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ABSTRACT

Image restoration aims to recover a high-quality clean image from its degraded
version. Recent progress in image restoration has demonstrated the effectiveness
of All-in-One image restoration models in addressing various unknown degrada-
tions simultaneously. However, these existing methods typically utilize the same
parameters to tackle images with different types of degradation, forcing the model
to balance the performance between different tasks and limiting its performance on
each task. To alleviate this issue, we propose HAIR, a Hypernetworks-based All-
in-One Image Restoration plug-and-play method that generates parameters based
on the input image and thus makes the model to adapt to specific degradation dy-
namically. Specifically, HAIR consists of two main components, i.e., Classifier and
Hyper Selecting Net (HSN). The Classifier is a simple image classification network
used to generate a Global Information Vector (GIV) that contains the degradation
information of the input image, and the HSN is a simple fully-connected neural
network that receives the GIV and outputs parameters for the corresponding mod-
ules. Extensive experiments demonstrate that HAIR can significantly improve the
performance of existing image restoration models in a plug-and-play manner, both
in single-task and All-in-One settings. Notably, our proposed model Res-HAIR,
which integrates HAIR into the well-known Restormer, can obtain superior or com-
parable performance compared with current state-of-the-art methods. Moreover,
we theoretically demonstrate that to achieve a given small enough error, our pro-
posed HAIR requires fewer parameters in contrast to mainstream embedding-based
All-in-One methods. Code is available in supplementary materials.

1 INTRODUCTION

Image restoration is an important task in the field of computer vision, aiming to reconstructing
high-quality images from their degraded states. The presence of adverse conditions such as noise,
haze, or rain can severely diminish the effectiveness of images for a variety of applications, such as
autonomous navigation (Valanarasu et al., 2022; Chen Yu-Wei, 2023), augmented reality (Girbacia
et al., 2013; Saggio et al., 2011; Dang et al., 2020). Therefore, developing robust image restoration
methods is of great importance. The use of deep learning in this domain has made remarkable
progress, as evidenced by a suite of recent methodologies (Zhang et al., 2017b; Liang et al., 2021;
Zamir et al., 2022; Chen et al., 2022b; Li et al., 2023; Dudhane et al., 2024). Nonetheless, the
predominant approach in current research is to employ task-specific models, each tailored to address
a particular type of degradation (Zhang et al., 2018b; Liang et al., 2021; Zamir et al., 2022; Chen
et al., 2022b;a). This tailored approach, while precise, presents a constraint in terms of universality,
as it restricts the applicability of models to scenarios with varied or unknown degradations (Zamir
et al., 2020a;b; Purohit et al., 2021). To overcome this limitation, many researchers have focused
on developing All-in-One image restoration models recently. These models are designed to tackle
various degradations using one single model. Pioneering efforts in this area (Li et al., 2022; Zamir
et al., 2021; Valanarasu et al., 2022; Potlapalli et al., 2024; Zhang et al., 2023; Dudhane et al., 2024;
Conde et al., 2024) have utilized a variety of advanced techniques such as contrastive learning (Li
et al., 2022), meta-learning (Zhang et al., 2023), visual prompting methods (Potlapalli et al., 2024;
Wang et al., 2023; Dudhane et al., 2024; Li et al., 2023; Conde et al., 2024). These approaches have
undoubtedly made substantial contributions to this field.

However, these All-in-One models share a common drawback, i.e. they rely on a single model
with fixed parameters to address various degradations. This one-size-fits-all method can hinder
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Figure 1: Comparisions between our method and previous methods in the inference stage. (a) Previous
All-in-One image restoration methods. These methods utilize a single model with the same parameters
to tackle various degradations. (b) Our proposed HAIR. Given a certain degraded image, we first use
a fixed encoder to extract the image feature, which is then fed into the Hypernetworks to generate the
dynamic parameters for the decoder, and finally obtain the restored image. Note that "dynamic" and
"fixed" in this paper are specially for the main networks, as discussed in Appendix A.3.1.

the model’s effectiveness when dealing with multiple degradations simultaneously. For example,
when viewed through the lens of frequency domain analysis, haze is characterized as low-frequency
noise, in contrast to rain, which is considered high-frequency interference. An effective dehazing
model acts as a low-pass filter, preserving high-frequency details, whereas deraining requires the
opposite—enhancing the high-frequency components. Consequently, a model must balance these
conflicting demands of different degradations, thus limiting its performance on each task. We provide
more detailed clarifications of this problem in Appendix A.2.1.

To mitigate the aforementioned issue, we propose a Hypernetworks-based All-in-One Image
Restoration method (HAIR) in this paper. The core idea of HAIR is to generate the weight parameters
based on the input image, and thus can dynamically adapt to different degradation information.
HAIR employs Hypernetworks (Ha et al., 2016), a trainable neural network, to take the degradation
information from the input image and produce the corresponding parameters. Specifically, for a given
unknown degraded image, we first utilize a classifier, similar to those used in image classification
networks, to obtain its Global Information Vector, which contains crucial discriminative information
about various types of image degradation (as shown in Fig. 2 (c-d)). This vector is then used to
generate the necessary parameters, as illustrated in Fig. 1. With these dynamically parameterised
modules, we ultimately achieve the restored image. In brief, our contributions include:

• We propose HAIR, a novel Hypernetworks-based All-in-One image restoration method that
is capable of dynamically generating parameters based on the degradation information of
input image. HAIR consists of two components, i.e. Classifier and Hyper Selecting Nets,
both of which function as a plug-in-and-play module. Extensive experiments demonstrate
that HAIR can significantly improve the performance of existing image restoration models
in a plug-and-play manner, both in single-task and All-in-One settings.

• By incorporating HAIR into Restormer (Zamir et al., 2022), we propose a new All-in-One
model, i.e. Res-HAIR. To the best of our knowledge, our method is the first to apply data-
adaptive Hypernetworks to All-in-One image restoration models. Extensive experiments
validate that the proposed Res-HAIR can achieve superior or comparable performance
compared with current state-of-the-art methods across a variety of image restoration tasks.

• We theoretically prove that, for a given small enough error threshold ϵ in image restoration
tasks, HAIR requires fewer parameters compared to mainstream embedding-based All-in-
One methods like (Li et al., 2022; Potlapalli et al., 2024; Conde et al., 2024).

2 RELATED WORKS

2.1 ALL-IN-ONE IMAGE RESTORATION

While single degradation methods do achieve great success (Liang et al., 2021; Zamir et al., 2022;
Chen et al., 2022b), All-in-One image restoration, which aims to utilize a single deep restoration
model to tackle multiple types of degradation simultaneously without prior information about the
degradation of the input image, has gained more attention recently (Jiang et al., 2023; Potlapalli
et al., 2024; Zhang et al., 2023; Conde et al., 2024; Zamfir et al., 2024). The pioneer work AirNet (Li
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(c) HAIR (ours)
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(d) HAIR (ours)

Figure 2: Comparison of tSNE plots for the degradation embeddings between previous methods and
our HAIR (i.e. the GIVs). Each distinct color represents a unique degradation type. As shown in (c),
our HAIR excels not only in recognizing various degradation types, such as noise, rain, and haze, but
also in distinguishing between the same type of degradation at varying intensities, e.g. noise with
different standard deviations. Even when confronted with composite degradations not encountered
during training, HAIR can also accurately discriminate them, i.e. the GIVs for these composite cases
located midway between the GIVs of their constituent degradations, as illustrated in (d).

et al., 2022) achieves All-in-One image restoration using contrastive learning to extract degradation
representations from corrupted images. IDR (Zhang et al., 2023) decomposes image degradations
into their underlying physical principles, achieving All-in-One image restoration through a two-stage
process based on meta-learning. With the rise of LLM (Zhao et al., 2023), prompt-based learning has
also emerged as a promising direction in image restoration tasks (Potlapalli et al., 2024; Wang et al.,
2023; Li et al., 2023). They typically produce a prompt embedding for each input image based on their
content, then inject this prompt into the model to restore the image, which is essentially a conditional
embedding. Among them, some works like DA-CLIP (Luo et al., 2023) and InstructIR (Conde et al.,
2024) insightfully leverage pre-trained large-scale text-vision models to produce the visual prompts.
Next, some methods like DaAIR (Zamfir et al., 2024) and AMIR (Yang et al., 2024) utilize routing
techniques, which leverage multiple experts within the model to handle different degradation types or
tasks by directing the input data along specialized pathways, to achieve adaptive image restoration.
However, the output of these multiple experts is also essentially a kind of conditional embedding.
Despite the success these methods have achieved, most of them typically use the same parameters for
distinct degradations and only inject the degradation information as conditional embeddings into the
model, which forces the model to balance different degradations, and thus impair the performance
of the models. Tian et al. (2024) recently employed low-rank matrix decomposition for weight
modulation, but their method relies on pre-trained, task-specific weights and prior degradation
information, lacking the dynamic parameter generation capability and adaptibility. In contrast, our
proposed HAIR can dynamically generate specific parameters for the given degraded image using a
hypernetwork and thus making the model adapt to unknown degradations better.

2.2 DATA-CONDITIONED HYPERNETWORKS

Hypernetworks (Ha et al., 2016) are a class of neural networks designed to generate weights (parame-
ters) for other networks. They can be classified into three types, i.e task-conditioned, data-conditioned,
and noise-conditioned hypernetworks (Chauhan et al., 2023). Among these methods, data-conditioned
hypernetworks are particularly noteworthy for their ability to generate weights contingent upon the
distinctive features of the input data. This capability allows the network to dynamically adapt its
behaviour to specific input patterns or characteristics, fostering flexibility and adaptability within
the model. Consequently, this results in enhanced generalization and robustness. Data-conditioned
hypernetworks have been applied in many computer vision tasks, e.g., semantic segmentation (Nirkin
et al., 2021) and image editing (Alaluf et al., 2022). Despite previous attempts to integrate hyper-
networks into image restoration (Aharon & Ben-Artzi, 2023; Fan et al., 2019), these have primarily
leveraged task-conditioned hypernetworks, which take a task embedding (like an embedding of
derain) as the input and output the weights. They have two main drawbacks: (1) They require prior
knowledge of the input image’s degradation type. (2) They cannot dynamically generate weights
based on image content. Although Klocek et al. (2019) tries to use Data-conditional Hypernetworks
in Super-Resolution, it direcly maps a coordinate to a pixel, which is unreliable. To the best of our
knowledge, our work is the first to introduce data-conditioned hypernetworks into the domain of
All-in-One image restoration.
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Figure 3: The overall framework of our proposed Res-HAIR. Res-HAIR is built by integrating our
HAIR into the popular Restormer (Zamir et al., 2022). HAIR contains two modules, i.e. Classifier
and Hyper Selecting Net (HSN). The classifier is used to yield a Global Information Vector (GIV)
Vg from the high-level feature Fg containing the degradation information of the input image. HSN
is used to dynamically generate weights for the Transformer Blocks based on GIV, customizing the
restoration process to address the specific degradation characteristics of each image.

3 METHOD

In this section, we first introduce our proposed hypernetwork-based All-in-One image restoration
module (HAIR) in detail. Then, we propose our All-in-One method (Res-HAIR) by integrating HAIR
into the popular Restormer (Zamir et al., 2022). Finally, we provide a brief theoretical analysis on the
proposed HAIR module.

3.1 HYPERNETWORK-BASED ALL-IN-ONE IMAGE RESTORATION MODULE (HAIR)

In this subsection, we introduce HAIR, a hypernetworks-based All-in-One image restoration module
designed to dynamically generate parameters for an image-to-image network based on the input
image’s features in a plug-and-play manner. HAIR comprises two main components: the Classifier
and the Hyper Selecting Net (HSN). Next, we will introduce the two components in detail.

3.1.1 CLASSIFIER

As outlined in Section 1, our approach to extracting degradation information involves designing a
straightforward Classifier akin to those used in image classification tasks. Taking Fig. 3 as an example,
we start by entering the feature Fg ∈ RH

8 ×W
8 ×8C into the backbone, which contains multiple ResNet

blocks (He et al., 2016) followed by downsampling ×2. This process is aimed at downsizing the
spatial resolution while distilling the essential information, shown as follows:

F1
g = Downsampling(ResNetBlock(Fg)),F

t
g = Downsampling(ResNetBlock(Ft−1

g ))), (1)

where t = 1, 2, 3. After three iterations, we obtain F3
g ∈ RH

64×
W
64×2C , which serves as the input of

Classifier for generating the global information vector (GIV) Vg ∈ R2C that captures the degraded
information. Specifically, GIV is computed as

Vg = GAP(F3
g), (2)

where GAP denotes Global Average Pooling. The inclusion of GAP ensures that Vg remains a one-
dimensional vector of consistent size, irrespective of the input image’s resolution. Unlike traditional
image classification networks, there is no requirement for a Softmax layer here, as its application
would confine the values of Vg within the range [0,1], potentially restricting the parameter generation
process. Moreover, the backbone can be substituted with other image classification networks, e.g.,
VGG (Simonyan & Zisserman, 2014) and Inception (Szegedy et al., 2016), with little negative impact
on performance since degradation-type classification (discrimination) is a relatively simple task.
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3.1.2 HYPER SELECTING NET

After obtaining GIV Vg from the Classifier, it is then fed into our data-conditioned hypernetworks,
i.e. Hyper Selecting Net (HSN), to generate weights for the corresponding modules. Let’s still take
Fig. 3 as an example. Given Vg ∈ R2C , a Selecting Vector Vs ∈ RN is initially computed as:

Vs = σ(FCNN(Vg)), (3)
where σ is a Softmax operation and FCNN denotes a simple fully-connected neural network. Unlike
Vg, Vs will be used to directly generate the parameters, so we need a σ to make sure Vs is positive
and ∈ [0, 1], thus making parameter generation more stable. Subsequently, the parameters w are
derived as

w =

N∑
i=1

Vs
iWi. (4)

In this formula, Vs
i represents the i-th element of Vs. The matrix W ∈ RN×P , referred to as the

Weight Box, comprises Wi ∈ RP as its i-th row. The hyperparameter N influences the total number
of parameters, with P being the count of parameters required for one corresponding module (i.e. one
Transformer Block in this example). With w determined, it is then used as the parameters of the
corresponding module. So the operation of the "HyperTrans Block" in Fig. 3 can be represented as:

x′ = Transformer_Block(x;w). (5)
Here, x is the input and x′ is the output. As the Transformer Block (see Appendix A.4) is based
on convolution, w ∈ RP is reshaped into four-dimensional tensors to serve as convolution kernels
for the Transformer Block. To reduce the number of parameters, the transformer blocks at the same
decoder level share one weight box, and each transformer block is independently equipped with its
own FCNN.

3.2 PROPOSED ALL-IN-ONE IMAGE RESTORATION MODEL (RES-HAIR)

Integrating HAIR into an existing image-to-image network involves a simple two-step process: (1)
Insert the Classifier at the junction between the first and second halves of the network to produce a
Global Information Vector (GIV) from the features of the first half. (2) Incorporate HSNs into the
second half of the network, using the GIV to generate weights for all modules within this section
dynamically. In this work, we integrate our proposed HAIR module into the popular image restoration
model Restormer (Zamir et al., 2022), and propose our All-in-One model Res-HAIR. Although we
only use the example of integrating HAIR with Restormer to illustrate the process, this example is
representative, and integration with other networks follows in a virtually identical way.

Overall Architecture. As shown in Fig. 3, our network architecture is consistent with Restormer
(Zamir et al., 2022). Given a certain degraded image input X ∈ RH×W×3, Res-HAIR utilizes a
3× 3 convolution to transform X into feature embeddings F0 ∈ RH×W×C , where C denotes the
number of channels. These feature embeddings are then proceeded through a 4-level hierarchical
encoder-decoder, resulting in deep features Fr. Each level of the encoder-decoder incorporates
several Transformer blocks, with an increasing number from the top to the bottom level, ensuring
computational efficiency. The left three blue "Transformer Blocks" function as an Encoder, designed
to extract features from F0 and ultimately produce a global feature map Fg ∈ RW

8 ×H
8 ×8C with

a large receptive field. Fg is then input into a Classifier to yield a Global Information Vector
(GIV) Vg ∈ R2C . The right four orange "HyperTrans Blocks" operate as a Decoder, aiming to
adaptively fuse features at each Decoder level based on degradation, culminating in a restored image
X̂. Specifically, at each Decoder level, the HyperTrans Block receives two inputs, i.e. the input feature
and the GIV Vg. Vg is fed into the Hyper Selecting Net to generate weights for the corresponding
Transformer Blocks, which are then applied to the input feature to produce the output. It is important
to note that all HyperTrans Blocks use the same Vg derived from Fg. Since the weights in the
Decoder are generated based on Vg, which contains the degradation information of X, our method
can thus adapt to different degraded images.

3.3 THEORETICAL ANALYSIS

In this subsection, we first interpret the generated weights from a selection perspective and then
provide a brief theoretical analysis of model complexity.
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3.3.1 RETHINKING WEIGHT GENERATION VIA A SELECTING PERSPECTIVE

Considering the Weight Box as part of the FCNN, it may not be immediately clear why such a direct
generation of weight from a network works well. This seeming lack of intuitiveness is what we aim
to address. Before delving into the explanation, we first introduce a proposition.
Proposition 1. (Convolution operations exhibit the distributive law over addition) Let x ∈
RH×W×C be the input feature, and let wi, i = 1, 2, · · · , n represent the convolution kernels.
The law is mathematically expressed as:

x ∗ (
n∑

i=1

wi) =

n∑
i=1

(x ∗ wi) (6)

where ’*’ denotes the standard 2-dimensional convolution.

The following formula then becomes evident:

x ∗w = x ∗

(
N∑
i=1

Vs
iWi

)
=

N∑
i=1

(
x ∗ (Vs

iWi)
)
=

N∑
i=1

Vs
i (x ∗Wi) , (7)

where
∑N

i Vs
i = 1 holds due to the property of Softmax operation. Essentially, the convolution

with the generated weights is equivalent to a weighted sum of convolutions between the input x and
each kernel Wi in the Weight Box. This process can be seen as a process of selecting convolution
kernels. If we view each Wi as an expert, it’s also like the Mixture-of-Experts pattern used in
(Zamfir et al., 2024). For instance, with a Weight Box W ∈ R2×P that includes a low-pass W1 and
a high-pass W2, the rainy input x1 would ideally have a larger Vs

1 to filter out high-frequency noise,
while a smaller Vs

2 would help retain details. In contrast, for a hazy input x2, a larger Vs
2 would be

necessary to mitigate low-frequency haze. Although real-world degradations can be more complex,
our HSN can adaptively select the appropriate weights. This insight into the selection process helps
us understand HAIR, i.e., HSN produces a tailored Selecting Vector and adaptively chooses the most
suitable convolution kernel for each input. Given that core operations such as convolution and matrix
multiplication follow the distributive law over addition, HAIR is universal and can be integrated into
various architectures such as Transformer (Vaswani et al., 2017) and Mamba (Gu & Dao, 2023).

3.3.2 A BRIEF ANALYSIS OF MODEL COMPLEXITY

In Section 2.2, we claim that our Hypernetworks-based method can work better than conditional
embedding-based methods such as AirNet (Li et al., 2022) and PromptIR (Potlapalli et al., 2024).
This section will provide a simple proof for this point. In the context of All-in-One image restoration,
we aim to find a function f : R3HW −→ R3HW to map a degraded image X to a restored image X̂ by
minimizing the distance between X̂ and the ground truth Y = y(X)1. Mainstream methods typically
utilize a network g(X, e(X)) to learn the mapping, where e(X) ∈ Rk contains the degradation
embedding of the input image, such as the prompt in PromptIR (Potlapalli et al., 2024). These
methods send e(X) together with X into the network to get X̂. For our HAIR, the network can be
formulated as h(X; θ(e(X))), where θ is a function that maps e(X) into the parameters of h. We
define the distance between the two functions as

d(g, y) = min
g

max
X

∥g(X, e(X))− y(X)∥∞. (8)

Given that vector functions can be complex, we define a scalar function f i : RM −→ R(i = 1, · · ·M)
of a vector function f : RM −→ RM . Since f i is the i-th element of f , then we have

d(g, y) = min
g

max
X

max
i

|gi(X)− yi(X)|

= min
g

max
i

max
X

|gi(X)− yi(X)|

= min
g

max
X

|gt(g)(X)− yt(g)(X)|.

(9)

Since the value range of i is limited, given the function g, we can always find an integer t(g) to
replace maxi. To complete the proof, we need some assumptions.

1For the sake of discussion, the following tensors are generally regarded as flattened one-dimensional vectors.
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Assumption 1. The target function yi ∈ Wr,3HW , i = 1, 2, · · · 3HW . The Sobolev space Wr,3HW

is the set of functions that are r-times differentiable (r ≥ 1) with all r-th order derivatives being
continuous and bounded by the Sobolev norm ≤ 1, defined on R3HW .

Intuitively, since yi maps the degraded image to a single pixel of the clean image, a slight disturbance
in the degraded image should only bring a slight difference to the single pixel, so yi can be smooth and
differentiable, or at least continue. Moreover, the domain and range of y are restricted to [0, 1]3HW ,
with most pixels far less than 1, the Sobolev norm of yi can generally be less than 1 and thus this
assumption generally holds.
Assumption 2. For various functions (e.g. network) g, the integer t(g) in Eq. (9) remains the same.

In our context, g represents the same network with different weights during training. No matter how
the parameters update, the most "difficult" degraded image generally remains the same one, e.g., the
one with very severe degradation. Within this "difficult" image, the most "difficult" pixel should
also remain the same, e.g. the pixel that varies dramatically from its clean version. In this way, we
simplify the vector function g to scalar function gt(g). With the two assumptions and Theorem 2, 3, 4
and all the assumptions in (Galanti & Wolf, 2020), we can obtain the following theorems:
Theorem 1. For conditional embedding-based All-in-One image restoration methods g(X, e(X))
like PromptIR (Potlapalli et al., 2024), to achieve error d(g, y) ≤ ϵ, the complexity (number of
parameters) of the corresponding model is at least Ng = Ω

(
ϵ−min(3HW+k,6HW )

)
, where k is the

dimensionality of the embedding vector. Typically k = Ω(HW ) and k ≥ 3HW .
Theorem 2. For Hypernetworks based methods h(X; θ(e(X))) like our HAIR, to achieve error
d(h, y) ≤ ϵ, the complexity of the corresponding model is Nθ = O(ϵ−3HW/r), where r ≥ 1.

The two theorems demonstrate that to achieve the same error ϵ, our proposed HAIR requires fewer
parameters than conditional embedding-based methods as long as ϵ is small enough. Please refer to
(Galanti & Wolf, 2020) and Appendix A.1 for detailed proof of Theorem 1 and 2.

4 EXPERIMENTS

The experimental settings follow previous research on general image restoration (Zhang et al., 2023;
Potlapalli et al., 2024) in two different configurations: (a) All-in-One and (b) Single task. In the All-in-
One configuration, a singular model is trained to handle multiple types of degradation, encompassing
both three and five unique degradations. In contrast, the Single-task configuration involves training
individual models dedicated to specific restoration tasks.

4.1 EXPERIMENTING PREPARATION

Implementation Details. Our Res-HAIR method is designed to be end-to-end trainable, eliminating
the need for pre-training any of its components. The architecture comprises a 4-level encoder-decoder
structure, with each level equipped with a varying number of Transformer blocks. Specifically,
the number of blocks increases progressively from level-1 to level-4, following the sequence [4, 6,
6, 8]. HyperTrans Blocks are employed throughout level-4 and the decoding stages of levels 1-3.
Additionally, the Weight Box parameter N is set according to the sequence [5, 7, 7, 9] for each
respective level. In the All-in-One setting, the model is trained with a batch size of 32, while in
the single-task setting, a batch size of 8 is used. The network optimization is guided by an L1 loss
function, employing the AdamW optimizer (Loshchilov et al., 2017) with parameters β1 = 0.9 and
β2 = 0.999. The learning rate is set to 2e− 4 for the initial 150 epochs and then changed to 2e− 5
for the final 10 epochs. To enhance the training data, input patches of size 128 × 128 are utilized,
with random horizontal and vertical flips applied to the images to augment the dataset.

Datasets. We follow previous approaches (Li et al., 2022; Potlapalli et al., 2024; Zhang et al., 2023)
for our All-in-One and single-task experiments, using these benchmark datasets. For single-task
image denoising, we use the BSD400 (Arbelaez et al., 2010) and WED (Ma et al., 2016) datasets,
adding Gaussian noise with levels σ ∈ {15, 25, 50} to generate training images. Testing is performed
on the BSD68 (Martin et al., 2001) and Urban100 (Huang et al., 2015) datasets. For deraining, we
employ the Rain100L dataset (Yang et al., 2020). Dehazing experiments utilize the SOTS dataset (Li
et al., 2018). Deblurring and low-light enhancement tasks use the GoPro (Nah et al., 2017) and
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LOL-v1 (Wei et al., 2018) datasets, respectively. To create a comprehensive model for all tasks, we
combine these datasets and train them in a setting that covers three or five types of degradations. For
single-task models, training is conducted on the respective dataset.

Table 1: Comparison to state-of-the-art on three degradations. PSNR (dB, ↑) and SSIM (↑) metrics
are reported on the full RGB images with (∗) denoting methods that are not blind (need prior
information of the degradation type). Best and second best performances are highlighted.

Method Params. Dehazing Deraining Denoising Average
SOTS Rain100L BSD68σ=15 BSD68σ=25 BSD68σ=50

BRDNet (Tian et al., 2020) - 23.23 .895 27.42 .895 32.26 .898 29.76 .836 26.34 .693 27.80 .843
LPNet (Gao et al., 2019) - 20.84 .828 24.88 .784 26.47 .778 24.77 .748 21.26 .552 23.64 .738
FDGAN (Dong et al., 2020) - 24.71 .929 29.89 .933 30.25 .910 28.81 .868 26.43 .776 28.02 .883
DL (Fan et al., 2019) 2M 26.92 .931 32.62 .931 33.05 .914 30.41 .861 26.90 .740 29.98 .876
MPRNet (Zamir et al., 2021) 16M 25.28 .955 33.57 .954 33.54 .927 30.89 .880 27.56 .779 30.17 .899
Restormer (Zamir et al., 2022) 26M 29.92 .970 35.56 .969 33.86 .933 31.20 .888 27.90 .794 31.68 .910

AirNet (Li et al., 2022) 9M 27.94 .962 34.90 .967 33.92 .933 31.26 .888 28.00 .797 31.20 .910
PromptIR (Potlapalli et al., 2024) 36M 30.58 .974 36.37 .972 33.98 .933 31.31 .888 28.06 .799 32.06 .913
InstructIR∗ (Conde et al., 2024) 16M 30.22 .959 37.98 .978 34.15 .933 31.52 .890 28.30 .804 32.43 .913
DaAIR (Zamfir et al., 2024) 6M 32.30 .981 37.10 .978 33.92 .930 31.26 .884 28.00 .792 32.51 .913

Res-HAIR (ours) 29M 30.98 .979 38.59 .983 34.16 .935 31.51 .892 28.24 .803 32.70 .919

4.2 RESULTS

All-in-One: Three degradations. We conducted a comparative evaluation of our All-in-One image
restoration model against several state-of-the-art specialized methods, including BRDNet (Tian et al.,
2020), LPNet (Gao et al., 2019), FDGAN (Dong et al., 2020), DL (Fan et al., 2019), MPRNet (Zamir
et al., 2021), AirNet (Li et al., 2022), PromptIR (Potlapalli et al., 2024), InstructIR (Conde et al.,
2024) and DaAIR (Zamfir et al., 2024). Each of these methods was trained to handle the tasks
of dehazing, deraining, and denoising. As illustrated in Table 1, our approach can significantly
outperform other competing methods, e.g. an average improvement of 0.64 dB over PromptIR. Our
method notably outperforms existing benchmarks on SOTS and Rain100L datasets, by exceeding the
performance of the previous best methods by margins of 0.4 dB and 0.61 dB respectively.

All-in-One: Five Degradations. Following recent studies (Zhang et al., 2023; Conde et al., 2024),
we have extended our approach to deblurring and low-light image enhancement, thus extending the
three-degradation setting to a more complex five-degradation setting. As demonstrated in Table 2, our
method excels by learning specialized models for each degradation type while effectively capturing the
shared characteristics between tasks. It achieves an average improvement of 2.03 dB over PromptIR
and 0.82 dB over the non-blind method InstructIR, establishing a new benchmark for state-of-the-art
performance across all five benchmarks. Notably, our method significantly outperforms our baseline
(i.e. Restormer) in various tasks. This comparison highlights the strong capability of our method as a
versatile plug-in-and-play module, enhancing the performance of the existing model with a small
amount of integration complexity, e.g. only adding 3M parameters compared with Restormer.

Single-Degradation Results. To evaluate the effectiveness of our proposed method, we provide
results in Table 3, which show the performance of individual instances of our method trained under a
single degradation protocol. Specifically, the single-task variant dedicated to deraining consistently
achieves higher performance than PromptIR and InstructIR by margins of 1.96 dB and 1.02 dB,
respectively. When applied to image denoising, our method also demonstrates superiority over the
aforementioned approaches, with an average improvement of 0.21 dB and 0.47 dB, respectively.
These results underscore the significant performance improvements delivered by our method.

Visual Results. The visual results captured under three degradation scenarios are presented in Fig. 4.
These results clearly demonstrate the superiority of our method in terms of visual quality. In the
denoising task at σ = 25, Res-HAIR retains more fine details compared to other methods; in the
deraining task, Res-HAIR effectively removes all rain streaks, whereas the compared methods contain
obvious rain streaks; in the dehazing task, Res-HAIR may not closely resemble the ground-truth,
yet it provides the most visually pleasing outcome and even clears the original haze present in the
ground-truth. Overall, these visual observations confirm the efficacy of our approach in enhancing
image quality across different degradation conditions.
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Table 2: Comparison to state-of-the-art on five degradations. PSNR (dB, ↑) and SSIM (↑) metrics are
reported on the full RGB images with (∗) denoting methods that are not blind (need prior information
of the degradation type). Best and second best performances are highlighted.

Method Params. Dehazing Deraining Denoising Deblurring Low-Light Average
SOTS Rain100L BSD68σ=25 GoPro LOLv1

NAFNet (Chen et al., 2022a) 17M 25.23 .939 35.56 .967 31.02 .883 26.53 .808 20.49 .809 27.76 .881
DGUNet (Mou et al., 2022) 17M 24.78 .940 36.62 .971 31.10 .883 27.25 .837 21.87 .823 28.32 .891
SwinIR (Liang et al., 2021) 1M 21.50 .891 30.78 .923 30.59 .868 24.52 .773 17.81 .723 25.04 .835
Restormer (Zamir et al., 2022) 26M 24.09 .927 34.81 .962 31.49 .884 27.22 .829 20.41 .806 27.60 .881

DL (Fan et al., 2019) 2M 20.54 .826 21.96 .762 23.09 .745 19.86 .672 19.83 .712 21.05 .743
Transweather (Valanarasu et al., 2022) 38M 21.32 .885 29.43 .905 29.00 .841 25.12 .757 21.21 .792 25.22 .836
TAPE (Liu et al., 2022) 1M 22.16 .861 29.67 .904 30.18 .855 24.47 .763 18.97 .621 25.09 .801
AirNet (Li et al., 2022) 9M 21.04 .884 32.98 .951 30.91 .882 24.35 .781 18.18 .735 25.49 .847
IDR (Zhang et al., 2023) 15M 25.24 .943 35.63 .965 31.60 .887 27.87 .846 21.34 .826 28.34 .893
InstructIR∗ (Conde et al., 2024) 16M 27.00 .951 36.80 .973 31.39 .888 29.73 .890 22.83 .836 29.55 .908
DaAIR (Zamfir et al., 2024) 6M 31.97 .980 36.28 .975 31.07 .878 29.51 .890 22.38 .825 30.24 .910

Res-HAIR (ours) 29M 30.62 .978 38.11 .981 31.49 .891 28.52 .874 23.12 .847 30.37 .914

Table 3: Comparison to state-of-the-art for single degradations. PSNR (dB, ↑) and SSIM (↑) metrics
are reported on the full RGB images. Best and second best performances are highlighted.

(a) Dehazing

Method SOTS

DehazeNet (Cai et al., 2016) 22.46 .851
MSCNN (Ren et al., 2016) 22.06 .908
EPDN (Qu et al., 2019) 22.57 .863
FDGAN (Dong et al., 2020) 23.15 .921
Restormer (Zamir et al., 2022) 30.87 .969

AirNet (Li et al., 2022) 23.18 .900
PromptIR (Potlapalli et al., 2024) 31.31 .973
InstructIR (Conde et al., 2024) 30.22 .959
DaAIR Zamfir et al. (2024) 31.99 .981

Res-HAIR (ours) 31.68 .980

(b) Deraining

Method Rain100L

DIDMDN (Zhang & Patel, 2018) 23.79 .773
UMR (Yasarla & Patel, 2019) 32.39 .921
SIRR (Wei et al., 2019) 32.37 .926
MSPFN (Jiang et al., 2020) 33.50 .948
Restormer (Zamir et al., 2022) 36.74 .978

AirNet 34.90 .977
PromptIR 37.04 .979
InstructIR 37.98 .978
DaAIR 37.78 .982

Res-HAIR (ours) 39.00 .985

(c) Denoising

Method σ=15 σ=25 σ=50

CBM3D (Dabov et al., 2007) 33.93 .941 31.36 .909 27.93 .833
DnCNN (Zhang et al., 2017a) 32.98 .931 30.81 .902 27.59 .833
IRCNN (Zhang et al., 2017b) 27.59 .833 31.20 .909 27.70 .840
FFDNet (Zhang et al., 2018a) 33.83 .942 31.40 .912 28.05 .848

BRDNet (Tian et al., 2020) 34.42 .946 31.99 .919 28.56 .858
AirNet 34.40 .949 32.10 .924 28.88 .871
PromptIR 34.77 .952 32.49 .929 29.39 .881
InstructIR 34.12 .945 31.80 .917 28.63 .861
DaAIR 34.55 .949 32.24 .924 29.09 .872

Res-HAIR (ours) 34.93 .953 32.70 .931 29.65 .885

4.3 ABLATION STUDIES

We have done several ablation studies to evaluate the effectiveness of our proposed HAIR.

Effectiveness of Classifier and Hyper Selecting Net. As detailed in Table 4, we study the impact of
the proposed modules in four settings: (a) The model aligns with the Restormer architecture (Zamir
et al., 2022). (b) In this configuration, the Global Information Vector (GIV) is directly used as
conditional embeddings for the Transformer Blocks in the Decoder, rather than for weight generation.
(c) The GIVs are designated as independently trainable parameters, each randomly initialized, with
the Decoder’s Transformer Blocks having their distinct GIVs. (d) This setup incorporates both
components. The results demonstrate the indispensability of both components. With the addition of
only 3M parameters and no change to the logical structure, Res-HAIR outperforms Restormer by 1.7
dB in PSNR, demonstrating its simplicity and effectiveness.

Denoise
Derain

Dehaze

Input AirNet PromptIR Res-HAIR (ours) Ground Truth

Input AirNet PromptIR Res-HAIR (ours) Ground Truth

InstructIR

InstructIR

Figure 4: Visual comparison on various degradation settings.
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Position of Classifier (and HyperTrans Blocks). In our approach, the Classifier is positioned after
the first three Encoder levels, with the subsequent four Decoder levels employing HyperTrans Blocks,
constituting a 3+4 configuration. The rationale for this design choice is demonstrated in Table 5. As
can be seen, the optimal placement for the Classifier is at the network’s midpoint. This positioning
takes advantage of the expansive receptive field of the features post the network’s halfway point,
while allowing the HSN to dynamically generate parameters for the remaining modules. Furthermore,
it is crucial to strike a balance between the receptive field size of the features fed into the Classifier
and the count of HyperTrans Blocks utilized, ensuring the model’s efficiency and adaptability.

Table 4: Impact of key components. Results are
from single deraining task on Rain100L.

Setting Prams. Classifier HSN PSNR SSIM

(a)(baseline) 26M ✗ ✗ 36.74 .978
(b) 27M ✓ ✗ 36.88 .979
(c) 28M ✗ ✓ 36.76 .979
(d) (ours) 29M ✓ ✓ 39.00 .985

Table 5: Impact of position. Results are from
Denoise task on Urban100 (σ=25).

Setting (1+6) (2+5) (4+3) (5+2) (6+1) (3+4) (ours)

PSNR 32.45 32.56 32.68 32.61 32.51 32.70
SSIM 0.927 0.929 0.931 0.930 0.927 0.931

HAIR for Different Baselines. We have previously posited that HAIR is essentially a plug-in-and-
play module which is readily integrable with any existing network architecture. To substantiate this
claim, we have implemented HAIR on various baselines. As depicted in Table 6, we selected three
efficacious image restoration models, i.e. Transweather (Valanarasu et al., 2022), AirNet (Li et al.,
2022), and Restormer (Zamir et al., 2022) for integration with HAIR. Specifically, we have integrated
the Classifier at the network’s midpoint for each method and transitioned the subsequent layers
to Hypernetworks-based modules. The results show that our HAIR can significantly improve the
performance of these baselines. Additionally, our HAIR outperforms PromptIR as a plug-in-and-play
module, demonstrating its better application value.

Table 6: HAIR for different baseline architectures. PSNR (dB, ↑) and SSIM (↑) metrics are reported
on the full RGB images. Best performances are highlighted.

Method Main Operation Params Dehazing Deraining Denoising Deblurring Low-Light Average
SOTS Rain100L BSD68σ=25 GoPro LOLv1

Transweather
Self-Attention

38M 21.32 .885 29.43 .905 29.00 .841 25.12 .757 21.21 .792 25.22 .836
Transweather+PromptIR 51M 22.89 .920 29.79 .913 29.95 .877 25.74 .781 23.02 .849 26.28 .868
Transweather+HAIR 42M 23.66 .935 32.34 .947 29.96 .875 26.33 .802 23.16 .858 27.09 .884

AirNet
Convolution

9M 21.04 .884 32.98 .951 30.91 .882 24.35 .781 18.18 .735 25.49 .847
AirNet+PromptIR 14M 21.34 .883 33.52 .953 30.92 .882 24.37 .786 18.18 .737 25.67 .848
AirNet+HAIR 10M 22.15 .899 34.56 .957 30.94 .884 25.44 .792 18.24 .740 26.27 .854

Restormer
Convolution

26M 24.09 .927 34.81 .962 31.49 .884 27.22 .829 20.41 .806 27.60 .881
Restormer+PromptIR 36M 30.61 .974 36.17 .973 31.25 .887 27.93 .851 22.89 .842 29.77 .905
Restormer+HAIR 29M 30.62 .978 38.11 .981 31.49 .891 28.52 .874 23.12 .847 30.37 .914

5 CONCLUSION & FUTURE PROSPECT

This paper introduces HAIR, a novel plug-and-play Hypernetworks-based module capable of being
easily integrated and adaptively generating parameters for different networks based on the input image.
Our method comprises two main components: the Classifier and the Hyper Selecting Net (HSN).
Specifically, the Classifier is a simple image classification network with Global Average Pooling,
designed to produce a Global Information Vector (GIV) that encapsulates the global information
from the input image. The HSN functions as a fully-connected neural network, receiving the GIV
and outputting parameters for the corresponding modules. Extensive experiments indicate that HAIR
can significantly enhance the performance of various image restoration architectures at a low cost
without necessitating any changes to their logical structures. By incorporating HAIR into the widely
recognized Restormer architecture, we have achieved State-Of-The-Art performance on a range of
image restoration tasks. The potential for further exploiting data-conditioned Hypernetworks in tasks
such as image restoration, editing, and generation is substantial, given their robust adaptability to
diverse inputs over the mainstream conditional embedding techniques.
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A APPENDIX

A.1 DETAILED PROOF OF THEOREM 1, THEOREM 2

Notations We consider X = [−1, 1]m1 and I = [−1, 1]m2 and denote, m := m1 +m2. Here X
stands for the set of input images X, meanwhile I refers to the set of degradation information e(X).
For a closed set X ⊂ Rn, we denote by Cr(X) the linear space of all r-continuously differentiable
functions h : X → R on X equipped with the supremum norm ∥h∥∞ := maxx∈X ∥h(x)∥1.

Theorem 3. (The Theorem 2 in (Galanti & Wolf, 2020)) Let σ be a universal, piece-wise C1(R)
activation function with σ′ ∈ BV (R) and σ(0) = 0. Let Ee,q be a neural embedding method. Assume
that e is a class of continuously differentiable neural network e with zero biases, output dimension
k = O(1) and C(e) ≤ ℓ1 and q is a class of neural networks q with σ activations and C(q) ≤ ℓ2. Let
Y := W1,m. Assume that any non-constant y ∈ Y cannot be represented as a neural network with
σ activations. If the embedding method achieves error d(Ee,q,Y) ≤ ϵ, then, the complexity of q is:
Nq = Ω

(
ϵ−(m1+m2)

)
.

The notation BV (R) stands for the set of functions of bounded variation,

BV (R) :=
{
f ∈ L1(R) | ∥f∥BV < ∞

}
where, ∥f∥BV := sup

ϕ∈C1
c (R)

∥ϕ∥∞≤1

∫
R
f(x) · ϕ(x) dx (10)

Note that a distinct neural network e is not mandatory. For example, the "prompts" in PromptIR (Pot-
lapalli et al., 2024) are a set of trainable parameters that do not require a separate network to generate
them. Yet, the conclusion remains the same even if network e is non-existent.

Theorem 4. (The Theorem 3 in (Galanti & Wolf, 2020)) In the setting of Theorem 3, except k is
not necessarily O(1). Assume that the first layer of any q ∈ q is bounded ∥W 1∥1 ≤ c, for some
constant c > 0. If the embedding method achieves error d(Ee,q,Y) ≤ ϵ, then, the complexity of q is:
Nq = Ω

(
ϵ−min(m,2m1)

)
.

Theorem 5. (The Theorem 4 in (Galanti & Wolf, 2020)) Let σ be as in Theorem 3. Let y ∈ Y = Wr,m

be a function, such that, yI cannot be represented as a neural network with σ activations for all
I ∈ I. Then, there is a class, g, of neural networks with σ activations and a network f(I; θf ) with
ReLU activations, such that, h(x, I) = g(x; f(I; θf )) achieves error ≤ ϵ in approximating y and
Ng = O

(
ϵ−m1/r

)
.

In the realm of image restoration, m1 equals 3HW , and m2 equals k, where k denotes the dimen-
sionality of the flattened degradation embedding. In our method, k is consistent with the shape of the
Global Information Vector (GIV), specifically 2C, and thus is O(1). Conversely, in PromptIR (Pot-
lapalli et al., 2024), k is dynamic and contingent on the resolution of the input image, precluding
it from being O(1). Theorem 5 indicates that the complexity for a Hypernetworks-based method
to attain an error of ϵ is O

(
ϵ−3HW/r

)
. Theorems 3 and 4 collectively suggest that the complexity

for embedding-based methods is at least Ω
(
ϵ−min(3HW+k,6HW )

)
. This comparison illustrates that

Hypernetworks-based methods like HAIR may require fewer parameters to reach a given error
threshold compared to their embedding-based counterparts.

A.2 DISCUSSION

A.2.1 HAIR FOR CONFLICTING DEGRADATIONS.

As previously discussed in the Introduction (Section 1), the performance of conventional All-in-One
image restoration methods, which rely on a single model with static parameters, can be significantly
compromised when dealing with conflicting image degradations. To demonstrate this, we trained
models on various combinations of datasets, each representing different types of degradations, and
subsequently evaluated these models on their respective benchmarks. The outcomes are presented in
Tables 7 and 8.

From a frequency domain analysis perspective, haze is identified as low-frequency noise, whereas
rain and Gaussian noise are categorized as high-frequency disturbances. Conflicts arise when the
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degradations in a combined scenario include both low- and high-frequency noise components. Ac-
cording to Table 7, it is evident that the presence of conflicting degradations, such as the combination
of noise and haze or rain and haze, can severely degrade the model’s performance. In contrast, when
the combined degradations do not conflict, like the combination of noise and rain, the performance
loss is minimal and may even enhance the overall performance.

Table 8 exhibits a similar trend, but with a notably reduced impact from conflicting degradations. This
reduction in performance impairment underscores the effectiveness of our proposed Hypernetworks-
based approach, which dynamically generates parameters based on the input image’s content. This
adaptability allows our method to mitigate the performance loss typically associated with conflicting
degradations.

Table 7: Performance of the PromptIR (Potlapalli et al., 2024), when trained on different combinations
of degradation types (tasks) i.e., removal of gaussian noise, rain and haze. Note that the "combination"
here stands for combination of Datasets with single degradations instead of composite degradations.
"Conflicting" here shows if the combined degradations are conflicting to each other. PSNR/SSIM are
reported.

Degradation Conflicting Denoising on BSD68 dataset Deraining on Dehazing on
Noise Rain Haze σ = 15 σ = 25 σ = 50 Rain100 SOTS

✓ ✗ ✗ - 34.34/0.938 31.71/0.898 28.49/0.813 - -
✗ ✓ ✗ - - - - 37.04/0.979 -
✗ ✗ ✓ - - - - - 31.31/0.973
✓ ✓ ✗ ✗ 34.26/0.937 31.61/0.895 28.37/0.810 39.32/0.986 -
✓ ✗ ✓ ✓ 33.69/0.928 31.03/0.880 27.74/0.777 - 30.09/0.975
✗ ✓ ✓ ✓ - - - 35.12/0.969 30.36/0.973
✓ ✓ ✓ ✓ 33.98/0.933 31.31/0.888 28.06/0.799 36.37/0.972 30.58/0.974

Table 8: Performance of the our proposed Res-HAIR, when trained on different combinations of
degradation types (tasks) i.e., removal of gaussian noise, rain and haze. PSNR/SSIM are reported.

Degradation Conflicting Denoising on BSD68 dataset Deraining on Dehazing on
Noise Rain Haze σ = 15 σ = 25 σ = 50 Rain100 SOTS

✓ ✗ ✗ - 34.36/0.938 31.72/0.898 28.50/0.813 - -
✗ ✓ ✗ - - - - 39.00/0.985 -
✗ ✗ ✓ - - - - - 31.68/0.980
✓ ✓ ✗ ✗ 34.33/0.937 31.66/0.896 28.44/0.811 41.55/0.989 -
✓ ✗ ✓ ✓ 34.13/0.935 31.49/0.892 28.22/0.803 - 31.18/0.979
✗ ✓ ✓ ✓ - - - 38.44/0.983 31.22/0.979
✓ ✓ ✓ ✓ 34.16/0.935 31.51/0.892 28.24/0.803 38.59/0.983 30.98/0.979

A.2.2 HAIR FOR UNSEEN COMPOSITE DEGRADATION.

Since HAIR can accurately discriminate unseen composite degradations, as illustrated in Fig. 2d,
we test Res-HAIR with these settings, as shown in Table 9, 11, 10. The results somehow shows the
generalization ability of our proposed method. However, we consider the restoration outcomes for
such degradations are not satisfactory enough. The interesting fact is, sometimes HAIR generates
GIVs that are intermediate when confronted with composite degradations. This tendency results in
weights that are a midpoint between those associated with each individual degradation type. For
example, an image with both noise and haze degradations results in weights that are intermediate
between the weights for images affected by noise alone and those affected by haze alone, which
fails to fully eliminate either degradation and result in a somehow unsatisfactory performance. This
insight reveals HAIR’s operational mechanism, highlighting its strategy for weights generation.
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Table 9: Results of unseen com-
posite degradation (haze + noise)
on SOTS.

Method PSNR SSIM

PromptIR 16.211 0.785
Res-HAIR 16.798 0.802

Table 10: Results of unseen com-
posite degradation (rain + noise)
on Rain100L.

Method PSNR SSIM

PromptIR 24.348 0.726
Res-HAIR 24.365 0.729

Table 11: Results of unseen com-
posite degradation (rain + haze)
on SOTS.

Method PSNR SSIM

PromptIR 23.784 0.686
Res-HAIR 23.823 0.692

A.3 POSSIBLE CONFUSIONS

A.3.1 DOES HAIR ALSO UTILIZE FIXED PARAMETERS AS PREVIOUS METHODS DO?

In the Introduction (Section 1), we highlighted that our proposed HAIR method differs from previous
approaches, which typically employ a static set of parameters to handle various image degradations.
In contrast, HAIR employs a data-conditioned Hypernetwork to dynamically generate parameters
based on the input image’s content. However, a potential point of confusion arises from the fact
that the Hypernetworks in HAIR (i.e., the Hyper Selecting Nets) are indeed fixed during inference,
suggesting that HAIR also relies on a set of fixed parameters to address different degradations.

To clarify this confusion, it is crucial to understand our motivation for using Hypernetworks. Our goal
is to mitigate the performance loss caused by conflicting degradations. For example, by generating
distinct parameters, we aim to enable the model to function either as a low-frequency or high-
frequency filter, depending on the input image’s requirements. As illustrated in Fig. 1, the primary
focus should be on the main networks that directly process the image.

Therefore, when we refer to "fixed parameters" and "dynamic parameters," we are referring to the
parameters of the main network that interacts with the image, not the Hypernetworks responsible
for parameter generation, which do not directly engage with the input image. The point lies in the
dynamic adaptation of the main network’s parameters to the specific characteristics of the input
image, which is the innovative aspect of HAIR.

A.4 MORE IMPLEMENTATION DETAILS

Figure 5: Overview of the Transformer block used in the Res-HAIR framework. The Transformer
block is composed of two sub modules,the Multi Dconv head transposed attention module(MDTA)
and the Gated Dconv feed-forward network(GDFN).
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A.4.1 TRANSFORMER BLOCK IN RES-HAIR FRAMEWORK

(This section is directly borrowed from the paper of PromptIR. (Potlapalli et al., 2024)) In this section,
we present the block diagram5 of the transformer block and further, elaborate on the details of the
transformer block employed in the Res-HAIR framework. The transformer block follows the design
and hyper-parameters outlined in (Zamir et al., 2022)

To begin, the input features X ∈ RHl×Wl×Cl are passed through the MDTA module. In this module,
the features are initially normalized using Layer normalization. Subsequently, a combination of
1× 1 convolutions followed by 3× 3 depth-wise convolutions are applied to project the features into
Query (Q), Key (K), and Value (V) tensors. An essential characteristic of the MDTA module is
its computation of attention across the channel dimensions, rather than the spatial dimensions. This
effectively reduces the computational overhead. To achieve this channel-wise attention calculation,
the Q and K projections are reshaped from Hl×Wl×Cl to HlWl×Cl and Cl×HlWl respectively,
before calculating dot-product, hence the resulting transposed attention map with the shape of Cl×Cl.
Bias-free convolutions are utilized within this submodule. Furthermore, attention is computed in a
multi-head manner in parallel.

After MDTA Module the features are processed through the GDFN module. In the GDFN module,
the input features are expanded by a factor γ using 1×1 convolution and they are then passed through
3× 3 convolutions. These operations are performed through two parallel paths and the output of one
of the paths is activated using GeLU non-linearity. This activated feature map is then combined with
the output of the other path using element-wise product.

A.4.2 IMPLEMENTATION DETAILS OF HYPERTRANS BLOCKS

This section elaborates on specific details presented in Section 3.1.2. Within the Restormer framework
(Zamir et al., 2022), each Transformer consists of a total of 12 logical convolutional layers, as depicted
in Fig. 5. For code implementation, we utilize 6 convolutional layers to effectively emulate the
functionality of 12 convolutional layers within each Transformer Block. Consequently, the generated
parameters w ∈ RP described in Section 3.1.2 encompass all the parameters necessary for these
6 convolutional layers of a single Transformer Block. The Weights Box W ∈ RN×P , therefore,
represents the aggregate parameters for N Transformer Blocks.

Given a fixed Global Information Vector (GIV) Vg, it is processed through the Fully-Connected
Neural Network (FCNN) followed by a Softmax operation to yield the Selecting Vector Vs ∈ RN .
This vector is subsequently employed to "select" the definitive parameters from the Weights Box.
Each Decoder level possesses a distinct Weights Box, which is shared among all the HyperTrans
Blocks at that level. It is crucial to highlight that all HyperTrans Blocks across all levels operate
using the same GIV derived from a single Classifier. Meanwhile, each single HyperTrans Block is
equipped with its own Hyper Selecting Net, resulting in a unique Selecting Vector and, consequently,
its own set of parameters for each.

A.5 VISUAL RESULTS

In Fig. 6 and Fig. 7 we provide more visual results to show the strong ability of our method for image
restoration tasks.
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Figure 6: Additional visual results.
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Input AirNet PromptIR Res-HAIR (ours) Ground TruthInstructIR

Figure 7: Additional visual results
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