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Abstract

In this study, we characterize complex network dynamics in live in-vitro neuronal systems
during two distinct activity states: spontaneous rest state and engagement in a real-time
(closed-loop) game environment using the DishBrain system. First, we embed the spik-
ing activity of these channels in a lower-dimensional space using various representation
learning methods and then extract a subset of representative channels. Next, by analyzing
these low-dimensional representations, we explore the patterns of macroscopic neuronal
network dynamics during learning. Remarkably, our findings indicate that just using the
low-dimensional embedding of representative channels is sufficient to differentiate the neu-
ronal culture during the Rest and Gameplay. Notably, our investigation shows dynamic
changes in the connectivity patterns within the same region and across multiple regions on
the multi-electrode array only during Gameplay. These findings underscore the plasticity of
neuronal networks in response to external stimuli and highlight the potential for modulat-
ing connectivity in a controlled environment. The ability to distinguish between neuronal
states using reduced-dimensional representations points to the presence of underlying pat-
terns that could be pivotal for real-time monitoring and manipulation of neuronal cultures.
Additionally, this provides insight into how biological based information processing systems
rapidly adapt and learn and may lead to new improved algorithms.

Keywords: In-vitro neuronal networks, DishBrain, Network dynamics, Low-dimensional
representation

1. Introduction

The DishBrain system combines biological intelligence with adaptive neuronal traits by
seamlessly integrating in vitro neuronal networks with in silico computational elements us-
ing high-density multi-electrode arrays (HD-MEAs). These cultivated neuronal ensembles



exhibit biologically-based adaptive intelligence, which is effectively replicated in a dynamic
gaming environment through closed-loop stimulation and concurrent recordings (Kagan
et al., 2022). These neural ensembles display self-organized adaptive electrophysiological
dynamics, demonstrating their ability to acquire new knowledge and respond meaningfully
to biologically plausible external stimuli (Harrell et al., 2020). The empirical data is sourced
from cortical cells derived from embryonic rodent or human induced pluripotent stem cell
(hiPSC) lineages. While synthetic biology methods show that in vitro biological networks
of cortical cells can achieve real-time adaptive goal-directed learning in simulated environ-
ments (Kagan et al., 2022; Habibollahi et al., 2023, 2022), the underlying network dynamics
associated with this learning remain unexplored.

We analyze the spiking activity of each channel on the HD-MEA to explore neuronal
network dynamics and functional connectivity. Understanding these complex dynamics is
crucial for uncovering the neural mechanisms behind learning. Neurons within a network
interact to process information and generate responses. Learning involves the modifica-
tion of synaptic interactions, which affects the signal transmission. Studying the temporal
patterns and strength of these interactions reveals the network’s ability to encode, store,
and retrieve information. Investigating neural network dynamics helps us understand the
mechanisms driving synaptic changes, enhancing our grasp of cellular and network-level
processes in learning. These insights have broad implications, spanning neuroscience and
artificial intelligence, potentially guiding advanced learning algorithms and treatments for
neurological disorders.

2. Methods

2.1 DishBrain System

The DishBrain system simulated neural cultures in a virtual ‘Pong’ game. Stimulation used
rate coding pulses (4Hz to 40Hz) for the ball’s x-axis and place coding (specific electrodes)
for the y-axis within an 8-electrode sensory zone. Paddle movement was controlled by real-
time electrophysiological activity in a "motor area”. Cultures received feedback on paddle
movement. Two types of stimulation were used: sensory as explained and unpredictable
feedback (Kagan et al., 2022). Missed balls triggered a 150 mV, 5 Hz unpredictable stimulus
on random sensory electrodes at varied rates for 4 seconds, followed by a 4 second resting
period. Each gameplay session lasted 20 minutes at a 20 kHz sampling rate.

Figure 1:a-b illustrates the input information, feedback loop setup, and electrode con-
figurations in the DishBrain system. More details are introduced in Appendix 4.

2.2 Network Construction

Neuronal spiking was recorded from 1024 HD-MEA channels in 248 Gameplay and 147 Rest
sessions. Given the length of recordings at the 20 kHz sampling frequency, the resulting
times series during the Gameplay was very long. In the realm of mining information from
dense and high-dimensional networks, a prominent focus in recent years has been on the
concept of acquiring network embeddings in lower dimensions. The primary objective of this
direction is to acquire vector representations for individual nodes within the network, which
encapsulate valuable and meaningful insights (Perozzi et al., 2014; Tang et al., 2015; Kha-
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Figure 1: a) DishBrain feedback loop setup. b) Electrode configuration and predefined
sensory and motor regions. Figures adapted from (Kagan et al., 2022). Low-
dimensional representation of 3 samples of ¢) Gameplay and their following d)
Rest sessions using t-SNE. Purple and maroon dots are channel representations
in the embedding space in the first and second half of the recordings.

jehnejad, 2019). Hence, in this work, we first employed dimensionality reduction algorithms
to both enhance the computational efficiency of subsequent data analysis and improve data
interpretability. This also allowed us to uncover latent data structures not immediately
apparent in the original high-dimensional space. We used t-SNE (Van der Maaten and
Hinton, 2008) and Isomap (Tenenbaum et al., 2000) to create 3D representations for both
Rest and Gameplay data. To assess their effectiveness in capturing learning-related network
structures, we split recording sessions in half before dimensionality reduction. Figure 1:c-d
displays results of t-SNE with color labeling for the first and second halves of 20-minute
Gameplay and 10-minute Rest sessions for three samples. It’s evident that the two halves
are distinguishable in Gameplay but not in Rest, indicating specific patterns in network
dynamics during learning, primarily present in Gameplay.

Prior research has extensively used simplified models of interconnected neural popula-
tions based on mean-field approximations, which effectively retain the dynamic properties
of the original neural network while significantly accelerating simulation speeds by several
orders of magnitude (Renart et al., 2004; Baspinar et al., 2021; Bick et al., 2020; La Camera,
2021). Moreover, within complex neural networks, only a fraction of neurons fire at any
given time, with many not displaying clear action potentials. Recent evidence indicates the
emergence of specialized, selective, and abstract response properties in the cortex (Wolfe
et al., 2010), showcasing the importance of sparse activity and connectivity patterns. These
patterns conserve energy and optimize computational capacity (Olshausen and Field, 2004),



emphasizing the redundancy in evaluating individual neuron firing patterns. The brain’s
ability to encode and process information relies on the concerted action of neuronal pop-
ulations, often conveying redundant or highly correlated signals. Given these collective
behaviors in neuronal networks, our goal was to advance computational complexity reduc-
tion when studying large neuronal populations, while still preserving the network’s dynamic
properties.

We devised a method to pinpoint a subset of recorded channels that likely monitored
the neuronal populations specially attuned to the ongoing task. This subset enables the
identification of key neurons characterizing the network’s behavior during Gameplay, to
more efficiently study the (macroscopic) of this smaller and interpretable network. To find
a consistent subset of channels across all neuronal cultures, we employed Tucker decompo-
sition —via higher-order orthogonal iteration— on the tensor data from the 248 Gameplay
sessions in the lower-dimensional embedding space. The resulting 1024 x 3 tensor served as
a compact representation, capturing underlying patterns and structures. Using this tensor,
we identified representative channels by applying the K-medoid clustering algorithm, creat-
ing 30 clusters, and extracting the corresponding 'medoids’ for each cluster. Attempts with
a higher value of K did not notably improve clustering accuracy measured by the Davies-
Bouldin index. A network matrix using functional connectivity — defined as the zero-lag
Pearson correlations — of each Gameplay or Rest session recording was then built with these
30 channels as the nodes and the edges between these nodes represented by the functional
connectivity. Only edges with Pearson correlation absolute values above 0.7 were kept.
Figure 2 is a schematic illustration of the proposed in vitro network construction framework
in this study.

3. Results

After constructing the connectivity networks, we aimed to examine their temporal evolution
in both Gameplay and Rest. To achieve this, we divided each recording session into 2-
minute windows and evaluated the change in edge weights as the network evolved over
those windows. Figure 3 shows the differences in the correlation between each pair of nodes
when comparing the last and first 2 minutes of each recording. As shown in Figure 3, we
found that the cultures, while embedded in the game environment, had a higher number of
edges with increased correlation between channels while this change was not apparent during
their rest state spontaneous activity. This clearly indicates significant network plasticity
occurring in these cultures that can be a necessary underlying mechanism for the learning
that happens in this closed-loop system (Kagan et al., 2022). Moreover, we evaluated
several other network characteristics from all of the generated networks and compared them
between the first and last 2 minutes of recordings in both Rest and Gameplay groups. Figure
4 shows these results. While all of these metrics showed statistically significant differences
during Gameplay, none of them showed statistically significant differences during the Rest
condition of the cultures.

The increased average weight of the networks in the Gameplay sessions confirms the
same patterns also observed in Figure 3. Interestingly, the decreasing modularity index
suggests the change in the community structure of neuronal networks when learning occurs
with disconnected communities becoming more connected during Gameplay. Other features
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Figure 2: A schematic illustration of the overall network construction framework. The spik-
ing time series data are first transformed into a 3D space using t-SNE embedding.
These lower-dimensional representations are then combined into a tensor, which
is decomposed using Tucker decomposition. The K-medoids algorithm is then
applied to identify consistent representative channels across all cultures. These
channels become network nodes, and pairwise Pearson correlation values serve
as edge weights. The network layout reflects the physical placement of channels
on the MEA, with node colors distinguishing sensory (green) from motor (blue)
regions.

such as increased clustering coefficient and decreased characteristic path length are also in
line with the increasing pattern of correlation values observed in the connectivity during
Gameplay.

4. Discussion

Our study draws inspiration from mean-field theory, a technique used in statistical physics
that seeks to create simplified models of networks with the aim of reducing computational
complexity. We leverage previous findings on redundancy in large neuron populations which
contributes to their robustness, suggesting a subset can represent the network’s dynamics.

Using DishBrain, we place a multitude of in vitro cortical neurons in a closed-loop game
environment to explore network dynamics during learning compared to Rest conditions.
Our innovative approach enables us to 1) study neurons at a cellular level in a closed-
loop game environment, 2) analyze neuronal activities in a lower-dimensional space, 3)
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Figure 3: The average networks over all the a) Gameplay and b) Rest sessions with edge
weights representing changes in functional connectivity between channel pairs
when comparing the last 2 minutes to the first 2 minutes of recordings. Edge
colors signify the direction of these connectivity changes, with red indicating
increases and black indicating decreases. Motor and sensory region channels are
represented by blue squares and green circles, respectively. Arrows on motor
region nodes show the paddle’s movement direction as per their position in the
predefined layout in Figure 1.
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Figure 4: Network summary statistics between the first and last 2 minutes of recordings
for top) Gameplay and bottom) Rest. All the evaluated network metrics show
statistically significant differences during Gameplay but not during Rest. One-
way ANOVA test, ***p < 1073,

identify an efficient subpopulation capturing overall dynamics, and 4) examine network
dynamics driving information processing and learning. Our research effectively extracts
low-dimensional information and identifies influential units, promising deeper insights into
how large neuronal populations function and adapt in complex environments, shedding light
on underlying network changes facilitating learning.
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Appendix A.
Cell Culture

Neural cells were cultured either from the cortices of E15.5 mouse embryos or differentiated
from human induced pluripotent stem cells via a dual SMAD inhibition (DSI) protocol
or through a lentivirus based NGN2 direct differentation protocols as previously described
(Kagan et al., 2022). Cells were cultured until plating. For primary mouse neurons this
occurred at day-in-vitro (DIV) 0, for DSI cultures this occurred at between DIV 30 - 33
depending culture development, for NGN2 cultures this occured at DIV 3.

MEA Setup and Plating

MaxOne Multielectrode Arrays (MEA; Maxwell Biosystems, AG, Switzerland) was used
and is a high-resolution electrophysiology platform featuring 26,000 platinum electrodes
arranged over an 8 mm2. The MaxOne system is based on complementary meta-oxide-
semiconductor (CMOS) technology and allows recording from up to 1024 channels. MEAs
were coated with either polyethylenimine (PEI) in borate buffer for primary culture cells
or Poly-D-Lysine for cells from an iPSC background before being coated with either 10
ng/ml mouse laminin or 10 pg/ml human 521 Laminin (Stemcell Technologies Australia,
Melbourne, Australia) respectively to facilitate cell adhesion.Approximately 10 cells were
plated on MEA after preparation as per (Kagan et al., 2022). Cells were allowed ap-
proximately one hour to adhere to MEA surface before the well was flooded. The day
after plating, cell culture media was changed for all culture types to BrainPhys™ Neuronal
Medium (Stemcell Technologies Australia, Melbourne, Australia) supplemented with 1%
penicillin-streptomycin. Cultures were maintained in a low O2 incubator kept at 5% CO2,
5% 02, 36°C and 80% relative humidity. Every two days, half the media from each well was
removed and replaced with free media. Media changes always occurred after all recording
sessions.

DishBrain platform and electrode configuration

The current DishBrain platform is configured as a low-latency, real-time MEA control sys-
tem with on-line spike detection and recording software. The DishBrain platform provides
on-line spike detection and recording configured as a low-latency, real-time MEA control.
The DishBrain software runs at 20 kHz and allows recording at an incredibly fine timescale.
There is the option of recording spikes in binary files, and regardless of recording, they are
counted over a period of 10 milliseconds (200 samples), at which point the game environ-
ment is provided with how many spikes are detected in each electrode in each predefined
motor region as described below. Based on which motor region the spikes occurred in, they
are interpreted as motor activity, moving the ‘paddle’ up or down in the virtual space. As
the ball moves around the play area at a fixed speed and bounces off the edge of the play
area and the paddle, the pong game is also updated at every 10ms interval. Once the ball
hits the edge of the play area behind the paddle, one rally of pong has come to an end.
The game environment will instead determine which type of feedback to apply at the end
of the rally: random, silent, or none. Feedback is also provided when the ball contacts
the paddle under the standard stimulus condition. A ‘stimulation sequencer’ module tracks



the location of the ball relative to the paddle during each rally and encodes it as stimula-
tion to one of eight stimulation sites. Each time a sample is received from the MEA, the
stimulation sequencer is updated 20,000 times a second, and after the previous lot of MEA
commands has completed, it constructs a new sequence of MEA commands based on the
information it has been configured to transmit based on both place codes and rate codes.
The stimulations take the form of a short square bi-phasic pulse that is a positive voltage,
then a negative voltage. This pulse sequence is read and applied to the electrode by a
Digital to Analog Converter (or DAC) on the MEA. A real-time interactive version of the
game visualiseris available at https://spikestream.corticallabs.com/. Alternatively,
cells could be recorded at ‘Rest’ in a gameplay environment where activity was recorded
to move the paddle but no stimulation was delivered, with corresponding outcomes still
recorded. Using this spontaneous activity alone as a baseline, the gameplay characteristics
of a culture were determined. Low level code for interacting with Maxwell API was written
in C to minimize processing latencies-so packet processing latency was typically <50 us.
High-level code was written in Python, including configuration setups and general instruc-
tions for game settings. A 5 ms spike-to-stim latency was achieved, which was substantially
due to MaxOne’s inflexible hardware buffering. Figures 5 and 6 illustrate schematic views
of Software components and data flow in the DishBrain closed loop system.
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Software components and data flow in the DishBrain closed loop system. Voltage
samples flow from the MEA to the ‘Pong’ environment, and sensory information
flows from the ‘Pong’ environment back to the MEA, forming a closed loop. The
blue rectangles mark proprietary pieces of hardware from MaxWell, including the
MEA well which may contain a live culture of neurons. The green MXWServer
is a piece of software provided by MaxWell which is used to configure the MEA
and Hub, using a private API directly over the network. The red rectangles mark
components of the ‘DishServer’ program, a high-performance program consisting
of four components designed to run asynchronously, despite being run on a single
CPU thread. The ‘LAN Interface’ component stores network state, for talking
to the Hub, and produces arrays of voltage values for processing. Voltage values
are passed to the ‘Spike Detection’ component, which stores feedback values and
spike counts, and passes recalibration commands back to the LAN Interface.
When the pong environment is ready to run, it updates the state of the paddle
based on the spike counts, updates the state of the ball based on its velocity
and collision conditions, and reconfigures the stimulation sequencer based on the
relative position of the ball and current state of the game. The stimulation
sequencer stores and updates indices and countdowns relating to the stimulations
it must produce and converts these into commands each time the corresponding
countdown reaches zero, which are finally passed back to the LAN Interface, to
send to the MEA system, closing the loop. The procedures associated with each
component are run one after the other in a simple loop control flow, but the ‘Pong’
environment only moves forward every 200th update, short-circuiting otherwise.
Additionally, up to three worker processes are launched in parallel, depending
on which parts of the system need to be recorded. They receive data from the
main thread via shared memory and write it to file, allowing the main thread to
continue processing data without having to hand control to the operating system
and back again. Figures adapted from (Kagan et al., 2022).
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Figure 6: Numeric operations in the real-time spike detection component of the DishBrain
closed loop system, including multiple IIR filters. Running a virtual environment
in a closed loop imposes strict performance requirements, and digital signal pro-
cessing is the main bottleneck of this system, with close to 42 MB of data to
process every second. Simple sequences of IIR digital filters is applied to incom-
ing data, storing multiple arrays of 1024 feedback values in between each sample.
First, spikes on the incoming data are detected by applying a high pass filter to
determine the deviation of the activity, and comparing that to the MAD, which
is itself calculated with a subsequent low pass filter. Then, a low pass filter is
applied to the original data to determine whether the MEA hardware needs to
be re-calibrated, affecting future samples. This system was able to keep up with
the incoming data on a single thread of an Intel Core i7-8809G. Figures adapted
from (Kagan et al., 2022).
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