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Abstract
Neural networks are vulnerable to meticulously crafted adversarial examples, leading to high-confidence misclassifications in
image classification tasks. Due to their consistency with regular input patterns and the absence of reliance on the target model
and its output information, transferable adversarial attacks exhibit a notably high stealthiness and detection difficulty, making
them a significant focus of defense. In this work, we propose a deep learning defense known as multi-source adversarial
perturbations elimination (MAPE) to counter diverse transferable attacks. MAPE comprises the single-source adversarial
perturbation elimination (SAPE) mechanism and the pre-trained models probabilistic scheduling algorithm (PPSA). SAPE
utilizes a thoughtfully designed channel-attention U-Net as the defense model and employs adversarial examples generated
by a pre-trained model (e.g., ResNet) for its training, thereby enabling the elimination of known adversarial perturbations.
PPSA introduces model difference quantification and negative momentum to strategically schedule multiple pre-trained
models, thereby maximizing the differences among adversarial examples during the defense model’s training and enhancing
its robustness in eliminating adversarial perturbations. MAPE effectively eliminates adversarial perturbations in various
adversarial examples, providing a robust defense against attacks from different substitute models. In a black-box attack
scenario utilizing ResNet-34 as the target model, our approach achieves average defense rates of over 95.1% on CIFAR-10
and over 71.5% on Mini-ImageNet, demonstrating state-of-the-art performance.

Keywords Deep learning security · Pattern recognition · Image classification · Adversarial example · Adversarial defense

Introduction

The convolutional neural network (CNN) is a deep and
feedforward neural network that incorporates convolution
operations, which has been used widely in diverse visual
tasks [1], including image recognition [2], object detection
[3], and semantic segmentation [4]. However, recent research
has shown that there exist adversarial examples [5–8] that do
not affect human judgment but can perplex network models.
For instance, when a classification model correctly identi-
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fies a house finch in Fig. 1, and then a meticulously designed
adversarial perturbation is introduced, the model misclassi-
fies it as a catamaran. However, from a human perspective,
there is not apparent difference in cognition between the
example before and after the inclusion of the adversarial per-
turbation. Adversarial examples can lead to potential security
vulnerabilities, thus affecting the reliability and stability of
image classification systems [9, 10]. Therefore, defending
against adversarial attacks has become one of the important
challenges in protecting deep learning models and ensuring
system security.

Transferable adversarial attack [11–15] is a classic black-
box attack, which refers to generating adversarial examples
on a substitute model and then using them to deceive the tar-
get model. In comparison to another typical black-box attack
method, query attacks [16–18], transferable attacks are more
similar to conventional input patterns. As they do not require
sending a large number of query examples to the targetmodel,
and are entirely independent of the target model and its out-
put information. Due to their higher stealthiness and greater
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Fig. 1 Clean example and adversarial example. When the adversarial
perturbations are added to a house finch, it is misclassified as a catama-
ran by the classification model

difficulty in detection, along with more relaxed implementa-
tion conditions, transferable attacks have become one of the
most prevalent adversarial attack methods currently. Conse-
quently, we will designate it as the defensive target of this
study. Differing from adversarial training [19, 20] aimed at
enhancing the robustness of the target model, input trans-
formations [5, 6, 21] defend against adversarial attacks by
applying random transformations to disrupt adversarial per-
turbations, or by denoising them to eliminate adversarial
perturbations. In defending against transferable attacks that
aremore alignedwith real-world scenarios, input transforma-
tions demonstrate a more outstanding defense effectiveness
[22, 23].

In input transformation, random transformation methods
[24, 25] disrupt the overall structural adversarial perturba-
tion by randomly rotating, scaling, and translating, enabling
the target model to correctly classify adversarial examples.
However, random transformations also obscure the original
data distribution in the input examples, inevitably leading to a
significant decrease in its classification accuracy. Denoising
methods [26, 27] eliminate adversarial perturbations from
input examples by introducing denoising blocks in the clas-
sification model or deploying denoisers externally to the
model, exhibiting strong specificity and mediocre general-
izability. Specifically, the defense effectiveness of denoising
methods is stronger when the substitute model is structurally
similar to the target model, while it significantly decreases
when there is a large difference in structure between the sub-
stitute model and the target model.

In this article, we propose the multi-source adversarial
perturbations elimination (MAPE) to assist target models
in defending against diverse transferable attacks. At a low
level, a channel-attention U-Net (CAU-Net) is utilized as
the defense model, reconstructing the adversarial examples
by eliminating the perturbations within them. Subsequently,
the defense model is trained by computing the label losses
between reconstructed examples and clean examples. As the
adversarial examples originate from a single classification
model, we refer to this low-level mechanism as single-
source adversarial perturbation elimination (SAPE). At a
high level, we introduce several distinct pre-trained models
and propose the pre-trained models probabilistic scheduling

algorithm (PPSA). Based on the pre-trained model’s output
scores and scheduling records, we define two key compo-
nents in PPSA: model difference probability and negative
momentum probability. The former represents an intrinsic
characteristic of the model in the scheduling process, while
the latter serves as a regularization factor to adjust the usage
of models. PPSA effectively combines these two probabili-
ties to maximize the differences between adjacent scheduled
pre-trained models. By integrating SAPE and PPSA, MAPE
enhances the defense model’s robustness and generalization
in eliminating adversarial perturbations. Compared to previ-
ous defense strategies,MAPE exhibits superior effectiveness
in countering adversarial attacks. These have been verified
in “Experiments” section and “Further evaluations” section.

We summarize the main contributions as follows:

• We propose a deep learning defense known as mul-
tisource adversarial perturbation elimination (MAPE),
which utilizes a CAU-Net as the defense model and is
capable of eliminating adversarial perturbations in vari-
ous adversarial examples.

• To the best of our knowledge, we are the first to intro-
duce negative momentum as a regularization factor for
dynamically adjusting the usage of certain elements, as
well as to quantify the model difference based on the out-
put scores on the same dataset.

• The evaluation demonstrates that MAPE exhibits strong
generalization capability and cross-model defense char-
acteristics, effectively countering transferable adversarial
attacks from various substitute models in a black-box
attack environment.

Related work

We study related work from three perspectives: adversar-
ial examples, attack methods for generating transferable
adversarial examples, and defense methods for resisting this
adversarial examples.

Adversarial examples

The generation of adversarial examples can be represented
as a constrained optimization problem. Let C(·) be the pre-
trained classification model such that C(x): x → �, where
x ∈ R

m is a clean example and � ∈ Z
+ is the output

of the model. Let A(·) be the attack method used by the
attacker, denoted as A(θ, x) → ρ, where θ is the parameter
of the model and ρ ∈ R

m is the adversarial perturbation. To
ensure that the semantic information in natural examples used
for human recognition is not compromised, the generated
adversarial perturbation ρ is often bounded by a norm. For
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example, constraining the perturbation ρ within ‖ρ‖p < ε,
where ‖ρ‖p denotes the L p norm and ε is the adversarial
perturbation budget. The adversarial example x̄ ∈ R

m is
obtained by adding the adversarial perturbation ρ to the nat-
ural example x, represented as x + ρ → x̄. The generation
problem of adversarial examples is essentially the problem of
solving adversarial perturbations, which can be represented
by the following constrained optimization process:

argmax
ρ

L (θ , x + ρ, �) s. t. ‖ρ‖p < ε . (1)

In Eq. (1),L (θ , x + ρ, �) represents the loss of the model
with parameter θ regarding adversarial example x + ρ and
label �, typically computed using the cross-entropy loss
function. Therefore, the generation of adversarial examples
can be summarized as finding limited adversarial perturba-
tions that maximize the model’s loss. Adversarial examples
are typically generated through gradient-based methods [9,
28] when the model’s parameters and defense strategies are
known to the attacker. In cases where the model’s parameters
and defense strategies are unseen to the attacker, adversarial
examples are usually generated from substitutemodels based
on their transferability [10, 11, 13].

Attackmethods

Transferable attacks are built on the transferability of adver-
sarial examples [29]. Therefore, the simplest transferable
attacks usewhite-box attackmethods as theirmeans of attack,
with the difference from regular white-box attacks being
that substitute models are treated as target models. Rep-
resentative methods include the fast gradient sign method
(FGSM) [28], the basic iterative method (BIM) [9], and the
projected gradient descent (PGD) [19]. The FGSM is a one-
step gradient-based method that computes norm-bounded
perturbations, while BIM and PGD seek better solutions by
optimizing the gradient direction through multiple iterations
[6]. The core concept of the three methods mentioned above
is to perform gradient ascent on the loss surface of the model
to deceive it, which also forms the basis of many adversarial
attacks.

However, some stronger transferable attacks improve the
transferability of adversarial examples by integrating attack
techniques, transforming images, optimizing gradient vari-
ances, among other strategies. Diverse inputs iterative FGSM
(DIM) [11] applies random image transformations, diversi-
fying the input information for each iteration to enhance the
transferability of adversarial examples. Built upon momen-
tum iterative FGSM (MI-FGSM) [30] and Nesterov iterative
FGSM (NI-FGSM) [12], respectively, variance tuning MI-
FGSM (VMIM) and variance tuningNI-FGSM (VNIM) [13]
adjust the current gradient by using the gradient variance

from the previous iteration to optimize the gradient direction
and escape local optima. Additionally, there are also attack
methods that aim to enhance the transferability of adversar-
ial examples by integrating gradients frommultiple iterations
or multiple models, such as large geometric vicinity (LGV)
[31], transferable adversarial attack based on integrated gra-
dients (TAIG) [32] and adaptive model ensemble adversarial
attack (AdaEA) [33].

Defensemethods

Adversarial defense methods are generally divided into two
main classes, including adversarial training and input trans-
formation. Adversarial training [19] is the data augmentation
technique that enhances the robustness of the target model by
adding adversarial examples to the training data. TRADES
[20] decomposes the robust error of adversarial examples into
the sum of natural error and boundary error, which acts as its
design principle in defending against adversarial attacks.

Input transformation methods aim to eliminate the attack
nature of adversarial examples, thereby reducing the recog-
nition difficulty for the target model. They are the main
force in defending against black-box attacks. These meth-
ods can be categorized into random transformation methods
and denoising methods. In random transformation methods,
total variance minimization (TVM) [34] randomly selects a
small group of pixels and reconstructs the “simplest” image
that does not include adversarial perturbations. Pixel deflec-
tion [35] corrupts adversarial perturbations by redistributing
the pixel values and applying adaptive soft-thresholding in
the wavelet domain. Mixup inference [23] overlays input
examples randomly with other clean examples to reduce
the adversarial nature of the input examples. In denoising
methods, JPEG compression [36] removes certain high-
frequency components and image details through discrete
cosine transformation and quantization, thereby enabling
defense against adversarial examples with low perturba-
tion budgets. Similarly, Gaussian blurring (smoothing) [37]
convolves a Gaussian kernel with adversarial examples,
blurring image details to disrupt the adversarial perturba-
tions present in the adversarial examples. Feature denoising
method [27] adds denoising blocks in the classificationmodel
and combines them with adversarial training to enhance
the model’s adversarial robustness. High-level representa-
tion guided denoiser (HGD) [26] revises the loss function to
pull adversarial examples back to the original clean distri-
bution for improving their classification accuracy. Learning
defense transformation (LDT) [25] employs parameterizing
the affine transformations and the boundary information of
neural network as a defense mechanism against adversarial
attacks.
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Fig. 2 Single-source adversarial perturbation elimination (SAPE) mechanism

Methodology

Random transformation methods, such as TVM and pixel
deflection, do not depend on the target model, resulting
in similar defense effectiveness against both known and
unknown types of adversarial attacks, although neither is par-
ticularly high. Deep learning defense methods, such as HGD
and LDT, are closely coupled with the target model. Due
to the differences between the target model and the substi-
tute model, their effectiveness in defending against unknown
types of adversarial attacks is significantly diminished.

To improve defense effectiveness against unknown types
of adversarial attacks, we propose a deep learning defense
known as multi-source adversarial perturbations elimina-
tion (MAPE). MAPE primarily consists of the single-source
adversarial perturbation elimination (SAPE) mechanism and
the pre-trained models probabilistic scheduling algorithm
(PPSA). SAPE serves as the foundational method forMAPE,
aiming to enable the defense model to eliminate known
adversarial perturbations. PPSA acts as the organizational
framework of MAPE, focusing on achieving the ability to
eliminate unknown types of adversarial perturbations and
improving its robustness.

Single-source adversarial perturbation elimination

As shown in Fig. 2, SAPE consists mainly of a target model
C(·) with the parameter θ and a defense model E(·) with the
parameter ζ . The target model C(·) is the commonly used
classification model such as ResNet [2], GoogLeNet [38],
MobileNet [39], etc. The defense model E(·) is typically

a neural network model for image-to-image generation. In
this paper, we integrate a U-Net [40] with channel-attention
mechanism [41] as a defense model, referred to as CAU-Net.
Compared to generative adversarial networks (GANs) [42]
and diffusionmodels [43], U-Net requires less computational
cost and is easier to train. Additionally, the primary compari-
sonmethods, HGDandLDT, also utilizeU-Net or its variants
as defense models; therefore, selecting U-Net enhances the
credibility of the experimental results. We also optimize its
structure to enhance its capability in extracting adversarial
perturbations. The optimized CAU-Net is constructed with
multiple nested submodules. Except for the lowest-level sub-
modules, each submodule nests a lower-level submodule and
contains a channel-attention mechanism layer similar to a
residual connection. This work utilizes a CAU-Net with five
submodules. The right side of Fig. 2 illustrates the third sub-
module along with its specific components. The number of
both input and output data channels is 256.

Deployed outside the targetmodel, the defensemodel E(·)
is responsible for extracting and eliminating the adversarial
perturbation ρ̂ from the adversarial example x̄, playing a role
similar to that of antivirus software. Note that the adversarial
perturbation ρ̂ extracted from adversarial examples by the
defense model is not equivalent to the adversarial perturba-
tion ρ added by an attacker to clean examples. It is desirable
to enhance the similarity of the data distributions between
the two, which is the goal pursued by the defense model.

The training method of SAPE is as follows. Firstly, the
adversarial example generated by the target model is input
into the defensemodel to extract the adversarial perturbation,
which is then removed to obtain the reconstructed example
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x̂. Subsequently, the reconstructed example is fed into the
target model to obtain the probability distribution of pre-
dicted labels. Finally, the cross-entropy is computed between
the probability distribution of the predicted label and that of
the true label, after which the defense model’s weights are
updated with the back-propagation algorithm. The optimiza-
tion objective of SAPE can be expressed by Eq. (2).

argmin
ζ

L [
θ , x + ρ − E(x + ρ), �

]
. (2)

SAPE aims to equip the defense model with the capability
to eliminate known adversarial perturbations. This capability
serves as the foundation forMAPE. Algorithm 1 summarizes
the detailed training method of SAPE.

Algorithm 1 Detailed training method of SAPE.
Require: A defense model E with the parameter ζ , the target classifi-

cation model (e.g., ResNet) with the parameter θ , clean examples x,
attack method A, learning rate η and weight decay λ

Ensure: The well-trained defense model E
1: Initiate the parameter ζ of the defense model E ;
2: Freeze the parameters θ of the target model;
3: while not converged do
4: Generate the adversarial example x̄ = x + A(θ , x) ;
5: Perform stratified sampling from clean examples and adversarial

examples to create a mixed example
ẍ ← [x, x̄] ;

6: Extract and eliminate the adversarial perturbation x̂ = ẍ − E(ẍ)

;
7: Compute the cross-entropy loss l = L(θ , x̂, �) ;
8: Update the parameter ζ ← ζ − η{∇ζ l + λζ } .
9: end while

Pre-trainedmodels probabilistic scheduling
algorithm

During training SAPE, the adversarial examples used are
solely derived from the target model. When the attacker’s
substitute model differs from the protected target model, the
defense effectiveness of SAPE significantly decreases. In
practical applications, it is quite common for the substitute
model to differ from the target model.

Therefore, utilizing multiple pre-trained models and
enhancing the difference among these models can diversify
the adversarial examples used for training, thereby endow-
ing the defense model with higher generalization capability
and defensive performance. And the impact of model quan-
tity on defensive performance depends on the differences
between the newly added models and the previous models.
Furthermore, to fully leverage the difference among these
pre-trained models for training the defense model, we pro-
pose PPSA to strategically schedule them. PPSA refers to
selecting a different pre-trained model based on the schedul-

ing probability after training on current mini-batch. The
newly selected pre-trained model will be used to generate
adversarial examples of the nextmini-batch. If the pre-trained
model Ci (i = 1, 2, . . . , N ) is used to generate adversar-
ial examples in the kth mini-batch, then the probability of
the pre-trained model C j ( j = 1, 2, . . . , N , j �= i) being
selected in the (k + 1)th mini-batch can be expressed as

P j
k = h

{
P(i, j)
diff ◦ P(k, j)

neg

}
. (3)

In Eq. (3), h{·} is the probability normalization transforma-
tion. For the variable Is(s = 1, 2, . . . , N ),

h {Is} = Is
∑N

t=1 It
. (4)

P(i, j)
diff represents the model difference probability between

the pre-trained models Ci and C j , P
(k, j)
neg represents the neg-

ative momentum probability ofC j at the kth mini-batch, and
“◦” denotes their Hadamard product. Below, we will discuss
these two probability distributions separately.

Pre-trained models with greater differences are usually
selected to generate adversarial examples during the train-
ing of adjacent mini-batches, as this can help the defense
model adapt to diverse adversarial inputs and boosts its
robustness against adversarial attacks. However, it is diffi-
cult to quantify the differences between different models by
comparing their structures and parameters. We think that a
model’s output scores reflect its intrinsic characteristics to
some extent; a larger difference in output scores indicates a
greater difference between two models. Therefore, we pro-
pose a model differences calculating method based on output
score. Suppose that pre-trained models have output scores
Ei (i = 1, 2, . . . , N ) on the same dataset, then the difference
Wi, j between models Ci and C j can be expressed using L1

norm Wasserstein distance as:

Wi, j = inf
γ∈�(Ei ,E j)

∫

R×R

|u − v|dγ (u, v) . (5)

In Eq. (5), �(Ei , E j ) is the set of all joint distributions
whose marginal distributions are Ei and E j , respectively.
γ represents a joint distribution that describes how to
“transport” or “transfer” probability mass between the two
distributions. Wi, j has good mathematical properties, such
as non-negativity

(
Wi, j ≥ 0

)
and symmetry

(
Wi, j = Wj,i

)
.

Notably, the symmetry property is not present in cross-
entropy and KL divergence. A higher value ofWi, j indicates
a greater difference between models Ci and C j . After cal-
culating the differences of the pre-trained models, the model
difference probability can be expressed as

P(i, j)
diff = h

{
ln

(
Wi, j + 1

)}
. (6)
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The model difference probability is a static attribute of
the pre-trained models, remaining unchanged throughout the
entire training period. This leads to a stable scheduling ratio
among the various pre-trained models as training iterations
increase, which is detrimental to the defense model’s gen-
eralization. To address this issue, we propose the negative
momentum probability as a regularization factor to dynam-
ically adjust the model difference probability, expressed as

P(k, j)
neg = h

{
1 − h

{
Mk, j

}}
. (7)

In Eq. (7), Mk, j represents the total number of times model
C j has been selected up to the kth mini-batch. It can be

observed that P(k, j)
neg is negatively correlated with Mk, j ,

meaning that for pre-trained models that are frequently
utilized, P(k, j)

neg will decrease the their scheduling probabil-

ity; conversely, for models that are rarely used, P(k, j)
neg will

increase their scheduling probability. Contrary to the effect
of traditional “momentum,” P(k, j)

neg suppresses the excessive
use of high-difference-probability models during training,
thereby enhancing the defensemodel’s generalization toward
other low-difference-probability models. Hence, P(k, j)

neg is
referred to as “negative momentum” probability.

Algorithm 2 Detailed scheduling method of PPSA.
Require: The pre-trained model Ci (i = 1, 2, . . . , N ) used in current

mini-batch, output scores E of all pre-trained models on the same
dataset, and their total scheduling timesMk up to the kth mini-batch.

Ensure: The scheduled pre-trained model Cr in (k + 1)th mini-batch
1: Compute the model difference Wi, j between the current pre-

trained model Ci and the remaining pre-trained models C j ( j =
1, 2, . . . , N , j �= i) based on L1 norm Wasserstein distance;

2: Get the model difference probability P(i, j)
diff according to the model

difference Wi, j ;

3: Get the negative momentum probability P(k, j)
neg according to the total

scheduling times Mk ;
4: Generate the scheduling probability P j

k of the pre-trained model C j

by combining P(i, j)
diff and P(k, j)

neg ;
5: Determine the pre-trained model Cr based on the scheduling prob-

ability P j
k ;

6: Update the total scheduling times of the pre-trained model Cr :
Mk+1,r = Mk,r + 1 .

PPSAcombinesmodel differenceprobability andnegative
momentum probability, dynamically scheduling different
pre-trained models to generate diverse adversarial exam-
ples based on the current state and historical records. This
approachhelps improve the robustness of thedefensemodel’s
capability in eliminating unknown types of adversarial per-
turbations. Algorithm 2 summarizes the detailed scheduling
method of the PPSA.

Multi-source adversarial perturbations elimination

As shown in Fig. 3, MAPE consists primarily of PPSA and
SAPE,with the trainingmethod outlined as follows: First, we
calculate the output score between the current pre-trained
model and the remaining pre-trained model. Then, utilize
PPSA to select one of the remaining pre-trained models
based on the model output scores and the model schedul-
ing records. Finally, this scheduled pre-trained model is
employed as the target model in SAPE for training the next
mini-batch. Notably, to enhance the diversity of the train-
ing process, we use “mini-batch” as the switching cycle for
pre-trained models instead of “epoch.” The model schedul-
ing records are preserved throughout the entire training cycle
rather than being reset at the start of a new “epoch.” Addi-
tionally, compared to SAPE, MAPE incorporates random
adversarial perturbation budgets and random attackmethods,
which contribute tomore generalized training for the defense
model. Algorithm 3 summarizes the detailed trainingmethod
of MAPE.

The process of utilizing MAPE to defend against adver-
sarial attacks is illustrated in Fig. 4. The defense model is
deployed externally to the target model and is responsible for
extracting and eliminating implicit adversarial perturbations
from input examples, thereby diminishing the effectiveness
of adversarial attacks. The reconstructed examples will then
be input to the target model for classification. If the input
examples are clean natural images, the extracted adversar-
ial perturbations are meaningless and do not affect normal
classification.

Algorithm 3 Detailed training method of MAPE.
Require: A defense model E with the parameter ζ , N pre-trained clas-

sification models with the parameters θn(n = 1, 2, . . . , N ), clean
examples x, attack methodsAn′ (n′ = 1, 2, . . . , N ′), learning rate η

and weight decay λ

Ensure: Robust defense model E
1: Initiate the parameter ζ of the defense model E ;
2: Freeze the parameters θn of all pre-trained models;
3: while not converged do
4: Schedule a pre-trained model Cr according to PPSA;
5: Randomly create a sequence of adversarial perturbation budgets

[ε1, ε2, . . . , εN ′ ] ← (4/255, 12/255) ;
6: Randomly select an attack method to generate adversarial exam-

ples x̄n′ = x + An′ (θrn′ , x) ;
7: Perform stratified sampling from clean examples and adversarial

examples to create a mixed example
ẍ ← [x, x̄1, x̄2, . . . , x̄N ′ ] ;

8: Execute steps 6, 7, and 8 of SAPE.
9: end while
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Fig. 3 Deep learning defense
known as multi-source
adversarial perturbations
elimination (MAPE)

Fig. 4 Utilizing MAPE to defend against adversarial attacks

Experiments

Experimental setup

Attackers. The proposed method focuses on defending
against transferable adversarial attacks in image classifica-
tion. The black-box attack environment represents the most
common real-world scenario and is applicable in “Existence
of MAPE” section to “Defending against integrated trans-
ferable attacks” section and “Further evaluations” section.
Additionally, “Defending against strong substitute model
attacks and adaptive attacks” section discusses the less preva-
lent scenarios involving gray-box and white-box attacks. In a
gray-box attack environment, attackers can acquire training
data and model architecture from benign users, creating sub-
stitute models that align with the target model and defense
architecture but are initialized differently, thereby enabling
strong substitute model attacks. In a white-box attack envi-
ronment, attackers have complete access to the target model,
including all information about the model and its defense
strategy, enabling precise adaptive attacks. To emphasize the
accuracy of the evaluations, all attack methods in this paper
belong to the more potent non-targeted adversarial attacks.

Datasets. We use CIFAR-10, CIFAR-100, and Mini-
ImageNet as the evaluation datasets for this work. The
resolutions of CIFAR-10 andCIFAR-100 remain unchanged,
and the resolution of Mini-ImageNet is set to 64× 64. Mini-
ImageNet contains 100 classes, all of which are utilized. For
each class, 480 randomly selected images are assigned to the
training set, while the remaining 120 images are designated
for the test set. In the experiments detailed in this paper, all
input example values are constrained within the range of 0 to
1, signifying that the entirety of input data comprises image
examples.

Classification models. During the training of MAPE,
we employ DenseNet [44], DPN [45], GoogLeNet [38],
MobileNetV2 [39], PyramidNet [46], RegNet [47], ResNet
[2], ResNeXt [48], SENet [41], and WideResNet (WRN)
[49] as the pre-trained models for crafting adversarial exam-
ples. In the evaluation phase, ResNet [2], ResNetV2 [50],
ShuffleNetV2 [51], VGG [52], and Vision Transformer [53]
are as substitute models used by attackers and utilized
to create adversarial examples for comparing the defense
robustness of MAPE and baseline methods. To encompass
a wide range of attack sources and achieve more realistic
performance evaluations, our selected models include both
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Table 1 Classification accuracy rates (%) of SAPE and MAPE in defending against adversarial attacks on CIFAR-10, CIFAR-100 and Mini-
ImageNet (higher is better)

Datasets Defenses Clean ResNet-34 ShuffleNet-V2-2×
FGSM BIM DIM PGD FGSM BIM DIM PGD

CIFAR-10 Natural Training 95.82 27.60 0.11 0.05 0.02 51.24 9.90 6.23 7.16

SAPE 95.23 95.28 95.14 95.08 94.15 91.99 91.86 92.13 91.78

SAPE & Random 95.02 93.66 93.90 93.65 92.90 93.43 93.06 93.21 92.90

SAPE & PPSA (MAPE) 95.37 95.22 95.42 94.98 94.36 95.28 94.76 94.44 94.66

CIFAR-100 Natural Training 75.30 16.43 1.28 1.03 0.88 24.42 6.67 3.98 4.47

SAPE 74.82 74.48 72.75 72.34 72.25 70.96 67.27 66.63 66.59

SAPE & Random 74.54 73.31 71.49 71.36 71.18 72.01 69.65 69.32 69.25

SAPE & PPSA (MAPE) 74.99 74.23 72.93 72.57 72.14 74.65 70.64 70.76 71.40

Mini- ImageNet Natural Training 76.37 11.64 0.03 0.00 0.01 17.63 1.69 1.02 1.26

SAPE 74.62 72.71 71.18 70.88 71.29 65.95 64.78 63.03 63.64

SAPE & Random 74.02 71.08 69.92 69.76 69.92 68.83 67.82 65.52 67.57

SAPE & PPSA (MAPE) 74.86 72.64 71.45 71.09 71.20 69.13 70.28 69.85 70.35

ResNet-34 serves as the target model. Simultaneously, it and ShuffleNet-V2-2× serve as substitute models for launching the attacks. For each
attack, we show the most successful defense with bold

classic and cutting-edge models, spanning from large-scale
to lightweight designs.

Baseline defense approaches. We compare with natu-
ral training, adversarial training [19] and the following input
transformation defense methods: TVM [34], feature denois-
ing [27], pixel deflection [35], mixup inference [23], HGD
[26] and LDT [25]. Except for natural training, all defense
methods incorporate adversarial training to enhance their
defense performance. To enhance the persuasiveness of the
experiments, we set the target model as the ResNet series,
similar to other defense methods. Considering the balance
between classification performance and computational cost,
we decide to use ResNet-34 as the target model of all defense
methods. Feature denoising employs aResNet-34modelwith
denoising blocks as its target model.

Training details. During the training process of MAPE,
attack methods DIM [11] and PGD [19] are used to generate
adversarial examples. The perturbation budget is within the
range of (4/255, 12/255). The step size is set to 2/255, while
the number of steps is set to 20. The training data is a mixture
of adversarial examples and clean examples. The defense
model E is optimized using Adam. Their initial learning rate
η and weight decay λ are set to 0.01 and 0. The number of
training epochs is set to 120, with the learning rate decreasing
by a factor of 10 at the 50th, 75th, and 100th epochs. The
batch size of the dataset is set to 128. The GPU device used
is a NVIDIA Tesla A100 (40GB).

Existence of MAPE

In this section, we conduct a series of controlled experiments
on the CIFAR-10, CIFAR-100, andMini-ImageNet datasets,

to validate the effectiveness of MAPE and its components
(SAPE and PPSA) in adversarial defense. Each set of con-
trolled experiments uses ResNet-34 as the targetmodel under
attack,while bothResNet-34 and unforeseen ShuffleNet-V2-
2× serve as substitute models for launching the attacks. The
methods compared included natural training, SAPE, SAPE
driven by randomly selected pre-trained models (SAPE &
Random), and SAPE driven by pre-trainedmodels scheduled
with PPSA (SAPE& PPSA, namelyMAPE). The evaluation
results are presented in Table 1.

It can be observed that, compared to natural training,
SAPE has significantly improved adversarial defense per-
formance. However, since the defense model is trained
solely on adversarial examples generated by the target model
ResNet-34, the effectiveness of SAPE in defending against
adversarial attacks from the unforeseen substitute model
ShuffleNet-V2-2× significantly decreases. On CIFAR-10,
CIFAR-100, and Mini-ImageNet, the average defensive per-
formance of SAPE against ShuffleNet-V2-2× as a substitute
model is lower than that against ResNet-34 as a substitute
model by 2.97, 5.09, and 7.16%, respectively. This indicates
that the defense model trained solely with SAPE exhibits
weak generalization capability.

In contrast, when randomly selecting pre-trained models
to drive SAPE (SAPE & Random) for training the defense
model, it shows relatively close defense performance against
attacks from different substitute models. The correspond-
ing data for the aforementioned metrics are 0.38, 1.78, and
2.74%, respectively. When using the PPSA to strategically
schedule the pre-trained models to drive SAPE (SAPE &
PPSA, namely MAPE), the defense model exhibits stronger
generalization capabilities, with the aforementioned metrics
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being 0.21, 1.10, and 1.69%, respectively. Additionally, due
to the dynamic adjustment of the negative momentummech-
anism, its defense performance has also been effectively
enhanced. On CIFAR-10, CIFAR-100, and Mini-ImageNet,
SAPE & PPSA (MAPE) outperforms SAPE & Random in
average defense effectiveness by 1.55, 1.47, and 1.95%,
respectively. These evaluation results indicate that, compared
to SAPE, MAPE can effectively enhance both the defense
effectiveness and generalization capability of the defense
model.

Defending against unknown types of transferable
attacks

We evaluate the effectiveness of various defense methods
against unknown types of adversarial attacks. These attack
methods are not used in the training process of the defense
methods. They include the one-step method FGSM, the
multi-step method BIM, as well as advanced transferable
attack methods such as Ultimate PGD (UPGD) and VNIM.
The adversarial perturbation budget is L∞ = 8/255, and
the number of steps is set to 50 for iterative attack meth-
ods. ResNet-34 serves as the target model under attack,
while it, along with ShuffleNet-V2-2× and ResNet-V2-50,
acts as substitute models for launching the attacks. The
detailed evaluation results on CIFAR-10, CIFAR-100, and
Mini-ImageNet are presented in Table 2. For transformer-
based models, the selected substitute model is ViT-S/16. The
detailed evaluation results on Mini-ImageNet are shown in
Table 3. ShuffleNet-V2-2×, ResNet-V2-50, andViT-S/16 are
not used in the training process of any defense methods.

In Table 2, it can be found that regardless of the defense
strategy employed, there will be a reduction in the tar-
get model’s classification accuracy on clean examples. In
comparison, MAPE shows the least degradation of clean
classification accuracy. When faced with unknown types
of adversarial attacks, MAPE consistently demonstrates
superior defensive performance compared to other defense
methods, always exhibiting optimal performance against
each type of attack. Its average defense performance on
CIFAR-10, CIFAR-100, andMini-ImageNet is 95.03, 72.69,
and 71.41%, respectively −1.14, 2.01, and 3.49% higher
than LDT. Furthermore, it can be observed that compared
to defending against known substitute models (ResNet-34),
all defense methods except for MAPE exhibit a signifi-
cant performance declinewhen defending against unforeseen
substitute models (ShuffleNet-V2-2× and ResNet-V2-50).
Taking the Mini-ImageNet dataset as an example, the aver-
age classification accuracies of HGD, LDT, andMAPEwhen
defending against attacks from ResNet-34 are relatively sim-
ilar, at 69.69, 70.47, and 71.10%, respectively. However,
when defending against attacks from ShuffleNet-V2-2×,
their average classification accuracies drop to 64.37, 63.57,

Table 3 Classification accuracy rates (%) in defending against
unknown types of adversarial attacks on Mini-ImageNet (higher is bet-
ter)

Defenses Clean FGSM BIM UPGD VNIM

Nat. Tra 76.37 42.49 39.69 34.06 26.77

Adv. Tra 58.39 56.71 57.07 56.59 56.15

TVM 66.22 60.61 62.90 61.12 59.33

Feat. Den 59.00 54.13 56.23 54.63 53.33

Pix. Def 67.28 61.29 63.50 62.08 59.53

Mix. Inf 73.81 61.89 62.52 61.89 61.04

HGD 72.41 60.73 62.25 62.31 61.20

LDT 73.76 61.76 61.97 62.65 60.27

MAPE 74.86 64.58 65.43 65.88 64.26

ViT-S/16 and ResNet-34 serve as the substitute model and target model,
respectively. For each attack, we show the most successful defense with
bold and the second one with underline

and 69.53%, representing declines of 5.32, 6.9, and 1.57%,
respectively. This indicates that, compared to other defense
methods, MAPE exhibits higher generalization capabilities,
effectively defending against transferable adversarial attacks
from unforeseen substitute models.

In Table 3, the substitute model ViT-S/16 is based on a
transformer architecture, while the target model ResNet-34
relies on convolutional structures. This results in substan-
tial structural differences between them, leading to sig-
nificant distinctions in their classification boundaries on
Mini-ImageNet. Consequently, the effectiveness of adver-
sarial attacks on ViT-S/16 cannot be readily transferred to
ResNet-34. Specifically, the natural accuracy drop after expe-
riencing adversarial attacks in Table 3 is not as pronounced
as that in Table 2. Similarly, because all defense methods
were trained using CNNs as hypothetical substitute mod-
els, the effectiveness of defending against adversarial attacks
from ViT-S/16 is not as strong as defending against attacks
fromCNNs. This leads to a curious phenomenon as shown in
Table 3: the adversarial attacks from ViT-S/16 are not very
strong, yet the defensive effectiveness against them is also
not very high. Nonetheless, MAPE still demonstrates the
strongest defensive capabilities compared to other methods.

Defending against integrated transferable attacks

We evaluated the effectiveness of different defense methods
against integrated adversarial attacks. The integrated adver-
sarial attack methods include LGV [31], TAIG [32], and
AdaEA [33]. The basic attack method, adversarial pertur-
bation budget, and number of steps are set to BIM, L∞ =
8/255, and 50, respectively. For LGV, the substitute model is
ShuffleNet-V2-2× and the number of weight sets is 10. For
TAIG, the substitutemodel is alsoShuffleNet-V2-2×, and the
example augmentation factor is 20. ForAdaEA, the substitute
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Table 4 Classification accuracy rates (%) in defending against inte-
grated adversarial attacks on Mini-ImageNet (higher is better)

Defenses Clean LGV TAIG AdaEA

Nat. Tra 76.37 7.03 0.37 0.98

Adv. Tra 58.39 57.14 55.25 56.22

TVM 66.13 62.78 58.99 59.98

Feat. Den 59.00 55.52 50.18 53.66

Pix. Def 67.28 64.28 59.68 60.79

Mix. Inf 73.81 66.08 64.23 61.73

HGD 72.41 66.72 62.58 60.67

LDT 73.76 67.40 64.10 63.41

MAPE 74.86 69.43 69.12 69.78

ResNet-34 serve as the target model under attack. For each attack, we
show the most successful defense with bold and the second one with
underline

model ensemble consists of ShuffleNet-V2-2×, ResNet-V2-
50, and VGG-19. For all defense methods, these substitute
models have never been encountered. The detailed evalua-
tion results on Mini-ImageNet are shown in Table 4. It is
evident that when confronted with ensemble attacks involv-
ing multiple gradients or models, MAPE continues to exhibit
the highest natural accuracy and defensive performance com-
pared to other defense methods.

Defending against strong substitute model attacks
and adaptive attacks

In this section, we consider the defensive effect of the
proposed method in gray-box and white-box attack envi-
ronments. In a gray-box attack environment, the attackers
employ strong substitutemodel attacks. In awhite-box attack
environment, attackers use adaptive attacks. The conditions
for carrying out white-box attacks are more rigorous than
those for gray-box attacks. A detailed overview is provided
in “Experimental setup” section.

We evaluated the effectiveness of different defense meth-
ods against strong substitute model attacks and adaptive
attacks. The base target model under attack is ResNet-34.
The adversarial attackmethods include FGSM,BIM,UPGD,
VMIM, and VNIM. The adversarial perturbation budget is
L∞ = 8/255, and the number of steps is set to 50 for iterative
attack methods. For defense methods based on obfuscated
gradients or random transformation, we respectively employ
backward pass differentiable approximation (BPDA) [54]
and expectation over transformation (EOT) [54] for gradient
correction. The detailed evaluation results onMini-ImageNet
are presented in Table 5.

From Table 5, it is evident that in strong substitute model
attacks under gray-box environments, MAPE demonstrates
superior defense effectiveness compared to other methods.

This is because, during the training process of MAPE, mul-
tiple classification models are introduced to aid in training,
alongside random adjustments to adversarial example gen-
eration methods and perturbation budgets. Consequently,
among all defense approaches, MAPE exhibits the largest
sample space and parameter space, significantly reducing
the similarity in parameter weights between strong sub-
stitute models and MAPE. However, in adaptive attacks
under white-box environments, where all model weights and
defense strategies are exposed, attackers can develop pre-
cise attack strategies, resulting in a significant decrease in
the defensive capabilities of all methods. Although adversar-
ial training and TVM can defend against a small number of
adversarial examples, their natural accuracy and black-box
accuracy are far inferior to those of MAPE.

Failure of defense against adaptive attacks is not a unique
issue of the proposed method but rather a common problem
associated with black-box defense methods. Such failures
can alsobe found in theoriginal papers onHGD[26] andLDT
[25]. Although this paper primarily focuses on the domain of
black-box defenses, integrating the proposed method with
several advanced adversarial training techniques can still
enhance its applicability in the field of white-box defenses.
For instance, employing classical TRADES [20] and MART
[55] loss functions in the adversarial training process of
the proposed method can optimize the classification bound-
aries of the model. Utilizing data generated by the latest
elucidating diffusion model (EDM) as training data [56]
can simultaneously improve the performance of the pro-
posed method in both black-box and white-box defenses.
Additionally, a specific scaling law [57] allows for more
rational allocation of resources such as model and dataset
sizes, thereby maximizing adversarial robustness given a
fixed computational capacity. Furthermore, combining the
fast adversarial training method known as FGSM-PCO [58]
can reduce the computational costs associatedwith the adver-
sarial training process. In summary, integrating adversarial
training methods aids in improving the white-box robustness
ofMAPE, potentially broadening the applicability of the pro-
posed method. This will be our primary research direction
moving forward.

Further evaluations

Cross-model defense

We evaluated the transferability of the defensive capabilities
across different methods, i.e., their defensive effects on dif-
ferent target models. The adversarial attack methods include
FGSM, BIM, UPGD, VMIM, and VNIM. The adversarial
perturbation budget is L∞ = 8/255, and the number of steps
is set to 50 for iterative attack methods. The selected substi-
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Table 5 Classification accuracy rates (%) in defending against strong substitute model attacks and adaptive attacks on Mini-ImageNet (higher is
better)

Defenses Clean Strong substitute model attacks Adaptive attacks

FGSM BIM UPGD VMIM VNIM FGSM BIM UPGD VMIM VNIM

Nat. Tra 76.37 13.40 3.39 2.03 1.19 1.07 11.69 0.03 0.03 0.01 0.01

Adv. Tra 58.39 32.27 29.22 29.42 29.87 29.04 21.37 15.42 16.26 16.14 16.33

TVM 66.17 50.85 45.62 46.78 40.49 39.48 18.84 4.49 5.16 6.77 7.38

Feat. Den 59.00 21.45 12.17 11.52 11.39 10.57 6.75 0.23 0.31 0.33 0.31

Pix. Def 67.28 41.04 35.88 34.71 34.37 33.67 15.63 0.57 0.73 0.76 0.78

Mix. Inf 73.81 42.73 37.70 35.48 32.45 29.98 29.46 0.00 0.00 0.01 0.00

HGD 72.41 51.72 40.81 38.77 35.78 33.38 13.93 0.05 0.06 0.46 0.52

LDT 73.76 55.32 46.77 46.87 44.80 41.58 19.97 0.06 0.10 0.79 1.48

MAPE 74.86 63.62 54.42 55.89 53.53 51.29 21.98 0.11 0.12 1.68 2.34

For each attack, we show the most successful defense with bold and the second one with underline

Table 6 Classification accuracy rates (%) of different methods for different target models in defending against unknown types of adversarial attacks
on CIFAR-10, CIFAR-100 and Mini-ImageNet (higher is better)

Dataset Defenses Clean ShuffleNet-V2-2× ResNet-V2-50

FGSM BIM UPGD VMIM VNIM FGSM BIM UPGD VMIM VNIM

VGG-19 serves as the target model under attack

CIFAR-10 Nat. Tra 94.69 51.11 18.55 13.14 5.67 5.96 48.31 22.41 15.90 7.54 7.21

HGD 90.46 89.75 90.19 89.79 90.06 90.22 92.05 91.35 91.13 91.53 91.64

LDT 93.03 91.32 90.67 90.56 90.77 90.74 92.21 91.69 91.87 92.56 92.69

MAPE 94.31 94.10 93.74 94.18 94.11 93.89 93.94 94.02 94.13 94.29 93.84

CIFAR-100 Nat. Tra 75.16 26.77 14.22 10.57 6.93 6.75 30.13 23.97 19.24 11.26 10.45

HGD 67.38 63.53 61.92 60.73 62.16 62.59 65.20 62.47 60.82 62.71 63.01

LDT 71.43 67.48 62.15 60.70 63.14 62.91 69.48 63.11 63.50 64.73 65.11

MAPE 74.48 72.82 69.08 69.81 70.31 70.28 73.89 69.71 70.92 72.24 72.46

Mini-ImageNet Nat. Tra 70.33 21.96 11.10 8.41 4.02 3.65 22.49 29.37 24.43 12.56 10.63

HGD 62.83 57.73 58.88 56.36 57.37 58.09 61.93 61.00 58.83 60.92 61.32

LDT 65.82 63.97 59.64 58.25 59.58 59.88 66.71 62.91 63.32 64.93 65.11

MAPE 69.27 64.59 65.19 64.73 65.11 64.99 68.44 66.47 66.68 67.52 67.15

ViT-S/16 serves as the target model under attack

CIFAR-10 Nat. Tra 98.67 85.30 82.77 78.26 67.31 68.07 88.01 85.03 81.21 73.14 73.58

HGD 95.20 94.07 93.76 93.52 93.48 93.43 95.14 94.30 94.15 94.71 94.32

LDT 97.22 96.04 95.60 95.41 95.42 95.53 96.89 95.80 95.79 96.04 96.24

MAPE 98.53 97.06 96.19 96.27 96.35 96.55 97.47 96.87 96.72 96.85 96.74

CIFAR-100 Nat. Tra 90.32 64.03 60.51 55.15 49.08 49.35 66.84 66.59 61.31 52.70 53.51

HGD 78.94 74.99 73.97 72.57 73.43 73.47 74.73 72.64 71.34 72.08 72.96

LDT 82.46 80.01 74.75 74.23 75.76 76.26 79.77 73.77 74.39 76.10 76.12

MAPE 89.80 85.94 82.20 82.47 83.34 83.63 87.76 83.13 83.82 85.75 85.53

Mini- ImageNet Nat. Tra 90.53 68.77 69.18 63.00 52.30 50.86 73.45 76.28 71.03 59.88 60.38

HGD 84.36 80.04 79.74 78.03 79.57 79.89 82.16 81.55 80.11 81.06 81.43

LDT 87.19 84.97 83.32 82.42 83.39 83.68 86.80 84.33 84.18 85.30 85.58

MAPE 89.38 86.45 85.73 85.47 86.04 86.07 88.09 86.64 86.68 87.45 87.43

ShuffleNet-V2-2× and ResNet-V2-50 serve as substitute models for generating adversarial examples, VGG-19 and ViT-S/16 serve as other target
models not included in the framework. For each attack, we show the most successful defense with bold
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Fig. 5 Classification accuracy rates (%) of MAPEs with different
defense models in defending against unknown types of adversarial
attacks onCIFAR-10 (higher is better). ShuffleNet-V2-2× andResNet-
34 serve as the substitute model and target model, respectively. CA is
channel-attention mechanism and numerical suffixes is the quantity of
submodules

tute models are ShuffleNet-V2-2× and ResNet-V2-50. We
only choose to compare HGD and LDT with MAPE because
their defense and target models can be separated, and the
target model is independently trained (not jointly trained
with the defense model). Therefore, when the original target
model is replaced with different target models VGG-19 and
ViT-S/16, they can still function properly. At this point, their
defensive effects depend on the robustness and generaliza-
tion of the defense model. The detailed evaluation results on
CIFAR-10, CIFAR-100, and Mini-ImageNet are presented
in Table 6.

From Table 6, it can be observed that the natural accu-
racy of MAPE closely aligns with the natural accuracy of the
target model. This suggests that MAPE rarely leads to mis-
classification of input examples by the target model. When
compared to HGD and LDT, MAPE achieves the best defen-
sive performance under each type of attack, whether assisting
the CNNmodel VGG-19 or the transformer model ViT-S/16.
This indicates that MAPE is capable of training a defense
model with strong generalization capabilities. This defense
model is independent of the targetmodel, and its performance
is not affected by it. After training, it can provide adversar-
ial defense for different target models without the need for
retraining for each specific target model.

Ablation study

Based on whether channel-attention mechanism layers
have been added, we divide the defense models into CAU-
Net and U-Net. The former incorporates channel-attention

mechanism layers, while the latter does not. Subsequently,
we assign 4, 5, and 6 submodules to each, resulting in a total
of 6 defense models participating in the ablation study. The
defensemodel utilized in this paper isCAU-Net-5,which fea-
tures channel-attention mechanism layers and 5 submodules.
Each defense model is trained in a uniform manner and then
subjected to adversarial attacks includingFGSM,UPGD, and
VNIM. The adversarial perturbation budget is L∞ = 8/255,
and the number of steps is set to 50. ShuffleNet-V2-2× serves
as the substitute model for generating adversarial examples,
and ResNet-34 serves as the target model under attack.

Figure 5 presents the ablation study of the defense mod-
els discussed above on CIFAR-10. It can be observed that
when the number of submodules (network depth) is the same,
CAU-Net with channel-attention mechanism layers exhibits
stronger robustness and better performance in defending
against adversarial attacks compared to U-Net. The rela-
tively shallow network depth of CAU-Net-4 results in a
diminished fitting capability and a lower defense effective-
ness. Conversely, excessive network depth in CAU-Net-6
may lead to overfitting issues, resulting in a decline in
its defense performance. Therefore, among the three mod-
els, CAU-Net-5 exhibits a more suitable fitting capability
and the strongest overall defense performance. Additionally,
with only 1.66M parameters, CAU-Net-4 comprises merely
24.85% of CAU-Net-5’s parameter count (6.68M). Given a
modest compromise in defense performance,CAU-Net-4 can
be employed for adversarial defense in lightweight classifi-
cation models.

Robustness against perturbation budgets

We set the L∞ norm perturbation budget within the range of
[4/255, 24/255] and employ FGSM, UPGD, and VNIM to
attack the target model, in order to evaluate the robustness of
MAPE against perturbation budgets. The detailed evaluation
results are shown in Fig. 6. It can be observed that when the
adversarial perturbation budget is less than 12/255, LDT is
able to maintain a defense effectiveness of over 80%, but as
the perturbation budget increases, the defense effectiveness
sharply decreases. In comparison, it is only when the adver-
sarial perturbation budget surpasses 16/255 that MAPE’s
defense effectiveness shows a significant decrease. Further-
more, at an adversarial perturbation budget of 4/255, MAPE
exhibits an average defense effectiveness 3.1% higher than
LDT. However, at a perturbation budget of 24/255, MAPE’s
average defense effectiveness surpasses LDT by a remark-
able 105.9%. This indicates that the defense based onMAPE
exhibits strong robustness against high adversarial perturba-
tion budgets and powerful adversarial attacks.
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Fig. 6 Classification accuracy rates (%) of MAPE and LDT in
defending against unknown types of adversarial attacks with different
perturbation budgets on CIFAR-10 (higher is better). ShuffleNet-V2-
2× and ResNet-34 serve as the substitute model and target model,
respectively

Defense costs

We compared the training and evaluation costs of different
defense methods on Mini-ImageNet, as shown in Fig. 7. The
evaluation cost refers to the actual operational cost. The com-
parison metrics include memory usage and running time. All
defense methods employed a pre-trained ResNet-34 as the
target model. When measuring the training cost, the batch
size of the dataset was set to 128. For evaluating the cost,
defense methods processed a single image at a time, running
a total of 10,000 iterations, with the average taken as the
processing cost for one image.

During the training process, methods incorporating deep
defense models, such as HGD, LDT, and proposed MAPE,
require higher training costs compared to others. HGD

employs the target model to predict both complete clean
examples and adversarial examples separately, so it has the
longest running time. In contrast, LDT and MAPE only
require predictions for mixed examples composed of clean
and adversarial examples, so their running times are consid-
erably shorter than those ofHGD.MAPEappears to consume
a substantial amount of memory when contrasted with HGD
and LDT. However, due to the memory reuse mechanism
in PyTorch, the memory usage of MAPE is not the sum
of the memory usage of the pre-trained models, but rather
their upper bound. This implies that certain heavyweight
pre-trained models, such as PyramidNet and WideResNet,
are responsible for the increased memory usage. In practical
applications, if memory is constrained, these heavier models
can be replaced with lighter alternatives.

During the evaluation process, HGD, LDT, and MAPE
still incur higher defense costs compared to other methods.
However, due to the utilization of a more efficient CAU-Net
in MAPE, its memory usage is 2.3% (18 MiB) lower than
that of HGD and 4.9% (40 MiB) lower than that of LDT. In
terms of runtime for a single image, MAPE takes 9.0% (0.87
ms) less time than LDT, while it takes 7.4% (0.61 ms) more
time thanHGD. Furthermore, themodel parameter counts for
HGD, LDT, and MAPE are 32.36M, 33.44M, and 28.01M,
respectively, while the parameter counts for other methods
are approximately 21.3M. The model parameter count of
MAPE is 13.4% (4.35M) lower than that of HGD and 16.3%
(5.43M) lower than that of LDT.

In summary, compared to HGD and LDT, MAPE exhibits
the lowest memory usage during evaluation while demon-
strating the highest memory usage during training. When
memory is constrained, the latter issue can be addressed by
substituting lighter pre-trained models. In terms of running
time, MAPE consistently maintains an intermediate level
of performance. Additionally, MAPE has the lowest model
parameter count. Combining these findings with previous

Fig. 7 Comparison of different defense methods in terms of a training cost and b evaluation cost. The comparison metrics include the memory
usage and the running time. The target model and dataset used are ResNet-34 and Mini-ImageNet, respectively
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defense experiment results, it is evident that MAPE not only
possesses the strongest defense performance but also incurs
a defense cost comparable to other methods of similar type.

Conclusion

In this paper, our approach is to deploy a defense model
external to the targetmodel to extract and eliminate the adver-
sarial perturbations from input examples. The optimization
objective focuses on enhancing the robustness and gener-
alization of the used defense model to effectively defend
against a variety of unknown types of adversarial attacks.
To achieve this goal, we propose a deep learning defense
known as MAPE, which is primarily composed of SAPE
and PPSA. SAPE utilizes CAU-Net as its defense model,
training it to eliminate adversarial perturbations by using
adversarial examples generated from a pre-trained model.
Meanwhile, PPSA integrates model difference probability
and negative momentum probability to strategically sched-
ule multiple pre-trained models, maximizing the differences
among these models during adjacent training cycles, thus
enhancing the diversity of the generated adversarial exam-
ples. The evaluation results demonstrate that MAPE exhibits
strong robustness and can effectively defend against various
types of adversarial attacks in a black-box environment. In
future work, potential extensions include strengthening its
defense capabilities against strong substitute model attacks
and adaptive attacks, as well as applying it to adversarial
defense in object detection, image segmentation, and other
visual tasks.
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