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ABSTRACT

The rapid proliferation of AI-generated images (AIGIs) highlights the pressing
demand for generalizable detection methods. In this paper, we establish two key
principles for AIGI detection task through systematic analysis: (1) All Patches
Matter, since the uniform generation process ensures that each patch inherently
contains synthetic artifacts, making every patch a valuable detection source; and
(2) More Patches Better, as leveraging distributed artifacts across more patches
improves robustness by reducing over-reliance on specific regions. However, coun-
terfactual analysis uncovers a critical weakness: naively trained detectors display
Few-Patch Bias, relying disproportionately on minority patches. We identify
this bias to Lazy Learner effect, where detectors to limited patch artifacts while
neglecting distributed cues. To address this, we propose Panoptic Patch Learning
framework, which integrates: (1) Randomized Patch Reconstruction, injecting
synthetic cues into randomly selected patches to diversify artifact recognition;
(2) Patch-wise Contrastive Learning, enforcing consistent discriminative capa-
bility across patches to ensure their uniform utilization. Extensive experiments
demonstrate that PPL enhances generalization and robustness across datasets.

1 INTRODUCTION

The rapid evolution of generative AI models has precipitated an exponential growth of AI-generated
images (AIGIs) in digital ecosystems (Goodfellow et al., 2014; Karras et al., 2018; 2019; Ho et al.,
2020; Rombach et al., 2022; Zhang et al., 2023; Ramesh et al., 2021; Yan et al., 2025; 2024c). This
proliferation raises concerns regarding information security and content authenticity, highlighting the
need for AIGI detection to distinguish synthetic images from authentic ones. Unlike conventional
classification tasks, AIGI detection operates as a “cat-and-mouse game”, presenting unique challenges
due to: (1) continuous emergence of new generative architectures, and (2) frequent updates to existing
generative models. Consequently, exhaustive training on all synthetic data becomes impractical (Ojha
et al., 2023), thus necessitating detectors with strong generalizability.

Despite these challenges, AIGIs exhibit a distinctive property absent in traditional classification:
Universal Artifact Distribution. In the context of AIGIs, discriminative features are not confined
to object-centric regions; instead, synthetic images contain artifacts uniformly across all patches,
a consequence of the consistent generation process of modern generative models.1 This indicates
that every patch contains synthetic traces, forming our first principle for AIGI detection: All Patches
Matter. This principle is supported by two lines of evidence: (1) visual analytics (Tan et al., 2024c;
Cozzolino et al., 2024) confirm pixel-level discriminative patterns, revealing artifacts at patch gran-
ularity; and (2) recent patch-wise detectors (Chen et al., 2024b; Zhong et al., 2024) demonstrate
comparable performance to full-image approaches, validating the discriminative capability of indi-
vidual patches. Although artifacts vary across patches, detectors that capture diverse artifacts across
distributed regions reduce over-reliance on specific patches. Capturing these distributed artifacts

1This work adheres to the mainstream AIGI detection setting (Chen et al., 2024a; Ojha et al., 2023; Tan et al.,
2024a; Liu et al., 2024; He et al., 2024; Zhu et al., 2024; Tan et al., 2024c) where the entire image is generated
by AI models.
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Input Naively Trained PPL (Ours)

(a) Visualization of attention maps. (b) Comparison on different datasets.

Figure 1: (a) PPL produces a more uniform attention distribution across patches, indicating its
effectiveness in capturing artifacts comprehensively. (b) PPL outperforms peer methods on GenImage,
DRCT-2M, AIGCDetectionBenchmark, and the in-the-wild Chameleon. More details are in Section 5.

enhances cross-generator generalizability by mitigating detectors’ blind spots. This leads to our
second principle: More Patches Better.

However, counterfactual analysis of existing AIGI detectors (Ojha et al., 2023; Liu et al., 2024;
Tan et al., 2024a; He et al., 2024; Chen et al., 2024a) reveals an unfavorable tendency—Few-Patch
Bias—supported by two empirical observations and a quantitative analysis. Empirically, we observe:
(1) detectors’ attention maps disproportionately focus on very limited patches; (2) detectors exhibit
severe patch-specific fragility, where masking a single patch reduces accuracy by 18.7% ± 4.1%
on average. Quantitatively, using causal inference tool TDE (VanderWeele, 2013) to quantify each
patch’s impact—measured as the classification logit difference with and without that patch—we
find that naively trained detectors produce skewed distributions: a few patches show high TDE
values, while most patches exhibit significantly lower contributions. This suggests that most patches
remain underutilized, despite also containing generative artifacts. Moreover, detection methods with
more uniform TDE distributions exhibit stronger generalizability; for instance, DRCT, with more
high-TDE patches, performs substantially better than UnivFD. We attribute such Few Patch Bias
to the propensity of detectors as Lazy Learner (Hermann et al., 2024; Zhang et al., 2021; Wang
et al., 2022; Zhao et al., 2024; Ghosh et al., 2023; Tang et al., 2023; Sun et al., 2024; Yuan et al.,
2024; Yan et al., 2024b). Specifically, AIGI detectors follow a curriculum-like learning pattern: once
easy-to-learn artifacts in certain patches minimize loss, the presence of these patches discourages
exploration of broader regions.

To address this challenge, we propose the principle: “All Patches Matter, More Patches Better”, which
prevents detectors from shortcutting to a few regions and instead encourages robust feature learning
across the entire image. To operationalize this principle, we introduce the Panoptic Patch Learning
(PPL) framework, which consists of two components: (1) Randomized Patch Reconstruction, which
manually injects synthetic artifacts into randomly selected patches of real images via diffusion
reconstruction, forcing the model to discriminate based on these chosen regions and discouraging over-
reliance on specific patches; and (2) Patch-wise Contrastive Learning, which aligns the representations
of real and synthetic patches, thereby enforcing consistent discriminative capability across all regions
of the image. Fig. 1 illustrates the effectiveness of PPL. Our main contributions are threefold:

1. We formally propose the principle “All Patches Matter, More Patches Better”, showing that
exploiting distributed artifacts enhances AIGI detection.

2. We provide a detailed patch-wise analysis using TDE, revealing that Few-Patch Bias is
pervasive in existing detectors.
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3. Building on this principle, we design Panoptic Patch Learning and validate its effectiveness
through extensive experiments.

2 RELATED WORK

Existing AIGI detection methods can be broadly categorized into two types: local and global
detection (Tan et al., 2024a). We summarize both lines of research below.

Local AIGI detection methods. Local approaches exploit localized information to distinguish
AI-generated images from real ones, assuming that low-level feature differences exist between the
two. These methods can be divided into patch-wise and pixel-wise detectors.

Patch-wise methods include: SSP (Chen et al., 2024b) achieves notable performance using only a
single patch. Patchcraft (Zhong et al., 2024) separates processing of the simplest and most complex
patches by entropy-based selection. (Zheng et al., 2024) employ a patch-based CNN leveraging
all patches to avoid selective sampling and aggregate patch features. TextureCrop (Konstantinidou
et al., 2025) partitions an image via sliding windows and selects high-frequency texture-rich regions.
Despite these advances, patch-wise detectors often over-rely on a limited subset of patches, leading to
information under-utilization. Pixel-wise methods include: NPR (Tan et al., 2024c) detects AIGIs by
analyzing differences in neighboring pixel relationships. FreqNet (Tan et al., 2024b) and SAFE (Li
et al., 2024) exploit high-frequency signals to capture localized patterns. However, pixel-wise
methods are sensitive to small perturbations in pixel relationships, limiting their robustness.

Global AIGI detection methods. Global approaches leverage holistic image characteristics to
distinguish AIGIs from real images, aiming to capture inconsistencies that may not be observable at
the local level. CNNSpot (Wang et al., 2020) applies a CNN directly for detection, achieving strong in-
distribution performance but suffering from poor cross-generator generalization. UnivFD (Ojha et al.,
2023) improves robustness by adopting a CLIP visual encoder as a feature extractor. FatFormer (Liu
et al., 2024) further adapts CLIP by introducing a frequency adapter. C2P-CLIP (Tan et al., 2024a)
fine-tunes CLIP with carefully designed image–text pairs to embed the notions of “real” and “fake.”
DRCT (Chen et al., 2024a) strengthens UnivFD with a contrastive loss on hard cases. Nevertheless,
global methods often overlook fine-grained forensic artifacts, which constrains their effectiveness.

3 MOTIVATION

3.1 ALL PATCHES MATTER, MORE PATCHES BETTER

The principle of All Patches Matter is supported by three key findings.

1. Theory: Because every patch of a synthetic image is itself generated, each inherently
contains artifacts. Localized detection methods (Chen et al., 2024b; Zhong et al., 2024)
demonstrate that cues within small regions can effectively discriminate real from synthetic
content, underscoring that every patch carries discriminative signals.

2. Visualization: Fig. 2 illustrates distinct artifact patterns across patches, showing that each
synthetic patch exhibits identifiable features distinguishing it from real patches. Moreover,
the variability of these cues across patches highlights the considerable diversity of artifacts
present in synthetic images.

3. Experiments: We further validated this principle by evaluating detectors on single randomly
selected patches. By replicating one patch across the image to isolate its features, detectors
still achieved 90% accuracy on the SDv1.4 subset of GenImage. This confirms that even a
single patch contains sufficient information for reliable discrimination.

Together, these findings demonstrate that artifacts in synthetic images are both pervasive and diverse.
Detectors can exploit these patch-level cues, motivating the principle of More Patches Better: lever-
aging more patches enhances robustness and generalization by capturing complementary artifact
patterns. However, our observations reveal that existing detectors donot align with this principle.

3
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Figure 2: Visual evidence of patch-wise artifacts. We observe diverse traces—such as broken lines,
unnatural noise, and boundary detail loss—showing that multiple regions of synthetic images contain
cues. This observation underscores the importance of leveraging more patches to enhance recognition
of diverse artifacts. Images are sourced from MSCOCO (Lin et al., 2014).

(a) Visualization of Attention Maps.
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(b) Impact of Patch Removal on Recall Rate.

Figure 3: (a) Attention maps reveal the few-patch bias of naively trained detectors, where attention
concentrates on a small number of dominant patches, reflecting over-reliance on limited regions. (b)
Recall degradation occurs when single patches of varying sizes are occluded, showing that detectors
are overly sensitive to corruption in specific regions and suffer notable performance drops.

3.2 FEW-PATCH BIAS

Observations. Our empirical observations indicate that existing detectors often overly rely on a
limited number of patches. Our experiments reveal that existing detectors tend to over-rely on a limited
set of patches. Fig. 3(a) shows attention maps from naively trained ViTs, where attention weights
concentrate on only a few regions. This phenomenon persists even when changing the backbone
or applying LoRA, suggesting a model-agnostic bias. To further validate this observation, we
systematically mask patches of varying sizes and measured the corresponding recall rate degradation.
Fig. 3(b) illustrates the performance of UnivFD under patch occlusion. Masking a single patch leads
to a substantial drop in accuracy, and the impact varies across different patches, confirming that
detectors are disproportionately sensitive to specific regions.

Quantitative analysis. Building on the above observations, we employ the Total Direct Effect
(TDE) to quantify the impact of each patch. Conceptually, if both X → Y and Z → Y , then the
outcome Y results from the combined influence of X and Z. The TDE measures the contribution of
X by comparing outcomes with and without its effect while keeping other factors fixed.

For an image, the TDE of the patch at row i, column j is defined as:

TDE := δI − δI−(i,j), δ := logitsynth − logitreal, (1)

4
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Figure 4: TDE heatmap of existing methods on generated images selected from the DRCT-2M
dataset (Chen et al., 2024a). A broader and more uniform highlighted region indicates a greater
number of patches contributing to determining a fake image.

where I denotes the original image and I − (i, j) the image with the (i, j)-th patch masked (imple-
mented by setting the patch values to zero). By computing the TDE for each patch, we quantify its
relative contribution to the synthetic classification decision.

Fig. 4 presents TDE heatmaps. From top to bottom, the number of active patches increases and
the TDE distributions become more uniform. Stronger detectors consistently activate a broader set
of patches. These visualizations highlight the prevailing bias toward a few dominant patches with
disproportionately high TDE, motivating us to mitigate few-patch reliance.

4 METHODOLOGY

Panoptic Patch Learning is a comprehensive framework based on the principles of “All Patches Matter”
and “More Patches Better,” achieved through innovative data and learning strategies, as illustrated
in Fig. 5. Specifically, the data strategy, Randomized Patch Reconstruction (RPR), discourages the
model from over-relying on any specific patches, thereby enhancing its recognition capability for
various artifacts across more patches. Following this, the learning strategy, Patch-wise Contrastive
Learning (PCL), ensures that all patches, both frequently attended and underutilized, are brought
closer in the feature space, thereby uniformizing the impact of all patches.

Randomized Patch Reconstruction encourages “More Patches Better”. The RPR process is
carried out by performing diffusion reconstruction on randomly selected patches with a specified
proportion, injecting synthetic cues into specific regions of the image while maintaining the overall
semantics of the image (as the reconstructed image closely resembles the original image). In
practice, RPR is implemented by first applying diffusion reconstruction to the entire image to obtain
a reconstructed version. Then, the selected patches in the original image are replaced with their
reconstructed counterparts, resulting in a synthetic image where only specific regions contain synthetic
artifacts. Here, we emphasize that we inject synthetic features via diffusion reconstruction rather than
stitching a synthetic patch, in order to preserve the global semantics and integration of the produced
image, and to prevent the model from overfitting to images with disconnected semantics. We use
r ∈ [0, 1.0] to denote the ratio of reconstructed patches relative to the whole image.
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Figure 5: The Panoptic Patch Learning (PPL) framework embodies the principles of All Patches
Matter and More Patches Better through two key components: Randomized Patch Reconstruction
(RPR) and Patch-wise Contrastive Learning (PCL). During training, the model may excessively rely
on dominant patches, neglecting others. RPR mitigates this by randomly replacing dominant patches
with real ones, encouraging the model to detect artifacts in non-dominant patches and thereby
expanding the coverage of dominant regions. PCL further promotes balanced patch utilization by
aligning the embeddings of patches with the same labels. Together, RPR and PCL foster comprehen-
sive and uniform exploitation of patches.

Algorithm 1 Patch-wise Contrastive Learning (PCL) Training Procedure
Input:

X – input image tensor after RPR, shape [B,C,H,W ]
labelgt – image-level ground-truth labels, shape [B]
patchgt – patch-level ground-truth labels, shape [B,K]
λ – weighting coefficient for contrastive loss

1: imgembedding , patchembedding ← V iTEncoder(X) ▷ imgembedding: [B, 1, D], patchembedding:
[B,K,D]

2: ypred← Linear(imgembedding) ▷ Image-level class logits, shape [B, 2]
3: Lce ← BCELoss(ypred, labelgt) ▷ Image-level classification loss
4: Lcon← ContrastiveLoss(patchembedding , patchgt) ▷ Patch-level contrastive loss
5: Ltotal ← λ · Lcon + (1− λ) · Lbce

6: Ltotal.backward()

Patch-wise Contrastive Learning emphasizes “All Patches Matter”. PCL operationalizes the
principle of “All Patches Matter” by aligning the embedding vectors of different patches, bringing
patches with identical labels closer together while distancing those with different labels. We employ
contrastive learning to cluster synthetic patches more closely within each batch, while maintaining a
margin that separates synthetic and real patches. This approach ensures that if an image contains any
dominant patch with easily learnable artifacts, the model improves its performance on the remaining
patches, thus promoting the utilization of all patches. Specifically, for each batch, we utilize a
margin-based contrastive loss (Hadsell et al., 2006):

Lcon =
∑

i,j: i̸=j

[
Y · d2 + (1− Y ) ·max

(
0, α− d2

)]
, (2)

where i, j represent the indices of patch tokens within a batch. d measures the Euclidean distance
between the patch embeddings. α defines a minimum distance threshold between negative sample
pairs, thereby enhancing the model’s ability to distinguish between similar and dissimilar pairs. Y
indicates whether two patches share identical labels, thus pulling positive patch pairs closer and
pushing negative patch pairs further apart. The overall loss function is a weighted combination of the
cross-entropy loss and the patch-wise contrastive loss:

Ltotal = λLcon + (1− λ)Lce, (3)
The practical implementation of PCL is shown in Alg. 1.

5 EXPERIMENTS

Implementation details. We adopt CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2023)
two vision foundation model as backbones , and fine-tune them using LoRA. Unless otherwise

6
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Table 1: Cross-model accuracy (Acc) on GenImage. All methods are trained on the SDv1.4 subset.
Results are taken from C2P-CLIP (Tan et al., 2024a), except SAFE and Effort, which are reported in
their original papers. For Breaking (Zheng et al., 2024), we re-implement the method because no
GenImage results or checkpoints are publicly available. Our results are bolded when they achieve the
highest accuracy among all methods.

Method Ref Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN mAcc

ResNet-50 (He et al., 2016) CVPR2016 54.9 99.9 99.7 53.5 61.9 98.2 56.6 52.0 72.1 ± 22.6
DeiT-S (Touvron et al., 2021) ICML2021 55.6 99.9 99.8 49.8 58.1 98.9 56.9 53.5 71.6 ± 23.2
Swin-T (Liu et al., 2021) ICCV2021 62.1 99.9 99.8 49.8 67.6 99.1 62.3 57.6 74.8 ± 21.1
CNNSpot (Wang et al., 2020) CVPR2020 52.8 96.3 95.9 50.1 39.8 78.6 53.4 46.8 64.2 ± 22.6
Spec (Zhang et al., 2019) WIFS2019 52.0 99.4 99.2 49.7 49.8 94.8 55.6 49.8 68.8 ± 24.1
F3Net (Qian et al., 2020) ECCV2020 50.1 99.9 99.9 49.9 50.0 99.9 49.9 49.9 68.7 ± 25.8
GramNet (Liu et al., 2020) CVPR2020 54.2 99.2 99.1 50.3 54.6 98.9 50.8 51.7 69.9 ± 24.2
UnivFD (Ojha et al., 2023) CVPR2023 93.9 96.4 96.2 71.9 85.4 94.3 81.6 90.5 88.8 ± 8.6
NPR (Tan et al., 2024c) CVPR2024 81.0 98.2 97.9 76.9 89.8 96.9 84.1 84.2 88.6 ± 8.3
FreqNet (Tan et al., 2024b) AAAI2024 89.6 98.8 98.6 66.8 86.5 97.3 75.8 81.4 86.8 ± 11.6
FatFormer (Liu et al., 2024) CVPR2024 92.7 100.0 99.9 75.9 88.0 99.9 98.8 55.8 88.9 ± 15.7
DRCT (Chen et al., 2024a) ICML2024 91.5 95.0 94.4 79.4 89.1 94.6 90.0 81.6 89.4 ± 5.9
Effort (Yan et al., 2024b) ICML2025 82.4 99.8 99.8 78.7 93.3 97.4 91.7 77.6 91.1 ± 11.8
Breaking (Zheng et al., 2024) NIPS2024 83.9 98.9 93.0 99.1 97.7 85.4 92.7 90.5 92.7 ± 5.8
SAFE (Li et al., 2024) KDD2025 95.3 99.4 99.3 82.1 96.3 98.2 96.3 97.8 95.6 ± 5.6
C2P-CLIP (Tan et al., 2024a) AAAI2025 88.2 90.9 97.9 96.4 99.0 98.8 96.5 98.7 95.8 ± 4.0
Ours/DINOv2 90.4 98.2 97.7 91.8 96.3 98.0 97.7 96.2 95.9 ± 3.0
Ours/CLIP 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2 ± 1.7

Table 2: Cross-model accuracy (Acc) on DRCT-2M. All methods are trained on the SDv1.4 subset.
Results of other methods are taken from DRCT (Chen et al., 2024a).

Method SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants mAcc
LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL-

Refiner
SD-

Turbo
SDXL-
Turbo

LCM-
SDv1.5

LCM-
SDXL

SDv1-
Ctrl

SDv2-
Ctrl

SDXL-
Ctrl

SDv1-
DR

SDv2-
DR

SDX-L
DR

CNNSpot (Wang et al., 2020) 99.87 99.91 99.90 97.55 66.25 86.55 86.15 72.42 98.26 61.72 97.96 85.89 82.84 60.93 51.41 50.28 81.12 ± 17.6
F3Net (Qian et al., 2020) 99.85 99.78 99.79 88.66 55.85 87.37 68.29 63.66 97.39 54.98 97.98 72.39 81.99 65.42 50.39 50.27 77.13 ± 18.1
CLIP/RN50 (Radford et al., 2021) 99.00 99.99 99.96 94.61 62.08 91.43 83.57 64.40 98.97 57.43 99.74 80.69 82.03 65.83 50.67 50.47 80.05 ± 18.3
GramNet (Liu et al., 2020) 99.40 99.01 98.84 95.30 62.63 80.68 71.19 69.32 93.05 57.02 89.97 75.55 82.68 51.23 50.01 50.08 76.62 ± 17.0
De-fake (Sha et al., 2023) 92.10 99.53 99.51 89.65 64.02 69.24 92.00 93.93 99.13 70.89 58.98 62.34 66.66 50.12 50.16 50.00 75.52 ± 18.4
Conv-B (Liu et al., 2022) 99.97 100.0 99.97 95.84 64.44 82.00 80.82 60.75 99.27 62.33 99.80 83.40 73.28 61.65 51.79 50.41 79.11 ± 18.3
UnivFD (Ojha et al., 2023) 98.30 96.22 96.33 93.83 91.01 93.91 86.38 85.92 90.44 88.99 90.41 81.06 89.06 51.96 51.03 50.46 83.46 ± 17.0
DRCT (Chen et al., 2024a) 94.45 94.35 94.24 95.05 95.61 95.38 94.81 94.48 91.66 95.54 93.86 93.48 93.54 84.34 83.20 67.61 91.35 ± 4.7
Ours/DINOv2 99.55 99.55 99.55 99.54 99.55 94.70 99.53 99.23 99.31 99.55 99.54 99.55 99.39 99.48 99.55 97.42 99.06 ± 0.1
Ours/CLIP 99.70 99.70 99.69 99.67 99.71 99.40 99.48 99.40 99.62 99.70 99.68 99.64 99.51 99.61 99.67 97.80 99.50 ± 0.1

specified, in our proposed Panoptic Patch Learning (PPL), image reconstruction is performed with
SDv1.4 inpainting at a generation strength of s = 0.25. The inpainting pipeline uses step = 50 and
guidance scale 7.5. During training, images are randomly cropped to 224 × 224, while at test time
they are center-cropped to the same resolution. For the randomized patch reconstruction module, the
reconstruction patch size is set to 14 × 14, consistent with the patch size of ViT. Each fake image in
the original training set has a probability of prpr = 0.9 of being replaced with a RPR image, where
rrpr = 50% of patches from a real image are randomly selected to do diffusion reconstruction. For
patch-wise contrastive learning, the weight of the contrastive loss is set to λ = 0.3, with a margin
parameter α = 1.0.

Peer methods. The compared methods involve ResNet-50 (He et al., 2016), Conv-B (Liu et al.,
2022), Swin-T (Liu et al., 2021), CNNSpot (Wang et al., 2020), F3Net (Li et al., 2021), SAFE (Qian
et al., 2020), UnivFD (Ojha et al., 2023), FatFormer (Liu et al., 2024), DRCT (Chen et al., 2024a),
C2P-CLIP (Tan et al., 2024a), Effort (Yan et al., 2024b).

5.1 COMPARISON WITH OTHER METHODS

Comparison on GenImage. Tab. 1 compares PPL with other methods on GenImage. We observe:
(1) PPL consistently achieves higher accuracy across different backbones. (2) The standard deviation
of PPL’s accuracy is smaller, indicating improved stability in detecting diverse generative models.

Comparison on DRCT-2M. Tab. 2 reports results on DRCT-2M. The results indicate: (1) PPL
consistently achieves SoTA with the lowest std, demonstrating both effectiveness and stability. (2)
While DRCT shows relatively poor performance on SDXL-related subsets, PPL maintains a more
balanced performance across diverse subsets, underscoring its robustness.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Cross-dataset and cross-model accuracy (mAcc) on AIGCDetectionBenchmark. PPL is
trained on the GenImage SDv1.4 subset due to its reliance on diffusion-based reconstruction. Baseline
methods are trained on ProGAN data provided by AIGCDetectionBenchmark, which is more in-
distribution with the test set, thereby giving them an inherent advantage under this setting. Baseline
results are taken from AIDE (Yan et al., 2024a).

Method ProGAN StyleGAN BigGAN CycleGAN StarGAN GauGAN StyleGAN2 WFR ADM Glide Midjourney SD v1.4 SD v1.5 VQDM Wukong DALLE2 mAcc

CNNSpot 100.00 90.17 71.17 87.62 94.60 81.42 86.91 91.65 60.39 58.07 51.39 50.57 50.53 56.46 51.03 50.45 70.78 ± 18.30
FreDect 99.36 78.02 81.97 78.77 94.62 80.57 66.19 50.75 63.42 54.13 45.87 38.79 39.21 77.80 40.30 34.70 64.03 ± 20.41
Fusing 100.00 85.20 77.40 87.00 97.00 77.00 83.30 66.80 49.00 57.20 52.20 51.00 51.40 55.10 51.70 52.80 68.38 ± 17.46
LNP 99.67 91.75 77.75 84.10 99.92 75.39 94.64 70.85 84.73 80.52 65.55 85.55 85.67 74.46 82.06 88.75 83.84 ± 9.46
LGrad 99.83 91.08 85.62 86.94 99.27 78.46 85.32 55.70 67.15 66.11 65.35 63.02 63.67 72.99 59.55 65.45 75.34 ± 13.8
UnivFD 99.81 84.93 95.08 98.33 95.75 99.47 74.96 86.90 66.87 62.46 56.13 63.66 63.49 85.31 70.93 50.75 78.43 ± 16.19
DIRE-G 95.19 83.03 70.12 74.19 95.47 67.79 75.31 58.05 75.78 71.75 58.01 49.74 49.83 53.68 54.46 66.48 68.68 ± 14.00
DIRE-D 52.75 51.31 49.70 49.58 46.72 51.23 51.72 53.30 98.25 92.42 89.45 91.24 91.63 91.90 90.90 92.45 71.53 ± 20.86
PatchCraft 100.00 92.77 95.80 70.17 99.97 71.58 89.55 85.80 82.17 83.79 90.12 95.38 95.30 88.91 91.07 96.60 89.31 ± 8.61
AIDE 99.99 99.64 83.95 98.48 99.91 73.25 98.00 94.20 93.43 95.09 77.20 93.01 92.85 95.16 93.55 96.60 92.77 ± 7.66
NPR 99.79 97.70 84.35 96.10 99.35 82.50 98.38 65.80 69.69 78.36 77.85 78.63 78.89 78.13 76.11 64.90 82.91 ± 11.54
Ours/DINOv2 96.94 94.27 94.73 89.44 89.99 93.99 89.44 95.00 91.02 97.84 85.00 99.43 99.03 99.17 99.26 96.05 94.41 ± 4.20
Ours/CLIP 89.12 89.94 83.57 97.16 97.12 75.29 89.17 95.20 94.67 96.05 94.78 98.49 98.19 98.53 98.61 97.90 93.36 ± 6.31

Table 4: Cross-dataset and cross-model accuracy (mAcc) on the UniversalFakeDetect. PPL is trained
on the SDv1.4 subset of GenImage, while other methods are trained on GAN. Baseline results are
taken from C2P-CLIP (Tan et al., 2024a).

Methods Ref
GAN

Guided
LDM GLIDE

DALLE mAccPro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN

200
steps

200
w/cfg

100
steps

100
27

50
27

100
10

CNN-Spot CVPR2020 99.99 85.20 70.20 85.70 78.95 91.70 60.07 54.03 54.96 54.14 60.78 63.80 65.66 55.58 70.05 ± 14.90
Patchfor ECCV2020 75.03 68.97 68.47 79.16 64.23 63.94 67.41 76.50 76.10 75.77 74.81 73.28 68.52 67.91 71.44 ± 4.73
Co-occurence Elect. Imag. 97.70 63.15 53.75 92.50 51.10 54.70 60.50 70.70 70.55 71.00 70.25 69.60 69.90 67.55 68.78 ± 12.68
Freq-spec WIFS2019 49.90 99.90 50.50 49.90 50.30 99.70 50.90 50.40 50.40 50.30 51.70 51.40 50.40 50.00 57.55 ± 17.25
F3Net ECCV2020 99.38 76.38 65.33 92.56 58.10 100.00 69.20 68.15 75.35 68.80 81.65 83.25 83.05 66.30 77.68 ± 12.47
UnivFD CVPR2023 100.00 98.50 94.50 82.00 99.50 97.00 70.03 94.19 73.76 94.36 79.07 79.85 78.14 86.78 87.69 ± 9.97
LGrad CVPR2023 99.84 85.39 82.88 94.83 72.45 99.62 77.50 94.20 95.85 94.80 87.40 90.70 89.55 88.35 89.53 ± 7.70
FreqNet AAAI2024 97.90 95.84 90.45 97.55 90.24 93.41 86.70 84.55 99.58 65.56 85.69 97.40 88.15 59.06 88.01 ± 11.56
NPR CVPR2024 99.84 95.00 87.55 96.23 86.57 99.75 84.55 97.65 98.00 98.20 96.25 97.15 97.35 87.15 94.37 ± 5.19
FatFormer CVPR2024 99.89 99.32 99.50 97.15 99.41 99.75 76.00 98.60 94.90 98.65 94.35 94.65 94.20 98.75 96.08 ± 5.95
C2P-CLIP AAAI2025 99.98 97.31 99.12 96.44 99.17 99.60 69.10 99.25 97.25 99.30 95.25 95.25 96.10 98.55 95.83 ± 7.57
Ours/DINOv2 96.94 89.44 94.73 94.27 93.99 89.99 92.30 99.40 99.40 99.40 98.35 98.60 98.50 99.40 96.05 ± 3.58
Ours/CLIP 89.12 97.16 83.57 89.94 75.29 97.12 94.55 98.80 98.80 98.80 96.90 97.40 97.65 98.80 93.85 ± 6.78

Table 5: Cross-dataset accuracy (Acc) on the in-the-wild dataset Chameleon. Results of other methods
are directly taken from AIDE (Yan et al., 2024a). For each training dataset, the first row reports the
overall Acc on the Chameleon test set, while the second row presents Acc separately for fake images
and real images for detailed analysis.

Training Dataset CNNSpot FreDect Fusing UnivFD DIRE PatchCraft NPR AIDE Ours/CLIP Ours/DINOv2

SD v1.4
60.11 56.86 57.07 55.62 59.71 56.32 58.13 62.60 63.94 66.63

8.86/98.63 1.37/98.57 0.00/99.96 17.65/93.50 11.86/95.67 3.07/96.35 2.43/100.00 20.33/94.38 17.27/99.01 64.65/68.12

All GenImage
60.89 57.22 57.09 60.42 57.83 55.70 57.81 65.77 69.33 72.07

9.86/99.25 0.89/99.55 0.02/99.98 85.52/41.56 2.09/99.73 1.39/96.52 1.68/100.00 26.80/95.06 38.93/92.18 49.68/88.99

Comparison on AIGCDetectBenchmark and UniversalFakeDetect. Tab. 3 and Tab. 4 present
results on AIGCDetectBenchmark (Zhong et al., 2024) and UniversalFakeDetect (Ojha et al., 2023),
respectively. The results of baseline methods are taken from (Yan et al., 2024a) and (Tan et al.,
2024a). We observe that PPL, when trained solely on diffusion-generated data, generalizes effectively
to detecting GAN-generated images—even surpassing baseline methods trained directly on GAN
data—highlighting PPL’s strong generalization capability.

Comparison on the in-the-wild dataset Chameleon. Tab. 5 reports results on Chameleon, a
challenging dataset comprising diverse images collected from online websites. We observe that most
existing methods only marginally exceed the accuracy of random guessing (50%). In contrast, PPL
achieves 70% accuracy on Chameleon, demonstrating strong generalization on real-world data.

5.2 ROBUSTNESS STUDIES

We conduct robustness experiments on GenImage to evaluate the reliability of our method under
common image corruptions. As shown in Fig. 6, both CLIP and DINOv2 backbones sustain high
accuracy even under severe JPEG compression and strong Gaussian blur, demonstrating the robustness
of our approach.

5.3 ABLATION STUDY

Ablation on the hyperparameters. Fig. 7 reports the influence of key hyperparameters in PPL.
The results suggest four main observations: (1) PPL achieves peak accuracy at λ = 0.3. (2) PPL is
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Figure 6: Robustness to image corruptions on GenImage Dataset. Performance is evaluated under
JPEG compression (quality factor Q ∈ {100, 90, 80, 70, 60}), Gaussian blur (standard deviation
σ ∈ {0.0, 1.0, 2.0, 3.0}), and resizing (scaling factor S ∈ {0.5, 0.75, 1.0, 1.25, 1.5}).
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Figure 7: Ablation study on hyperparameters: λ representing the weight of contrastive loss. prpr
representing the probability of replacing the fake images with RPR images during training. rrpr
representing the ratio of reconstructed patches, and s representing the strength of reconstruction.

relatively robust to prpr, the probability of replacing fake images with RPR images during training.
(3) PPL is sensitive to the patch reconstruction ratio rrpr, where accuracy degrades at excessively
high ratios, with the best performance obtained around rrpr = 50%. (4) Smaller reconstruction
strength s not only improves accuracy but also reduces computational cost, making it preferable in
practice.

Figure 8: Ablation study on each module.

Ablation on the impact of each module. Fig. 8
highlights the contributions of Randomized Patch
Reconstruction (RPR) and Patch-wise Contrastive
Learning (PCL). We compare two strategies for
injecting synthetic artifacts into real images: (1)
diffusion-based reconstruction (blue), and (2) ran-
dom patch replacement from synthetic images (red).
The results show that reconstruction serves as a
more effective mechanism for introducing synthetic
cues to guide the model. While either RPR or
PCL alone enhances performance, their combination
yields markedly stronger improvements. Additional
ablation studies are provided in the Appendix due to space constraints.

6 CONCLUSION

Our work is based on the nature of the AIGI detection problem, which can be concluded as “All
Patches Matter, More Patches Better.” However, our observations indicate that existing detectors
are unable to fully take advantage of all patches in an AI-generated image. To address this issue,
we propose a randomized patch reconstruction augmentation combined with patch-wise contrastive
learning strategy. This approach effectively prevents the model from becoming a lazy learner and
enhances the utilization of every patch. We achieve state-of-the-art performance on several well-
known academic datasets across various benchmark datasets. The outstanding performance achieved
in both settings supports our findings and proves the efficacy of the proposed learning framework.
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This appendix provides supplementary details and additional analyses. Section A describes the
implementation setup; Section B reports more ablation studies; and Section C presents a comparative
TDE analysis with both statistical and visual demonstrations.

A IMPLEMENTATION DETAILS

Implementation of RPR. In Randomized Patch Reconstruction (RPR), diffusion-reconstructed
real images are replaced with their original counterparts on a patch-wise basis. For consistency,
we use Stable Diffusion v1 (SDv1) as the reconstruction model and reconstruct real images in the
training subset of SDv1.4 from both GenImage and DRCT. The reconstruction is performed with
the inpainting pipeline (50 denoising steps, guidance scale 7.5) using an empty prompt, a zero-filled
mask of the same size as the input image, and the original image as inputs.

Implementation of PCL. Patch-wise Contrastive Learning (PCL) introduces moderate computa-
tional overhead. Training a LoRA model with only binary cross-entropy (BCE) loss on CLIP-Large
requires 16 GB of GPU memory, while incorporating the margin-based contrastive loss increases
memory usage to 19 GB. Similarly, training one epoch on GenImage with an NVIDIA V100 GPU
increases the runtime from 3 to 4 hours.

B ADDITIONAL ABLATION STUDIES

We investigate the impact of different contrastive losses applied to embedded patch tokens. Two widely
used losses are considered: InfoNCE and the margin-based contrastive loss. InfoNCE maximizes
similarity between positive pairs while minimizing it for negative pairs, typically formulated as:

Lq = − log
exp(q · k+/τ)∑N
i=0 exp(q · ki/τ)

where q and k+ denote the embeddings of the sample and its positive counterpart, and τ is a
temperature parameter. InfoNCE requires computing similarities between each sample and all
negative samples, resulting in a computational complexity that grows quadratically with batch size.

In contrast, the margin-based contrastive loss, constrains the Euclidean distance between sample pairs
by pulling positive pairs closer and pushing negative pairs apart with a margin α:

Lcontrastive =
∑

i,j: i̸=j

[
Y · d2ij + (1− Y ) ·max(0, α− d2ij)

]
where dij = ∥Embi

pat − Embj
pat∥2 is the Euclidean distance between embedded patch tokens, and Y

is an indicator function that equals 1 if the pair shares the same label and 0 otherwise. This loss only
penalizes negative pairs whose distance is less than the margin, thus avoiding computations over all
negative pairs and reducing the overall computational cost. The dij could also use the cosine distance,
which is also compared in our experiments.

Impact of loss function. Tab. 6 illustrates the effectiveness of these loss functions. Unless otherwise
specified, all experiments reported in the appendix are conducted on the GenImage dataset, and
performance is measured using mean accuracy (mAcc).

Impact of randomized patch reconstruction vs. fixed position reconstruction Our randomized
patch reconstruction method employs a random selection process for image reconstruction, allowing
fake patches to appear in different regions across the entire image. Alternatively, replacing patches at
fixed positions also yields images composed of both real and synthetic elements. Tab. 7 illustrates the
effectiveness of randomized patch reconstruction compared to fixed-position reconstruction, both of
which leverage patch-wise contrastive learning.
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Table 6: The impact of contrastive loss choice.

Loss Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN mAcc

Infonce/tau=0.5 93.1 99.4 99.5 89.8 96.0 99.5 99.4 89.6 95.8
Margin/cosine 92.8 99.7 99.5 82.3 91.5 99.7 91.5 85.6 92.8
Margin/euclidean 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2

Table 7: The impact of random patch replacement vs. fixed position replacement.

Position Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN mAcc

Upper Half 87.1 99.7 99.6 83.9 94.5 99.7 99.2 96.0 95.0
Lower Half 87.5 99.7 99.6 81.7 93.4 99.7 99.1 94.6 94.4
Left Half 87.7 99.8 99.5 84.4 93.8 99.7 99.0 90.6 94.3
Right Half 81.6 99.8 99.7 74.8 79.6 99.8 98.7 86.2 90.0
Random 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2

Table 8: The impact of patch size of random patch replacement.

Patch Size Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN mAcc

112 99.6 99.3 92.3 92.7 99.5 95.8 99.5 94.3 96.6
56 99.4 99.2 93.8 90.8 99.4 95.8 99.1 97.2 96.8
28 98.7 98.3 95.7 95.4 98.8 97.5 98.5 98.1 97.6
14 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2

Table 9: The impact of random patch replacement vs. random patch dropout.

Dropout Rate Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN mAcc

0.10 71.3 99.9 99.8 67.9 82.7 99.8 97.3 77.0 88.5
0.15 94.3 98.7 98.6 87.9 90.4 98.7 98.5 90.9 94.2
0.20 77.0 99.9 99.8 69.2 72.0 99.8 98.7 87.7 89.1
0.25 77.2 99.9 99.8 71.1 74.7 99.8 98.6 89.3 90.2
Replacement 94.8 98.5 98.3 94.7 96.1 98.6 98.5 98.0 97.2

Impact of patch size of randomized patch reconstruction Our randomized patch reconstruction
method reconstructs real images into fake counterparts where the patch size may influence perfor-
mance. with patch size potentially influencing performance. Using patches of size 14×14 is intuitive,
as it aligns with the token size used in Vision Transformers (ViTs). Tab. 8 illustrates that the training
process is not sensitive to reconstruction patch size, and smaller patch sizes are preferred.

Impact of randomized patch reconstruction vs. random patch dropout Our randomized patch
reconstruction method involves substituting fake image patches with their real counterparts, thereby
compelling the model to exploit more artifacts from the remaining patches. An alternative approach
shown in Fig. 9 is random patch dropout, in which certain patches are removed, resulting in images
with fewer patches. Tab. 9 illustrates the effectiveness of Randomized Patch Reconstruction, by
comparing patch reconstruction with patch dropout at various dropout rates, with both methods
employing patch-wise contrastive learning. The results indicate that, with an appropriate dropout
ratio, patch dropout also achieves favorable performance, supporting our hypothesis that models tend
to over-rely on a subset of patches. Dropout thus serves as a remedy for this issue. However, patch
dropout underperforms patch reconstruction, possibly because patch reconstruction preserves the
overall appearance and input domain of the image (i.e., a complete image rather than a masked one),
thereby increasing the task’s difficulty.

C MORE TDE COMPARATIVE ANALYSIS

TDE distribution of different subsets of GenImage To better analyze the models’ ability to
leverage all patches from an image, we use TDE to count the contribution of patch(i,j), which can be
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a) Input Image b) Image with 

Random Mask

c) Input Image 

with RPR

Figure 9: Visual comparison between random patch dropout (masking) and reconstruction. It is
evident that, by reconstruction, the overall visual appearance remains unchanged.
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Figure 10: TDE distribution on different generators of ours and UnivFD.

defined as the difference in logits at the (i, j) position of an image before and after being masked.
Fig. 10 illustrates the TDE distribution of UnivFD and our method. For better statistical analysis, we
normalize the TDE values to a range [0, 1] using the exponential function eTDE(i,j)−TDEmax . This
normalization facilitates the measurement of differences between less dominant patches and the most
dominant patches in the images. The figure demonstrates that a greater number of patches from our
method are more uniform.

Visual Showcase of TDE distribution of different subsets on GenImage To better showcase
our model’s better ability to leverage all patches from an image, we present a visual analysis of
TDE across various subsets of the GenImage dataset. The GenImage dataset is divided into multiple
subsets, each representing distinct image generation methods. These subsets include GAN-based
models such as BigGAN, and diffusion-based models, including Stable Diffusion, VQDM, and ADM.
Due to space limitations in the main text, we showcased limited images; here, we present most
subset models of GenImage: the diffusion-based Stable Diffusion v1.4 (Fig. 11), the closed-source
Midjourney (Fig. 12), and the GAN-based BigGAN (Fig. 13). The rest diffusion-based model are
from Fig. 14 to Fig. 16.We use CLIP as backbone for our visualization.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we only use the large language model to help polish our text. The large language model
has no role in the research conception.
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Figure 11: Showcase of TDE map on SDv1.4. Images are sourced from GenImage (Zhu et al., 2024).
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Figure 12: Showcase of TDE map on Midjourney. Images are sourced from GenImage (Zhu et al.,
2024).

UnivFD

DRCT

Ours

Input

Figure 13: Showcase of TDE map on BigGAN. Images are sourced from GenImage (Zhu et al.,
2024).
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Figure 14: Showcase of TDE map on ADM. Images are sourced from GenImage (Zhu et al., 2024).
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Figure 15: Showcase of TDE map on Glide. Images are sourced from GenImage (Zhu et al., 2024).
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Figure 16: Showcase of TDE map on VQDM. Images are sourced from GenImage (Zhu et al., 2024).
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