or not. The prompt is
designed as follows:

Given the text, “Based on..., we predict that 𝑒1 𝑟 ′ 𝑒2
will not happen in 𝑡𝑖 . We could find the following
patterns from the text: 𝑃𝑎1, and 𝑃𝑎2,· · · , therefore, it
is plausible that 𝑒1 will 𝑟 𝑒2 in 𝑡𝑖 .”, please evaluate
the correctness...

Note that the reasoning path 𝑃𝑎 is still the same as the positive
sample. Then we can obtain the explanation result based on the
ChatGPT decision by following the exact same “Polish Prompt” or
“Revision Prompt”.

Figure 2: The box plots of human annotation for each cri-
terion under positive, negative, neutral, and overall dataset.
The dashed line denotes the mean value and the bold line
indicates the median value.

Positive Negative Neutral Overall

Correct 0.73 0.64 0.81 0.74
Complete 0.65 0.59 0.70 0.66
Fluency 0.98 0.97 0.98 0.98

Table 2: Cohen’s Kappa score of human annotation for each
criterion under three labels.

In neutral training samples, we expect the LLMs to predict “un-
sure” for the query quadruple because there is no context infor-
mation in the given document related to the query. Additionally,
for explanation, we also expect the LLMs to summarize the docu-
ment and then demonstrate that there is no related context in the
given document. To achieve this goal, we first replace the query
quadruple 𝑞𝑢 = (𝑒1, 𝑟 , 𝑒2, 𝑡𝑖 ) with 𝑞′′𝑢 = (𝑒′1, 𝑟 , 𝑒

′
2, 𝑡𝑖 ) in the positive

training instances, where 𝑒′1 and 𝑒
′
2 are entities that never appear in

the context quadruple set Q. In other words, we ensure the entities
in the neutral sample’s query do not exist anywhere in the context
set Q. Formally, we have 𝑒′1 ∉ Q ∧ 𝑒′2 ∉ Q. Then we designed the
following prompt to query ChatGPT to generate an explanation:

Given the document “[𝐷𝑖 ]”, how likely the event that
[𝑒′1 𝑟 𝑒′2] in [𝑡𝑖 ] would happen? ... if the context is
unrelated, summarize the context...

3.3 Data Statistics and Annotation
Weutilize ICEWS14 [15], ICEWS18 [22], and ICEWS0515[15] datasets
to generate the proposed dataset, as they are the most popular tem-
poral knowledge graph reasoning datasets. From the three datasets,
we extracted 12,229 reasoning paths and therefore generated 12,229
positive samples in the dataset. The detailed statistics of ExpTime
are shown in Table. 3.

To further evaluate the quality of our dataset and construct a stan-
dardized testing dataset, two experienced annotators independently

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Pos. Neg. Neu. ICEWS14 ICEWS18 0515

Train 11703 8705 5360 10327 7651 7790
Test 435 300 266 387 351 263

Table 3: The statistics of constructed dataset. Pos., Neg., Neu.
denote the number of positive, negative, and neutral samples,
respectively.

Figure 3: The pipeline of finetuning and evaluating TimeL-
lama series models. GIG Strategy denotes our proposed
dataset construction approach.

evaluated a random sample of 1,200 explanations. The annotators
rated each explanation on three criteria: 1) correctness, which as-
sessed whether the prediction and explanation were accurate; 2)
completeness, which evaluated if the explanation provided the nec-
essary context to understand the prediction; and 3) fluency, which
measured if the explanation was clear and understandable. The
annotation guidelines and annotator qualifications are detailed in
Appendix A. Cohen’s kappa coefficient was calculated to determine
inter-rater agreement for each criterion. As shown in Table 2, a high
level of agreement was achieved for all criteria. In particular, the
annotators demonstrated strong agreement on fluency ratings and
agreement was higher overall for samples receiving neutral labels.
As illustrated in Fig. 2, most samples received high scores across
all three criteria. The strong inter-rater agreement and generally
high scores indicate the testing dataset represents a high-quality,
standardized sample for evaluation. Low-scoring samples on any
of the criteria were excluded.

3.4 TimeLlama
As illustrated in Fig. 3, we present the TimeLlama model series,
representing the first LLMs fine-tuned specifically for complex tem-
poral reasoning tasks, namely explainable event forecasting. By
instruction tuning the models on datasets requiring the comprehen-
sion and synthesis of temporal information, TimeLlama gains an
enhanced ability to make logical inferences about the timing, dura-
tion, and relations between events. This supports a more accurate
prediction of what events may occur next given a historical context.
We construct TimeLlama-7b and TimeLlama-13b by finetuning the
base Llama-7b and Llama-13b models, respectively. The finetuning

Figure 4: The automatic evaluation scores of finetuned
Llama2 with various percentages of dataset usage. From left
to right: F1 scores of each category, BLEU and ROUGE scores,
BERTScore.

process utilizes Flash Attention and DeepSpeed to accelerate train-
ing [10, 44]. Full hyperparameters can be found in Appendix D.2. Ad-
ditionally, by finetuning the Llama-7b/13b conversational models,
we construct ChatTimeLlama-7b and ChatTimeLlama-13b, based
on Llama-2-Chat-7b/13b optimized using reinforcement learning
from human feedback (RLHF) [41].

4 EXPERIMENTS
4.1 Experimental Settings
Baselines. We evaluate and compare the following LLMs as the
baselines: Flan T5 [8]: An instruction-finetuned T5 model based on
chain-of-thought data that increased the number of tasks.BART [29]:
An encoder-decoder architecture model that is proficient in ab-
stractive dialogue, question answering, and summarization tasks.
MPT-7b [52]: A LLM that is optimized for extremely long inputs.
The MPT model with 7b parameters fine-tuned for dialogue gen-
eration is used in our experiment. Falcon-7b [43]: A LLM that is
optimized for faster inference with decoder-only architecture. The
7B dialogue-fine-tuned version is used. Vicuna-7b [66]: A chatbot
trained by fine-tuning LLaMA on a dataset collected from ShareGPT.
ChatGPT [14]: A chatbot based on GPT-3.5 LLM that is capable of
having natural conversations. Llama2-7b/13b-chat [53]: Llama-2
is a collection of open-sourced LLMs that outperform other models
in most tasks. The chat-fine-tuned Llama2-7b/13b is used.

Metrics. Our evaluation can be roughly divided into automatic
and human evaluation. In automatic evaluation, we first report
precision, recall, and F1 scores of event predictions. For explanation
evaluation, we choose BLEU [42] (unigram, bigram, 3-gram, 4-
gram) and ROUGE [35] (rouge1, rouge2, rougeL) to compare the
explanation generated by the LLMs with the golden explanations
in the testing set. Besides the metric-based methods, we also report
the BertScore [64] that computes the similarity based on PLMs. We
use the same evaluation criteria introduced in Sec. 3.3 for human
evaluation, namely correctness, completeness, and fluency.

4.2 Automatic Evaluation Results
4.2.1 Prediction Evaluation. In Table 4, we present compelling
evidence of the substantial enhancements achieved through the
fine-tuning of the ChatTimeLlama-7b model. Notably, our finetuned
Llama2-7b model surpasses its baseline counterpart across multiple
performance metrics. Specifically, we observe impressive F1 gains
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Models Positive Negative Neutral Overall

Prec Recl F1 Prec Recl F1 Prec Recal F1 Prec Recal F1
Flan T5 62.9 29.2 39.9 31.4 57.0 40.5 32.2 30.8 31.5 45.3 38.0 38.0
BART 45.7 28.2 34.9 26.3 11.7 16.2 21.5 18.3 19.8 33.6 27.0 25.3

MPT-7b 48.5 64.6 55.4 39.5 35.7 37.5 25.8 14.7 18.7 39.8 42.7 40.3
Falcon-7b 47.7 56.6 51.7 37.9 22.0 27.8 19.9 23.3 21.5 37.4 37.4 36.5
Vicuna-7b 48.4 80.5 60.4 41.3 21.3 28.1 35.8 16.5 22.6 42.7 45.6 40.4
ChatGPT 90.9 39.1 54.7 29.5 31.7 30.5 30.7 56.8 39.8 56.5 41.6 43.5
Llama2-7b-chat 50.1 83.9 62.7 41.9 13.0 19.8 27.4 18.4 22.0 41.6 45.3 39.1
Llama2-13b-chat 51.3 53.8 52.5 40.0 26.0 31.5 28.0 36.8 31.8 41.7 41.0 40.7

TimeLlama-7b 90.1 97.6 93.7 67.6 84.9 75.3 97.8 55.1 70.5 84.6 82.7 81.5
ChatTimeLlama-7b 91.3 99.3 95.2 68.3 86.0 76.1 98.7 55.6 71.2 86.4 83.7 83.1
TimeLlama-13b 94.6 100 97.2 73.9 91.3 81.7 99.4 63.5 77.5 89.6 87.7 87.3
ChatTimeLlama-13b 96.2 99.5 97.9 75.0 94.0 83.4 98.9 65.0 78.5 90.6 88.7 88.4

Table 4: The prediction performance of each model on gold temporal reasoning testing set. The overall denotes the weighted
average precision, recall, and F1 score.

Models BLEU ROUGE BertScore

unigram bigram 3-gr 4-gr avg rouge1 rouge2 rougeL rougesum Prec Recal F1

Flan T5 48.9 16.9 9.7 6.6 15.2 28.9 7.5 26.1 26.0 77.6 78.1 76.9
BART 24.5 11.5 7.1 4.3 8.9 23.1 6.3 19.8 19.7 75.3 76.7 74.9

MPT-7b 28.7 11.9 7.4 5.2 10.7 31.8 13.4 26.9 27.2 81.4 80.5 80.1
Falcon-7b 54.9 22.7 13.6 9.1 19.8 33.8 13.9 29.2 29.3 80.3 80.4 79.9
Vicuna-7b 60.5 27.7 16.5 10.9 23.5 43.3 19.7 37.1 37.2 83.7 83.8 83.3
ChatGPT 66.9 34.7 23.5 17.2 31.1 42.2 22.6 37.1 37.1 84.8 83.8 83.7
Llama2-7b-chat 61.9 30.4 19.6 13.9 26.8 44.2 23.7 38.3 38.4 84.2 84.5 83.8
Llama2-13b-chat 60.9 29.3 18.5 12.9 25.5 42.4 21.8 36.6 36.6 83.7 84.1 83.4

TimeLlama-7b 77.5 50.5 38.8 30.7 59.9 46.3 29.6 56.6 56.5 91.0 90.2 90.2
ChatTimeLlama-7b 78.3 52.4 40.2 32.6 61.9 48.2 31.1 57.6 57.7 89.2 88.3 88.8
TimeLlama-13b 76.5 48.8 36.5 29.1 44.6 59.4 29.5 54.9 54.9 90.0 89.4 89.4
ChatTimeLlama-13b 77.4 50.5 38.2 30.7 46.3 60.7 30.2 56.2 56.3 90.5 89.7 89.7

Table 5: The explanation generation performance of each model on gold temporal reasoning testing set.

Figure 5: The box plots of human evaluation for each LLM. The dashed line denotes the mean value and the bold line indicates
the median value.

improvements of 44.0, 32.5, 56.3, and 49.2 across four categories:
positive, negative, neutral, and overall. These figures underscore
the efficacy of our fine-tuning approach, even in the presence of
noise within the training dataset. Notably, this underscores the

capacity of LLMs to leverage high-quality generated datasets by
instruction-tuning for substantial performance enhancements.

Bigger LLM is not always better. Interestingly, increasing the
model scale does not necessarily improve performance. Doubling
the parameters from Llama2-7b-chat to Llama2-13b-chat yielded
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only marginal gains, with Llama2-7b-chat actually outperforming
Llama2-13b-chat on the positive class. For instance, Llama2-7b-chat
has a 10.2 F1 gain compared with Llama2-13b-chat in the positive
category. Another example is the comparison between MPT-B and
Flan T5. For instance, when we examined the “unsure” category,
we observed that Flan T5 demonstrated an impressive F1 score of
31.5. It outperforms both MPT-7b and Falcon-7b, which achieved
F1 scores of 18.7 and 21.5, respectively.

ChatGPT performs mediocre in the zero-shot setting. No-
tably, even though our dataset is generated by prompting ChatGPT,
it is evident that ChatGPT exhibits suboptimal performance when
presented with direct prompts, in contrast to our dataset construc-
tion approach. To provide a comprehensive view of ChatGPT’s
performance, we compare it with Vicuna-7b, a model that was not
involved in the dataset construction process. The results reveal
that ChatGPT achieves an overall F1 score of 43.5, while Vicuna-7b
demonstrates a comparable F1 score of 40.4. Furthermore, our fine-
tuned model, Llama2-7b-chat, exhibits a substantial 39.6 F1 point
improvement over ChatGPT’s performance.

4.2.2 Explanation Evaluation. In Table 5, we present the automatic
evaluation results for the explanation generation. Notably, our fine-
tuned variant, ChatTimeLlama-7b, demonstrates remarkable im-
provements across all key evaluation metrics. For instance, when
compared to the baseline Llama2-7b-chat, ChatTimeLlama-7b ex-
hibits substantial enhancements in BLEU, ROUGE, and BertCore
scores, with gains of 35.1, 19.3, and 6.4 points, respectively. These re-
sults underscore the significant potential for enhancing the explain-
able temporal reasoning capabilities of LLMs through instruction
tuning based on high-quality datasets.

Parallel to our prediction evaluation, our examination of expla-
nation quality yields insightful observations. First, our explana-
tion evaluation results also demonstrate that ChatGPT with direct
prompting exhibits limitations in generating coherent reasoning ex-
planations. For example, the BLEU and ROUGE scores of ChatGPT
are 31.1 and 37.1 while Llama2-7b-chat can also achieve compara-
ble performance, i.e., 26.8 BLEU score and 38.4 ROUGE score. We
include a failure example of ChatGPT in Appendix B.3. Second, the
explanation quality of TimeLlama-13b is not better than that of
TimeLlama-7b. For example, ChatTimeLlama-7b achieves a 61.9
BLEU score while ChatTimeLlama-13b has 46.3 BLEU. This may
be due to overfitting, and lack of grounding where maximizing
prediction harms explainability.

Another interesting finding is that even Flan T5 and BART can
achieve comparable performance on prediction evaluation, these
two LLMs along with MPT-7b produce subpar explanations com-
pared to other LLMs. One possible reason could be the different cov-
erage of their training dataset and the difference between “encoder-
decoder” and “decoder” only architecture.

4.3 Human Evaluation Results
To provide an objective assessment of the quality of the generated
explanations, two experienced annotators evaluated explanations
from four language models: Llama2-7b, TimeLlama2-7b, ChatGPT,
and Vicuna-7b. The annotation guidelines and annotator qualifica-
tions are detailed in Appendix A. 50 explanations from each model
were randomly selected, paired with the corresponding question,

and evaluated by the annotators. As shown in Figure 5, the results
demonstrate that overall the TimeLlama2-7b model achieved the
highest scores across the three assessment criteria. Specifically,
all models generated fluent explanations, as indicated by the high
fluency scores. Llama2-7b and ChatGPT performed similarly on
correctness and completeness. Compared to the baseline Llama2-
7b, the TimeLlama2-7b showed significantly improved correctness
and completeness, suggesting that finetuning on the high-quality
dataset enhanced its ability to provide coherent temporal reason-
ing explanations. Cohen’s kappa coefficients in Appendix A also
show a high level of inter-annotator agreement for most model
evaluations. In summary, the finetuned Llama2 model generated
the highest quality explanations according to the human evaluation,
demonstrating the efficacy of finetuning on a curated dataset to im-
prove the explanatory capabilities of language models for temporal
reasoning.

4.4 Fractional Data Trains LLM Reasoning Skills
Previous experiments have demonstrated that fine-tuning LLMs
on high-quality datasets can significantly improve their ability to
provide explainable temporal reasoning. This leads to an investi-
gation of the minimum amount of high-quality data required to
improve the explainable temporal reasoning capabilities of LLMs.
To test this, 10%, 50%, and 75% of the training samples were ran-
domly selected from the dataset to fine-tune Llama2-7b using the
same fine-tuning methodology. Interestingly, Llama2 fine-tuned
on reduced amounts of data achieved comparable or better perfor-
mance on automatic prediction and explanation evaluation metrics
in some cases (Fig. 4). For instance, Llama2 fine-tuned on 75% of the
dataset attained a higher F1 score for prediction accuracy compared
to the full dataset. Moreover, the Llama2 fine-tuned on just 10%
of the data obtained similar performance on explanation metrics
such as ROUGE score and BERT score versus Llama2 fine-tuned
on 75% and the full dataset. These results demonstrate that with
guidance from even a small volume of high-quality data, the tem-
poral reasoning and explanation generation skills of LLMs can be
substantially enhanced.

5 CONCLUSION
In this work, we propose the first task of explainable temporal
reasoning, to predict an event’s occurrence at a future timestamp
and generate the explanation for their prediction. To support this
task, we introduce a novel dataset ExpTime, containing 26k ex-
amples derived from temporal knowledge graphs, developed by a
novel knowledge-graph-instructed-generation strategy. Based on
this dataset, we develop TimeLlama, an open-source LLM series
tuned with instructions for temporal reasoning and explanation
generation. Experiments demonstrate the SOTA performance of
TimeLlama on future event prediction and explanation generation
compared to other LLMs. We find the instruction-tuning using high-
quality data is critical for improving LLM’s temporal reasoning and
explainability. We discuss associated ethical considerations and
limitations in Appendix F. In the future, we plan to expand the
breadth and diversity of our benchmark dataset by incorporating
more temporal reasoning tasks.
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A HUMAN ANNOTATION AND EVALUATION
A.1 Settings
We recruited two Computer Science Ph.D. students with expertise
in natural language processing (NLP) to manually annotate the test
dataset and evaluate the performance of eachmodel. The annotators
were provided with the full sample set for each instance in the
test data, consisting of the input document, the question about
future events, and the ground truth answer with an explanation.
To evaluate model performance, the annotators were also shown
the model-generated explanation alongside the complete sample.
By having domain experts manually annotate the testing data and
compare model outputs, we aimed to robustly assess the ability of
each model to provide accurate and logical explanations.

A.2 Annotation Guideline
Here we describe our human annotation guidelines for annotating
and evaluating the prediction and explanation quality.

Overview: Youwill evaluatemachine-generated predictions about
future events along with explanatory reasoning. The predictions
and explanations are based on a given context document. Please rate
each answer on a scale of 1 to 3 using the criteria below: Prediction
Accuracy (1-3):

• 1 - The prediction on whether the event will occur is incor-
rect. For example, the prediction is that Event X will occur,
but Event X does not happen

• 2 - The prediction on whether the event will occur is correct
but the reasoning is flawed

• 3 - The prediction and reasoning are fully accurate and
aligned

Explanation Completeness (1-3):

• 1 - The explanation does not provide the necessary con-
text/background to support the prediction. (e.g. “This will
happen because of past events” with no further details)

• 2 - The explanation provides some relevant context but
lacks important details
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Correctness Completeness Fluency

Llama-7b 0.73 0.47 0.98
Finetuned Llama2 0.82 0.54 0.99
ChatGPT 0.77 0.41 0.98
Vicuna 0.74 0.50 0.97

Table 6: Cohen’s Kappa score of human evaluation for each
criterion in each LLM.

• 3 - The explanation comprehensively provides the back-
ground needed to understand the prediction

Explanation Fluency (1-3):

• 1 - The explanation is unclear or difficult to understand,
such as wordy, confusing, or unclear connections between
ideas, etc.

• 2 - The explanation could be improved stylistically but is
reasonably clear

• 3 - The explanation is fluent, coherent, and easy to compre-
hend

A.3 Agreement Level
We present the human evaluation agreement level by using Co-
hen’s Kappa score in this section. Note that the completeness inter-
agreement level is relatively lower compared with the other two
criteria. The main reason is that the completeness score heavily
relies on the annotator’s own logic and domain knowledge, which
may introduce the annotator bias.

B GIG STRATEGY EXAMPLES
B.1 Detailed Prompts
B.1.1 Template-generated explanation evaluation prompt. Given
the text, 𝐹 ′

𝑖
, please evaluate the correctness of the prediction based

on the reasoning steps shown in the text. Answer correct or wrong
then explain your decision concisely

B.1.2 revision Pprompt. Please revise the provided text to ensure
the prediction aligns with the reasoning steps. Adjust the flaws ac-
cordingly to reflect a correct prediction. Emphasize the importance
of a logical progression of reasoning. You can add information from
the following quadruples only if it is necessary for making the cor-
rect prediction. Finally, make the whole revised text more readable
and coherently by expanding the explanation of each reasoning
step. [Q]

B.1.3 negative sample generation prompt. Given the text, “Based
on the information provided by the document, we predict that 𝑒1 𝑟 ′
𝑒2 will not happen in 𝑡𝑖 . We could find the following patterns from
the text: 𝑃𝑎1, and 𝑃𝑎2,· · · , therefore, it is plausible that 𝑒1 will 𝑟 𝑒2
in 𝑡𝑖 .”, please evaluate the correctness of the prediction based on
the reasoning steps shown in the text. Answer correct or wrong
then explain your decision concisely

B.1.4 neutral sample generation prompt. Given the document “[𝐷𝑖 ]”,
how likely the event that [𝑒′1 𝑟 𝑒

′
2] in [𝑡𝑖 ] would happen? Please

note that the context shown in the given document may not be

(Iran, sign formal agreement, Barack Obama, 11-06-2014)
(China, consult, France, 11-07-2014)

......
(Barack Obama, express intent to meet, China, 11-04-2014)

Table 7: The context quadruples for query (China, host a visit,
Barack Obama(?), 2014-11-10)

directly related to the event, so your answer should be uncertain.
And if the context is unrelated, summarize the context and tell me
why you think the context is not related.

B.2 A GIG Workflow Example
To better help readers understand our proposed GIG explainable
temporal reasoning dataset construction strategy, we provide a
detailed example here to show the workflow of GIG.

First, we identify a query on temporal knowledge graph (China,
host a visit, Barack Obama(?), 2014-11-10). Then a reasoning path
from explainable temporal knowledge graph reasoning models can
be obtained:

𝐼𝑟𝑎𝑛
sign formal agreement, 11-06-2014
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎

express intent to meet or negotiate, 11-04-2014
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 𝐶ℎ𝑖𝑛𝑎

host visit, 11-10-2014−−−−−−−−−−−−−−−−−→ 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎

(3)

. We then extract quadruples/events that happened during the past
week of 2014-11-10 that include either China or Barack Obama and
name them context quadruples. We also include the quadruples
on the reasoning path in the context. The context quadruples are
shown in Table. 7We then generate a very simple natural sentences-
format explanation based on the reasoning path:

Based on the information provided by the document,
it is plausible that China will host a visit Barack
Obama on 11-10-2014. Here are my reasons: 1: Iran
sign formal agreement Barack Obama on 11-06-2014,
and 2: Barack Obama express intent to meet or negoti-
ate on 11-04-2014 China. Therefore, it is plausible that
China will host a visit Barack Obama on 11-10-2014

We prompt this explanation and the context quadruples to ChatGPT
following the polish or revise prompt. Then ChatGPT-generated
explanation can be obtained:

Yes. Based on the information provided in the docu-
ment, it is plausible to predict that China will host a
visit by Barack Obama on November 10, 2014. Here’s
a breakdown of the logical progression of reasoning
to support this prediction: 1. China has a history of
hosting visits by foreign leaders. For instance, China
hosted a visit byMichael Sata on January 2nd, 2014. 2.
In a reciprocal fashion, following Sata’s visit, Michael
Sata made a visit to China on the same day of Janu-
ary 2nd, 2014. 3. Later, China also hosted a visit by
Barack Obama on March 4th, 2014. Based on these
three points, it can be inferred that China has es-
tablished a pattern of hosting visits by foreign lead-
ers, including both Michael Sata and Barack Obama.
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Therefore, it is logical to conclude that China may
host a visit by Barack Obama on November 10th,
2014.

We obtained the answer and explanation in this way.
Then we construct the context document by prompting ChatGPT

to generate coherent sentences to describe the context quadruples:
Between November 4th and November 7th, 2014,
there were several notable events related to inter-
national relations. First, on November 4th, Barack
Obama expressed his intent to meet or negotiate
with China. ...... These events indicate a series of sig-
nificant diplomatic engagements between various
countries and key figures during this period.

The input document can be built in this way.
We convert the query into natural language format by injecting

the query into a set of diverse question templates:
Given the following document, can we expect that
China will host a visit Barack Obama on 2014-11-
09? Can you please answer with a yes, no, or unsure
first, and then explain your decision?

B.3 Direct Prompting Failure of ChatGPT
In order to directly compare the performance of our approach to that
of ChatGPT, we have included an example of a ChatGPT failure
case in Table 8. As illustrated, ChatGPT struggled to detect the
underlying logic and causal relationships between events described
in the provided document. In contrast, our proposed approach
was able to successfully predict and reason about the sequence of
events. This comparison highlights the challenges of relying solely
on direct prompting of large language models like ChatGPT for
dataset construction. Our results suggest that a more structured,
programmatic approach to dataset creation, like the one proposed
in the paper, may be necessary to produce high-quality training
data with reliable logical reasoning abilities.

C REVERSE RELATIONS
As described in the section on negative sample generation, we care-
fully manually designed inverse relations for all relations present
in the original temporal knowledge graph. This ensures that if an
event occurs, the inverse event is highly unlikely to occur. Table 9
provides examples of the inverse relations we crafted.

D EXPERIMENTS BACKGROUND
D.1 ICEWS dataset
The ICEWS datasets are built from the Integrated Crisis EarlyWarn-
ing System, which monitors and analyzes world events to identify
potential crises. The most popular ICEWS datasets are ICEWS14,
ICEWS18, and ICEWS0515. The number denotes the year of the
events in each dataset. The statistics of each dataset are shown in
Table. 10.

D.2 Hyper-parameters
Training hyperparameter details are as follows. A per-device batch
size of 2 was utilized with a gradient accumulation step of 16. Opti-
mization was performed with the AdamW algorithm, employing a

peak learning rate of 2e-5 and a warm-up ratio of 0.03. The maxi-
mum model input length was set to 2048 tokens. DeepSpeed ZeRO
stage 3 was enabled for optimization. All models were trained using
4 Nvidia Tesla A100 GPUs, each with 80GB of memory.

E UNEXPLAINABLE TEMPORAL
KNOWLEDGE GRAPH EVENT
FORECASTING MODELS

Here we examine methods developed for the temporal knowledge
graph event forecasting task, which aim to improve predictive ac-
curacy rather than explainability. Specifically, we review models
designed for this forecasting task that do not incorporate explain-
able components into their architectures. The goal of these models
is to enhance predictive correctness on the forecasting benchmark,
without considerations for explainability or interpretability. By fo-
cusing solely on improving forecasting performance, these methods
provide a baseline to compare future work on building explainable
forecasting models.

Specifically, in TKG event forecasting, the first effort is Know-
evolve, which captures the continuous-time temporal dynamics and
predicts future facts by estimating the conditional probability of
temporal point process [54]. With the rise of graph neural networks
(GNN), Relational-GCN has been introduced into event forecasting
to replace temporal point process [46]. The two influential RGCN-
based methods are RE-NET and RE-GCN, where RE-NET utilized
RGCN to encode long-term representations of temporal knowledge
graphs by designing an autoregressive event recurrent encoder [22]
and RE-GCN proposed to focus on the graph dependency struc-
ture [33].

F ETHICAL CONSIDERATIONS AND
LIMITATIONS

In developing this temporal reasoning dataset, care has been taken
to ensure appropriate consideration of ethical issues and limitations
commonly associated with large language models. The source data
has been carefully curated to provide diversity and mitigate biases.
Events representing a wide range of demographic groups are in-
cluded to avoid propagating systemic stereotypes. We acknowledge
that, despite best efforts, the dataset may exhibit gaps or contain
unintended biases. Finally, we recognize that large language models
carry risks of generating harmful, biased, or logically incoherent
content through hallucination. Our evaluation methodology takes
this into account by prioritizing answer accuracy over fluency.With
rigorous design and testing processes, we aim to uphold ethical AI
principles while furthering research on temporal reasoning.
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Question Given the document, “On March 12th, Oman and Iran engaged in consultations. The following day, on March 13th,
Media Personnel from Iran made empathetic comments. Additionally, Majid Takht Ravanchi from Iran demanded
something on March 13th. In another development, Business (Iran) made a statement regarding Iran on March 10th.
Turning to international relations, Iran hosted a visit from Evangelos Venizelos on March 14th. Furthermore, on
January 4th, Iran hosted a visit from the Envoy of the United Kingdom, while on the same day the Envoy made a
visit to Iran. Lastly, on March 9th, Iran and Iraq signed a formal agreement, and on March 12th, Iran also signed a
formal agreement with Iraq.”, is it possible that Iran will host a visit Evangelos Venizelos on 2014-03-16?

ChatGPT Answer Based on the information provided in the document, Iran hosted a visit from Evangelos Venizelos on March 14th,
2014. There is no mention of Iran hosting a visit from Evangelos Venizelos on March 16th, 2014, in the document.
Therefore, it is not possible that Iran will host a visit from Evangelos Venizelos on that date based on the information
provided.

Revision Answer Yes. Based on the information provided by the document, it is plausible that Iran will host a visit from Evangelos
Venizelos on 2014-03-16. Here are the reasons to support this prediction: 1. On 2014-01-04, Iran hosted a visit from
the United Kingdom envoy. This implies that Iran is open to hosting visits from foreign diplomats or officials. 2.
On the same date, the United Kingdom envoy visited Iran. This suggests that the two countries have established
diplomatic relations and engage in reciprocal visits. 3. On 2014-03-15, Iran hosted a visit from Evangelos Venizelos.
This indicates that Iran is actively involved in diplomatic engagements and willing to host visits from foreign officials.
Based on these reasons, it is reasonable to assume that Iran would continue its diplomatic activities by hosting a visit
from Evangelos Venizelos on 2014-03-16.

Table 8: Comparison between directly prompting ChatGPT and the proposed dataset construction method

Relation in TKG Reversed relation

Accede to demands for change in institu-
tions, regime

“Reject request for change in institutions, regime”,“Reject request or demand for political
reform”,“Reject request for policy change”

fight with artillery and tanks “Halt military confrontation”,“Deescalate armed aggression”
Threaten with repression “Affirm no repression”,“Guarantee no repression”
Accuse of war crimes “Forgive”,“Apologize”,“Praise or endorse”,“Express accord”
Appeal for change in leadership “Support the current leadership”,“Endorse the present administration”,“Back the existing lead-

ers”,“Affirm confidence in leadership”
Conduct strike or boycott “Continue working cooperatively”,“Support ongoing business”
Decline comment “Provide an open statement”,“Give a candid response”
Demand material aid “Offer defense support”, “Provide military assistance”
Reduce or stop economic assistance “Expand or begin economic support”,“Boost financial aid”
Make empathetic comment “Make insensitive remark”,“Display no sympathy”
Make a visit “Skip a visit”,“does not visit”
Increase military alert status “Downgrade military alert level”,“Reduce military alertness”
Impose embargo, boycott, or sanctions “Express intent to ease embargo, boycott, or sanctions”,“ease embargo, boycott, or sanctions”
Host a visit “Cancel upcoming reception”,“Withdraw visiting invitations”
Grant diplomatic recognition “Withdraw acknowledgment”,“Rescind formal relations”

Table 9: Examples of manually designed inverse relations for original temporal knowledge graph relations

Datasets Num Entities Num Relations Num Events Train Num Events Test Num Events Val

ICEWS14 6,869 230 74,845 8,514 7,371
ICEWS18 23,033 256 373,018 45,995 49545
ICEWS0515 10,094 251 368,868 46,302 46,159

Table 10: The statistics of three ICEWS datasets. Num Events Train/Test/Val denotes the number of facts in training, testing,
and validation sets. Num entities/relations means the number of unique entities/relations in each dataset.
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