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ABSTRACT

We propose energy-based models of the joint distribution of data and supervision.
While challenging to work with, this approach gives flexibility when designing
energy functions and easy parameterization for structured supervision. Further,
these models naturally allow training on partially observed data and predictions
conditioned on any subset of the modeled variables. We identify and address
the main difficulty in working with these models: sampling from the joint distri-
bution of data and supervision. We build upon recent developments in discrete
MCMC sampling and apply them alongside continuous MCMC techniques de-
veloped for energy-based models. We present experimental results demonstrating
that our proposed approach can successfully train joint energy-based models on
high-dimensional data with structured supervision capable of both accurate pre-
diction and conditional sampling.

1 INTRODUCTION

The flexibility of Energy-Based Models (EBMs) make them an appealing approach for a number of
generative modelling tasks. The ease with which structure may be incorporated and their relation-
ship to physical systems has long made them popular in the broader scientific community (Ingraham
et al., 2019; Du et al., 2020c; Noé et al., 2019). After a period of reduced interest from the machine
learning community, EBMs have regained popularity as an approach for generative modeling (Ni-
jkamp et al., 2020a; Du & Mordatch, 2019) and have found utility in many applications.

One such application is Joint Energy-based Models (JEM) (Grathwohl et al., 2019). These mod-
els re-purpose existing state-of-the-art classifier architectures to define an energy-based model of
the joint distribution p(x, y) between data and class labels, instead of the conditional distribution
of labels given data p(y|x) as is typically used for classification. Moving from conditional to joint
models gives improved calibration, out-of-distribution detection, and adversarial robustness while
retaining high discriminative performance. This approach has been extended to domains beyond
images (He et al., 2021; Hataya et al., 2021) and to new applications such as semi-supervised learn-
ing (Grathwohl et al., 2020; Zhao et al., 2020).

Grathwohl et al. (2019) focus on models for image classification where x is a continuous images and
y is a discrete, 1-dimensional class label. Naively training this model would require MCMC sam-
pling from the joint distribution of x and y which is challenging because y is discrete. Thankfully,
the structure of the energy-function allows us to marginalize out the label y to compute an EBM for
log p(x) and a normalized p(y|x) model. We can then train to maximize the factorized likelihood
log p(x, y) = log p(x) + log p(y|x). Techniques for training EBMs on continuous data are used to
maximize the first term and the second term is optimized to minimize cross-entropy.

In many situations we are interested in supervision which is more complicated than a 1-dimensional
class label. We may, for example, wish to predict a segmentation mask, or a text caption given
an image. Here the supervisory information is rich, discrete, high dimensional, and its variables
have correlations which are important to model. In settings such as these we may not be able to
marginalize out the y or compute a normalized p(y|x). Thus, we will not be able to train in the same
way as Grathwohl et al. (2019).
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An alternative approach to train this model would be to maximize log p(x, y) directly. This would
require sampling from the joint directly which can be challenging given the mixed continuous-
discrete nature of the sampling problem. Notably though, solving this sampling task would enable
the training of models simultaneously capable of discriminative modeling, conditional sampling,
and semi-supervised learning.

In this work we take a first step to address these issues and demonstrate that joint EBMs can be
trained on high-dimensional mixed continuous and and discrete data. These models generate con-
vincing conditional samples and make accurate predictions. To accomplish this, we build upon
recent work on MCMC sampling in discrete spaces (Grathwohl et al., 2021) and MCMC-based
EBM training (Nijkamp et al., 2020a; Du & Mordatch, 2019).

In the next sections we provide some background on EBMs and MCMC sampling. We then present
our approach to train and sample from joint continuous-discrete EBMs. Finally, we present results
training these models on some small but exemplary datasets.

2 BACKGROUND

In the following sections we refer to our input data x ∈ X and supervision y ∈ Y . We assume that
x is continuous and y is discrete (either binary or categorical).

2.1 ENERGY-BASED MODELS

An energy-based model is any model which parameterizes a probability distribution as

pθ(x) =
efθ(x)

Z(θ)
(1)

where fθ : RD → R fully specifies the model and Z(θ) =
∫
efθ(x)dx is the normalizing constant.

While the flexibility of EBMs makes them appealing, this flexibility comes with the cost of mak-
ing sampling and likelihood evaluation much more challenging than it is for more restricted model
classes. In fact, likelihoods cannot be exactly computed, or even lower-bounded. EBMs are typi-
cally trained with gradient-based optimization using the following estimator for the gradient of the
maximum likelihood objective:

∇θ log pθ(x) = ∇θfθ(x)− Epθ(x′)[∇θfθ(x′)]. (2)

Use of this estimator requires generating samples from pθ(x). Since exact sampling is intractable,
we resort to using approximate samples generated with MCMC (Tieleman, 2008). Fortunately, a
host of techniques and tricks have been developed to make training with MCMC efficient when
using deep neural networks to define the energy-function (Du & Mordatch, 2019; Du et al., 2020b;
Nijkamp et al., 2019; 2020a; Xie et al., 2016).

The preferred sampling approach for continuous data is Langevin Dynamics (Welling & Teh, 2011)
which updates samples with

xt+1 = xt +
ε2

2λ
∇xfθ(x) + εα, α ∼ N(0, I) (3)

where the step-size ε, and the temperature λ are hyperparameters. Common values for image data
are ε = 0.01, λ = 1

20,000 . The low temperature is necessary to generate samples quickly enough for
efficient training.

2.2 GIBBS-WITH-GRADIENTS

Gradient-based MCMC methods such as Hamiltonian Monte-Carlo (Neal et al., 2011) or Langevin
Dynamics (Equation 3) have enabled the training of deep EBMs on continuous data. Similar
progress has not been made on discrete data because a lack of scalable MCMC methods for dis-
crete distributions.

In the following we discuss sampling from p(y) = ef(y)

Z where y ∈ Y is discrete. Recent
work (Grathwohl et al., 2021) presents an MCMC sampler for discrete distributions which has en-
abled the training of deep EBMs on discrete data. The sampler, Gibbs-With-Gradients, is based on
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the Metropolis-Hastings algorithm and defines a proposal distribution, q(y′|y), which makes local
updates y′ ∈ H(y) (where H(y) is the Hamming-ball of size 1 around x).

Given the current state of a sampling chain, yt, the sampler proposes an update by sampling
y′ ∼ q(y′|yt). This proposed update is accepted with probability min{exp(f(y′)− f(y)) q(y|y

′)
q(y′|y) , 1}.

If the sample is accepted we set yt+1 = y′, otherwise we set yt+1 = yt.

Recent theoretical work on MCMC (Zanella, 2020) shows that the following proposal:

q(y′|yt) =
exp

(
f(y′)−f(yt)

2

)
∑
y′′∈H(yt)

exp
(
f(y′′)−f(yt)

2

) . (4)

is near optimal for MCMC in these settings. Unfortunately, sampling from this proposal and com-
puting likelihoods requires the computation of f(y′) − f(y) for each y′ ∈ H(y) which requires
O(D) function evaluations for D-dimensional data.

Grathwohl et al. (2021) noticed that discrete distributions are often implemented as continuous
functions of real-valued inputs. In these settings the discrete structure is created by restricting
the domain to a discrete subset of the possible inputs. A prime example is the Ising model
log p(y) = yTWy + bT y − logZ. The log-probability function can accept inputs in RD but the
distribution is defined on y ∈ {0, 1}D. In these settings we can utilize a Taylor-series approxima-
tion

f(y′)− f(y) ≈ (y′ − y)T∇yf(y) (5)

Using this approximation, we can approximate the proposal of Equation 4 using only O(1) function
evaluations. Despite these approximations, Grathwohl et al. (2021) demonstrate that this approach
to sampling (when it can be applied) greatly outperforms other generic discrete MCMC samplers
such as Gibbs sampling or the Hamming-Ball Sampler (Titsias & Yau, 2017).

3 JOINT ENERGY-BASED MODELS

We wish to train an EBM for the joint distribution of data x ∈ X and supervision y ∈ Y where the
supervision may be high dimensional and structured. Our models take the form

log pθ(x, y) = fθ(x, y)− logZ(θ) (6)

where fθ : X × Y → R is a flexible parametric function. Examples could include:

• fθ(x, y) = neural net(concat(x, y); θ)

• fθ(x, y) = gθ(x)
Thθ(y) where gθ : X → RD and hθ : Y → RD

Importantly, models of this form can represent correlations between the variables of y and can define
distributions over highly-structured y. For example, if y is permutation invariant or graph-structured,
a Deep Set (Zaheer et al., 2017) or Graph Convolutional network (Zhang et al., 2019), respectively
can be used to parameterize the energy function defining a model which respects the invariance
structure in the data.

Working with models of this form can be challenging because both conditionals p(x|y), p(y|x) and
both marginals p(x), p(y) may be unnormalized. Intriguingly though, if we are able to sample from
the joint then we will easily be able to maximize likelihood of any marginal and make predictions of
any chosen variables given any subset of the remaining variables. Thus in this setting, many distinct
problems that have been addressed in notably different ways are reduced to solving a single, albeit
challenging, problem.

To make predictions of y given x we can use MCMC to draw samples from p(y|x). This distribution
has the form

log p(y|x) = log p(x, y)− log p(x) = fθ(x, y)− C(x) (7)

where C(x) is a constant that does not depend on y. Thus, p(y|x) is an EBM with unnormalized log
probability given by evaluating fθ(x, y) with x fixed to the conditioning value. Symmetrically, we
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can apply the same approach to sample from p(x|y). Given our joint model, we can sample from
any conditional by fixing the observed variables and evaluating fθ(x, y) (and its gradient).

A similar argument allows us to train on partially-observed data. Assume we have observed a sample
x′ with no corresponding y. We can estimate the marginal likelihood’s gradient with

∇θ log pθ(x′) = Epθ(y|x′)[∇θfθ(x′, y)]− Epθ(x,y)[∇θfθ(x, y)]. (8)

Thus, dealing with unnormalized joint models, making predictions, training on fully-observed data,
training on partially-observed data, and drawing joint samples are roughly equivalent problems. Of
course, joint sampling from high-dimensional, unnormalized distributions is an incredibly difficult
task but recent advances in gradient-based sampling and EBMs (Welling & Teh, 2011; Grathwohl
et al., 2021; Du et al., 2020c; Grathwohl et al., 2019) have demonstrated that accurate samples can
be generated from large-scale EBMs.

4 TRAINING

In this section we outline our simple approach to sample from pθ(x, y) where x is continuous and y
is discrete. Defining efficient MCMC samplers for such distributons is still an open problem. When
y is held fixed, we find that pθ(x|y) is simply an EBM defined on continuous x. In this setting
Langevin Dynamics has been successfully applied to generate samples. With x held fixed, we find
pθ(y|x) is an EBM defined on discrete variables and Gibbs-With-Gradients (Grathwohl et al., 2021)
may be applied to generate samples.

To sample from pθ(x, y) we can apply block Metropolis-Within-Gibbs (MWG) using x and y each
as their own block. MWG works similarly to Gibbs sampling where we iteratively sample yt+1 ∼
pθ(y|xt) and then xt+1 ∼ pθ(x|yt+1). Instead of sampling exactly from the conditional (which we
cannot do since the conditional is unnormalized), we update our current sample yt using a Markov
transition kernel applied to p(y|xt) and then update xt likewise. In practice, we hold xt fixed, then
update yt using one step of Gibbs-With-Gradients to obtain yt+1. We then hold yt+1 fixed and apply
one step of Langevin dynamics to sample xt+1.

It is likely that more involved approaches (Zhou, 2019) could lead to improved performance or
more efficient sampling but we found this simple approach to work well for our applications. In the
following we will refer to the Markov transition kernel for 1 step of Langevin Dyanmics applied to
pθ(x|yt) as Tc(xt+1|xt, yt) and we refer to the Markov transition kernel for 1 step of Gibbs-With-
Gradients applied to pθ(y|xt) as Td(yt+1|yt, xt). Pseudo-code for our proposed joint sampler can
be seen in Algorithm 1.

Algorithm 1 Joint Sampling

Input: EBM pθ(x, y) ∝ efθ(x,y), initial distributions p0(x), q0(y), number of steps T
Output: Approximate samples xT , yT ∼ pθ(x, y)
Initialize samples x0 ∼ p0(x), y0 ∼ q0(y)
t = 0
while t < T do

Sample yt+1 ∼ Td(yt+1|yt, xt) {Gibbs-With-Gradients}
Sample xt+1 ∼ Tc(xt+1|xt, yt+1) {Langevin Dynamics}
t = t+ 1

end while
return xT , yT

5 EVALUATION

Prediction In classification tasks, predictions are typically made by returning the configuration
of y which maximizes pθ(y|x). When y is high-dimensional and its dimensions are correlated,
performing this maximization is not straightforward. In these settings, we propose to use MCMC to
instead sample from pθ(y|x) by repeatedly applying the transition kernel Td(yt+1|yt, xt). We refer
to this method of prediction as “sample-based”.
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As a useful comparison, in some of our experiments y is sufficiently low-dimensional that it is
tractable to marginalize over all configurations and obtain the exact y′ = argmaxy pθ(y|x). We
refer to this method of prediction as “energy-based”.

Conditional Sampling Conditional sampling can be achieved through repeated application of the
Markov transition kernel Tc(xt+1|xt, yt). Sometimes, we may condition on only a subset of the
supervision. In this case, we apply MWG as in Algorithm 1 with a modified Markov transition kernel
T d(yt+1|yt, xt). This kernel updates the subset of supervision which has not been conditioned on
and holds the subset of supervision that is being conditioned on constant.

6 EXPERIMENTS

We demonstrate that our approach is able to train joint models which can accurately predict the
labels and generate conditional samples. Throughout our experiments, we use models of the form

fθ(x, y) = neural net(concat(hφ(x), y); θ)

where y is a concatenation of one-hot vectors for each of the attributes, and hφ encodes data features.

The appendix includes details of the dataset preprocessing, architectures, additional samples, and
density visualizations (where applicable) for all experiments.

6.1 A TOY MODEL

First, we demonstrate our approach on a toy dataset generated with NumPy (Harris et al., 2020)
consisting of eight gaussian modes on a circle. The supervision consists of three binary attributes,
each of which defines an even partition of the eight modes. The label y has six dimensions as it is
the concatenation of three 2-dimensional one-hot vectors.

In Figure 1, we plot samples conditioned on either configuration of one of these attributes. This
model obtains> 99% predictive accuracy of the three attributes both with sample-based and energy-
based prediction.

Figure 1: Conditional samples on toy data.

6.2 CONDITIONAL GENERATIVE MODELING ON MNIST

We scale our approach to jointly model the distribution of 28 × 28 MNIST handwritten digits and
their 10 possible labels. Figure 2 shows our model obtains both high-quality unconditional samples
and high-quality class-conditional samples. Additionally, our model achieves 93% sampling-based
accuracy and 98% energy-based accuracy on the test set.

6.3 HIGH-DIMENSIONAL SUPERVISION ON DSPRITES

Last, we apply our method to the dSprites dataset (Matthey et al., 2017). This dataset consists of
64 × 64 (downsampled to 32 × 32) binary images of several shapes at different sizes, orientations,
and positions. We restrict this dataset to the ellipse shape and orientations that are multiples of 90
degrees. The attributes are the horizontal and vertical coordinates of the shape within the image,
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Figure 2: Unconditional samples (left) and conditional samples (right) on MNIST.

each of which has 16 possibilities. This results in a 32 dimensional one-hot attribute vector y with
256 possible configurations.

In Figure 3 we demonstrate our model can conditionally sample the horizontal and vertical coordi-
nates. In the left figure, each row conditions on a different horizontal coordinate. As we move from
the top row to the bottom row, samples are conditioned to be further to the right. In the right figure,
each column conditions on a different vertical coordinate. As we move from the leftmost column to
the rightmost column, samples are conditioned to be further to the bottom. Our model achieves 89%
sampling-based accuracy.

Figure 3: Horizontal (left, row-fixed) and vertical (right, column-fixed) conditioning on dSprites.

7 RELATED WORK

Structured prediction problems have been a key application of EBMs. In this setting we wish to
make predictions of highly structured y given inputs x. To capture complex correlations, this is often
phrased in an energy-minimization framework (Gygli et al., 2017; Belanger et al., 2017) which has
many similarities to the MCMC sampling we use. We believe our approach could be applied to these
applications to add many of the benefits reported in Grathwohl et al. (2019).

Next are works that explore the unique capabilities of EBMs for challenging tasks such as continual
learning (Li et al., 2020) and compositional generation (Du et al., 2020a). We believe the techniques
and architectures presented in this work could extend the range of problems these ideas can be
applied to.

8 CONCLUSIONS AND NEXT STEPS

In this work we developed an approach to model the joint distribution of data and supervision using
EBMs. This approach allows us to train on data with limited or partial supervision, and allows us to
obtain any of the conditional distributions. Our work is enabled by recent advances in discrete and
continuous sampling techniques for EBMs. We demonstrated our approach simultaneously achieves
accurate prediction and conditional sampling. This work is a first step, and in the future we hope to
scale our approach to larger datasets and incorporate more complex structured supervision.
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A JOINT ENERGY-BASED MODELS

A.1 MAXIMUM LIKELIHOOD GRADIENT

We give a short proof of Equation 8 adapted from Nijkamp et al. (2020b). Assuming we are only
given x′, then we can see

∇θ log pθ(x′) =
∇θpθ(x′)
pθ(x′)

=
1

pθ(x′)
∇θ
∫
Y
pθ(x

′, y)dy (marginalize)

=
1

pθ(x′)

∫
Y
∇θpθ(x′, y)dy (differentiate under the integral)

=
1

pθ(x′)

∫
Y
pθ(x

′, y)∇θ log pθ(x′, y)dy (log-derivative trick)

=

∫
Y

pθ(x
′, y)

pθ(x)
∇θ log pθ(x′, y)dy

=

∫
Y
pθ(y|x′)∇θ log pθ(x′, y)dy

= Epθ(y|x′) [∇θ log pθ(x′, y)]
= Epθ(y|x′) [∇θfθ(x′, y)]− Epθ(x,y) [∇θfθ(x, y)] (9)

where the last line is obtained by applying Equation 2 to the gradient of the joint log density
∇θ log pθ(x′, y).

A.2 JEM

We give a brief background on JEM (Grathwohl et al., 2019) for the uninitiated reader as an infor-
mative contrast to our approach.

Typically, a K-class classification task is solved by fitting a model of pθ(y|x). This is usually done
with a function fθ : X → RK where

pθ(y|x) =
efθ(x)[y]∑K

y′=1 e
fθ(x)[y′]

(10)

and y ∈ {1, . . . ,K} is the index representing the class-label. Grathwohl et al. (2019) notices that
the same function fθ can be used as well to define an energy-based model of the joint as

pθ(x, y) =
efθ(x)[y]

Z(θ)
, Z(θ) =

∑
y

∫
efθ(x)[y]dx. (11)

With this model, the label can be marginalized out to reveal an EBM for the unconditional data
distribution

pθ(x) =

∑
y e

fθ(x)[y]

Z(θ)
(12)

and, when computing the conditional we find

pθ(y|x) =
pθ(x, y)

pθ(x)
=

efθ(x)[y]∑K
y′=1 e

fθ(x)[y′]
(13)

which is identical to the conditional distribution parameterized by standard classifiers. JEM models
are trained to maximize log pθ(x) + log pθ(y|x) as defined in Equations 12 and 13. The first term is
optimized using the gradient estimator of Equation 2.
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B EXPERIMENTAL DETAILS

We use the Adam optimizer with default parameters β1 = 0.9, β2 = 0.999 (Kingma & Ba, 2014)
throughout our experiments. In Table 1, Table 2, and Table 3 we provide hyperparameters for each
of our experiments. The main hyperparameters we tuned were the step size ε and temperature λ for
Langevin dynamics.

Sampling During training, we use Persistent Contrastive Divergence (PCD) and a replay buffer
with a standard size of 10000 and replacement rate of 0.05 throughout all of our experiments (Du &
Mordatch, 2019). At test time, we generate samples from random noise and do not use the replay
buffer.

Sampling Noise The initial distribution for Langevin dynamics is uniform with bounds equal to
the per-dimension minimum and maximum values of one batch of data. The initial distribution for
Gibbs-With-Gradients is set to be uniform over all possible configurations on dSprites, and with
probabilities proportional to the number of occurrences in one batch of data for the toy data and
MNIST experiments.

Exponential Moving Average We keep an exponential moving average (EMA), as in Du et al.
(2020b), of the training parameters θ being optimized by applying the following update after each
training iteration:

θ̂ = µ · θ̂ + (1− µ) · θ.

We initialize θ̂0 = θ0 and set µ = 0.99 in our experiments. At test time we use the parameters θ̂.

Type Hyperparameter Value

Optimization learning rate 10−4

warmup 103

batch size 1000
iterations 5500

Sampling ε (Langevin) 10−1

λ (Langevin) 0.5

Sampling (Train) steps 20
buffer size 10000
replacement rate 0.05

Sampling (Test) steps 200
sampled-based prediction samples 10
µ (EMA) 0.99

Table 1: Hyperparameters for toy data.
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Type Hyperparameter Value

Optimization learning rate 10−4

warmup 104

batch size 100
iterations 110000

Sampling ε 3× 10−3

λ 1.5× 10−6

Sampling (Train) steps 40
buffer size 10000
replacement rate 0.05

Sampling (Test) steps 200
sampled-based prediction samples 10
µ EMA 0.99

Table 2: Hyperparameters for MNIST.

Type Hyperparameter Value

Optimization learning rate 10−5

warmup 104

batch size 100
iterations 180000

Sampling ε 3× 10−3

λ 4.5× 10−7

Sampling (Train) steps 40
buffer size 10000
replacement rate 0.05

Sampling (Test) steps 200
sampled-based prediction samples 10
µ EMA 0.99

Table 3: Hyperparameters for dSprites.

B.1 TOY DATA

B.1.1 ARCHITECTURE

The following architecture is implemented in PyTorch (Paszke et al., 2019).

Sequential(
(0): Linear(in_features=8, out_features=256, bias=True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=256, out_features=256, bias=True)
(5): ELU(alpha=1.0)
(6): Linear(in_features=256, out_features=1, bias=True)

)

B.2 MNIST

B.2.1 DATA PROCESSING

We applied standard dequantization
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x̃ =
x ∗ 255 + u

256
, u ∼ U [0, 1]

followed by the standard logit transformation

x̂ = x̃ ∗ (1− 2× 10−6) + 10−6

x = log

(
x̂

1− x̂

)
B.2.2 ARCHITECTURE

The following architecture is implemented in PyTorch (Paszke et al., 2019).

Sequential(
(0): Linear(in_features=794, out_features=1000, bias=True)
(1): ELU(alpha=1.0)
(2): Linear(in_features=1000, out_features=500, bias=True)
(3): ELU(alpha=1.0)
(4): Linear(in_features=500, out_features=500, bias=True)
(5): ELU(alpha=1.0)
(6): Linear(in_features=500, out_features=250, bias=True)
(7): ELU(alpha=1.0)
(8): Linear(in_features=250, out_features=250, bias=True)
(9): ELU(alpha=1.0)
(10): Linear(in_features=250, out_features=250, bias=True)
(11): ELU(alpha=1.0)
(12): Linear(in_features=250, out_features=1, bias=True)

)

B.3 DSPRITES

B.3.1 DATA PROCESSING

We downsampled images from their original 64 × 64 size to 32 × 32. We binned the horizontal
and vertical attributes from 32 options each to 16 options each. We applied a significant amount of
dequantization to the images with the following function

x̃ =
x ∗ 7 + u

8
, u ∼ U [0, 1]

followed by the same logit transformation as was used for MNIST.

The test set was constructed by taking random samples from the dataset. The final processed dataset
has 46,652 examples in the training set, and 2,500 examples in the test set.

B.3.2 ARCHITECTURE

We use the following CNN architecture for hφ(x), implemented in PyTorch (Paszke et al., 2019).

(cnn): Sequential(
(0): Conv2d(1, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): SiLU(inplace=True)
(2): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(3): SiLU(inplace=True)
(4): Conv2d(32, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(5): SiLU(inplace=True)
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(6): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
(7): SiLU(inplace=True)
(8): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
(9): Flatten(start_dim=1, end_dim=-1)

)

where SiLU is the Sigmoid Linear Unit, also known as the Swish activation function (Hendrycks &
Gimpel, 2016; Elfwing et al., 2018; Ramachandran et al., 2017).

The convolutional neural network has 256 flattened output features which are concatenated to the
32 dimensional supervision and fed through the following MLP.

(mlp): Sequential(
(0): Linear(in_features=288, out_features=256, bias=True)
(1): SiLU(inplace=True)
(2): Linear(in_features=256, out_features=256, bias=True)
(3): SiLU(inplace=True)
(4): Linear(in_features=256, out_features=1, bias=True)

)
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C ADDITIONAL SAMPLES

Figure 4: Class-conditional samples on toy data.

Figure 5: Class-conditional samples on toy data.

Figure 6: Unconditional samples on toy data.
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Figure 7: Class-conditional densities on toy data.

Figure 8: Class-conditional densities on toy data.

Figure 9: Class-conditional densities on toy data.

Figure 10: Class-conditional densities on toy data.
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Figure 11: Class-conditional samples on MNIST.

Figure 12: Class-conditional samples on MNIST.

Figure 13: Class-conditional samples on MNIST.
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Figure 14: Class-conditional samples on MNIST.

Figure 15: Class-conditional samples on MNIST.
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Figure 16: Unconditional samples on MNIST.

Figure 17: Class-conditional samples on dSprites. Left: Horizontal coordinate 0. Right: Horizontal
coordinate 3.
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Figure 18: Class-conditional samples on dSprites. Left: Horizontal coordinate 6. Right: Horizontal
coordinate 9.

Figure 19: Class-conditional samples on dSprites. Left: Horizontal coordinate 12. Right: Horizontal
coordinate 15.

Figure 20: Class-conditional samples on dSprites. Left: Vertical coordinate 0. Right: Vertical
coordinate 3.
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Figure 21: Class-conditional samples on dSprites. Left: Vertical coordinate 6. Right: Vertical
coordinate 9.

Figure 22: Class-conditional samples on dSprites. Left: Vertical coordinate 12. Right: Vertical
coordinate 15.
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Figure 23: Unconditional samples on dSprites.
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