Proving Olympiad Algebraic Inequalities without
Human Demonstrations

Chenrui Wei' Mengzhou Sun? Wei Wang!
chenruiw970gmail.com sunm07@u.nus.edu wangwei@bigai.ai

I'State Key Laboratory of General Artificial Intelligence, BIGAI, Beijing, China
?Department of Mathematics, National University of Singapore

Abstract

Solving Olympiad-level mathematical problems represents a significant advance-
ment in machine intelligence and automated reasoning. Current machine learning
methods, however, struggle to solve Olympiad-level problems beyond Euclidean
plane geometry due to a lack of large-scale, high-quality datasets. The challenge is
even greater in algebraic systems, which involve infinite reasoning spaces within
finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality
Proving System capable of autonomously generating complex inequality theorems
and effectively solving Olympiad-level inequality problems without requiring hu-
man demonstrations. During proof search in a mixed reasoning manner, a value
curriculum learning strategy on generated datasets is implemented to improve prov-
ing performance, demonstrating strong mathematical intuitions. On a test set of 20
International Mathematical Olympiad-level inequality problems, AIPS successfully
solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automati-
cally generated a vast array of non-trivial theorems without human intervention,
some of which have been evaluated by professional contestants and deemed to
reach the level of the International Mathematical Olympiad. Notably, one theo-
rem was selected as a competition problem in a major city 2024 Mathematical
Olympiad.

1 Introduction

One of the key milestones in the field of artificial intelligence is the capability to reason (Pearl||1998)
and prove theorems (Wul[1978; |Chou et al.[2000; Trinh et al.|2024). However, theorem proving often
involves long reasoning chains, complex mathematical structures, intricate calculations, and infinite
reasoning spaces. Consequently, developing Al capable of proving complex mathematical theorems
requires sophisticated reasoning and the ability to navigate through an extensive search space to
construct a valid proof. The complexity of these problems lies in the need for effective heuristics and
strategies to manage the vast number of possible actions and the lengthy sequences of logical steps
necessary to arrive at a solution.

Existing work on grade school and college admission math problems has achieved remarkable
success, e.g., GSMS8K (Cobbe et al.|2021) and SAT Math (Achiam et al.[2023). However, research
focusd on solving International Mathematical Olympiad (IMO)-level problems remains relatively
sparse. Notable efforts in this area include AlphaGeometry (Trinh et al.[2024), and GPT-f (Polu and
Sutskever|2020) on miniF2F (Zheng et al.[2021)), which have made progress in solving Euclidean
plane geometry at the Olympiad level and various mathematical competition problems, respectively.

A significant challenge for learning-based methods in this domain is the scarcity of suitable datasets,
which limits the ability to train models effectively and hampers progress in achieving human-level

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

performance on these hard problems. AlphaGeometry (Trinh et al.|[2024) addresses this issue by
synthesizing millions of theorems and proofs across different levels of complexity to train a neural
language model from scratch. Similarly, the INequality Theorem proving benchmark, INT (Wu et al.
2020), can synthesize a theoretically unlimited number of theorems and proofs in the domain of
algebraic equalities and inequalities. However, INT focuses on testing a learning-assisted theorem
proving agent’s generalization ability rather than increasing the difficulty to competition level.

Another significant challenge in automated theorem proving is designing effective search strategies to
navigate the vast space of possible proofs. Recent advancements have highlighted various approaches
to enhance search efficiency and proof success rates. Some studies have shown that incorporating
Monte Carlo Tree Search (MCTS) can significantly aid in proving new theorems (Wu et al.[2020).
Inspired by the success of AlphaZero (Zhang and Yu|2020), other research has explored HyperTree
Proof Search (HTPS) (Lample et al.), which learns from previous proof searches through online
training, iteratively improving its strategy by learning which paths are more likely to lead to successful
proofs. Another innovative approach starts the proof search from the root goal that needs to be proved
(Polu and Sutskever|2020), expanding a maintained proof tree by prioritizing open goals based on
their cumulative log probability.

In this work, we introduce AIPS, an Algebraic Inequality Proving System, which can generate a
large number of high-quality theorems and solve IMO-level algebraic problems. AIPS focuses
on ternary and quaternary inequalities, excluding n-variable inequalities represented recursively in
formal verification systems. Among the generated theorems, some have proven to be very challenging,
with one selected for a major city’s 2024 Mathematical Olympiad. We present novel and challenging
inequality theorems discovered by AIPS in the supplementary material, which have been carefully
evaluated by IMO-level professional contestants and found to be comparable to IMO inequalities
from around the year 2000.

Additionally, AIPS incorporates a value network to evaluate newly generated inequalities, selecting
subgoal candidates based on the top scores provided by the value network. The value network is
trained on synthetic datasets with increasing difficulty in a curriculum manner. In our experiments,
AIPS proved difficult theorems up to the IMO level and solve 10 out of 20 problems in an IMO-level
inequality test, significantly surpassing the performance of previous Large Language Model-based
theorem provers (Polu and Sutskever||2020; |Polu et al.|2022; |Yang et al.|2024; |Song et al.|[2024)).

The main contributions in this paper are summarized as follows:

* We propose a symbolic deductive engine capable of efficiently generating high-quality and
solving high-difficulty algebraic inequality theorems. This engine addresses the bottleneck
of lacking large-scale, high-quality data in this field.

* We demonstrate that a symbolic algebraic inequality prover can be significantly enhanced
under the guidance of a value network, especially when the value network is trained in a
curriculum manner.

e Our AIPS can generate challenging and elegant inequality theorems, with one theorem
selected for a major city’s Mathematical Olympiad. AIPS can prove 10 out of 20 IMO-level
inequalities, outperforming state-of-the-art methods.

2 Algebraic Inequality Proving System

2.1 Symbolic Deductive Engine for Algebra

Interactive theorem provers, such as Lean, can verify mathematical operations but lack the ability
to perform automatic mathematical reasoning by combining computational rules. This challenge is
amplified in the automatic proof of algebraic inequalities, which often involves numerous calculations,
extensive transformation rules, and complex theorem matching. To address this, we designed a
symbolic deductive engine that integrates with SymPy |'| supporting algebraic reasoning through
theorem matching and applying transformation rules. Please refer to Appendix [A]for more details.

"https://www.sympy.org/

2.2 Olympiad-Level Inequalities Proof Set

One of the main challenges in enabling learning-based models to solve complex mathematical
problems is the scarcity of large-scale, high-quality datasets. To overcome this obstacle, we develop
a theorem generator that effectively generates Olympiad-level inequality theorems by implementing
a forward reasoning method.

We selected 10 synthetic problems and invited Olympiad medalists to evaluate their difficulty and
elegance. Some generated theorems exceeded the difficulty of early IMO inequalities, with one
theorem being used in a city’s 2024 Mathematical Olympiad. Evaluation details are provided in

Appendix [C]

[\/a2+2bc+\/b2 +2ca+Vc? +2ab}

Check

compatibility

Match Jensen's inequality

f@) =¥+ 2a;bcf >0 Equality condition: 2 = b = ¢
X

[\/a2+2bc+\/h2+2m+\/c2+2ab23‘/A2+%bc, A= a+:+C]

I Square both sides I System automatically simplify expressions
A

J— N
2 2abc 54abc
2 2 2 > 2 _ 2
B\/u +2bc+\/b +Zcu+\/c +2ah] _9<A + A } (@a+b+c) +u+b+cJ

Match AM-GM
3
Vabc<(a+b+c)/3

Equality condition:a = b = ¢

> > > 2 2 saabe
(\/a +2hc+\/b +2ca+\/c +2ab) > 9(abc)® +
a+b+c

Figure 1: Example of generating synthetic theorems in AIPS.

2.3 Neural Algebraic Inequality Prover

By leveraging the capabilities of the deductive engine and the Best-First-search algorithm (Dechter
and Pearl||1985)), we train an inequality prover through value curriculum learning. This prover
formulates the algebraic inequality proving as a sequential decision-making process by selecting
theorems to generate highly human-readable proofs. As shown in Fig. 2] given a goal and related
conditions, AIPS first generates a list of subgoals by applying a set of theorems at each iteration. A
value neural network is then used to evaluate these newly generated subgoals along with the previous
subgoals. The top-value subgoal is selected for the next step of reasoning. This iterative process
continues until the proof is successfully completed. See Appendix [A.5]for more details.

3 Experiments

We evaluate AIPS as well as 10 different baseline models on MO-INT-20, an Olympiad-level
inequality problem test set, with each problem limited to 90 minutes of solving time, consistent with
the standard problem-solving time in the IMO. It outperforms the state-of-the-art methods in terms
of the number of solved problems, demonstrating the strong algebraic intuitions developed by the
learned value network. The comparison results are shown in Table|T]

Analysis. Large language models (LLMs), formal theorem provers, and neural symbolic provers each
demonstrate distinct strengths in the test. LLMs often make trivial logical or computational errors.
Formal theorem provers, such as LeanCopilot, struggle with planning the proof for complex math
problems. Neural provers with different search method and heuristics show different performance in
the test. Please refer to Appendix [B.3]for more details.

3 34 3)&
Closed List < il +(, > ("b")", conditions: a,b,c > 0.
(a+b+c)2 = 3

X |
Sub-goal
generation
l AM-GM AM-GM l Expand
3abe (abe)¥ @4t _atbie| a®+ b+ . (abe)’
@rbroE > ° @tbtozZ=_ 9 - a2 + b2 + ¢ + 2ab + 2bc + 2ca 3
False »(Open List
Not solved
Delete l
OQ—0——=0
3531 B 3 i
a’ +b° +c ot b+c . Select the top candidate [®) O, je)
(@a+b+e)? = 9 i
O @) O
Sub-goal I6; o o)
generation
Value Network

. Lee adbicl e e
I Jensen l l l
a+h+c>u+b+c Oth b !
' bt Extract proof 9 9 er sub-goals
9

Figure 2: Overview of AIPS proving process for an algebraic inequality.

Model Category Model Problems Solved (20)
Gemini 1.5 Pro
Large Language Models GPT-4
GPT-4 Turbo
Llemma-7b
Interactive Theorem Provers LeanCopilot (LeanDojo)
DE + GPT-4 Turbo’s heuristics
Neural-Symbolic Provers DE + BFS

DE + MCTS
DE + tree-depth heuristic function
AIPS with pretrained value network

AIPS

Table 1: Model Performances on the MO-INT-20. DE denotes our deductive engine. BFS and
MCTS are Breadth-First Search and Monte Carlo Tree Search, respectively.

oY po| oo oS —

Following a curriculum learning strategy on 1,000 inequality problems, AIPS achieves the best
performance, solving 10 out of 20 problems. Among the 10 problems from the IMO or IMO
shortlist, it successfully solves five, reaching the average level of IMO contestants. We also test the
performances of AIPS after 200, 400, 600, and 800 loops of fine-tuning value network (see Appendix
[B.3). The results demonstrate that our value curriculum learning strategy is very effective, with the
number of proof search steps significantly decreasing during the training process, and the number of
solved problems increasing to 10 ultimately.

4 Conclusion

In conclusion, solving Olympiad-level mathematical problems is a significant milestone in machine
intelligence and automated reasoning. The lack of large-scale, high-quality datasets presents a
challenge, particularly in algebraic systems. To address this, we propose AIPS, an Algebraic Inequality
Proving System, which autonomously generates complex inequality theorems and effectively solves
Olympiad-level inequality problems without human input. Utilizing a value curriculum learning
strategy, AIPS demonstrated strong mathematical intuition by solving 10 out of 20 International
Mathematical Olympiad-level problems. One of these theorems was selected for a major city’s 2024
Mathematical Olympiad.

References

Judea Pearl. Graphical models for probabilistic and causal reasoning. Quantified representation of
uncertainty and imprecision, pages 367-389, 1998.

W-T Wu. On the decision problem and the mechanization of theorem proving in elementary geometry.
Scientia Sinica, 21:157-179, 1978.

Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. A deductive database approach to
automated geometry theorem proving and discovering. Journal of Automated Reasoning, 25(3):
219-246, 2000.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476-482, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. Minif2f: a cross-system benchmark for
formal olympiad-level mathematics. arXiv preprint arXiv:2109.00110, 2021.

Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and Roger Grosse. Int: An inequality benchmark for
evaluating generalization in theorem proving. arXiv preprint arXiv:2007.02924, 2020.

Hongming Zhang and Tianyang Yu. Alphazero. Deep Reinforcement Learning: Fundamentals,
Research and Applications, pages 391415, 2020.

Guillaume Lample, Marie-Anne Lachaux, Thibaut Lavril, Xavier Martinet, Amaury Hayat, Gabriel
Ebner, Aurélien Rodriguez, and Timothée Lacroix. Hypertree proof search for neural theorem
proving (2022). URL https://arxiv. org/abs/2205.11491.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya
Sutskever. Formal mathematics statement curriculum learning. arXiv preprint arXiv:2202.01344,
2022.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Processing Systems, 36, 2024.

Peiyang Song, Kaiyu Yang, and Anima Anandkumar. Towards large language models as copilots for
theorem proving in lean. arXiv preprint arXiv:2404.12534, 2024.

Rina Dechter and Judea Pearl. Generalized best-first search strategies and the optimality of a. Journal
of the ACM (JACM), 32(3):505-536, 1985.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. arXiv preprint arXiv:2310.10631, 2023.

Appendix

[A_Technical Details of the Deductive Engine and Neural Model|
IA.1 Background|
|IA.2 Representation of Algebraic Expressions and Pattern Matching|
|A.3 Theorems, Rules and Pattern Matching|.
IA.4 Details of Synthetic Data Generation|
IA.5 Neural Model and Its Training Process|

B Experiments and Analysis|

IB.1 Synthetic Dataset Statistics| L

B.2 Details of Value Curriculum Learning|

IB.3 Performance Analysis During Curriculum Learning|

IB.4 Our Benchmark: Mathematical-Olympiad-INequality-Test-20(.

IB.5 Details of Comparison Methods and Testing Results|.

[C Human Evaluation of Generated Synthetic Theorems|

—_ 0 00 9 9

—_—

A Technical Details of the Deductive Engine and Neural Model

We provide more information on AIPS’ deductive engine and the training process for the value
network. To highlight the reasoning ability and maintain readability of proofs, we avoid using
brute-force methods such as augmentation-substitution and Wu’s method [Wu| (1978)).

A.1 Background
A.1.1 Basic Knowledge in Theorem Proving

Theorem proving encompasses two types of reasoning: forward reasoning and backward reasoning.
Forward reasoning involves identifying a pattern match between a particular theorem and the given
conditions along with the universal variables, then deducing the conclusion. In contrast, backward
reasoning works in the opposite direction, where the conclusion and variables are matched with
a specific theorem, breaking down the main goal into smaller, more manageable subgoals. Both
methods are essential in constructing and navigating the logical steps to establish the validity of
complex mathematical theorems, as shown in Fig. E}

Lemma: min(a,b) + ¢ < min(a + ¢, b+ ()]

[».bsumu- (a,b,¢) with (a+ ¢,b+ ¢, (-)J

Match with Induction Axiom

[min(u, b) + ¢ > min(a+ ¢, b+ 1)] i l

Sub-goal { 1=132] {k LU n] Sub-goal
{mut(‘h with theorem: if @ < b,a > b then a = I;} l l

{miu(a, b) + ¢ = min(a + ¢,b + ()]

Figure 3: Two examples of forward reasoning on the left and backward reasoning on the right.

A.1.2 Challenges in Algebraic Reasoning

There are two main challenges in reasoning within algebraic systems. The first is the infinite reasoning
space within finite conditions, caused by the numerous possible expression trees and the vast search
space for premises. This contrasts with solving Euclidean geometry problems, where a deduction
fixed point exists with respect to a set of geometric rules or axioms. To address this issue, we
consider only the current expression tree at each step of reasoning. The second challenge lies in
pattern matching, which requires accurately identifying and applying relevant theorems to given
sub-structures. For theorems with function-type variables, like Jensen’s Inequality, pattern matching is
more challenging and time-consuming. We provide heuristic functions to identify possible structures
where Jensen’s Inequality can be applied.

A.2 Representation of Algebraic Expressions and Pattern Matching

Algebraic expressions are represented symbolically with an underlying expression tree structure in
AIPS as shown in Fig.] Our system matches theorems to algebraic expressions by traversing the
expression tree and updating node labels based on how the expression changes. If a match is found,
the sub-expression is replaced, generating a new inequality.

Apply AM-GM
1 1 1 S

et () 2> (e
a+b _b+c c+a @+ b+ +a)

1 1 1
Ay | tabel=1
[(u+b' J [(b+c’A)] E(c+a')J

>

|
[(11+17,+)] [(u+b,+)] [(c+a,+)] label = -1
T 0 T s
Apply AM-GM @ @ @Vab, x) Ve x) @Vea, x)
------ ——
1 11

(@) (b)

Figure 4: Examples of expression trees and pattern matching for the AM-GM inequality.

A.3 Theorems, Rules and Pattern Matching

A.3.1 Theorems, Methods and Transformation Rules

Our deductive engine incorporates six well-known inequality theorems frequently used in math-
ematical Olympiads, several one-variable inequality scaling and solving methods, and dozens of
algebraic transformation rules. The inequality theorems include the Arithmetic Mean-Geometric
Mean (AM-GM) inequality, the weighted AM-GM inequality, Holder’s inequality, Jensen’s
inequality, Schur’s inequality, and Miiirhead’s theorem. For simplicity, we have excluded some
theorems that can be directly proved using these inequalities, such as the Geometric Mean-Harmonic
Mean (GM-HM) inequality and the Cauchy-Schwarz inequality.

Here we list some frequently used methods and transformation rules:

nodiv_expr: Multiply both sides to eliminate denominators

nomul_expr: Divide both sides by all factors

no_sep_denom: Combine fractions on both sides

sep_neg: Move terms with negative coefficients to the other side of the inequality
zero_side: Subtract one side from the other to make one side equal to zero

no_pow: Remove roots at the second level from the top of the expression tree on both sides
try_together_1, try_together_r: Combine fractions on the left or right side
try_expand_1, try_expand_r: Expand expressions on the left or right side

all_cyc_mul_expr: Multiply both sides by a cyclically symmetric polynomial, with one
of its generators on either the left or right side of the inequality (a generator is a term that,
when cyclically permuted, generates the expression)

try_factor_both: Factorize both sides

check_one_var: Check if the solution of a one-variable inequality is contained in a given
interval

check_linear_ctr: Check if a one-variable expression can be applied with tangent line
trick

find_main_fun: For a cyclically symmetric expression, try to find a function that can
match with Jensen’s inequality as well as generate this expression

A.3.2 Pattern Matching

An important step in generating synthetic theorems is matching algebraic expressions with these
theorems. We use the AM-GM inequality as an example to illustrate pattern matching method as
follows.

Theorem 1. (AM-GM) For non-negative real numbers a1, as, . .., Gy,
a1 +az+ - +ap 2 nifaraz-an
with equality if and only if a1 = ag = -+ = ay,.

Assuming all variables are non-negative, pattern matching for an algebraic expression with the
AM-GM inequality (on the Left-Hand-Side) is explained in three steps:

1. Traverse through the expression tree, and label a node with 1 if the whole expression value
increases as the value of the node increases, with —1 if the expression value decreases as
the value of the node increases, and with None if this cannot be determined.

2. Ateach node labeled 1 or —1 and calculated with an Add operation, find all non-negative
sub-arguments of the node’s expression and place them in nonneg_set. Similarly, find all
non-positive sub-arguments and place them in nonpos_set.

3. For the obtained sets nonneg_set and nonpos_set, we use the following method to match the
mean inequalities:

* Arbitrarily partition each set into multiple subsets.

 the sum of the elements in each subset can be used as a variable to match the left side
of the mean inequality.

* If a subset does not contribute to the inequality, it is excluded from the partition.

This process allows us to identify all possible mean inequalities that can be matched. We
then replace the original sub-expressions in the expression tree with the transformed ones
based on the matched inequalities. By doing so, a new inequality is derived according to the
labels.

A.4 Details of Synthetic Data Generation

Olympiad inequalities aim for not only difficulty but also conciseness and elegance, a principle
also valued in modern mathematics. Although our deductive engine can generate various types
of inequalities, we focus on cyclically symmetric inequalities in semi-definite systems that can be
generated with a limited number of steps to avoid lengthy and chaotic expressions.

Initially, we generate thousands of premises as the starting points for data generation using Algorithm
[2l For each generated premise, we run the data-generation algorithm[I] Fig. [I|shows the generation
process. During this process, we discard inequalities for which equality does not hold or which do not
have the desired form, and halt the generation after a maximum of 25 iterations of search. Utilizing
32 CPUs over an 8-hour period, the deductive engine produces 191,643 theorems. This demonstrates
the engine’s ability to efficiently generate a large number of high-quality inequality theorems, thereby
addressing the bottleneck of lacking a high-quality dataset for learning-based provers.

Algorithm 1 Generating Theorems

1: function Generate_Theorems(expression P, loops N)

2: Initialize Theorem Set .S, Transformation Rules O, Inequality Sets A1, A2, A3

3: Apply S to P to generate inequalities and add those with equality conditions to R
4: for i < 1to N do

5. for each inequality ineq in R do

6: Apply O to generate Al

7: end for

8: for each inequality ineq in R do

9: Apply S to one side of ineqg and link to the original inequality if possible, adding results to
10: end for
11: for each inequality ineq in A2 do
12: Verify equality condition and add to A3
13: end for
14: Update R by selecting M inequalities from A1 and A3
15: end for

16: return R

Algorithm 2 Generating Initial Premises

function GENERATE_EXPRESSIONS(variable_list I, loop_limit N)
Initialize Results and Basic_Operations
fori < 1to N do
Initialize New_Expressions
for each pair (a, b) in I and each operation f in Basic_Operations do
Add f(a,b) to New_Expressions
end for
Add New_Expressions to I
end for
for each expression expr in I do
Add cyclic summation of expr to Results
end for
return Results
end function

A.5 Neural Model and Its Training Process

In this section we describe the neural network for value curriculum learning, its training process and
how it is utilized for guiding proof search.

A.5.1 Searching Proofs by Combining Value Network with Symbolic Prover

The procedure of searching for inequality proofs is generally divided into three parts: mixed reasoning
for subgoal generation, evaluation, and planning.

Subgoal Generation. There are two methods for generating subgoals in AIPS. The first method
involves applying fundamental inequality theorems. Let X be the set of variables. Suppose the
inequality theorem to prove is (X) < v(X) under a condition set P. AIPS first homogenizes the
inequality to f(X) < g(X) on both sides by applying conditions in P. Then, by applying theorems
to the left-hand side of the target inequality, AIPS generates a series of new inequalities:

F(X) <hi(X),..., f(X) < ha(X)

This results in subgoals h;(X) < g(X). Similarly, by applying theorems to the right-hand side, AIPS
also generates subgoals f(X) < s;(X). The second method involves applying transformation rules
such as sympy . expand and sympy . apart to the goal, generating subgoals that are equivalent to the
original inequality.

Evaluation. AIPS employs a value function Vj to assess the difficulty of each inequality. Formally,
we have a function f parameterized by 7 that encodes the inequality expression s. The encoded
embedding vector f,(s) is then fed into a deep neural network g4, which outputs a value in the
interval [0,1]. We choose f to be a transformer encoder with average pooling (Vaswani et al.[2017).

Planning. With the evaluation function Vj, we use the Best-First search algorithm for planning. We
also test the performance of Monte-Carlo Tree Search (MCTS) algorithm, where the result is less
satisfactory. There are two primary reasons for this. First, the action space for each state is extremely
large, leading to explosive growth of the MCTS searching tree. Second, the high cost of reasoning
steps makes the simulation step in MCTS nearly impractical, often exceeding time limits.

We also note that our prover can be combined with any heuristic function, and thus design various
baselines in our experiments.

A.5.2 Pre-training Value Network Using a Heuristic Function

We define the tree-depth D of an inequality as the maximum depth of the expression trees on both
sides. Proving an algebraic inequality is equivalent to reducing the tree-depth of the inequality to one.
We use D as the supervision information to train initial heuristic function fi,;; in the Best-First search
algorithm. That is to say, we pre-train a value network Vj as fin;; on the synthetic dataset by utilizing
the tree-depth D.

A.5.3 Fine-tuning Value Network on Filtered Synthetic Data

We create a new dataset by removing all inequalities with inference depth less than 4. We then
randomly sample 1,200 problems and sort them by tree-depth in ascending order. For inequalities
with the same tree-depth, they are sorted by the length of their string representation, with shorter
lengths placed first.

The fine-tuning procedure involves sequentially proving these inequalities and updating the parameters
of the value network. If an inequality is successfully proved, we record the set of subgoals on the
proof path as T" and the set of subgoals that are searched but not on the proof path as F'. The values
of the elements in T are scaled down by a factor of ¢, while the values of the elements in F' are
increased. Using these labels, we perform a training round on the value network Vjp, and then proceed
to the next problem. This iterative process is used to adjust the network parameters. See Appendix
for more details.

B Experiments and Analysis

In this section, we provide details of our experiments and present the test results. We also include
technical analysis of these results.

B.1 Synthetic Dataset Statistics

We conduct a statistical analysis on the synthetic dataset, focusing on inequality lengths (in string
representation) and free-depth (the maximum expression tree height on both sides of an inequality),
as depicted in Figure[5] The distributions of lengths and tree-depth are related to the difficulty and
search complexity. These distributions illustrate that our theorems range from simple to complex,
reflecting a spectrum of difficulty levels in our dataset.

Distribution of Theorem Lengths Distribution of Theorem Tree Depths
70000

800
60000

50000
600 4

40000

4009 30000

Number of Theorems
Number of Theorems

20000
200 4

10000

0 500 1000 1500 2000 4 6 8 10 12
Theorem Length Theorem Tree Depth

Figure 5: Ditribution of lengths and tree-depths of synthetic theorems.

B.2 Details of Value Curriculum Learning

The value network Vy comprises two main components: the pre-trained transformer encoder, Llemma-
7b (Azerbayev et al.[2023)), followed by a 4096 x 256 x 1 multilayer perceptron that outputs a value
in the interval (0, 1). Initially, AIPS successfully resolves 7 out of 20 problems from the test set using
the pre-trained value network.

The value network Vj functions as the heuristic in the best-first-search algorithm. It comprises two
main components: the pre-trained transformer encoder, Llemma-7b, followed by a 4096 x 256 x 1
feedforward neural network that outputs a value in the interval (0, 1). Initially, AIPS successfully
resolves 7 out of 20 problems from the test set using the pre-trained value network.

The procedure of value curriculum learning is as follows. After successfully proving a theorem, each
node along the proof path is relabeled with a value that is e times its original value. For node that
has been searched but is not part of the proof path, if its original label is v, the label of this node is
updated at the end of this curriculum learning round according to the formula: max(m,v) x n+1—1.
Here m represents the maximum value after modification among the proof path nodes. Subsequently,
the relabeled nodes undergo 10 loops of fine-tuning training. We choose ¢ = 0.3 and n = 0.7.

Before the value curriculum learning process, we randomly select 1,200 theorems from the synthetic
dataset, excluding theorems with an inference depth of less than 4. These theorems undergo a
curriculum learning strategy tailored for the pre-trained model. We limit the time for solving each
problem to 40 minites. During curriculum learning, the theorems are solved and trained in an
ascending order, sorted first by tree-depth, then by theorem length. The first 150 problems are solved
within a mere two hours. After four days of training, AIPS solves 892 out of the first 1,000 problems,
with 887 successes in the first 950 theorems. Since it struggles to solve problems after the 950th
theorem, we decide to halt the training process at the 1,000th problem.

B.3 Performance Analysis During Curriculum Learning

The extensive experiments verify that the value curriculum learning strategy is very effective. The
number of search loops required to solve testing theorems decreases noticeably throughout the

training process, enabling AIPS to successfully solve 10 out of 20 IMO-level inequality problems
using an RTX-4090 GPU and a single CPU. Fig. [6] shows the decreasing number of search loops
during curriculum learning on the 2001 IMO Problem 2, and Fig. [/|shows the increasing number of
solved problems during curriculum learning.

AIPS Performance on 2001 IMO Problem 2

45
40
35 33
30
5 26
3 254
w
i
o
&
S 20+
5
15 14
1 11
10 1
5 4
0 : ‘ . r ‘ :
0 200 400 600 800 1000

Iterations of Curriculum Learning

Figure 6: AIPS progressively finds the proof path more efficiently throughout the training process.

AIPS Performance on MO-INT-20

18
16
14

12 4
10

10 9
8 8 8
gl 7 .

Problems Solved

L 2
4

T T T T T T
0 200 400 600 800 1000
Iterations of Curriculum Learning

Figure 7: AIPS solves more problems with the increasing iterations of value curriculum learning.

B.4 Our Benchmark: Mathematical-Olympiad-INequality-Test-20

We collect all ternary and quaternary algebraic inequality problems from IMO since 1990, some
challenging problems from IMO shortlists and several national mathematical Olympiads, such as

the USAMO, the USA National Team Selection Tests, the Polish/Korean/Japanese Mathematical
Olympiad, all of which are of comparable difficulty to the IMO. The collected 20 problems provide
a new challenging benchmark for the realm of automatic theorem proving, dubbed as MO-INT-20
(Math-Olympiad-INequality-Test-20). The details of these 20 problems are as follows.

¢ Problem 1 IMO 1990 Shortlist):

Fora > 0,b>0,¢>0,d >0suchthata-b+b-c+c-d+d-a =1, show that:
a® b3 c3 d3

b+c+d+c+d—|—a+d—|—a+b+a+b+c

¢ Problem 2 (IMO 1993 Shortlist):
Fora > 0,0 > 0,c > 0,d > 0, show that:

a b c d
b+2c+3d+3a+c+2d+2a+3b+d+a+2b+3c

¢ Problem 3 (IMO 1995 P2):
Fora > 0,b > 0,c > 0suchthata-b-c =1, show that:

1 + 1 " 1 §
A3la+b) bate) ad(b+ec) 2

¢ Problem 4 (IMO 1996 Shortlist):
Fora > 0,b > 0,c > 0suchthata-b-c =1, show that:

1
> =
-3

2
> Z
-3

a-b a-c b-c
a5+a-b+b5+a5+a-c+c5+b5+b-c+c5 =1
¢ Problem 5 (USAMO 1997 P5):
Fora > 0,b > 0,c > 0, show that:
1 n 1 n 1 < 1
a4+ +a-bec B+cB+a-bec A+adt+a-b-c a-b-c

¢ Problem 6 (IMO 1998 Shortlist A3):
Fora > 0,b > 0,¢ > 0suchthata-b-c = 1, show that:

a® b® c?

I10(+0 " +olta) A+xa(d+b)

e Problem 7 IMO 2000 P2):
Fora > 0,b > 0,¢ > 0suchthata-b-c = 1, show that:

3
> 2
!

1 1 1
—1+)b—-1+-)c—-1+-)<1
(a=1+)b-1+-)e-1+2)<
¢ Problem 8 (IMO 2001 P2):
Fora > 0,b > 0,c > 0, show that:

a b c
+ +
VaZz+8bc V8ac+ b V8ab+ 2

e Problem 9 (USAMO 2003 P5):
Fora > 0,b > 0, ¢ > 0, show that:

(a+b+2c)? (a+2b+¢)? (2a+b+c)?
224+ (a+0)%2 2024 (a+¢)? 2a2+(b+¢)? —
¢ Problem 10 (Poland 2004):
Fora > 0,0 > 0,c > 0,d > 0, show that:

a b c d
+ + + >
(a3 4 63bcd)s (63acd +b3)3 (63abd + ¢3)3 (63abc + d3)3

Problem 11 (IMO 2004 Shortlist A5):
Fora > 0,b > 0,c>0suchthata-b+b-c+ c-a =1, show that:

1 s/ 5o/ 5 1
—4+6b) +|(-+6c)] +|(-+6a] <
a b c a-b-c

Problem 12 (IMO 2006 P3):
Given real numbers a, b, ¢, show that:

9

ab(a® — b%) + be(b? —) + ca(® — a?))| <
Jab(a? = 1%) + be(b?) + calc® —a?)| < L

Problem 13 (IMO 2009 Shortlist):
Fora > 0,b>0,c> Osuchthat = + + 2 = a + b+ ¢, show that:

(2a+b+c) 2+ (a+2b+c)?+(a+b+2c)?< %

Problem 14 (USA IMO Team Selection 2010 P2):
Fora > 0,b > 0,c > 0O suchthata-b-c =1, show that:

1 1 1
cd(a + 2b)? + b°(2a + ¢)? + ad(b+ 2¢)?

1
> =
-3

Problem 15 (USAMO 2011 P1):
For a > 0,b > 0,c¢ > 0 such that a® + b? + ¢® + (a + b + ¢)? < 4, show that:

a-b+1 b-c+1 c-a+1

>3
(a+b)? (b+c)2 (c+a)?~
Problem 16 (Korea 2011 P4):
Fora > 0,b > 0,c > 0 such that a + b + ¢ = 1, show that:
1 1 1 < 7

a2—4a+9+b2—4b+9+02—4c—|—9 — 18

Problem 17 (USAMO 2012):
Fora > 0,b > 0,c > 0, show that:

3 3 3 3 3, .3
b® + 3c a” + 3b 3a° +c¢ Zg(a2+b2+02)
50+ ¢ 5a+b a+ 5¢ 3

Problem 18 (Japan 2014 P5):
Fora > 0,b > 0,c > 0 such that a + b + ¢ = 1, show that:

a b c
9c+4(b—c)?2+1 + 9ac+4(—a+c)2+1 + 9ab+4(a — b)2 + 1

Problem 19 (USAMO 2017 P6):
Fora > 0,b>0,c > 0,d > 0 such that a + b + ¢ + d = 4, show that:

a n b n c n d
B+4 34+4 d34+4 a34+4

2
> Z
-3

Problem 20 (IMO 2020 P2):
Fora > b,b > c,c > d,d > Osuchthata + b+ c+ d = 1, show that:

(a+2b+ 3¢+ 4d)ab’ccd? < 1

(a2—|—b2+c2)2

>

N | =

B.5 Details of Comparison Methods and Testing Results
B.5.1 Monte-Carlo Tree Search

We evaluate the performance of Monte-Carlo Tree Search (MCTS). Compared to games like Go or
chess, theorem proving can have an extremely large or even infinite action space, since applying each
theorem or axiom usually comes with a set of parameters. Therefore, a direct application of MCTS to
our problems is infeasible. To address this, we need to modify the MCTS algorithm.

First, we place a restriction on our action space: at each state, we sample all possible actions
generated from the current proof state, then sort them according to a tree-depth heuristic function,
which evaluates the difficulty of the proof state after applying them, and pick the first & proof states
(we choose £ = 5). During the selection step in MCTS, we apply the Upper Confidence Bounds
algorithm,

In(N

SelectedAction = Argmax; | v; + C - In(v)

ng
Here, n; is the number of visits of the i-th action (proof state), /V is the number of visits of the current

state, C' is an adjustable hyperparameter (we choose C' = 0.31/2), and v; is the value of the state
after applying the ¢-th action.

We use two methods to compute v;: either it is directly given by the heuristic evaluation function, or
we execute a best-first search to a constant depth d (d = 2), and take the value of the current best
state as v;.

B.5.2 Testing Examples from Large Language Models

Large Language Models (LLMs) currently struggle to solve IMO-level inequalities through the
generation of natural language proofs. In our evaluation of 4 LLMs—GPT-4, GPT-4 Turbo, Gemini
1.5 Pro, and Llemma-7b—only Gemini 1.5 Pro successfully generates a correct solution to USAMO-
1997-P5. Proofs generated by GPT-4 and GPT-4 Turbo contain some logical errors, while Llemma-7b
rarely produces meaningful reasoning sentences. We present the results of first three LLMs below,
including the only correct proof by Gemini 1.5 Pro to USAMO-1997-P5, and the incorrect proofs by
using these three LLMs to IMO-1995-P2.

Statement: (USAMO 1997 P5) Given three positive real numbers a, b, ¢, show that

1 1 1 1
< —
a3+b3+abc+b3+c3+abc+c3+a3+abc ~ abc

Correct proof:
1. Factorization: Recall the factorization of the sum of cubes:
24y’ = (x+y)(=* —zy+y°)
2. Apply AM-HM: For non-negative numbers x and y, the AM-HM inequality states:

T4y 2
2 T 1l/z+1/y

Rearranging the inequality:
2 2
"ty —wy >y
3. Manipulate the given inequality: Lets focus on the first term and use the factorization:
1 1

a3+ b3 +abc (a+0b)(a? — ab+ b2) + abc

Since a? — ab + b? > ab (from step 2), we have:
1 1 1

< =
(a+0b)(a? —ab+b2) +abc — (a+b)ab+abc (a+ b+ c)ab

4. Apply similar reasoning to other terms: Similarly, for the second and third terms:
1 < 1
b3+ 3 +abec — (a+ b+ c)be
1 < 1
cA+ad+abc ~ (a+b+c)ca

5. Combine the inequalities: Adding the three inequalities we just derived and simplify the right
hand side:

1 1 1 1
<
a3+b3+abc+b3+c3+abc+c3+a3+abc — abe

This completes the proof.

Figure 8: Correct proof generated by Gemini 1.5 Pro.

Statement: (IMO 1995 P2) Given positive real numbers a, b, ¢ such that abc = 1, show that

1 1 1
>
c3(a +b) + b3(a+c) + as(b+c) — 3/2

Incorrect proof: (Generated by Gemini 1.5 Pro)

Transformation: First, let’s simplify the given expression by multiplying the numerator and denomi-
nator of each term by abc (which is equal to 1 due to the condition abc = 1):

1 + 1 " 1 . ab " ac i be
Bla+b) ba+tc) ad(b+c) c2(a+b) b2(a+c) a2(b+c)
Applying AM-HM: Now, consider the following positive numbers:

1 = (a+b),z2 =b*(a+¢), 3 = a*(b+¢)
Applying AM-HM inequality to these:

Aa+0b)+b*(a+c)+a*(b+c) S 3
3 =

1 1 1
c3(a+bd) + b3 (a+c) + a3 (b+c)
Simplifying: Expanding and simplifying the left side:

a’b + ab® + ac® + a®c + b%c + bc? > 3
3 2

ab ac be
c2(a+bd) + b2 (a+c) + aZ(b+c)
Since abc = 1, we can substitute and further simplify:

ab/c+ ac/b+be/a = 3
3 >

1 1 1
c3(a+b) + b3 (a+tc) + a3 (b+c)

Final Step: Invert both sides of the inequality (remembering to flip the inequality sign):

1 1 1
c3(a+b) * b3(a + c) * a®(b+c)

> 3/2

This proves the required inequality.

Figure 9: Incorrect proof generated by Gemini 1.5 Pro. The errors are labeled in blue.

Statement: (IMO 1995 P2) Given positive real numbers a, b, ¢ such that abc = 1, show that

1 1 1
>
c3(a+b) * b3(a+c) + ad(b+c) — 3/2

Incorrect proof: (Generated by ChatGPT4 Turbo)
To prove this inequality, we can apply the AM-GM (Arithmetic Mean - Geometric Mean) inequality
as follows:
Given abc = 1:
By applying the AM-GM inequality:
a/b+bja>2b/c+c/b>2,c/la+alc>2
Summing these inequalities:
(a/b+b/a) + (b/c+¢/b) + (¢c/a+a/c) > 6
Rearrange and factor:
a®)b+ 7/ 4 P’ + 07)a + P+ ad) > 6
Now consider the expressions under the original inequality:
1 1

ad3(b+c) a3(b+c)

Since abc = 1, we can write this as:
b33 (bc)®

T ad(b+c) ad(b+o)

By AM-GM, b+ ¢ > 2v/be. Therefore:
3 2 2 5/2 5/2
; 1 > (be) _ b be — b 03
a?(b+c) 2a3vbe 2a3Vbe 2a

‘We can apply similar transformations to the other fractions:

1 N a5/2c5/2 1 a5/2p5/2
bB3(c+a) = 23 'cAla+b) T 23
Adding these up:
1 . 1 . 1 p5/2c5/2 gB/2.5/2 g 5/2p5/2
at(b+c) b(ct+a) cla+bd) — 2a 2b% 2¢?

Using our earlier inequality
(@b +b°/a® + %) + /0> + P Ja® + a*) > 6)
we can apply the generalized AM-GM inequality:
1 1 1 1 pB/2e5/2 gB2.5/2 45/2p5/2
a3(b+c)+b3(c+a)+c3(a+b) 25(a? + b3 + c3
Each of these terms is equal to 1 by our substitution using abc = 1, simplifying this expression:

>1/24+1/2+1/2=3/2

Therefore, we have proved:

1 1 1

a®(b+c) + b3(c+ a) + c3(a +b) 2 3/2

Figure 10: Incorrect proof generated by ChatGPT4 Turbo. The errors are labeled in blue.

Statement: (IMO 1995 P2) Given positive real numbers a, b, ¢ such that abc = 1, show that

1 1 1
>
c3(a+b) + b3(a + c) + a’(b+c) — 3/2

Incorrect proof: (Generated by ChatGPT 4)
The Arithmetic Mean - Geometric Mean (AM-GM) Inequality states:
Ti+ T2+ -+ Tn

> Yx1-To...Tn

n
with equality if and only if x1 = x2 - - - = x,,. Let’s consider using AM-GM on the denominators.
Analyzing Each Fraction
For m: Since abc = 1, we have ¢® = —=. Hence,
1 _ a®b®
c3la+b) a+b
Similiarly:

1 . a®cd 1 b3

Ba+c) a+c ad(b+c) “bte
Here each fraction can be analyzed by using AM-GM on the denominators.
a+b>2Vab,b+c> 2\/%,64—@ > 24/ca
Given abc = 1, we also have vab = \/ﬁ = c and similarly for others. Thus,
a+b>2c,b+c>2a,c+a>2b

Substituting back:
a’b® S a®p® B3P e Bad a®
a+b~ 2c 'b+c” 2a’'c+a " 2b
Since a®b® = 3, b%¢® = a®, 3a® = b3 from abe = 1,

a’b® & b a®> Aa? b?
= -7

2c 27 2a 2b
Adding these,
a72+£+é:a2+b2+62
2 2 2 2

To conclude, we need the final step:
a®+b°+c* >3
which holds by AM-GM as a® + b 4 ¢* > 3v/a2b2¢? = 3. This completes the proof.

Figure 11: Incorrect proof generated by ChatGPT 4. The errors are labeled in blue.

B.5.3 Testing Examples from LeanCopilot

We also test LeanCopilot (developed from LeanDojo|Yang et al.| (2024))), the current open-source
state-of-the-art theorem prover based on Lean. It solves none of the 20 problems, all resulting in
time-limited feedback. We present some results of the tactic search provided by LeanCopilot in
Figure[T2] It can be seen that the prover tends to rely heavily on built-in tactics and struggles to
predict complex premises.

USAMO-1997-P5:

theorem (a b ¢c:R)(h0O:a>0)(hl:b>0)(h2:¢>0):
1/(a?3+b"3+axbxc)+1/(b 3+cr3+axbxc)+1/(c”3+ar3+axbxc)<=1/(axbxc)

Try these:

nth_rw 1 [\l mul_one (axbxc)] #Replace abc by l=xabc

ring_nf #Simplify by ring axiom
field_simp #Simplify by field axiom
refine ’ le_of_eq _ #Proving inequality by equality
rw [one_div] #Replace 1/x by x"(-1)

nth_rw 3 [\1 mul_one(axbxc)] #Replace abc by lxabc

rw [le_div_iff ’] #Multiply abc on both sides
IMO-1995-P2:

theorem (a b c¢c:R)(h0O:a>0)(hl:b>0)(h2:¢c>0)(h3: axbxc=1):
1/(c”3+3x(a+b))+1/(b*3x3x(a+c))+1/(a*3x3x(b+c)) >= 3/2

Try these:

refine ~ le_of_eq _ #Proving inequality by equality
norm_num #Normalize numerical expressions
rw [\1 h3] #Replace 1 by abc

field_simp #Simplify by field axiom
ring_nf #Simplify by ring axiom
field_simp [hl, h2] #Simplify by field axiom + hl,h2
push_cast #Move certain coercions inward

\. J

Figure 12: Tactics suggested by LeanCopilot to two problems, namely USAMO-1997-P5 and IMO-1995-
P2.

B.5.4 10 Problems Solved by Our AIPS

When proving an inequality, AIPS first homogenizes both sides using the given conditions if the
inequality is not already homogenized, thereby obtaining a new inequality. It then performs mixed
reasoning on the new inequality to complete the proof. We present the proofs for the 10 problems
solved by our AIPS as follows.

1. Solution to IMO-1990-Shortlist Problem
By <function try_homo>, It is equivalent to prove
a’ + b + e + d? o ab ad = bc + cd
b+c+d a+c+d a+b+d a+b+c ™ 3 3 3 3
by <function check_AM_GM_Mul2>, it remains to prove
AL . S S S S .
3 3 3 3 " b+c+d a+c+d a+b+d a+b+c
by <function try_together_1>, it remains to prove

2 2 2 2 3 3 3 3
b d b d
a”+0" +c + < a n i c n
3 b+c+d a+c+d a+b+d a+b+c
we use Holder’s inequality:

@ +8+E+d)E <
(a(b+c+d)+bla+c+d)+cla+b+d) +dla+b+c))x
(@/(b+c+d)+b°/(a+c+d)+c/(a+b+d)+d°/(a+b+c)).
It remains to prove
a?+ v+ +d? (a2+b2+02+d2)2
3 “abt+ct+d)+blatct+d)+cla+b+d)+d(a+b+c)

by <function all_cyc_mul_expr>, it remains to prove

a?+ b2+ +d?

—_

<
“albt+ct+d)+blat+ct+d)+cla+b+d)+d(a+b+c)

3
For f(z) = 2, f”(z) > 0 for 0 < x. we use Jensen’s inequality:
4(a/4+b/A+c/4+d/4)? < a® +b° +E +d°,
it remains to prove
13 +3+5+9)
alb+c+d)+b(at+c+d)+cla+b+d)+d(a+b+c)

<

E
3
For f(z) =z(a+b+c+d—x), f'(x) <0for0 < x < a+ b+ c+ d, we use Jensen’s inequality:
alb+c+d)+bla+c+d)+cla+b+d)+dla+b+c) <

4(a/4+b/4+c/4+d/4)(3a/4 + 3b/4 + 3c/4 + 3d/4)
it remains to prove

+4
g
by <function try_simp_r>, this is true!

2. Solution to IMO-1993-Shortlist problem.
To prove
a b c d 2
+ + + >3
b+2c+3d 3a+c+2d 2a+3b+d a+2b+3c 3
we use Holder’s inequality:

a)+ b n @ n d b
b+ 2c+ 3d 3a+c+2d 2a+3b+d a+2b+3c

(a(b+2c+ 3d) + b(3a + ¢+ 2d) + ¢(2a + 3b + d) + d(a + 2b + 3¢)).

(a+b+c+d)?<(

It remains to prove
2 _ (a+b+c+d)?
3 = 4ab+ 4ac + 4ad + 4bc + 4bd + 4cd
by <function all_cyc_mul_expr>, it remains to prove
2 - 1
3(a+b+c+d)? ~ 4ab+dac+ dad + 4bc + 4bd + 4cd

by <function try_expand_1>, it remains to prove
2 <
3a? + 6ab + 6ac + 6ad + 3b2 + 6bc + 6bd + 3¢ + 6cd + 3d? —
1

4ab + 4ac + 4ad + 4bc + 4bd + 4cd
by <function nodiv_expr>, it remains to prove

8ab + 8ac+ 8ad + 8bc + 8bd + 8cd < 3a’ + 6ab+ 6ac + 6ad + 3b> + 6bc + 6bd + 3¢* + 6¢d + 3d°
by <function zero_side>, it remains to prove
0 < 3a® — 2ab — 2ac — 2ad + 3b° — 2bc — 2bd + 3¢ — 2¢d + 3d°
by <function check_AM_GM_Mul2>, it remains to prove
0 < 2a® — 2ab — 2ad + 2b° — 2bc + 2¢° — 2¢d + 2d°

by <function check_AM_GM_Mul2>, this is true!

3. Solution to IMO-1995-P2
By <function try_homo>, itis equivalent to prove

W

a’b? b2 c? a’c? 3a3b
+ I >
cla+b) alb+c) blat+ec) 2

We use Holder’s inequality:

ab + be + ca a’b? b2c? a’c?
proeT s
2 - (c(a+b)+a(b+c)—|—b(c+a))(c(a+b) * ab+c¢) bla+c)

).

It remains to prove
3a5b3ch < ab + bec + ca
2 - 2
by <function check_AM_GM>, this is true!

4. Solution to USAMO-1997-P5.
To prove
1 1 1 1

<
abc + b3 + 3 * ad + abc + 3 + a’ +abc+ b3 —
by <function check_SimpMuirhead>, it remains to prove
1 n 1 n 1 - 1
abc +b%c+bc?2 a2c+abc+ac? a?b+ ab? + abc —

by <function try_together_1>, this is true!

abe

abe

5. Solution to 2001-IMO-P2.
To prove
a b c

+ 4 >
Va2 +8bc 8ac+ b2 +/8ab+ 2
we use Holder’s inequality:

(a+b+¢)P <

2
(\/a2 C-Li- 8bc * \/Sa(l:)-&- b2 - \/8alf+ 02) (a(a2 AR G A C 02)) .
It remains to prove
(a+b+ c)%
= Va® +24abc + b® + 3

by <function all_cyc_mul_expr>, it remains to prove

jw

Va3 + 24abc + b3 + ¢ < (a+ b+ c)
by <function no_pow>, it remains to prove
a® 4 24abc+b* + & < (a+ b+ ¢)®
by <function zero_side>, it remains to prove
0 < —a® — 24abc —b* — & + (a+ b+ ¢)®
by <function try_expand_r>, it remains to prove
0< 3a%b + 3a’c + 3ab® — 18abc + 3ac® + 3b%c + 3bc?
by <function check_AM_GM>, it remains to prove
0 < 3a%b — 9abe + 3ac® + 3b%c

by <function check_AM_GM>, this is true!

6. Solution to USAMO-2003-P5.

To prove
(a+b+2c)° (a+2b+c¢)? (2a+ b+ c)? <3
22+ (a+b)? 2024 (a+¢)® 2a2+ (b+c) ~
we have (e
z+1 12z + 4
= for 0 1
f@) =G gpram <5 @0<e<
Bz —1)- (4 +1)
— < 0 for 0 1
3.3 2zt — oS r<L
which is true. c
Substitute x for ————, we have
a+b+c
2
((1—|—b—|—2c)2§ 4c L4
2¢% 4+ (a+0b) a+b+c 3
It remains to prove
4a 4b 4c

4 <8
a+b+c+a+b+c+a+b+c+ -

by <function try_together_1>, this is true!

7. Solution to Polish-2004 Problem
We use Holder’s inequality:

(a+b—|—c+d)4§(a b c d

Tt Tt Tt 1
(a® +63bcd)s (63acd +b3)3 (63abd + ¢3)3 (63abc+ d3)3

(a(a® + 63bcd) + b(b® + 63acd) + c(c® + 63abd) + d(d* 4 63abc)).
It remains to prove
< (a+b+c+d)s
T (a* + 252abed + bt + ¢t + d4)B
by <function no_pow>, it remains to prove

)

| < (a+b+c+d)?*
= a* + 252abed + b* + ¢t + d’

by <function nodiv_expr>, it remains to prove

a* 4 252abed + b* + ¢* +d* < (a+b+c+d)?,
by <function zero_side>, it remains to prove
0 < —a* —252abed — b* —c* —d* + (a +b+c+d)*

by <function try_expand_r>, it remains to prove

0< 4a®b + 4a®c + 4a®d + 6a°b* + 12a%be + 12a°bd + 6a>c* + 12a’cd + 6a°d® + 4ab® . ..

by <function check_AM_GM>, it remains to prove
0 < 4a®b + 4ac + 4a3d + 6ab® + 12a%be + 12a%bd + 12a%cd + 6a°d® + 4ab® . ..
by <function sep_neg>, it remains to prove
216abed < 4a3b + 4a>c + 4a>d + 6a°b> + 12a%be + 12a°bd + 12a°cd + 6ad> . . .
by <function check_AM_GM>, it remains to prove
216abed < 4a’b + 4a’c + 4a’d + 12a’be + 12a°bd + 12a°cd + 4ab® + . ..

by <function check_AM_GM>, it remains to prove

3

216abed < 4a3b + 4a>c + 12a°be + 12a°bd + 12a°cd + 12ab*c + 12ab*d + 12abc® + . ..

by <function check_AM_GM>, it remains to prove

216abed < 4a’b + 4a’c + 12a%be + 12a’cd + 12ab*d + 12abc? + 88abed + 12abd? + . . .

by <function check_AM_GM>, it remains to prove
216abcd < 4ab + 4a®c + 12a%be + 136abed + 12abd> + 4ac® + 12ac’d
+4ad® + 4b%c + 4b>d + 12b%cd + 4bd® + 4c°d

by <function check_AM_GM>, it remains to prove
216abed < 4a°b + 4a’c + 184abed + 4ac® + 4ad® + 4b%c + 4b>d + 4bd® + 4c’d
by <function zero_side>, it remains to prove
0 < 4a®b + 4a’c — 32abed + 4ac’® + dad® + 4b*c + 4b°d + 4bd” + 4c*d
by <function check_AM_GM>, it remains to prove
0 < 4a®b — 16abed + 4ad® + 4b°c + 4c°d

by <function check_AM_GM>, this is true!

X

8. Solution to USA-IMO-Team-Selection-2010-P2.

By <function try_homo>, it is equivalent to prove

a’b® adc® b33 a3b
7 T 7 T 7 2

c2 (a + 2b) b2 (2a + c) a2 (b+ 2c) 3

W
ol

C

we use Holder’s inequality:
(ab + ac+ be)® < (a(b+ 2¢) + b(2a + ¢) + c(a + 2b))* x

(@®b* /(P (a + 2b)°) + a®c? /(% (2a + ¢)?) + b°® /(a* (b + 2¢)?)).
It remains to prove

@l
W

b

3
by <function check_AM_GM>, this is true!

a C%S%b ac = be

9. Solution to Korea-2011-P4.

To prove
1 1 1 7

<
a2f4a+9+b274b+9+0274c+9 - 18’

we have
24z

f@)=1/(2® -4z +9) < for0 <z <1

_z(z— 1)®
18 (22 — 4z +9)
which is true. Substitute z for a/(a + b + ¢), we have

<= <0Ofor0<z <1,

(a+b+c)? < 3a + 2b+ 2¢

1 a274a+9 = '
/() a2f4a(a+b+c)+9(a+b+c)2_18a+18b—|—180

It remains to prove

3a + 2b+ 2¢ 2a + 3b + 2¢ 2a + 2b+ 3¢
18a + 180+ 18¢c ~ 18a + 18b + 18¢c = 18a + 18b + 18¢

by <function try_together_1>, this is true.

<.
— 18

10. Solution to Japan-2014-P5
By <function try_homo>, it is equivalent to prove

ala+b+c) b(a+b+c)
2 7+ 2 2
9%c+4(b—c)"+(a+b+c) 9ac+4(—a+c)"+(a+b+c)
cla+b+c) >1
9ab+4(a—b)°+ (a+b+c)® ~ 2

We use Holder’s inequality:

(a+b+0e)® <
a(a+b+c) b(a+b+c) cla+b+c)
2 7t) 7t 2)%
9bc+4(b—c)*+(a+b+c) 9ac+4(—a+c)? 4+ (a+b+c) 9ab+4(a—b)*+(a+b+c)

{a (9a2+4(bfc)2+(a+b+c)2) +b(9b2+4(7a+c)2+(a+b+c)2)+

(

c<902+4(a7b)2+(a+b+c)2)}
It remains to prove

(a+b+c)3
27abc+4a(bfc)2+a(a+b+c)2+4b(afc)2+b(a+b+c)2+4c(a7b)2+c(a+b+c)2

1
~ <
7S
by <function nodiv_expr>, it remains to prove
27abc+4a (b—c)* +a(a+b+c)’ +4b(a—c)’+b(a+b+c)>+4c(a—b)’ +c(a+b+c)’
<2(a+b+c)?
by <function zero_side>, it remains to prove
0< —27abc—4da(b—c)> —a(a+b+c)> —db(a—c)> —b(a+b+c)> —4c(a —b)?
—c(la+b+e)’+2(a+b+c)?
by <function try_expand_r>, it remains to prove
0< a® — a®b — a®c — ab® + 3abc — ac® + b* — b%c — b® + 3

by <function check_schur>, this is true!

C Human Evaluation of Generated Synthetic Theorems

We select 10 synthetic problems generated by our AIPS for evaluation, and 4 IMO problems for
comparison. Then, we invite three professional contestants to evaluate the difficulty and elegance
of these 14 problems. Two of the evaluators are National Mathematical Olympiad gold medalists,
and one is a silver medalist. The difficulty and elegance are needed to assign a score from 1 to 7,
respectively.

C.1 10 Synthetic Theorems and 4 Comparison IMO Problems

C.1.1 10 Synthetic Theorems

¢ (Problem1)
Given a, b, ¢ > 0, then
(a+b+c)? < 4a 4b 4c

(ab+bc+ ca)? — (b+¢)? + (c+ a)? + (a+b)?
¢ (Problem?2)
Given a, b, c > 0, then
27(a2 + b2)2 (b + ¢2)2(c2 + a?)?
(a* 4+ b* + ¢t + 3a2b? + 3b%c? 4 3c2a?)? —
¢ (Problem3)

Given a, b, c > 0, then
abe(a+ b+ c)3

<

3(ab+ be + ca)(adc+ ab® + be3) —
¢ (Problem4)

Given a, b, ¢ > 0, then

2a N 2b n 2¢ < 3v2(a+b+c)

V22 02+ V22 +c2+a?2 V22 +a2+02 T V5a2 +5b2 + 5¢2 + ab+ be + ca
¢ (Problem5)

Given a, b, ¢ > 0, then

V6(a+b+c)? < a N b
6vVat + bt + c* + a?b? + b2 + 2a® 2a% + b2 + 2 20% + % + a?
C
V2e2 +a? + b2

¢ (Problem6)
Given a, b, c > 0, then

2a+b+c)2 < (Vatb+Vb+c+etaaZ+b02+E+ab+be+ca

¢ (Problem?7)
Given a, b, c > 0, then

(a4+b4—|—c4)% a® N I N b
Vab2 + b2 + ca? —abeva+b+c Vea+b2 Vab+ 2 Vbe+ a2

¢ (Problem38)
Given a, b, ¢ > 0, then
54abc 4 (a+ b+ ¢)°

(\/a2 + 2bc 4+ V2ab + 2 + \/2ac+b2)

¢ (Problem9)
Given a, b, c > 0, then
a?b n ac? n b3c
(@a+b)° (a+e)® (b+e)?
¢ (Problem10)
Given a, b, ¢ > 0, then

s<a+b+c

3
<2
-8

(ab+ ac + be)? a’b b2e

< + +
\/@22—|—62—|—62\/a2+b2—|—62—|—3ab+3bc+3ca Vb2 + 3ac V2 + 3ab
ca

Va2 + 3be
C.1.2 41IMO Problems
* (1995-imo-2)
Given a, b, ¢ > 0 and abc = 1, then

1 1
(a+c)+a3(b+c)

L 3
A(a+bd) b —2
* (2001-imo-2)

. a b c
Given a, b, c > 0, then

+ + >
VaZ+8b¢ 8ac+ b2 /8ab+ 2

* (2006-imo-3)
Assume a, b, c are three real numbers, then |ab(a? — b?) + be(b? — ¢2) + ca(c? — a?)| <
9 (2
a’ + b2 + ¢?)?
T \/5()
. (2020-imo-2)
Assume ¢ > b > ¢

> > >
a®b’ctd? (a + 2b + 3c + 4d) <

d > 0and a + b+ c+ d = 1, prove that
1

C.2 Human Evaluation Results

The rating scores by the three professional contestants are reported in Table 2] The third expert does
not assign scores to the four IMO problems, believing the average difficulty of the ten problems is
significantly lower than that of IMO problems. The first expert does not give a difficulty score for
Problem 8 because he does not solve it. From the table, we observe that while the average difficulty
does not compare with IMO inequalities, a few problems, such as Problem 9 and Problem 7, reach
the IMO level.

Table 2: Scores given by human experts on synthetic theorems and IMO problems. Scores range
from 1 to 7. GM denotes gold medalist, and SM denotes silver medalist.

Problem Expert 1 (GM) Expert 2 (GM) Expert 3 (SM)
Difficulty | Elegance | Difficulty | Elegance | Difficulty | Elegance

1 2 2 2 3 1 2.5

2 1 1 1 2 1 1

3 2 1 4 2 1.5 1
4 3 2 3 2 2 1.5

5 2 1 2 2 1.5 1
6 2 2 2 2 1.5 1.5

7 5 1 4 2 2 2
8 NA 2 3 2 1 1.5

9 4 3 4 5 2.5 2
10 4 1 3 1 1 1.5
IMO-1995-2 2 4 3 5 NA NA
IMO-2001-2 3 4 3 5 NA NA
IMO-2006-3 3 3 5 3 NA NA
IMO-2020-2 2 2 4 3 NA NA

C.3 Synthetic Theorem Selected for Mathematical Olympiad

Among the 10 synthetic problems above, problem 4 was chosen as a competition problem in a
major city’s 2024 Mathematical Olympiad, as shown in Fig. [I3] It received positive feedback for its
appropriate difficulty, concise form, and variety of solutions. This problem was posted online, and
75 contestants provided their evaluations on its difficulty and elegance. The score distributions are
shown in Fig. [T4] The average difficulty score was 3.3 out of 7, and the elegance score was 2.2 out of
5. The 4 solutions to this problem, including one provided by our AIPS and 3 solutions collected
from the competition organizers, are given as follows.

Problem: Given three positive real numbers a, b, ¢, prove that

2a N 2b N 2¢ 3v2(a+b+c)
V2a? + b2 + c2 2b2 4 c2 + a? V2c2 + a2 + b2 = /5a2 + 5b2 + 5¢2 + ab + bc + ca

Figure 13: Selected theorem for a major city’s Mathematical Olympiad.

Difficulty Score Distribution Elegance Score Distribution

4 H
Difficulty Score. Elegance Score

Figure 14: Score distributions evaluated by 75 contestants online.

Proof 1. (Modified from AIPS’ proof)
6x(—a’® — b* — c?)

' (z) = — < 0 for z satisfying 0 < = < a® +b? + 2, where f(z) =

(a? + b2 + % + 22)2

. atbtc
2z . g 2 3
. By Jensen’s inequality, LHS < 3 - It
x2+a2+b2+02 a2+b2+62+(a+§+c)2

suffices to prove

;. 2. atbte 3v2(a+b+c)

\/a2 b2 42+ (a+§+c)2 ~ V/5a2 + 5b2 + 5¢2 + ab + be + ca

Expanding the left-hand side, this is true. O

Proof 2. (Given by Humans)
Without loss of generality, assume @ > b > c and a® + b*> + ¢? = 1. Then the inequality in
question is equivalent to

3(a+b+c)
Z\/1+a2 T V9t (a+b+c)?

Notice that

1 b

a 1
— =l > 1=
V1+ a2 \/ 1+a? _\/ 1+62 /1+40p2

By Chebyshev inequality, we get
OOV

Then it suffices to prove

Z\/ﬁ 3(a+b+c).

S Vi+a2> 9+ (a+b+c)?
which is equivalent to show 6 + 23" ab < 23" /1 4 a?v/1 + b2. Notice that

14+ab<V14a2/1+4b < 2ab<a®+ b

and the right-hand-side holds by AM-GM inequality. Therefore we have finished the proof.
O

Proof 3. (Given by Humans)
First we divide the proof into two subgoals:

3v2(a+b+c) = 2(a+b+c¢)

>)]
VbaZ + 5% + 5¢2 + ab + be + ca \/g(a2+b2+c2)
and 5 5
a a
Z = Z 2a? + b + ¢? &

%(a2 + b2+ ¢?)

Where 3 denotes cyclic summation. The proof of (1)) follows from the fact that a®+b®+c? >
ab + be + ca. For the second part, we apply Chebyshev’s inequality.
Without loss of generality, we assume a > b > c. First notice that

Z \/ 2a 2a _ %Zxa@az) 3)

%(a2+b2+c2) a Vv2a2 + b2 + c2

2a
2(a? + b2 + 2)v2a% + 0% + 2(4/ 5 (0% + b2 +) + /20 + b2 + ?)

and xp, z. are defined similarly. We claim that x, > z, > x.. For z, > x, it suffice to
show two inequalities:

a\/a2 + 202 4+ 2 > b\/Qa2 + b2 + ¢?

a(a® 4+ 2b° + %) > b(2a® + b° 4 &°)
Both can be proven by factorization, and the proof of x;, > x. is similar.
Since a > b > ¢, we get 202 — b2 — 2 > 2% — % —a? > 262 — a2 - V% Combining
with z, > @, > x. and applying Chebyshev’s inequality, we get 3 x4 (2a% — b — ¢2) > 0.
Finally, combining with (3), we conclude that @) is proved. O

Proof 4. (Given by Humans)

LetS:aerbz+6221nd1€:LbJrC

3 . Substituting into the inequality and rearranging:

2a
LS =) Ve
RHS = Y ((2(8% +5)7% — 26%(t2 +) #)(a — 1) +24(t* + S)~

It suffice to show

Nl

)

20 _25(a—t)+ 2t(t* + S)
a*+8 ~ t2+9)3
which is equivalent to
3a*t'S + 3a*t*S? < (28a°t® + St°) + (25°ta® + S*a’)

The last inequality is proved by applying AM-GM inequality. O

	Introduction
	Algebraic Inequality Proving System
	Symbolic Deductive Engine for Algebra
	Olympiad-Level Inequalities Proof Set
	Neural Algebraic Inequality Prover

	Experiments
	Conclusion
	Appendix
	Technical Details of the Deductive Engine and Neural Model
	Background
	Representation of Algebraic Expressions and Pattern Matching
	Theorems, Rules and Pattern Matching
	Details of Synthetic Data Generation
	Neural Model and Its Training Process

	Experiments and Analysis
	Synthetic Dataset Statistics
	Details of Value Curriculum Learning
	Performance Analysis During Curriculum Learning
	Our Benchmark: Mathematical-Olympiad-INequality-Test-20
	Details of Comparison Methods and Testing Results

	Human Evaluation of Generated Synthetic Theorems
	10 Synthetic Theorems and 4 Comparison IMO Problems
	Human Evaluation Results
	Synthetic Theorem Selected for Mathematical Olympiad

