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ABSTRACT

The rapid proliferation of Al-generated images (AIGIs) highlights the pressing
demand for generalizable detection methods. In this paper, we establish two key
principles for AIGI detection task through systematic analysis: (1) All Patches
Matter, since the uniform generation process ensures that each patch inherently
contains synthetic artifacts, making every patch a valuable detection source; and
(2) More Patches Better, as leveraging distributed artifacts across more patches
improves robustness by reducing over-reliance on specific regions. However, coun-
terfactual analysis uncovers a critical weakness: naively trained detectors display
Few-Patch Bias, relying disproportionately on minority patches. We identify
this bias to Lazy Learner effect, where detectors to limited patch artifacts while
neglecting distributed cues. To address this, we propose Panoptic Patch Learning
framework, which integrates: (1) Randomized Patch Reconstruction, injecting
synthetic cues into randomly selected patches to diversify artifact recognition;
(2) Patch-wise Contrastive Learning, enforcing consistent discriminative capa-
bility across patches to ensure their uniform utilization. Extensive experiments
demonstrate that PPL enhances generalization and robustness across datasets.

1 INTRODUCTION

The rapid evolution of generative Al models has precipitated an exponential growth of Al-generated
images (AIGIs) in digital ecosystems (Goodfellow et al., 2014} |[Karras et al., 2018} [2019; |Ho et al.,
2020; [Rombach et al., [2022; Zhang et al.| [2023; Ramesh et al., 2021} |Yan et al.| 2025} 2024c). This
proliferation raises concerns regarding information security and content authenticity, highlighting the
need for AIGI detection to distinguish synthetic images from authentic ones. Unlike conventional
classification tasks, AIGI detection operates as a “cat-and-mouse game”, presenting unique challenges
due to: (1) continuous emergence of new generative architectures, and (2) frequent updates to existing
generative models. Consequently, exhaustive training on all synthetic data becomes impractical (Ojha
et al.| 2023)), thus necessitating detectors with strong generalizability.

Despite these challenges, AIGIs exhibit a distinctive property absent in traditional classification:
Universal Artifact Distribution. In the context of AIGIs, discriminative features are not confined
to object-centric regions; instead, synthetic images contain artifacts uniformly across all patches,
a consequence of the consistent generation process of modern generative modelsp_-] This indicates
that every patch contains synthetic traces, forming our first principle for AIGI detection: All Patches
Matter. This principle is supported by two lines of evidence: (1) visual analytics (Tan et al.,|2024c]
Cozzolino et al., 2024) confirm pixel-level discriminative patterns, revealing artifacts at patch gran-
ularity; and (2) recent patch-wise detectors (Chen et al., [2024b}; Zhong et al.| [2024) demonstrate
comparable performance to full-image approaches, validating the discriminative capability of indi-
vidual patches. Although artifacts vary across patches, detectors that capture diverse artifacts across
distributed regions reduce over-reliance on specific patches. Capturing these distributed artifacts

'This work adheres to the mainstream AIGI detection setting (Chen et al.,|2024a}|Ojha et al.}|2023; Tan et al.,
2024aj Liu et al.| [2024; |He et al.l|2024; |Zhu et al.| 2024; |Tan et al., 2024c) where the entire image is generated
by Al models.
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(a) Visualization of attention maps. (b) Comparison on different datasets.

Figure 1: (a) PPL produces a more uniform attention distribution across patches, indicating its
effectiveness in capturing artifacts comprehensively. (b) PPL outperforms peer methods on Genlmage,
DRCT-2M, AIGCDetectionBenchmark, and the in-the-wild Chameleon. More details are in SectionEl

enhances cross-generator generalizability by mitigating detectors’ blind spots. This leads to our
second principle: More Patches Better.

However, counterfactual analysis of existing AIGI detectors (Ojha et al., 2023} [Liu et all, 2024}
Tan et al.| [2024a; [He et al.,[2024}; [Chen et al,20244) reveals an unfavorable tendency—Few-Patch
Bias—supported by two empirical observations and a quantitative analysis. Empirically, we observe:
(1) detectors’ attention maps disproportionately focus on very limited patches; (2) detectors exhibit
severe patch-specific fragility, where masking a single patch reduces accuracy by 18.7% + 4.1%
on average. Quantitatively, using causal inference tool TDE (VanderWeele|, 2013) to quantify each
patch’s impact—measured as the classification logit difference with and without that patch—we
find that naively trained detectors produce skewed distributions: a few patches show high TDE
values, while most patches exhibit significantly lower contributions. This suggests that most patches
remain underutilized, despite also containing generative artifacts. Moreover, detection methods with
more uniform TDE distributions exhibit stronger generalizability; for instance, DRCT, with more
high-TDE patches, performs substantially better than UnivFD. We attribute such Few Patch Bias

to the propensity of detectors as Lazy Learner (Hermann et al 2024; [Zhang et al 2021; Wang

et all [2022; [Zhao et all [2024; |(Ghosh et al., 2023} Tang et al.l 2023; Sun et al., 2024; [Yuan et al.,
2024; [Yan et al., [2024b). Specifically, AIGI detectors follow a curriculum-like learning pattern: once

easy-to-learn artifacts in certain patches minimize loss, the presence of these patches discourages
exploration of broader regions.

To address this challenge, we propose the principle: “All Patches Matter, More Patches Better”, which
prevents detectors from shortcutting to a few regions and instead encourages robust feature learning
across the entire image. To operationalize this principle, we introduce the Panoptic Patch Learning
(PPL) framework, which consists of two components: (1) Randomized Patch Reconstruction, which
manually injects synthetic artifacts into randomly selected patches of real images via diffusion
reconstruction, forcing the model to discriminate based on these chosen regions and discouraging over-
reliance on specific patches; and (2) Patch-wise Contrastive Learning, which aligns the representations
of real and synthetic patches, thereby enforcing consistent discriminative capability across all regions
of the image. Fig.[T]illustrates the effectiveness of PPL. Our main contributions are threefold:

1. We formally propose the principle “All Patches Matter, More Patches Better”, showing that
exploiting distributed artifacts enhances AIGI detection.

2. We provide a detailed patch-wise analysis using TDE, revealing that Few-Patch Bias is
pervasive in existing detectors.
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3. Building on this principle, we design Panoptic Patch Learning and validate its effectiveness
through extensive experiments.

2 RELATED WORK

Existing AIGI detection methods can be broadly categorized into two types: local and global
detection (Tan et al., 2024a). We summarize both lines of research below.

Local AIGI detection methods. Local approaches exploit localized information to distinguish
Al-generated images from real ones, assuming that low-level feature differences exist between the
two. These methods can be divided into patch-wise and pixel-wise detectors.

Patch-wise methods include: SSP (Chen et al., [2024b) achieves notable performance using only a
single patch. Patchcraft (Zhong et al., [2024)) separates processing of the simplest and most complex
patches by entropy-based selection. (Zheng et al.l |2024)) employ a patch-based CNN leveraging
all patches to avoid selective sampling and aggregate patch features. TextureCrop (Konstantinidou
et al.| [2025) partitions an image via sliding windows and selects high-frequency texture-rich regions.
Despite these advances, patch-wise detectors often over-rely on a limited subset of patches, leading to
information under-utilization. Pixel-wise methods include: NPR (Tan et al.;2024c) detects AIGIs by
analyzing differences in neighboring pixel relationships. FreqNet (Tan et al., |2024b) and SAFE (L1
et al., 2024) exploit high-frequency signals to capture localized patterns. However, pixel-wise
methods are sensitive to small perturbations in pixel relationships, limiting their robustness.

Global AIGI detection methods. Global approaches leverage holistic image characteristics to
distinguish AIGIs from real images, aiming to capture inconsistencies that may not be observable at
the local level. CNNSpot (Wang et al., 2020) applies a CNN directly for detection, achieving strong in-
distribution performance but suffering from poor cross-generator generalization. UnivFD (Ojha et al.|
2023)) improves robustness by adopting a CLIP visual encoder as a feature extractor. FatFormer (Liu
et al.l 2024) further adapts CLIP by introducing a frequency adapter. C2P-CLIP (Tan et al., 2024a)
fine-tunes CLIP with carefully designed image—text pairs to embed the notions of “real” and “fake.”
DRCT (Chen et al., [2024a)) strengthens UnivFD with a contrastive loss on hard cases. Nevertheless,
global methods often overlook fine-grained forensic artifacts, which constrains their effectiveness.

3  MOTIVATION

3.1 ALL PATCHES MATTER, MORE PATCHES BETTER
The principle of All Patches Matter is supported by three key findings.

1. Theory: Because every patch of a synthetic image is itself generated, each inherently
contains artifacts. Localized detection methods (Chen et al., 2024b} [Zhong et al., [2024)
demonstrate that cues within small regions can effectively discriminate real from synthetic
content, underscoring that every patch carries discriminative signals.

2. Visualization: Fig. 2]illustrates distinct artifact patterns across patches, showing that each
synthetic patch exhibits identifiable features distinguishing it from real patches. Moreover,
the variability of these cues across patches highlights the considerable diversity of artifacts
present in synthetic images.

3. Experiments: We further validated this principle by evaluating detectors on single randomly
selected patches. By replicating one patch across the image to isolate its features, detectors
still achieved 90% accuracy on the SDv1.4 subset of Genlmage. This confirms that even a
single patch contains sufficient information for reliable discrimination.

Together, these findings demonstrate that artifacts in synthetic images are both pervasive and diverse.
Detectors can exploit these patch-level cues, motivating the principle of More Patches Better: lever-
aging more patches enhances robustness and generalization by capturing complementary artifact
patterns. However, our observations reveal that existing detectors donot align with this principle.
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Figure 2: Visual evidence of patch-wise artifacts. We observe diverse traces—such as broken lines,
unnatural noise, and boundary detail loss—showing that multiple regions of synthetic images contain
cues. This observation underscores the importance of leveraging more patches to enhance recognition

of diverse artifacts. Images are sourced from MSCOCO (Lin et al.,[2014).
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(a) Visualization of Attention Maps. (b) Impact of Patch Removal on Recall Rate.

Figure 3: (a) Attention maps reveal the few-patch bias of naively trained detectors, where attention
concentrates on a small number of dominant patches, reflecting over-reliance on limited regions. (b)
Recall degradation occurs when single patches of varying sizes are occluded, showing that detectors
are overly sensitive to corruption in specific regions and suffer notable performance drops.

3.2 FEW-PATCH BIAS

Observations. Our empirical observations indicate that existing detectors often overly rely on a
limited number of patches. Our experiments reveal that existing detectors tend to over-rely on a limited
set of patches. Fig.[3[(a) shows attention maps from naively trained ViTs, where attention weights
concentrate on only a few regions. This phenomenon persists even when changing the backbone
or applying LoRA, suggesting a model-agnostic bias. To further validate this observation, we
systematically mask patches of varying sizes and measured the corresponding recall rate degradation.
Fig.B|b) illustrates the performance of UnivFD under patch occlusion. Masking a single patch leads
to a substantial drop in accuracy, and the impact varies across different patches, confirming that
detectors are disproportionately sensitive to specific regions.

Quantitative analysis. Building on the above observations, we employ the Total Direct Effect
(TDE) to quantify the impact of each patch. Conceptually, if both X — Y and Z — Y, then the
outcome Y results from the combined influence of X and Z. The TDE measures the contribution of
X by comparing outcomes with and without its effect while keeping other factors fixed.

For an image, the TDE of the patch at row ¢, column j is defined as:

TDE =065 —d1_(i5, 0= logit,, .., — 10git, .o ))]
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Figure 4: TDE heatmap of existing methods on generated images selected from the DRCT-2M
dataset (Chen et al, [2024a). A broader and more uniform highlighted region indicates a greater
number of patches contributing to determining a fake image.

where I denotes the original image and I — (4, j) the image with the (i, j)-th patch masked (imple-
mented by setting the patch values to zero). By computing the TDE for each patch, we quantify its
relative contribution to the synthetic classification decision.

Fig. @] presents TDE heatmaps. From top to bottom, the number of active patches increases and
the TDE distributions become more uniform. Stronger detectors consistently activate a broader set
of patches. These visualizations highlight the prevailing bias toward a few dominant patches with
disproportionately high TDE, motivating us to mitigate few-patch reliance.

4 METHODOLOGY

Panoptic Patch Learning is a comprehensive framework based on the principles of “All Patches Matter”
and “More Patches Better,” achieved through innovative data and learning strategies, as illustrated
in Fig.[5] Specifically, the data strategy, Randomized Patch Reconstruction (RPR), discourages the
model from over-relying on any specific patches, thereby enhancing its recogmnon capability for
various artifacts across more patches. Following this, the learning strategy, Patch-wise Contrastive
Learning (PCL), ensures that all patches, both frequently attended and underutilized, are brought
closer in the feature space, thereby uniformizing the impact of all patches.

Randomized Patch Reconstruction encourages “More Patches Better””. The RPR process is
carried out by performing diffusion reconstruction on randomly selected patches with a specified
proportion, injecting synthetic cues into specific regions of the image while maintaining the overall
semantics of the image (as the reconstructed image closely resembles the original image). In
practice, RPR is implemented by first applying diffusion reconstruction to the entire image to obtain
a reconstructed version. Then, the selected patches in the original image are replaced with their
reconstructed counterparts, resulting in a synthetic image where only specific regions contain synthetic
artifacts. Here, we emphasize that we inject synthetic features via diffusion reconstruction rather than
stitching a synthetic patch, in order to preserve the global semantics and integration of the produced
image, and to prevent the model from overfitting to images with disconnected semantics. We use
r € [0,1.0] to denote the ratio of reconstructed patches relative to the whole image.
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Figure 5: The Panoptic Patch Learning (PPL) framework embodies the principles of All Patches
Matter and More Patches Better through two key components: Randomized Patch Reconstruction
(RPR) and Patch-wise Contrastive Learning (PCL). During training, the model may excessively rely
on , neglecting others. RPR mitigates this by randomly replacing dominant patches
with real ones, encouraging the model to detect artifacts in non-dominant patches and thereby
expanding the coverage of dominant regions. PCL further promotes balanced patch utilization by
aligning the embeddings of patches with the same labels. Together, RPR and PCL foster comprehen-
sive and uniform exploitation of patches.

Algorithm 1 Patch-wise Contrastive Learning (PCL) Training Procedure

Input:
X - input image tensor after RPR, shape [B,C, H, W]
labelys  —image-level ground-truth labels, shape [B]
patchg,  — patch-level ground-truth labels, shape [B, K|
A — weighting coefficient for contrastive loss

I: imgembedding: patChembedding — ViTEncoder(X) > Z‘Tngmnbedding: [Ba ]-7 D], patChembedding:
(B, K, D]

2: Ypred < Linear(imgempedding) > Image-level class logits, shape [B, 2]
3: Lee <= BCEL0SS(Yprea, labelg:) > Image-level classification loss
4: Lcopn < ContrastiveLoss(patchempedding, Patchgt) > Patch-level contrastive loss
5. Liotat < A+ Leon + (1 - )\) “ Lpee

6: Liotqr.backward()

Patch-wise Contrastive Learning emphasizes “All Patches Matter”. PCL operationalizes the
principle of “All Patches Matter” by aligning the embedding vectors of different patches, bringing
patches with identical labels closer together while distancing those with different labels. We employ
contrastive learning to cluster synthetic patches more closely within each batch, while maintaining a
margin that separates synthetic and real patches. This approach ensures that if an image contains any
dominant patch with easily learnable artifacts, the model improves its performance on the remaining
patches, thus promoting the utilization of all patches. Specifically, for each batch, we utilize a

margin-based contrastive loss (Hadsell et al.| 2006):

Leon = Z [Y~d2+(1—Y)~maX(O,a—d2)], @)
i,j: i

where ¢, j represent the indices of patch tokens within a batch. d measures the Euclidean distance
between the patch embeddings. « defines a minimum distance threshold between negative sample
pairs, thereby enhancing the model’s ability to distinguish between similar and dissimilar pairs. Y
indicates whether two patches share identical labels, thus pulling positive patch pairs closer and
pushing negative patch pairs further apart. The overall loss function is a weighted combination of the
cross-entropy loss and the patch-wise contrastive loss:

£lotal = )\L:con + (1 - )\)‘Ccea (3)
The practical implementation of PCL is shown in Alg.[T}

5 EXPERIMENTS

Implementation details. We adopt CLIP (Radford et al.} 2021)) and DINOv2 (Oquab et al., 2023)
two vision foundation model as backbones , and fine-tune them using LoRA. Unless otherwise
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Table 1: Cross-model accuracy (Acc) on Genlmage. All methods are trained on the SDv1.4 subset.
Results are taken from C2P-CLIP (Tan et al.| 20244a), except SAFE and Effort, which are reported in
their original papers. For Breaking (Zheng et al., 2024), we re-implement the method because no
GenlImage results or checkpoints are publicly available. Our results are bolded when they achieve the
highest accuracy among all methods.

Method Ref Midjourney SDv1.4 SDvl.5 ADM GLIDE Wukong VQDM BigGAN ‘ mAcc

ResNet-50 (He et al.|[2016) CVPR2016 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1£22.6
DeiT-S (Touvron et al.{[2021)  ICML2021 55.6 99.9 99.8 49.8 58.1 98.9 56.9 535 71.6 £23.2
Swin-T (L1u et al.[|2021) ICCV2021 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8 £ 21.1
CNNSpot (Wang et al.|[2020) CVPR2020 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 642 £22.6
Spec (Zhang et al.[[2019) WIFS2019 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8 +24.1
F3Net (Qian et al.[2020) ECCV2020 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7 £25.8
GramNet (Liu et al.|[2020) CVPR2020 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9 £+24.2
UnivFD (Ojha et al.|[2023) CVPR2023 93.9 96.4 96.2 71.9 854 943 81.6 90.5 88.8 £8.6
NPR (Tan et al.[[2024c}) CVPR2024 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6 £8.3
FreqNet (Tan et al.|[2024b) AAAI2024 89.6 98.8 98.6 66.8 86.5 97.3 75.8 81.4 86.8 £11.6
FatFormer (Liu et al.||2024) CVPR2024 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 889+ 157
DRCT (Chen et al.[[2024a) ICML2024 91.5 95.0 94.4 79.4 89.1 94.6 90.0 81.6 89.4+59
Effort (Yan et al.|[2024b) ICML2025 824 99.8 99.8 78.7 933 97.4 91.7 71.6 91.1 £11.8
Breaking (Zheng et al.[[2024) ~ NIPS2024 83.9 98.9 93.0 99.1 97.7 854 92.7 90.5 927+£58
SAFE (Li et al.[[2024) KDD2025 95.3 99.4 99.3 82.1 96.3 98.2 96.3 97.8 95.6 £5.6
C2P-CLIP (Tan et al.|[2024a) AAAI2025 88.2 90.9 97.9 96.4 99.0 98.8 96.5 98.7 958 £4.0
Ours/DINOV2 90.4 98.2 97.7 91.8 96.3 98.0 97.7 96.2 95.9+3.0
Ours/CLIP 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 972+ 1.7

Table 2: Cross-model accuracy (Acc) on DRCT-2M. All methods are trained on the SDv1.4 subset.
Results of other methods are taken from DRCT (Chen et al., [ 2024al).

Method SD Variants Turbo Variants  LCM Variants ControlNet Variants DR Variants mAce
) SDXL- SD- SDXL- LCM- LCM- SDvl- SDv2- SDXL- SDvl- SDv2- SDX-L
LDM  SDvi4  SDVLS  SDv2  SDXL  Repnce  Tubo Tubo SDvLS SDXL  Cul  Cul Ccul DR DR DR

CNNSpot (Wang et al.|2020] 99.87  99.91 99.90 9755 6625 86.55 86.15 7242 9826 61.72 9796 8589 8284 60.93 5141 5028 | 81.12+17.6
F3Net (Qian et al.12020] 99.85  99.78 99.79 88.66 5585 87.37 6829 63.66 9739 5498 9798 7239 8199 6542 5039 5027 | 77.13+18.1
CLIP/RN5U (Radtord et al. 12021}  99.00  99.99  99.96 94.61 62.08 91.43 8357 6440 9897 5743 99.74 80.69 82.03 65.83 50.67 5047 | 80.05+ 18.3
GramNet (Liu et al. 12020 99.40  99.01 98.84 9530 62.63 80.68 71.19 6932 9305 57.02 8997 7555 8268 5123 50.01 50.08 |76.62+17.0
De-fake (Sha et al.}2023 92.10  99.53 99.51 89.65 64.02 69.24 92.00 9393 99.13 70.89 5898 6234 66.66 50.12 50.16 50.00 | 75.52+18.4
Conv-B (Liu et al.{ 2022 99.97 100.0 99.97 95.84 6444 8200 80.82 60.75 99.27 6233 99.80 83.40 7328 61.65 51.79 5041 | 79.11 £18.3
UnivFD (O)ha et al.12023] 9830 96.22 9633 93.83 91.01 9391 8638 8592 9044 8899 9041 81.06 89.06 5196 51.03 50.46 | 83.46+17.0
DRCT (Chen et al.||2024a} 94.45 9435 9424 9505 9561 9538 9481 9448 91.66 9554 9386 9348 9354 8434 8320 67.61 91.35 £4.7
Ours/DINOVZ 99.55 99.55 99.55 99.54 9955 9470 9953 99.23 9931 9955 99.54 9955 9939 9948 99.55 9742  99.06 £ 0.1
Ours/CLIP 99.70  99.70  99.69 99.67 99.71 99.40 9948 9940 99.62 99.70 99.68 99.64 99.51 99.61 99.67 97.80 99.50 £0.1

specified, in our proposed Panoptic Patch Learning (PPL), image reconstruction is performed with
SDv1.4 inpainting at a generation strength of s = 0.25. The inpainting pipeline uses step = 50 and
guidance scale 7.5. During training, images are randomly cropped to 224 x 224, while at test time
they are center-cropped to the same resolution. For the randomized patch reconstruction module, the
reconstruction patch size is set to 14 x 14, consistent with the patch size of ViT. Each fake image in
the original training set has a probability of p,,, = 0.9 of being replaced with a RPR image, where
rrpr = 50% of patches from a real image are randomly selected to do diffusion reconstruction. For
patch-wise contrastive learning, the weight of the contrastive loss is set to A = 0.3, with a margin
parameter o = 1.0.

Peer methods. The compared methods involve ResNet-50 (He et al., 2016), Conv-B (Liu et al.,
2022), Swin-T (Liu et al.l 2021), CNNSpot (Wang et al., [2020), F3Net (L1 et al.,[2021)), SAFE (Qian
et al.,|2020), UnivFD (Ojha et al., [2023)), FatFormer (Liu et al.,[2024), DRCT (Chen et al., |2024a),
C2P-CLIP (Tan et al.l |20244a), Effort (Yan et al., [2024D).

5.1 COMPARISON WITH OTHER METHODS

Comparison on GenImage. Tab.|I|compares PPL with other methods on Genlmage. We observe:
(1) PPL consistently achieves higher accuracy across different backbones. (2) The standard deviation
of PPL’s accuracy is smaller, indicating improved stability in detecting diverse generative models.

Comparison on DRCT-2M. Tab. 2|reports results on DRCT-2M. The results indicate: (1) PPL
consistently achieves SoTA with the lowest std, demonstrating both effectiveness and stability. (2)
While DRCT shows relatively poor performance on SDXL-related subsets, PPL maintains a more
balanced performance across diverse subsets, underscoring its robustness.
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Table 3: Cross-dataset and cross-model accuracy (mAcc) on AIGCDetectionBenchmark. PPL is
trained on the Genlmage SDv1.4 subset due to its reliance on diffusion-based reconstruction. Baseline
methods are trained on ProGAN data provided by AIGCDetectionBenchmark, which is more in-
distribution with the test set, thereby giving them an inherent advantage under this setting. Baseline
results are taken from AIDE (Yan et al., [2024a).

Method ProGAN  StyleGAN  BigGAN CycleGAN StrGAN  GauGAN  StyleGAN2 WFR  ADM  Glide Midjourney SDvl.4 SDvL5 VQDM Wukong DALLE2 |  mAcc
CNNSpot 10000 90.17 7117 87.62 94.60 81.42 8691 9165 6039 5807  51.39 50.57 5053 5646 5103 5045 | 70.78 % 18.30
FreDect 9936 78.02 8197 7877 94.62 80.57 6619 5075 6342 5413 4587 3879 3921 7780 4030 3470 | 64.03+20.41
Fusing 10000 8520 77.40 87.00 97.00 77.00 8330 66.80 49.00 5720 5220 5100 5140 5510 5170 5280 | 68.38417.46
LNP 99.67 91.75 71.75 84.10 99.92 75.39 9464 7085 8473 80.52 6555 8555 8567 7446 8206 8875 | 83.84+9.46
LGrad 99.83 91.08 85.62 86.94 99.27 78.46 8532 5570 67.15 66.11 6535 63.02  63.67 7299 5955 6545 | 7534+138
UnivFD 99.81 84.93 95.08 98.33 95.75 99.47 7496 8690 66.87 6246  56.13 63.66 6349 8531 7093 5075 | 7843+ 16.19
DIRE-G 95.19 83.03 70.12 74.19 95.47 67.79 7531 5805 7578 7175 5801 4974 4983 53.68 5446 6648 | 68.68+ 14.00
DIRE-D 52.75 5131 49.70 49.58 46.72 51.23 5172 5330 9825 9242 8945 9124 9163 9190 9090 9245 | 71.53+20.86
PatchCraft 10000 9277 95.80 70.17 99.97 71.58 89.55 8580 8217 8379  90.12 9538 9530 8891 9107 9660 | 8931 +8.61
AIDE 99.99 99.64 8395 98.48 99.91 7325 9800 9420 9343 9509  77.20 9301 9285 9516 9355 9660 | 9277 +7.66
NPR 99.79 97.70 84.35 96.10 99.35 82.50 9838 6580 69.60 7836  77.85 78.63 7889  78.13  76.11 64.90 | 8291+ 11.54
Ours/DINOVZ  96.94 9427 94.73 89.44 89.99 93.99 89.44 9500 O1.02 97.84  85.00 9943 99.03  99.07 9926 9605 9441 £4.20
Ours/CLIP 89.12 89.94 83.57 97.16 97.12 75.29 89.17 9520 94.67 9605 9478 9849  98.19 9853  98.61 97.90 9336+ 631

Table 4: Cross-dataset and cross-model accuracy (mAcc) on the UniversalFakeDetect. PPL is trained
on the SDv1.4 subset of Genlmage, while other methods are trained on GAN. Baseline results are
taken from C2P-CLIP (Tan et al.| [2024a)).

GAN LDM GLIDE

Methods Ref Pro-  Cycle- Big- Style- Gau-  Sar  OUded “5007 200 100 100 50 100 PALLE mAce
GAN GAN GAN GAN GAN GAN steps  w/cfg  steps 27 27 10
“CNNSpot  CVPR2020 9999 8520 7020 8570 7895 OL70 6007 5403 5496 5414 6078 6380 6566 5558 70051490

Patchfor ECCV2020 7503 6897 6847 79.16 6423 6394 6741 7650 7610 7577 7481 7328 68.52 6791 7144 +473
Co-occurence  Elect. Imag. 9770 63.15 5375 9250 5110 5470 6050 7070 70.55 71.00 7025 69.60 6990 67.55  68.78 + 12.68
Freq-spec WIFS2019 4990 9990 50.50 4990 5030 9970 5090 5040 5040 5030 5170 5140 5040 5000 57.55+17.25
F3Net ECCV2020 9938 7638 6533 9256 58.10 10000 6920 68.15 7535 68.80 8165 8325 83.05 6630 77.68 + 12.47
UnivFD CVPR2023 10000 9850 9450 8200 9950 97.00 7003 9419 7376 9436 7907 79.85 78.14 8678  87.6949.97
LGrad CVPR2023 99.84 8539 8288 9483 7245 99.62 7750 9420 9585 9480 8740 9070 8955 8835  89.5347.70
FreqNet AAAI024 9790 9584 9045 97.55 9024 9341 8670 8455 9958 6556 8569 9740 8815 5906  88.01 % 11.56
NPR CVPR2024 9984 9500 87.55 9623 8657 9975 8455 97.65 98.00 9820 9625 O7.15 9735 87.15 94374519
FaFormer ~ CVPR2024 9989 9932 9950 97.15 9941 9975 7600 98.60 9490 98.65 9435 9465 9420 9875  96.08 & 5.95
C2P-CLIP  AAA2S 9998 9731 99.12 9644 9917 99.60 6910 9925 9725 9930 9525 9525 9610 98.55  95.83 & 7.57
Ours/DINOV2 9694 8944 0473 9427 9399 8999 9230 99.40 9940 9940 0835 08.60 9850 9940 9605 £ 3.58
Ours/CLIP 89.12  97.16 83.57 89.94 7529 97.12 9455 98.80 98.80 98.80 9690 9740 97.65 98.80  93.85 & 6.78

Table 5: Cross-dataset accuracy (Acc) on the in-the-wild dataset Chameleon. Results of other methods
are directly taken from AIDE (Yan et al.| [2024a). For each training dataset, the first row reports the
overall Acc on the Chameleon test set, while the second row presents Acc separately for fake images
and real images for detailed analysis.

Training Dataset CNNSpot  FreDect Fusing UnivFD DIRE PatchCraft NPR AIDE Ours/CLIP  Ours/DINOv2
SDvi4 60.11 56.86 57.07 55.62 59.71 56.32 58.13 62.60 63.94 66.63
vl
8.86/98.63  1.37/98.57 0.00/99.96 17.65/93.50 11.86/95.67 3.07/96.35  2.43/100.00 20.33/94.38 17.27/99.01 64.65/68.12
60.89 57.22 57.09 60.42 57.83 55.70 57.81 65.77 69.33 72.07

All GenImage
9.86/99.25 0.89/99.55 0.02/99.98 85.52/41.56  2.09/99.73  1.39/96.52  1.68/100.00 26.80/95.06 38.93/92.18  49.68/88.99

Comparison on AIGCDetectBenchmark and UniversalFakeDetect. Tab.[3and Tab. 4] present
results on AIGCDetectBenchmark (Zhong et al., 2024} and UniversalFakeDetect (Ojha et al., [ 2023),
respectively. The results of baseline methods are taken from (Yan et al., 2024a)) and (Tan et al.,
2024a). We observe that PPL, when trained solely on diffusion-generated data, generalizes effectively
to detecting GAN-generated images—even surpassing baseline methods trained directly on GAN
data—highlighting PPL’s strong generalization capability.

Comparison on the in-the-wild dataset Chameleon. Tab. [5] reports results on Chameleon, a
challenging dataset comprising diverse images collected from online websites. We observe that most
existing methods only marginally exceed the accuracy of random guessing (50%). In contrast, PPL
achieves 70% accuracy on Chameleon, demonstrating strong generalization on real-world data.

5.2 ROBUSTNESS STUDIES

We conduct robustness experiments on Genlmage to evaluate the reliability of our method under
common image corruptions. As shown in Fig.[6] both CLIP and DINOv2 backbones sustain high
accuracy even under severe JPEG compression and strong Gaussian blur, demonstrating the robustness
of our approach.

5.3 ABLATION STUDY

Ablation on the hyperparameters. Fig.[/|reports the influence of key hyperparameters in PPL.
The results suggest four main observations: (1) PPL achieves peak accuracy at A = 0.3. (2) PPL is
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Figure 6: Robustness to image corruptions on Genlmage Dataset. Performance is evaluated under
JPEG compression (quality factor Q € {100, 90, 80, 70, 60}), Gaussian blur (standard deviation
o € {0.0,1.0,2.0,3.0}), and resizing (scaling factor S € {0.5,0.75, 1.0, 1.25,1.5}).
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relatively robust to p,.,., the probability of replacing fake images with RPR images during training.
(3) PPL is sensitive to the patch reconstruction ratio 7., where accuracy degrades at excessively
high ratios, with the best performance obtained around r,,, = 50%. (4) Smaller reconstruction
strength s not only improves accuracy but also reduces computational cost, making it preferable in
practice.

Ablation on the impact of each module. Fig.[§ ~ *° _ s
highlights the contributions of Randomized Patch 975 - /o :
Reconstruction (RPR) and Patch-wise Contrastive 95.0 m—with

Learning (PCL). We compare two strategies for
injecting synthetic artifacts into real images: (1) 000 901
diffusion-based reconstruction (blue), and (2) ran- o

dom patch replacement from synthetic images (red).

The results show that reconstruction serves as a 80

more effective mechanism for introducing synthetic 825

cues to guide the model. While either RPR or 80.0
PCL alone enhances performance, their combination

yields markedly stronger improvements. Additional ~ Figure 8: Ablation study on each module.
ablation studies are provided in the Appendix due to space constraints.

92.6
92.5

Accuracy

+LoRA +RPR +PCL +RPR+PCL

6 CONCLUSION

Our work is based on the nature of the AIGI detection problem, which can be concluded as “All
Patches Matter, More Patches Better.” However, our observations indicate that existing detectors
are unable to fully take advantage of all patches in an Al-generated image. To address this issue,
we propose a randomized patch reconstruction augmentation combined with patch-wise contrastive
learning strategy. This approach effectively prevents the model from becoming a lazy learner and
enhances the utilization of every patch. We achieve state-of-the-art performance on several well-
known academic datasets across various benchmark datasets. The outstanding performance achieved
in both settings supports our findings and proves the efficacy of the proposed learning framework.
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This appendix provides supplementary details and additional analyses. Section [A] describes the
implementation setup; Section [B|reports more ablation studies; and Section [C| presents a comparative
TDE analysis with both statistical and visual demonstrations.

A IMPLEMENTATION DETAILS

Implementation of RPR. In Randomized Patch Reconstruction (RPR), diffusion-reconstructed
real images are replaced with their original counterparts on a patch-wise basis. For consistency,
we use Stable Diffusion v1 (SDv1) as the reconstruction model and reconstruct real images in the
training subset of SDv1.4 from both Genlmage and DRCT. The reconstruction is performed with
the inpainting pipeline (50 denoising steps, guidance scale 7.5) using an empty prompt, a zero-filled
mask of the same size as the input image, and the original image as inputs.

Implementation of PCL. Patch-wise Contrastive Learning (PCL) introduces moderate computa-
tional overhead. Training a LoRA model with only binary cross-entropy (BCE) loss on CLIP-Large
requires 16 GB of GPU memory, while incorporating the margin-based contrastive loss increases
memory usage to 19 GB. Similarly, training one epoch on Genlmage with an NVIDIA V100 GPU
increases the runtime from 3 to 4 hours.

B ADDITIONAL ABLATION STUDIES

We investigate the impact of different contrastive losses applied to embedded patch tokens. Two widely
used losses are considered: InfoNCE and the margin-based contrastive loss. InfoNCE maximizes
similarity between positive pairs while minimizing it for negative pairs, typically formulated as:

exp(q - ky/T)

Ly=—
! SN exp(q - ki/7)

where ¢ and k4 denote the embeddings of the sample and its positive counterpart, and 7 is a
temperature parameter. InfoNCE requires computing similarities between each sample and all
negative samples, resulting in a computational complexity that grows quadratically with batch size.

In contrast, the margin-based contrastive loss, constrains the Euclidean distance between sample pairs
by pulling positive pairs closer and pushing negative pairs apart with a margin «:

Lcontrustive = Z [Y . d12_7 + (1 - Y) ' max((), a— dfj)]
i,4: %]

where d;; = |[Emb,,, — Emby,||2 is the Euclidean distance between embedded patch tokens, and Y’
is an indicator function that equals 1 if the pair shares the same label and 0 otherwise. This loss only
penalizes negative pairs whose distance is less than the margin, thus avoiding computations over all
negative pairs and reducing the overall computational cost. The d;; could also use the cosine distance,
which is also compared in our experiments.

Impact of loss function. Tab.[f]illustrates the effectiveness of these loss functions. Unless otherwise
specified, all experiments reported in the appendix are conducted on the Genlmage dataset, and
performance is measured using mean accuracy (mAcc).

Impact of randomized patch reconstruction vs. fixed position reconstruction Our randomized
patch reconstruction method employs a random selection process for image reconstruction, allowing
fake patches to appear in different regions across the entire image. Alternatively, replacing patches at
fixed positions also yields images composed of both real and synthetic elements. Tab. [/|illustrates the
effectiveness of randomized patch reconstruction compared to fixed-position reconstruction, both of
which leverage patch-wise contrastive learning.
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Table 6: The impact of contrastive loss choice.

Loss Midjourney SDv1.4 SDvl.5 ADM GLIDE Wukong VQDM BigGAN \ mAcc
Infonce/tau=0.5 93.1 99.4 99.5 89.8 96.0 99.5 99.4 89.6 95.8
Margin/cosine 92.8 99.7 99.5 82.3 91.5 99.7 91.5 85.6 92.8
Margin/euclidean 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2

Table 7: The impact of random patch replacement vs. fixed position replacement.

Position Midjourney SDv1.4 SDvl.5 ADM GLIDE Wukong VQDM BigGAN ‘ mAcc
Upper Half 87.1 99.7 99.6 83.9 94.5 99.7 99.2 96.0 95.0
Lower Half 87.5 99.7 99.6 81.7 93.4 99.7 99.1 94.6 94.4
Left Half 87.7 99.8 99.5 84.4 93.8 99.7 99.0 90.6 94.3
Right Half 81.6 99.8 99.7 74.8 79.6 99.8 98.7 86.2 90.0
Random 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2
Table 8: The impact of patch size of random patch replacement.
Patch Size Midjourney SDvl.4 SDvl.5 ADM GLIDE Wukong VQDM BigGAN | mAcc
112 99.6 99.3 923 92.7 99.5 95.8 99.5 94.3 96.6
56 99.4 99.2 93.8 90.8 99.4 95.8 99.1 97.2 96.8
28 98.7 98.3 95.7 954 98.8 97.5 98.5 98.1 97.6
14 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2
Table 9: The impact of random patch replacement vs. random patch dropout.
Dropout Rate  Midjourney SDvl.4 SDvl.5 ADM GLIDE Wukong VQDM BigGAN | mAcc
0.10 71.3 99.9 99.8 67.9 82.7 99.8 97.3 77.0 88.5
0.15 94.3 98.7 98.6 87.9 90.4 98.7 98.5 90.9 942
0.20 77.0 99.9 99.8 69.2 72.0 99.8 98.7 87.7 89.1
0.25 77.2 99.9 99.8 71.1 74.7 99.8 98.6 89.3 90.2
Replacement 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2

Impact of patch size of randomized patch reconstruction Our randomized patch reconstruction
method reconstructs real images into fake counterparts where the patch size may influence perfor-
mance. with patch size potentially influencing performance. Using patches of size 14 x 14 is intuitive,
as it aligns with the token size used in Vision Transformers (ViTs). Tab. [§|illustrates that the training
process is not sensitive to reconstruction patch size, and smaller patch sizes are preferred.

Impact of randomized patch reconstruction vs. random patch dropout Our randomized patch
reconstruction method involves substituting fake image patches with their real counterparts, thereby
compelling the model to exploit more artifacts from the remaining patches. An alternative approach
shown in Fig.[9]is random patch dropout, in which certain patches are removed, resulting in images
with fewer patches. Tab. [0]illustrates the effectiveness of Randomized Patch Reconstruction, by
comparing patch reconstruction with patch dropout at various dropout rates, with both methods
employing patch-wise contrastive learning. The results indicate that, with an appropriate dropout
ratio, patch dropout also achieves favorable performance, supporting our hypothesis that models tend
to over-rely on a subset of patches. Dropout thus serves as a remedy for this issue. However, patch
dropout underperforms patch reconstruction, possibly because patch reconstruction preserves the
overall appearance and input domain of the image (i.e., a complete image rather than a masked one),
thereby increasing the task’s difficulty.

C MORE TDE COMPARATIVE ANALYSIS

TDE distribution of different subsets of GenImage To better analyze the models’ ability to
leverage all patches from an image, we use TDE to count the contribution of patch,; ), which can be
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é) InpUt Image | b) Image with 6) InpUt Image
Random Mask with RPR

Figure 9: Visual comparison between random patch dropout (masking) and reconstruction. It is
evident that, by reconstruction, the overall visual appearance remains unchanged.
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Figure 10: TDE distribution on different generators of ours and UnivFD.

defined as the difference in logits at the (i, j) position of an image before and after being masked.
Fig. [I0]illustrates the TDE distribution of UnivFD and our method. For better statistical analysis, we
normalize the TDE values to a range [0, 1] using the exponential function e?PZ¢.5) =TDEmas  This
normalization facilitates the measurement of differences between less dominant patches and the most
dominant patches in the images. The figure demonstrates that a greater number of patches from our
method are more uniform.

Visual Showcase of TDE distribution of different subsets on Genlmage To better showcase
our model’s better ability to leverage all patches from an image, we present a visual analysis of
TDE across various subsets of the Genlmage dataset. The Genlmage dataset is divided into multiple
subsets, each representing distinct image generation methods. These subsets include GAN-based
models such as BigGAN, and diffusion-based models, including Stable Diffusion, VQDM, and ADM.
Due to space limitations in the main text, we showcased limited images; here, we present most
subset models of GenImage: the diffusion-based Stable Diffusion v1.4 (Fig.[IT)), the closed-source
Midjourney (Fig.[I2)), and the GAN-based BigGAN (Fig.[I3). The rest diffusion-based model are
from Fig. [T4]to Fig.[I6]We use CLIP as backbone for our visualization.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we only use the large language model to help polish our text. The large language model
has no role in the research conception.
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UnivFD

Figure 12: Showcase of TDE map on Midjourney. Images are sourced from Genlmage (Zhu et al.,
2024)).

Flgure 13: Showcase of TDE map on BigGAN. Images are sourced from GenImage (Zhu et al. hu et al.
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Figure 16: Showcase of TDE map on VQDM. Images are sourced from GenImage (Zhu et al., [2024).
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