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Abstract

Anderson mixing (AM) is a useful method that can accelerate fixed-point iterations
by exploring the information from historical iterations. Despite its numerical suc-
cess in various applications, the memory requirement in AM remains a bottleneck
when solving large-scale optimization problems in a resource-limited machine. To
address this problem, we propose a novel variant of AM method, called Min-AM,
by storing only one vector pair, that is the minimal memory size requirement in AM.
Our method forms a symmetric approximation to the inverse Hessian matrix and is
proved to be equivalent to the full-memory Type-I AM for solving strongly convex
quadratic optimization. Moreover, for general nonlinear optimization problems,
we establish the convergence properties of Min-AM under reasonable assump-
tions and show that the mixing parameters can be adaptively chosen by estimating
the eigenvalues of the Hessian. Finally, we extend Min-AM to solve stochastic
programming problems. Experimental results on logistic regression and network
training problems validate the effectiveness of the proposed Min-AM.

1 Introduction

Anderson mixing (AM) [2] is a powerful method for accelerating fixed-point iterations, and has been
widely used in scientific computing [1, 5, 47] and machine learning [31, 58, 29]. In each iteration, AM
extrapolates a new iterate that satisfies certain optimality property by using the historical iterations,
and exhibits empirical acceleration over classical fixed-point iterations [60]. Thus, AM can reduce
the computation cost when evaluating the fixed-point map is a time-consuming process. Also, the
inspiring connections of AM with GMRES [60, 48] and multisecant quasi-Newton methods [22]
provide some explanations for the acceleration benefit from AM. In recent years, there have been
many works applying AM to solve various optimization problems [56, 62, 41]. Their promising
results in different tasks suggest that these AM-based methods are very competitive while being
more economical than Newton’s method. However, the existing convergence theory of AM is still
unsatisfactory [3] and AM can diverge in some case [41]. Consequently, the applications of AM and
its variants for machine learning problems and the corresponding theories deserve deep research.

One major concern of AM is the heavier memory overhead compared with the fixed-point iteration.
In AM(m), it has to store vector pairs about historical information from the m previous iterations,
where m is the memory size. Specifically, AM(m) is called as the limited-memory AM if m <∞,
and full-memory AM if m =∞. The AM(0) is the simple fixed-point iteration. In practice, choosing
proper memory sizem is heuristic and it is observed in [47] that a smallm can deteriorate the efficacy.
However, for practical applications, a large m can lead to memory issue for solving large-scale and
high-dimensional problems when the memory resource is limited.
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In this paper, we address the memory issue of AM for solving optimization problems by proposing
Min-AM, a novel variant of AM(1) that has minimal memory size in AM. Min-AM is built upon
the Type-I AM [22, 60], a variant of AM. Let AM-I(m) denote the Type-I AM with memory size m.
Using a projection-mixing framework of AM-I, the Min-AM retains a recursively modified vector
pair and adds one extra projection step in each step of AM-I(1). Compared to AM(1), Min-AM forms
symmetric approximations to the Hessian and is equivalent to AM-I(∞) when the objective function
is strongly convex quadratic. By incorporating the restarting strategy, the restarted Min-AM has faster
convergence rate than AM(1) for general nonlinear optimization and the spectrum of Hessian can be
cheaply estimated that leads to adaptive choices of the mixing parameters. Min-AM is also extended
to stochastic optimization. In summary, we highlight the main contributions of this work as follows.

• We propose Min-AM, a variant of AM(1) that achieves the minimal memory size in AM,
for solving optimization problems. Compared to AM(1), Min-AM forms symmetric approx-
imations to the Hessian and incorporates more historical information to obtain the update.
Thus, Min-AM can significantly reduce the memory requirement and computational cost of
AM while maintaining the fast convergence property.

• We show that the local convergence rate of the restarted Min-AM has optimal dependence
on the condition number of the objective function. We provide adaptive choices of the
mixing parameters by estimating the spectrum of the Hessian economically in each iteration.
Also, we give the convergence and complexity analysis of a stochastic extension of Min-AM
for solving nonconvex stochastic optimization.

• We verify the properties of Min-AM, and apply the restarted Min-AM to logistic regression
and the stochastic Min-AM to train neural networks. The experimental results are consistent
with our theoretical analysis and show that the Min-AM is competitive with the limited-
memory quasi-Newton methods with large memory size in deterministic optimization and
achieves promising results in training neural networks.

Related work. Fixed-point problems can be recast as solving systems of (non)linear equations.
AM is a practical alternate for Newton’s method when the Jacobian is unavailable or difficult to
compute [35]. In the linear case, it is established in [60, 48] that the full-memory AM is equivalent to
GMRES [51], a classical Krylov subspace method for linear systems. In the nonlinear case, AM is
recognized as a multisecant quasi-Newton method and a variant, called Type-I AM, has been proposed
in [22]. From the perspective of convergence analysis, it is proved that the local convergence rate
of the limited-memory AM is no worse than that of fixed-point iteration [59, 16] and the potential
improvement depends on the quality of extrapolation [21, 46]. However, a counter example [41]
shows the divergence behaviour of AM(1) and the recent review [3] indicates the need of further
research on the theoretical properties of AM.

The inspiring performance and the easy implementation of AM motivate many new variants of AM
for various applications in machine learning. In [55], a regularized variant of AM is proposed to
accelerate gradient descent for unconstrained optimization, which is adapted in [23] for nonsmooth
convex optimization and in [58] for reinforcement learning. In [62], a stochastic version of AM is
developed and has convergence guarantee for stochastic optimization. The Type-I AM is modified
in [67] to solve nonsmooth fixed-point problems. A more recent work, the short-term recurrence
AM (ST-AM) [63], stores two vector pairs to reduce the memory cost of AM. Our Min-AM method
achieves the minimal memory size, i.e. m = 1, further reducing the memory size of ST-AM.

The memory overhead is a common issue of quasi-Newton methods. It is desirable to keep memory
size as small as possible without sacrificing the efficacy of the algorithm. Some works [37, 9, 8]
study the choice of memory size in L-BFGS [39], but the performance with minimal memory size
is unsatisfactory. In stochastic programming, the sublinear convergence rate is optimal when only
stochastic gradients can be accessed [43]. Thus the heavier memory and computational cost makes
quasi-Newton methods [12, 27, 61, 10] less appealing than the more economical first-order methods
[49, 36]. In this work, our proposed Min-AM method exhibits the fast convergence as quasi-Newton
methods while the memory cost is close to first-order methods.

Notations. Let ∆ denote the forward difference operator, e.g. ∆xk = xk+1 − xk. range(X) denotes
the subspace spanned by the columns of a matrix X . For every matrix A ∈ Rd×d, the Krylov
subspace Km(A, v) ≡ span{v,Av, . . . , Am−1v}, and ‖x‖A = (xTAx)1/2 denotes the A-norm
when A is symmetric positive definite (SPD). “†” is the Penrose-Moore inverse.
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2 The Anderson mixing scheme

In this work, we consider the minimization problem

min f(x), x ∈ Rd, (1)

where f : Rd → R is continously differentiable. The first-order optimality condition of (1) is
equivalent to x = g(x), where g(x) = x−∇f(x). We describe the Anderson mixing scheme with
the projection-mixing framework [62]. Define rk = g(xk) − xk = −∇f(xk) to be the residual.
AM(m) maintains m (m ≤ min{d, k}) vector pairs stored in Xk, Rk ∈ Rd×m:

Xk = [∆xk−m,∆xk−m+1, · · · ,∆xk−1], Rk = [∆rk−m,∆rk−m+1, · · · ,∆rk−1]. (2)

Each update can be decoupled into two steps, namely the projection step and the mixing step:

x̄k = xk −XkΓk, (Projection step), xk+1 = x̄k + βkr̄k, (Mixing step), (3)

where r̄k := rk −RkΓk, βk > 0 is the mixing parameter, and Γk = arg minΓ∈Rm ‖rk −RkΓ‖2. It
is easy to know that the Galerkin’s projection condition r̄k ⊥ range(Rk) holds. Assuming RT

kRk is
nonsingular, the resulting one-step update of AM(m) is xk+1 = xk +Hkrk where

Hk = βkI − (Xk + βkRk)(RT
kRk)−1RT

k . (4)

The AM-I [22, 60] falls into the same projection-mixing framework, and the only difference lies in
the choice of Γk. The Γk of AM-I is determined by another Galerkin’s condition:

r̄T
kXk = (rk −RkΓk)TXk = 0. (5)

Substituting the solution of (5) into (3), the approximated inverse Hessian matrix Hk of AM-I is

Hk = βkI − (Xk + βkRk)(XT
k Rk)−1XT

k , (6)

by assuming XT
k Rk is nonsingular. AM-I has a close relation to Newton’s method and an alternative

interpretation of AM-I is given in Appendix A.1.
Remark 1. It is established in [22] that the Hk of AM solves minHk

‖Hk − βkI‖F s.t. HkRk =
−Xk and theHk of AM-I satisfiesHk = B−1

k , whereBk solves minBk
‖Bk−β−1

k I‖F s.t. BkXk =
−Rk. Thus, both AM and AM-I are multisecant methods. Besides, from (4) and (6), the approximated
inverse Hessian matrices Hk are generally not symmetric.

3 The Min-AM methods

In each iteration, AM(m) has to store two matrices Xk, Rk ∈ Rd×m, which dramatically increases
the memory burden in large-scale problems. To reduce the memory requirement, we consider the
minimal memory case, i.e. m = 1. The proposed Min-AM is a variant of AM(1) and the convergence
of Min-AM is established in this section.

3.1 The basic Min-AM

In this section, we consider the simple case of (1): the objective function is f(x) = 1
2x

TAx− bTx
where A is SPD. Let sk := ∆xk−1, yk := ∆rk−1, and choose m = 1 in (4). The approximated
inverse Hessian of AM(1) is Hk = βkI − (sk + βkyk)(yT

k yk)−1yT
k , which is non-symmetric.

However, the Hessian matrix∇2f is naturally symmetric. To achieve a better approximation of ∇2f ,
we first recursively modify the vector pair sk, yk to incorporate more information from the previous
iterations. Let p1 = ∆x0, q1 = ∆r0 ∈ Rd. For k ≥ 2, we construct pk and qk by

pk = ∆xk−1 − pk−1ζk, qk = ∆rk−1 − qk−1ζk, (7)

where ζk = (pT
k−1qk−1)−1pT

k−1∆rk−1, assuming pT
k−1qk−1 6= 0. Then, inspired by the Two-Grid

Cycle method [53, Algorithm 13.2] in the multigrid techniques [11], we add an extra projection step
to (3), and the resulting scheme is

x
(1)
k = xk − pkΓ

(1)
k , (Projection step) (8a)

x
(2)
k = x

(1)
k + βkr

(1)
k , (Mixing step) (8b)

xk+1 = x
(2)
k − pkΓ

(2)
k , (Projection step) (8c)
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where r(1)
k := rk − qkΓ

(1)
k and βk > 0. Define r(2)

k = r
(1)
k − βkAr

(1)
k and r(3)

k = r
(2)
k − qkΓ

(2)
k . It

can be verified that r(1)
k , r

(2)
k , and r(3)

k are equal to the residuals at x(1)
k , x

(2)
k , and xk+1, respectively.

The coefficients Γ
(1)
k and Γ

(2)
k are determined by applying the Galerkin’s condition of AM-I:

r
(1)
k = rk − qkΓ

(1)
k ⊥ pk, r

(3)
k = r

(2)
k − qkΓ

(2)
k ⊥ pk. (9)

Assume pT
k qk 6= 0. The scheme formulated by (8a)-(8c) gives the xk+1 by

xk+1 = xk +Hkrk, Hk = −pkp
T
k

pT
k qk

+ βk

(
I − pkq

T
k

pT
k qk

)(
I − qkp

T
k

pT
k qk

)
, (10)

leading to the basic Min-AM. The derivation of (10) is in Appendix B.1. It is worth mentioning
that the approximated inverse Hessian Hk in (10) is symmetric. Due to the space limit, we give the
details of the basic Min-AM in Algorithm 2 in Appendix B. Define Pk = (p1, p2, . . . , pk), Qk =
(q1, q2, . . . , qk), we summarize the properties of the basic Min-AM in the next theorem.
Theorem 1. Let f(x) = 1

2x
TAx− bTx where A is SPD and {xk} be the sequence generated by the

basic Min-AM for solving (1). x∗ is the exact solution. Then, the following properties hold:
(i) ‖pk‖2 > 0, range(Pk) = Kk(A, r0), range(Qk) = AKk(A, r0);
(ii) Qk = −APk, pi ⊥ qj(1 ≤ i 6= j ≤ k);

(iii) r(1)
k ⊥ range(Pk) and x(1)

k = x0 + zk, where zk = arg minz∈Kk(A,r0) ‖x0 + z − x∗‖A.

Moreover, if ‖r(1)
k ‖2 = 0, then xk+1 = x∗.

The proof is deferred to Appendix B.2. The property (i) ensures pT
k qk 6= 0 during the iterations, so

ζk and the update (10) are well defined. The property (iii) indicates x(1)
k = xCG

k , where xCG
k is the

k-th iterate of the conjugate gradient (CG) method [32]. Also, due to Proposition 1 in Appendix B.2,
the intermediate iterate x̄k of AM-I(∞) satisfies x̄k = xCG

k , so the basic Min-AM is essentially
equivalent to the full-memory AM-I when solving unconstrained strongly convex quadratic problems.
In this sense, Min-AM can incorporate more historical information than AM(1).
Remark 2. Although Min-AM and CG are equivalent for solving SPD linear systems, their numerical
performance has a large difference for general nonlinear programming as shown in our experiments.
Remark 3. The Hk in (10) is reminiscent of the memoryless BFGS method [4], but the key difference
lies in the construction of pk and qk in (7). In memoryless BFGS, there are no correction terms
(ζk ≡ 0), and it is generally not equivalent to BFGS [45] and CG. See Appendix A.3 for more details.

3.2 The restarted Min-AM

For general nonlinear optimization, since global convergence may be unavailable for Min-AM as
a counter example exists for AM [41], we introduce the restarting strategy to the basic Min-AM
and establish the local convergence analysis. Our purpose is to prove the faster convergence of the
restarted Min-AM than that of gradient descent (GD), and sharpen the existing results of AM [59, 21].

Restarting Strategy. Let mk be the number of iterations from the last restart. Min-AM restarts, i.e.,
setting mk = 0 and pk = qk = 0, when any of the following conditions is violated:

mk ≤ m, (11a)

|qT
k pk| ≥ τ |qT

k−mk+1pk−mk+1|, (11b)

‖∇f(xk)‖2 ≤ η‖∇f(xk−mk
)‖2, (11c)

where m is a constant positive integer, and 0 < τ < 1, η > 0 are constants. In the interval between
two successive restarts, the iterations are the basic Min-AM iterations.

The check (11a) is to limit the number of high-order terms of errors accumulated during iterations.
The check (11b) is for the numerical stability of Min-AM since pT

k qk appears in the denominators
in (10). The check (11c) is to control divergence. The algorithm is shown in Algorithm 1. Let
Bρ(x) := {y ∈ Rd|‖y − x‖2 ≤ ρ} denote the ball centered at x with radius ρ. We impose the
following assumptions on f that are standard in the convergence analysis of quasi-Newton methods
[45] and the regularized nonlinear acceleration method [56].
Assumption 1. f : Rd → R is twice Lipschitz continuously differentiable in a local region of a local
minimizer x∗, and the Hessian matrix A := ∇2f(x∗) is SPD.
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Algorithm 1 Restarted Min-AM for general nonlinear optimization
Input: x0 ∈ Rd, βk > 0,m > 0, τ ∈ (0, 1), η > 0

1: p0, q0 = 0 ∈ Rd,m0 = 0
2: for k = 0, 1, . . . , until convergence do
3: rk = −∇f(xk)
4: if mk > m or ‖rk‖2 > η‖rk−mk

‖2 then
5: mk = 0
6: end if
7: if mk > 0 then
8: p = xk − xk−1, q = rk − rk−1

9: ζk = (pT
k−1qk−1)†pT

k−1q
10: pk = p− pk−1ζk, qk = q − qk−1ζk
11: if |pT

k qk| < τ |pT
k−mk+1qk−mk+1| then

12: mk = 0
13: end if
14: end if
15: if mk = 0 then
16: pk = qk = 0 ∈ Rd
17: end if
18: xk+1 = xk − (pT

k qk)†pkp
T
k rk + βk

(
I − (pT

k qk)†pkq
T
k

) (
I − (pT

k qk)†qkp
T
k

)
rk

19: mk+1 = mk + 1
20: end for
21: return xk

From Assumption 1, there exist positive constants ρ̂, µ, L, and κ̂ such that for all x ∈ Bρ̂(x∗),

µ ≤ yT∇2f(x)y

yTy
≤ L, for all y ∈ Rd and y 6= 0; (12a)

‖∇f(x)−∇2f(x∗)(x− x∗)‖2 ≤
1

2
κ̂‖x− x∗‖22. (12b)

Here, µ is the strong convexity constant, and L, κ̂ are Lipschitz constants of∇f and∇2f respectively.

With the restarting strategy, we apply a multi-step analysis and has the following convergence theory:
Theorem 2. Suppose that the Assumption 1 holds. Let {xk} be the sequence generated by the
restarted Min-AM for solving (1) and θk = max{|1−βkL|, |1−βkµ|} ≤ θ for a constant θ ∈ (0, 1).
Then there exists a positive constant ρ ≤ ρ̂ such that for any x0 ∈ Bρ(x∗), we have

‖xk+1 − x∗‖A ≤ 2θk

(√
L/µ− 1√
L/µ+ 1

)mk

‖xk−mk
− x∗‖A + κ̂ · O(‖xk−mk

− x∗‖22). (13)

Moreover, if mk = d, then ‖xk+1 − x∗‖2 = κ̂O(‖xk−mk
− x∗‖22).

The proof is in Appendix C.1, where a more general theorem (Theorem 6) is given. The result from
Theorem 2 suggests that the restarted Min-AM method has a local linear-quadratic convergence rate,
and the rate has optimal dependence on the condition number. Compared to the existing results that
show the local linear convergence rate of AM is no worse than that of gradient descent (GD) method
[59, 16], the bound (13) clearly improves the convergence rate of GD.
Remark 4. Classical nonlinear CG methods [17] are also memory-efficient with recursively modified
searching directions, but the step size relies on line-search or Hessian-vector products which can be
time-consuming for solving large-scale optimization problems.
Remark 5. The momentum based methods, e.g. Nesterov’s accelerated gradient (NAG) method [44],
also achieve the optimal convergence rate if the parameters µ and L are known. In restarted Min-AM,
we give an economical method that approximates the best step size 2/(L+ µ) in the next subsection.

3.3 Eigenvalue estimates and the choice of mixing parameter

The mixing parameter βk is critical for AM and AM-I, and an improper choice of βk can lead
to divergence [22]. Fortunately, the spectrum of the Hessian can be economically estimated as a
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by-product of Min-AM. To better explain the idea, we consider min f(x) = 1
2x

TAx− bTx where
A is SPD. We apply a projection method [54] to estimate the eigenvalues:

v ∈ Kk(A, r0), (A− λI)v ⊥ AKk(A, r0), (14)

where v ∈ Rd is the approximate eigenvector sought in the Krylov subspace Kk(A, r0), and λ ∈ R
is an eigenvalue estimate, which is known as a generalized Ritz value [42]. Our goal is to compute λ.
Since range(Pk) = Kk(A, r0) as shown in Theorem 1, we can select v = Pky, y ∈ Rk. Then the
projection condition (14) leads to

PT
k AAPky = λPT

k APky. (15)

From the construction of Pk and Qk, we can derive the three-term recurrence relations (see details in
Appendix D.1): there exists a tridiagonal matrix T̄k ∈ R(k+1)×k, such that

APk = Pk+1T̄k, AQk = Qk+1T̄k. (16)

Then, we have PT
k AAPk = PT

k APk+1T̄k. By Theorem 1, PT
k Apk+1 = −QT

k pk+1 = 0. Thus,

PT
k APk+1T̄k = PT

k APkTk, (17)

where Tk ∈ Rk×k is obtained from T̄k by deleting its last row. By (15) and (17), we obtain Tky = λy,
which indicates that the generalized eigenvalue problem (15) is reduced to solving the eigenvalues of
a tridiagonal matrix Tk. Moreover, the three elements of the k-th column of T̄k are easy to obtain
from the coefficients Γ

(1)
k ,Γ

(2)
k , βk−1, and βk on the fly (see details in Appendix D.1):

t
(k−1)
k =

Γ
(2)
k−1

βk−1(1− Γ
(1)
k )

, t
(k)
k =

1

1− Γ
(1)
k

(
1

βk−1
− Γ

(2)
k

βk

)
, t

(k+1)
k = − 1

βk(1− Γ
(1)
k )

, (18)

where Γ
(2)
0 := 0. For solving general nonlinear optimization with the restarted Min-AM, suppose that

mk ≥ 1. We can also construct a tridiagonal matrix Tk ∈ Rmk×mk starting from the (k −mk)-th
iteration with the nonzero elements defined using the coefficients during the iterations (see Definition 2
in Appendix D.2). We use the eigenvalues of Tk as the eigenvalue estimates of the Hessian.
Theorem 3. Suppose that Assumption 1 holds, and {xk} is the sequence generated by the restarted
Min-AM for solving (1). Assume that βj ∈ [β, β′] (∀j ≥ 0) for some positive constants β and β′,
and there are positive constants η0, τ0 such that ‖∇f(xj)‖2 ≤ η0‖∇f(x0)‖2 (0 ≤ j ≤ k + 1),
|1− Γ

(1)
j | ≥ τ0 (1 ≤ j ≤ k); λ is an eigenvalue of Tk constructed by restarted Min-AM. Let Θ(mk)

denote the set of Ritz values computed by an mk-step A-norm based Lanczos algorithm (Algorithm 3
in Appendix D.2) for∇f2(x∗) with starting vector ∇2f(x∗)(x∗ − xk−mk

). Then there is a positive
constant ρ ≤ ρ̂ such that for any x0 ∈ Bρ(x∗), we have

min
λ̂∈Θ(mk)

|λ̂− λ| = κ̂O(‖xk−mk
− x∗‖2). (19)

The proof is in Appendix D.2. Since the Ritz value λ̂ approximates a true eigenvalue of∇2f(x∗) [54],
Theorem 3 suggests that the restarted Min-AM can give reliable eigenvalue estimates if ‖x0−x∗‖2 is
sufficiently small. At the k-th iteration, where mk ≥ 2, let µ̃ and L̃ be the eigenvalues of Tk−1 with
the smallest absolute value and the largest absolute value, respectively. We use |µ̃| and |L̃| to estimate
µ and L. Then we can take the mixing parameter as βk = 2/(|µ̃|+ |L̃|) to estimate the optimal value
2/(µ + L). The total computational cost is O(m3

k−1) flops as it requires solving the eigenvalues
of Tk−1 [24]. Since mk � d in practice, this strategy can be a useful and economical option.
Remark 6. The spectrum of Hessian is important for determining the step sizes. Once we obtain the
estimates of µ and L by Min-AM, we can apply them to many first-order methods.

3.4 The stochastic Min-AM

For many applications in deep learning, the large data size prohibits the evaluation of the full gradient,
and the stochastic optimization stands out as a solution. Specifically, we consider developing a
stochastic version of Min-AM to solve the nonconvex optimization problem:

min
x∈Rd

f(x) :=
1

T

T∑
i=1

fi(x), (20)
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where fi : Rd → R may be nonconvex. Since T can be extremely large, we sample a mini-batch
Sk ⊆ [T ] := {1, 2, . . . , T} and use fSk

(xk) := 1
nk

∑
i∈Sk

fi(xk) to estimate the full gradient
∇f(xk), where nk := |Sk| is the batch size. Then, rk := −∇fSk

(xk) is an estimate of −∇f(xk).

Due to the noise in the gradient estimates and the nonconvexity of f , a direct application of the
deterministic Min-AM to (20) may be problematic. For example, the searching direction may be
not a descent direction since Hk can be indefinite. Hence, we should introduce some fundamental
modifications to the basic Min-AM.

Regularization. Inspired by [23], we define the function

Φ(p, q, δ) = pTq − δ(‖p‖22 + ‖q‖22). (21)

Let Φk := Φ(pk, qk, δ
(2)
k ) for some δ(2)

k > 0. We substitute Φk for the pT
k qk appeared in (10) and

define ρk = Φ†k, i.e. ρk = 0 if Φk = 0 and ρk = Φ−1
k if Φk 6= 0. The resulting regularized Min-AM

update is xk+1 = xk +HA
k rk, where

HA
k = −ρkpkpT

k + βk(I − ρkpkqT
k )(I − ρkqkpT

k ). (22)

Damping. We propose a specialized damping technique for Min-AM, which interpolates the updates
of stochastic gradient descent [50] (SGD) and Min-AM, and is described as

xGk = xk + βkrk, xAk = xk +HA
k rk, xk+1 = (1− αk)xGk + αkx

A
k , (23a)

where xGk is the SGD update, xAk is the Min-AM update, and αk is the damping parameter. It can
be seen that SGD and Min-AM serve as the predicted step, and xk+1 is a weighted average of them.
Moreover, the inverse Hessian approximation

Hk = (1− αk)βkI + αkH
A
k � (1− αk)βkI � 0 (24)

provided that αk ∈ [0, 1) and HA
k � 0.

By incorporating damping and regularization, we obtain the stochastic Min-AM (sMin-AM), and the
algorithm is summarized in Algorithm 4 in Appendix E. To analyze the convergence properties, we
first impose the following assumptions on the objective function f , which are the same as [61, 62].
Assumption 2. f : Rd → R is continuously differentiable, and f(x) is lower bounded by a real
number f low for ∀x ∈ Rd. ∇f is globally L-Lipschitz continuous.
Assumption 3. At each iteration k, the gradient estimate ∇fξk(xk) satisfies Eξk [∇fξk(xk)] =
∇f(xk), Eξk [‖∇fξk(xk) − ∇f(xk)‖22] ≤ σ2, where σ > 0, and ξk ∈ [T ], k = 0, 1, . . . , are
independent samples, and the random variable ξk (for a given k) is independent of {xj}kj=0.

The diminishing condition about βk is
+∞∑
k=0

βk = +∞,
+∞∑
k=0

β2
k < +∞. (25)

With chosen βk, we choose the αk and δ(2)
k of sMin-AM to meet the following conditions:

Assumption 4. Given constants µ ∈ (0, 1),C1 > 0, andC2 > 0, we have αk ∈ [0,min{C1β
1/2
k , 1−

µ}], ρk ≤ 0, and −(ρk/βk)‖pk‖22 − 2ρk‖pk‖2‖qk‖2 + ρ2
k‖pk‖22‖qk‖22 ≤ C2.

We establish the convergence results of sMin-AM for nonconvex stochastic optimization and the
proofs can be found in Appendix E.2 and Appendix E.3.
Theorem 4. Suppose that Assumptions 2-4 hold and {xk} is the sequence generated by sMin-AM
with batch size nk ≡ n ≤ T . If βk ∈ (0, µ

2L(1+C2)2 ] and satisfies (25), then

lim inf
k→∞

‖∇f(xk)‖2 = 0 with probability 1, (26)

and for all k, there exists Mf > 0 such that E[f(xk)] ≤Mf .

If Eξk [‖∇fξk(xk)‖22] ≤Mg, ∀k where Mg > 0 is a constant, we have

lim
k→∞

‖∇f(xk)‖2 = 0 with probability 1. (27)
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Figure 1: Left (strongly convex quadratic optimization): (a) curves about residuals and intermediate
residuals; (d) exact eigenvalues, and eigenvalue estimates from Min-AM. Middle and right (regular-
ized logistic regression on madelon and a9a datasets): (b)(c) ‖∇f(xk)‖2 of each method; (e)(f) Ritz
values of∇2f(x∗) by k-step Lanczos algorithm, and eigenvalue estimates from Min-AM.

Theorem 5. Suppose that Assumptions 2-4 hold. {xk}N−1
k=0 are the first N iterations generated

by sMin-AM with batch size nk ≡ n ≤ T , and βk = min{ µ
2L(1+C2)2 ,

D̃
σ
√
N
}, where D̃ is a

problem-independent constant. R is a random variable following PR(k) := Prob{R = k} = 1/N ,
k = 0, . . . , N − 1. Then

E[‖∇f(xR)‖22] ≤ 8DfL(1 + C2)2

Nµ2
+

σ

µ
√
N

(
4Df

D̃
+

2(µ−1C2
1C

2
2 + L(1 + C2)2)D̃

n

)
, (28)

where Df := f(x0)− f low and the expectation is taken with respect to R and {Sj}N−1
j=0 . To ensure

E[‖∇f(xR)‖22] ≤ ε, the number of iterations is O(1/ε2).
Remark 7. The Theorem 4 establishes the global convergence of sMin-AM for solving the problem
(20), and Theorem 5 indicates that sMin-AM attains the O(1/ε2) iteration complexity which is
asymptotically optimal for optimization methods based on a stochastic first-order oracle [43].

4 Experiments

We first tested the basic Min-AM in solving strongly convex quadratic optimization (cf. Theorem 1)
and the restarted Min-AM on logistic regression (cf. Theorem 2). Then, we applied the sMin-AM
to train deep neural networks on CIFAR [38] and ImageNet [19]. Details about the experimental
settings and more numerical results can be found in Appendix F.

Strongly convex quadratic optimization. As shown in Figure 1(a), the first intermediate residual
r

(1)
k of Min-AM exactly matches the k-th residual of CG, which verifies Theorem 1. SinceXT

k Rk can
be ill-conditioned when k is large, it is found that AM-I(∞) fails to coincide with CG and Min-AM
in the later iterations. The eigenvalue estimates computed by Min-AM also well approximate the
true eigenvalues of the Hessian matrix, which is consistent with our analysis in Section 3.3. In
Appendix F.1, we also give a discussion about the cost of the eigenvalue estimation procedure.

Regularized logistic regression. We conducted the regularized logistic regression on the datasets
“madelon” and “a9a” from LIBSVM [14]. The compared methods were GD, nonlinear CG (NCG)
with line-search, Nesterov’s accelerated gradient (NAG), L-BFGS(m), AM(m), and the ST-AM. We
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applied the standard k-step Lanczos algorithm [24] to compute 100 Ritz values of∇2f(x∗), in which
the smallest and largest ones were used for the setting of µ,L in NAG. The results in Figure 1 show
that Min-AM is competitive with AM(20). It converges much faster than AM(1), L-BFGS(1) (i.e.
memoryless BFGS), NCG, and NAG, and outperforms ST-AM. Also, in both datasets, the eigenvalue
estimates from Min-AM are accurate enough to approximate the largest and the smallest Ritz values,
even though the objective function is non-quadratic. More results including the effect of βk can be
found in Appendix F.2.

Table 1: Experiments on CIFAR-10/CIFAR-100. “-” means failing to complete the test in our device.

(a) Final TOP1 test accuracy (mean ± standard deviation) (%) on CIFAR-10/CIFAR-100.

Method CIFAR-10 CIFAR-100

VGG16 ResNet18 ResNet20 ResNet44 ResNet56 WRN16-4 ResNet18 ResNeXt DenseNet

SGDM 93.52±.15 94.82±.15 92.03±.16 93.10±.23 93.47±.28 94.90±.09 77.27±.09 78.41±.54 78.49±.12
Adam 92.29±.09 93.03±.07 91.17±.13 92.28±.62 92.39±.23 92.45±.11 72.41±.17 73.57±.17 70.80±.23
AdaHessian 93.42±.11 94.36±.09 91.92±.32 92.74±.11 92.40±.06 94.04±.12 76.59±.42 - -
SAM(1) 93.35±.12 94.95±.10 92.10±.05 93.15±.23 93.44±.19 95.02±.32 77.06±.48 79.12±.40 79.58±.29
SAM(10) 93.59±.11 95.17±.10 92.43±.19 93.57±.14 93.77±.12 95.23±.07 78.13±.14 79.31±.27 80.09±.52
ST-AM 93.67±.25 95.27±.04 92.39±.11 93.52±.02 93.69±.18 95.21±.09 77.91±.22 79.53±.34 80.36±.25
sMin-AM 94.09±.12 95.28±.04 92.42±.16 93.72±.27 93.82±.10 95.13±.03 78.26±.18 79.64±.19 79.88±.09

(b) The memory and computation cost compared with SGDM. The notations “m",“t/e", and “t" are abbreviations
of memory, per-epoch time, and total training time, respectively.

Cost CIFAR-10/ResNet18 CIFAR-10/VGG16 CIFAR-100/ResNeXt50 CIFAR-100/DenseNet121
(× SGDM) m t/e t m t/e t m t/e t m t/e t

SGDM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SAM(10) 1.73 1.78 1.00 2.51 2.59 2.59 1.30 1.16 0.58 1.16 1.19 0.60
ST-AM 1.05 1.46 0.82 1.55 1.91 1.67 1.04 1.07 0.54 1.01 1.11 0.55
sMin-AM 1.01 1.15 0.64 1.35 1.25 0.78 1.03 1.00 0.50 1.01 1.09 0.55
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Figure 2: Experiment of training ResNet50 on ImageNet.

Experiments on CIFAR. We applied sMin-AM to train VGG16 [57], ResNet18/20/44/56 [30],
WideResNet16-4 [66] (abbr. WRN16-4) on CIFAR-10, and train ResNet18, ResNeXt50 [64],
DenseNet121 [34] on CIFAR-100. The compared optimizers were SGDM [49], Adam [36], Ada-
Hessian [65], stochastic AM (SAM) [62], and ST-AM [63]. Since the experimental setting was the
same as [62, 63], their results were used for reference. Table 1(a) reports the final test accuracy of
each optimizer for training 160 epochs. It shows sMin-AM improves SAM(1) and has comparable
accuracy to SAM(10). sMin-AM can also use fewer epochs for the training. By setting the accuracy
of SGDM as baseline, Table 1(b) shows the memory, per-epoch time, and the total time for an
optimizer to achieve a comparable accuracy to SGDM (more details about the number of epochs and
final test accuracy can be found in Table 2 in Appendix F.3.2). sMin-AM significantly reduces the
memory cost of SAM(10) and the total training time is less than SGDM.

Experiments on ImageNet. We trained ResNet50 on ImageNet with SGDM and sMin-AM. Figure 2
shows that the training process of sMin-AM is faster than SGDM. sMin-AM can achieve both higher
train accuracy and higher test accuracy in fewer epochs. In our test, we found the memory cost of
sMin-AM was 1.04 times that of SGDM, and the per-epoch training time of sMin-AM was 1.01
times that of SGDM. Hence, for neural network training on a larger dataset, sMin-AM can still be
competitive with SGDM.
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5 Conclusion

In this paper, we propose Min-AM, a variant of AM(1) with minimal memory size. Min-AM only
stores one recursively modified vector pair and is essentially equivalent to the full-memory Type-I
AM in strongly convex quadratic optimization. We establish the convergence properties of Min-AM
under deterministic and stochastic settings. For deterministic optimization, we also propose an
economical method to estimate the spectrum of Hessian, which can be used to adaptively choose the
mixing parameters. The experimental results validate the effectiveness of our methods.
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