ShinRL: A Library for Evaluating RL Algorithms
from Theoretical and Practical Perspectives

Toshinori Kitamura* Ryo Yonetani
Nara Institute of Science and Technology OMRON SINIC X
Nara, Japan Tokyo, Japan
kitamura.toshinori.kt6@is.naist. jp ryo.yonetani@sinicx.com
Abstract

We present ShinRL, an open-source library specialized for the evaluation of rein-
forcement learning (RL) algorithms from both theoretical and practical perspec-
tiveﬂ Existing RL libraries typically allow users to evaluate practical performances
of deep RL algorithms through returns. Nevertheless, these libraries are not nec-
essarily useful for analyzing if the algorithms perform as theoretically expected,
such as if Q learning really achieves the optimal Q function. In contrast, ShinRL
provides an RL environment interface that can compute metrics for delving into
the behaviors of RL algorithms, such as the gap between learned and the optimal Q
values and state visitation frequencies. In addition, we introduce a solver interface
for evaluating both theoretically justified algorithms (e.g., dynamic programming
and tabular RL) and practically effective ones (i.e., deep RL, typically with some
additional extensions and regularizations) in a consistent fashion. As a case study,
we show that how combining these two features of ShinRL makes it easier to
analyze the behavior of deep Q learning. Furthermore, we demonstrate that ShinRL
can be used to empirically validate recent theoretical findings such as the effect of
KL regularization for value iteration [Kozuno et al.,[2019]] and for deep Q learning
[Vieillard et al.,2020a], and the robustness of entropy-regularized policies to ad-
versarial rewards [Husain et al.,[2021]]. The ShinRL source code can be found on
GitHub: https://github.com/omron-sinicx/ShinRL.

1 Introduction

Reinforcement learning (RL) [Sutton and Bartol 2018|] has historically been, and still is, a very
active topic in machine learning research. Recent years have particularly seen remarkable progress
in research on deep RL, where highly-expressive neural networks are used to approximate policy
or Q functions to enable complex sequential decision making. Due to its advantages in dealing
with high-dimensional state spaces and learning policies that are generalizable to unseen testing
environments, the effectiveness of deep RL has been confirmed in a variety of practical applications,
such as robot control [Kober et al.,[2013]], game Al [Mnih et al.,|2015]], and economics [Zheng et al.,
20201, to name a few.

In parallel with research on deep RL for practical tasks, there has been increasing attention paid to
efforts to clarify its theoretical basis. Indeed, some state-of-the-art deep RL algorithms can be viewed
as an extension of theoretical foundations of RL such as tabular RL (i.e., no function approximation)
and dynamic programming (DP; no exploration while assuming that the complete specification

*Work done as an intern at OMRON SINIC X.
'TK devised the main conceptual idea, developed the library, and conducted all the experiments presented in
the paper. RY aided in shaping the research and worked in collaboration with TK to write the manuscript.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

https://github.com/omron-sinicx/ShinRL

(a) Return (b1) Optimal Q (b2) Learned Q

(c) State visitations

Position

Velocity

Velocity

L 4

Velocity

Return
Velocity

Steps Position Position Position

Figure 1: Analyzing DQL Results on MountainCar using ShinRL. (a) Return plot; (b1) Visual-
ization of the optimal Q values, (b2) learned Q values, and (c) state visitation frequency.

about state transitions is given). Concrete examples of such correspondences between theoretically
justified and practically effective algorithms include: from soft Q learning [Haarnoja et al., 2017]
to soft actor-critic (SAC) [Haarnoja et al., [2018]], from safe policy iteration [[Pirotta et al., 2013]]
to trust-region policy optimization (TRPO) [Schulman et al., [2015]], and from conservative value
iteration (CVI) [Kozuno et al.,2019] to Munchausen Deep Q learning [Vieillard et al.| 2020a]. In
order to better understand a new deep RL algorithm that has been developed, it is critical to identify its
theoretical foundation and validate if it works theoretically as expected, typically under a reasonably
simplified setting.

To this end, we argue that one indispensable contribution is the development of open-source libraries
that can evaluate RL algorithms from both theoretical and practical perspectives in a principled
fashion. Despite many RL libraries have been developed so far [Fujita et al., 2021} (Castro et al.,
2018}, [Liang et al., 2018]], they typically support evaluations of deep RL algorithms only through
returns (i.e., cumulative rewards) sampled from episodes. While such evaluations could allow users to
systematically compare performances across methods (e.g., [Engstrom et al.| [2020], (Ceron and Castro
[2021])), sampled returns are not necessarily useful for assessing if the methods work as theoretically
expected. As a motivating example, suppose a scenario where a user performs a deep Q learning
(DQL) [Mnih et al.| 2015]] on the MountainCar environment [[Brockman et al.,[2016]]. The user can
utilize existing libraries to implement such experiments easily and confirm that the trained network
received a high return as shown in Fig. [T(a). However, does this empirical success mean that the
network really achieved the optimal Q function? This is a simple but fundamental question to validate
the theoretical expectation that the original (i.e., tabular) Q learning has, which is nonetheless hard to
answer for deep RL with non-linear function approximation, even empirically from the returns alone.

Motivated by the observations above, we develop a new RL library named ShinRL. At its core, we
introduce an RL environment interface that can compute a variety of metrics such as optimal and
learned Q functions (Fig. bl)(b2)) and state visitation frequency (Fig. c)), which are crucial
for analyzing the behavior of RL algorithms but are not currently supported in existing libraries.
Additionally, ShinRL provides an RL solver interface to evaluate both theoretically-justified and
practical RL algorithms in a consistent fashion. By using this interface, users can easily ablate
various extensions from developed RL algorithms, such as by removing function approximation and
exploration, to empirically evaluate their theoretically-justified variants. ShinRL is implemented in a
standard PyTorch and can be used without expensive computational resources such as high-end CPUs
and GPUs to empirical validate theoretical results that are typically confirmed in reasonably simple
environments (eg, [Vieillard et al.|[2020b] and [Bellemare et al.|[2016]). Nevertheless, as its main
components are built on top of OpenAl Gym [Brockman et al.l 2016], algorithms once implemented
can be immediately available for practical evaluations, such as the ones using Atari [Bellemare et al.|
2013]] with few modifications.

In this paper, we overview the main features of ShinRL and present how they work in practice.
Specifically, we first use ShinRL to effectively analyze the behavior of DQL, by clearly visualizing
the effects of exploration, function approximation, and more advanced techniques such as double Q
learning [Hasselt, 2010, |[Van Hasselt et al.| [2016]. Furthermore, we demonstrate how ShinRL can be
used to empirically validate recent theoretical findings in a systematic fashion, such as the effect of
KL regularization for value iteration [Kozuno et al.,|2019] and for DQL [Vieillard et al., [2020a]], and
the robustness of entropy-regularized policies to adversarial rewards [[Husain et al., 2021].

2 Background

2.1 Preliminaries

Throughout this paper, we consider an infinite-horizon discounted Markov decision process (MDP)
represented by a the tuple {S, A, P, r,~v}, where S is a finite state space, A is a finite set of actions,
P(s'|s, a) is a Markovian transition kernel (where s, s’ € S,a € A), r € RS*4 is a reward function,
and v € (0,1) is a discount factor. The objective of RL is to find the optimal policy 7, that maximizes
the discounted return (i.e., cumulative reward) given by: m, = argmax, Er [> ;" "7 (St, A¢)]
where E is the expectation over all trajectories induced by policy 7 For a policy 7, the Q function
is defined as Q(s,a) = Ex [> 10 7'r(St, Ai)|So = s, Ag = a, the state visitation frequency is
defined by d-(s) = (1 —) >, 7" P (S; = s|r). Following |Vieillard et al.[[2020a], we introduce
the component-wise dot product notation (f1, f2) = (3, fi(s,a)f2(s,a))s € R for some functions
f1, fo € RS*A. With this, the expectation of a Q function over a policy, the V function, can be
expressed simply as V'(s) = (7, Q)(s) = Eqr(.|s)[Q(5, a)]. Further, we introduce another form to

describe state transitions: Pv = (3, P(s'|s,a)v(s')), , € RS*A forv € RS.

2.2 Dynamic programming, and its extensions to practical RL algorithms

Classical approaches based on dynamic programming (DP), such as value iteration (VI) and policy
iteration (PI), aim to find the optimal Q function as the optimal policy can easily be derived from it. In
VI, Q function Q € RS*4 is iteratively updated by applying a Bellman backup: @Q < 74P max, Q,
which is guaranteed to reach the optimality as its unique fixed point is Q.. PI, on the other hand,
consists of the following two steps: policy evaluation and policy improvement. The policy evaluation
step applies the expected Bellman backup to the Q function: @ < r + vP(m, Q) where its unique
fixed point is). The policy improvement step updates the policy with the Q function as follows:
7 < argmax, (7,)). Alternating these steps leads to the optimal Q function Q).

Unlike DP-based approaches, RL algorithms typically assume that a state-transition kernel and a
reward function are unknown. To achieve the optimal policy or the optimal Q function, they instead
require transition samples (s, a, s, r) collected by interacting with the MDP. Nevertheless, many of
the RL algorithms are derived from DP. For example, Q-learning [Watkins and Dayan, |1992]] can be
seen as a variant of VI with exploration, while actor-critic method [[Sutton et al., 2000 is a PI variant
with exploration and function approximation of ¢ and 7.

Many other deep RL algorithms have also been developed by extending DP. Approximate dynamic
programming (ADP) is a framework to theoretically analyze RL algorithms using a DP update
scheme [Munos and Szepesvari, 2008| [Scherrer et al.,2015]]. Specifically, in the ADP framework, the
exploration and function approximation are “approximated” as an estimation error, allowing us to
analyze how the error propagates to the converged policy. Doing so has revealed that VI and PI are
weak to such errors [Munos and Szepesvari, |2008, [Scherrer et al., [2015]], which further explains the
instability of recent deep Q learning algorithms [Mnih et al.} 2015} [Lillicrap et al.l 2015} [Fujimoto
et al., [2018]]. Some studies have then demonstrated the effectiveness of KL regularization against the
error [Azar et al., 2012] |Ghavamzadeh et al., 2011}, Bellemare et al., 2016, |Vieillard et al., 2020bl,
Kozuno et al.|[2019], which led to recent KL-regularized deep RL algorithms [Schulman et al., 2015}
Vieillard et al.,2020cla]. Our main motivation is to develop an open-source library that allows users
to reproduce and further explore such connections from theoretical results to practical algorithms.

3 ShinRL

As summarized in Fig. 2] ShinRL consists of two main modules: ShinEnv as an interface to
implement environments modeled by the MDP and Solver as an interface for solving the RL tasks
(i.e., finding the optimal policy) on the environments with specified algorithms. In order to maximize
the simplicity and flexibility of the library, we keep the number of main modules as low as possible
in this way, while also implementing some basic RL necessities such as replay buffers, exploration
strategies, and samplers, partially by including external libraries such as cpprb [Yamada, |2019].
Using ShinEnv and Solver in combination gives users the ability to evaluate deep RL algorithms as
well as their tabular and DP variants through the same interface, making it possible to empirically

(a) ShinEnv (b) SOIVer ‘Salver configurations

Function approximation (tabular/nn)
* Exploration strategies (eps_greedy/oracle)
shinMountainCar shinMaze _ _ et eneeo

ShinPendulum ShinCartPole ‘ ‘ ‘

approx: “tabular”
explore: “oracle”

approx: “tabular”
explore: “eps_greedy”

approx: “nn”
explore: “oracle”

approx: “nn”
explore: “eps_greedy”

OpenAl Gym Env

[[[[

Figure 2: Overview of ShinRL.

analyze if developed algorithms work theoretically as expected. In what follows, we describe the
design and main features of each module.

3.1 Environments

ShinEnv is an interface to implement MDP environments built on top of Env class of OpenAl
Gym. We design it to extend Gym’s classic control environments with a relatively small state
space, such as CartPole and MountainCar, to give users access to the “oracle” that can compute
exact quantities for returns, Q values, or state visitation frequencies, in an offline fashion. Indeed,
when we evaluate a new RL algorithm, we often validate the algorithm on simple and constrained
environments before assessing practical performances under challenging settings (e.g., by using Atari
and Mujoco) [Vieillard et al.l 2020d, [Ceron and Castro|, [2021]]. To this end, we typically collect
samples through interactions with environments and only observe estimated returns, typically of high
variance, averaged over episodes. On the other hand, such exact quantities with ShinEnv can help to
get more accurate insights into how the algorithm works.

Under the hood of ShinEnv, the oracle performs exhaustive enumeration of all state-action pairs and
derives how learned or optimal policies act via sparse matrix calculations. By doing so, ShinEnv
provides the following methods:

* calc_q computes a Q-value table containing all possible state-action pairs (i.e., Q) given
a policy 7. This method accepts some additional input arguments to consider how strongly
each reward is affected by KL and entropy regularization imposed on RL algorithms.

* calc_optimal_q computes the optimal Q-value table (i.e., Q.) by exactly performing value
iteration for a specified number of finite-horizon using the pre-computed state transition and
reward matrices.

* calc_visit calculates state visitation frequency table containing all possible states, i.e.,
d, for a given policy 7.

* calc_return is a shortcut for computing exact undiscounted returns for a given policy
using state transition and reward tables. This is useful as sampling-based approaches
otherwise just gives expected returns typically with high variances.

Any environment can be inherited from OpenAl Gym’s Env to ShinEnv as long as its state space is
reasonably small. When the action space is continuous, we discretize the space with a user-defined
number of bins to execute the above-mentioned methods while the environment itself can accept
the original continuous actions. Table[T|shows some default environments we already implemented.
While we developed ShinCartPole, MountainCar, and Pendulum by inheriting respective OpenAl
Gym’s Env classes, we create ShinMaze from scratch as an environment that solves an easy 2D
maze where agents need to arrive at predefined goal locations while avoiding obstacles, like the one
implemented and evaluated in[Fu et al| [2019]]. For some environments, we also support state spaces
given by raw input images, which enforces solvers presented in the next section to automatically use
convolutional neural networks when approximating policy or Q functions.

Table 1: Default Environments Implemented in ShinEnv.

Environment Discrete action Continuous action Image observation Tuple observation
ShinMaze v X X v
ShinCartPole v 4 X v
ShinMountainCar v v v v
ShinPendulum v v v v

(e) Qr — Q.

(a) Return (b) Loss (c) State visitations

Velocity

Ii -.1-]
I-'.
"

(e=0)
Return
PO
g 8 & o
Loss

e N
a5 & 8
Velocity
Velocity

0
0 25000 50000 75000 100000 0 25000 50000 75000 100000
Steps Steps

Position Position Position

(e =0.1)
|
g o
5 8
Velocity
-1
:
{
Velocity

Return
"
S
8
Loss
-
5

Velocity
. Ly

)
1

{

0
0 25000 50000 75000 100000 0 25000 50000 75000 100000

Position Position Position
Steps Steps

g 0 20 - -

K ¥

_g =50 15 - - - i

3 ¢ <] £ £ o

B 5100 2 10 S S S f -

+ = o = = = -

Q - Q . Q Q

- @ > > > |_l

S 150 5 1

! : —

L 200 0

0 25000 50000 75000 100000 0 25000 50000 75000 100000 . s e

Position Position Position

Steps Steps

Figure 3: Comparison of DQL with Different Settings on ShinMountainCar. Column (e) shows
the gap between the optimal Q values @), and learned ones (), where negative and positive values
(i.e., overestimation and underestimation) are highlighted in red and blue.

3.2 Solvers

Solvers is an interface on which a variety of DP and RL algorithms can be implemented. As
summarized in Fig.[2b), Solvers has a hierarchical structure based on how methods are theoretically
related with each other as introduced in Sec.[2.2] More concretely, the current version supports VI and
its extensions such as KL-regularized VI (also known as Dynamic Policy Programming
2012]) and conservative VI [Kozuno et al.}[2019], as well as tabular Q learning, deep Q learning
et al.| 2015]], and Munchausen RL [Vieillard et al.] that are all extended from VI. We also
implement PI as well as actor-critic [Konda and Tsitsiklis, 2000] and soft actor-critic
as variants of PL

Importantly, all of these algorithms can be used in a consistent fashion by toggling function approxi-
mation and other extensions such as exploration strategies and KL and entropy regularizers when
instantiating them. For example, by disabling function approximation while enabling exploration,
deep RL methods will reduce to their tabular RL variants. Alternatively, disabling both function
approximation and exploration turns the methods back into VI or PI. This is very unlike existing
libraries that extensively but exclusively support rapid-prototyping of deep RL algorithms.

4 Case Studies

4.1 Delving into the results of DQL

Deep Q learning (DQL) [Mnih et all, 2015] is a popular approach that still has much room for
improvement. While deep networks used to approximate the Q function are generally highly expres-
sive, they also need to be trained from diverse transition samples and therefore require a well-tuned
exploration strategy in practice.

W

W

W

First, let us introduce how ShinRL can visualize the effectiveness of exploration strategies on the
ShinMountainCar environment. As the original DQL can be seen as an extension of Value Iteration
with neural network approximation and epsilon-greedy exploration, DQL can be built by passing
nn to approx and eps_greedy to explore in the configuration. Instantiating the environment and
performing the DQL on it can be done simply in a few lines as shown below.

import gym
from shinrl.solvers.vi.discrete import ViSolver

instantiate an environment
env = gym.make ("ShinMountainCar-vO0")

instantiate deep Q learning-based solver

config = ViSolver.DefaultConfig(approx="nn", explore="eps_greedy")
solver = ViSolver.factory(config)

solver.initialize (env, config)

run the solver
solver.run ()

The epsilon-greedy exploration strategy highly depends on its value of epsilon, i.e., how likely the
agent takes random actions at each step. To understand how this epsilon affects DQL’s behaviors, we
run two DQL solvers with different constant values set to epsilon, ¢ = 0.0 and € = 0.1, and observe
their state visitation frequencies. This can be done can with calc_visit function as follows, which
take just about 10ms in a CPU environmenﬂ

compute state-action visitation table using learmned policy
policy = solver.history.tbs["ExplorePolicy"]
visit = env.calc_visit (policy)

Figure [3(a) and (b) present plots for returns and losses, and corresponding state visitation tables
are visualized in (c). A bit surprisingly, both of the solvers finally solved the task (defined by the
return arrived at —20), and their losses are almost comparable. Nevertheless, they demonstrate a clear
difference in state-visitation frequencies, where the solver with e = 0 leads to a poor exploration
policy that can potentially visit a limited set of states even after a large number of steps, while the
solver with e = 0.1 can visit almost all possible states the agent can reach. Now we are interested in
how this difference in state visitation frequencies affects the quality of learned Q functions. Here, we
visualize the difference between learned and optimal Q values as follows:

optimal_q = env.calc_optimal_q()
learned_q = solver.history.tbs["Q"]
diff_q = learned_q - optimal_gq

As shown in Fig.3e), Q values are inaccurate in many places due to underestimation under € = 0
and overestimation under € = 0.1. Overestimation is particularly a known phenomenon and can be
alleviated via double-Q learning [Hasselt, 2010} Van Hasselt et al.,[2016] that learns two Q functions
with different sets of samples. The bottom row of Fig. [3| shows that the double-Q trick indeed
improves the accuracy of the learned Q values, except for some state-action pairs that were not visited
during learning. This further implies the importance of better dealing with out-of-distribution actions
such as done in offline RL [Levine et al.,[2020], which we leave for future work.

4.2 Comparing VI, KL-regularized VI, CVI, and Munchausen DQL

As we introduced in Sec. VI theoretically becomes robust to estimation errors, which typically
arise due to function approximation and exploration, by imposing KL regularization [[Vieillard et al.|
2020bf]. Furthermore, involving entropy as well as KL regularizations turns VI to conservative VI
(CVI) [Kozuno et al.||2019]], which inspires the formulation of Munchausen DQL (M-DQL) [Vieillard
et al., [2020a]] that extends conventional deep Q learning with these regularizations to improve the
stability. In this case study, we demonstrate how these theoretical findings of VI, KL-regularized VI,
CVI, DQL, and M-DQL can be confirmed empirically and systematically using ShinRL.

2Confirmed with Intel(R) Core(TM) i9-11900H @ 2.50GHz.

(a) Returns on ShinMaze (b) Optimality gaps on ShinMaze (c) Average returns on Breakout
60

17.5 A"
o ® M ‘ J\W\WM 5
e || LT “v{\'{ g
3 0.0 0
355 | @
) @ 20
5o | : E:
25 il ‘ ‘ F
0.0 J““ /W Ikl 0 0
0 25 50 75 0 25 50 75 100 125 150 60 02 04 06 08 1.%
1
Steps Steps Steps €

| —\/| KL-regularized VI s Entropy-regularized VI s CV/| | | baL M-DQL |

Figure 4: Comparisons of VI Variants with Various Regularizations. (a) Return plots and (b)
optimality gaps given by ||Qr, — Q|| for VI, KL-regularized VI, entropy-regularized VI, and CVI
on the ShinMaze environment. (¢) DQL and M-DQL on the Breakout environment.

To observe how VI changes its behavior with regularizations, let us start from formulations. Consider
the following DP update schemes:
{Fk+1 argmax_ ((m, Qx) — TKL(7||7%) + AH (7)),

Qry1 =71+ vyP(mer1, Qr — TKL(mhq1 ||78) + AH(71)) + €,

)

where 7 and \ are coefficients for KL and entropy regularization, respectively. ¢, ~ A (0,0) is a
zero-mean Gaussian error vector with standard deviation o at k-th iteration, which models either
function approximation and/or exploration errors. Evaluating this regularized DP with ShinRL is
quite simple by just toggling the configurations of ViSolver, where the parameters 7, A, and o are
respectively specified by k1_coef, er_coef, and noise_scale. For example, CVI that comes with
both KL and entropy regularizations can be instantiated as follows:

Instantiate VI
cvi_config = ViSolver.DefaultConfig()
cvi_config.update (

"approx": "tabular", # use tabular method
"explore": "oracle", # use oracle for exploration
"noise_scale": 1, # scale of simulated noise
"kl _coef": 0.1,
"er_coef": 0.3,
}
)
cvi_solver = ViSolver.factory(cvi_config)

cvi_solver.initialize(env, cvi_config)
cvi_solver.run ()

Figure[d]shows (a) returns as well as (b) the optimality gap defined by ||Q. — Qx| on the ShinMaze
environment. KL-regularized VI is indeed robust against noise empirically and can easily reach the
optimality. On the other hand, entropy regularization is less important than KL regularization, which
is also explained by [Vieillard et al.|[2020b]. Nevertheless, the next section will show the effectiveness
of entropy regularization when used in the SAC algorithm [Ceron and Castro| [2021].

Now the task is to compare DQL and M-DQL. They are deep RL algorithms that should be evaluated
in more challenging environments to best show their performances. To this end, ShinRL fully supports
OpenAl Gym, and can call the minatar environment [Young and Tian, [2019] that is a lightweight
testbed inspired by Atari games.

from shinrl import utils
env = utils.make_minatar ("breakout")

M-DQL
config = ViSolver.DefaultConfig(
n approxll . Vlnnll ,

S}

(a) Returns (b) State visitations

=500

-1000

Return

-1500 ¥

2000 0.0 0.2 0.4 0.6 0.8 11% -
e
Steps Angular Velocity Angular Velocity Angular Velocity Angular Velocity

[—4=10—2=01 —2=0001—1=00]

Figure 5: SAC with Different Coefficients)\ for Entropy Regularization: (a) Return plots and (b)
State visitation frequencies (higher frequencies highlighted in red) on the ShinPendulum environment.

"explore": "eps_greedy",
the solver reduces to standard DQL by setting kl_coef and
er_coef to zero.
kl_coef=0.027,
er_coef=0.003
)
mdql_solver = ViSolver.factory(config)
mdgl_solver.initialize (env, config=config)
mdql_solver.run ()

Figure] (c) depicts return plots for the Breakout environment, demonstrating that M-DQL outper-
forms DQL thanks to KL and entropy regularizations.

4.3 Evaluating robustness of the SAC algorithm to adversarial rewards

Another family of algorithms that ShinRL supports extensively is policy iteration (PI), which is the
foundation of many recent deep RL algorithms. For example, the SAC algorithm
[2018]] is an extension of PI with function approximation, exploration, and entropy regularization.
Some recent work shows that the SAC algorithm can learn a robust policy, both empirically
[2018] and theoretically [Husain et al.| 2021]}, thanks to its entropy regularizer. In this case study,
we first investigate how SAC changes its robustness, in particular to adversarial rewards presented
by [Husain et al.| [2021]], with different entropy regularization coefficient A in the ShinPendulum
environment. In ShinRL, SAC can be implemented on the top of PiSolver as follows:

Instantiate SAC
config = PiSolver.DefaultConfig ()

3 config.update (

1C
11

12

"approx": "nn", # use neural network approximation
"explore": "eps_greedy", # use epsilon-greedy policy for
exploration
"er_coef": 0.1,
}
)
sac_solver = PiSolver.factory(config)

sac_solver.initialize(env, config)
sac_solver .run ()

Note that by setting er_coef to 0, the method reduces to the vanilla actor-critic algorithm

and Tsitsiklis, [2000]]. As done in the experiments of [Husain et al| [2021]], we consider the following
adversarial reward 7,4, by slightly modifying the original implementation of the pendulum:

s — {r(s,a) +e ifr(s,a) < -5)

r(s,a) otherwise,

where € is sampled from the normal distribution A/(4.9, 0.1). This reward design promotes the agent
to stay the pendulum around its initial state while the optimal behavior is still swinging it up.

Figure[5(a) shows the learning curves of SAC with different coefficients for entropy regularization.
We confirm that reasonably increasing the regularization strength improves the robustness against
adversarial rewards as confirmed by Husain et al.|[2021]].

Furthermore, we validate the finding of Haarnoja et al.|[2017] that empirically confirms the improve-
ment of exploration quality as the entropy regularization becomes stronger. By using count_visit
function, we can visualize the frequencies of state-action pairs stored in a replay buffer, making
it possible to assess if the exploration is sufficient during the training. As shown in Fig. [5[b), we
confirm that a wider range of state-action pairs are visited as A becomes higher.

5 Conclusion

We presented ShinRL, an open-source library that can evaluate RL algorithms from both theoretical
and practical perspectives in a principled fashion. As shown in our case studies, ShinRL can be used
to analyze the behavior of deep RL algorithms through the lens of Q-value tables and state visitation
frequencies, which are not immediately available in existing RL libraries. Further, we empirically
confirm recent theoretical findings of KL regularization and entropy regularization for RL [Kozuno
et al.} 2019, |Vieillard et al., 20204}, |Husain et al.,|2021]] using our flexible RL solver interface. Future
work will seek to extend the library to deal with a wider variety of tasks and algorithms not only on
RL but also imitation learning and offline RL.

Acknowledgments

The authors would like to thank Masashi Hamaya for helpful feedback on the manuscript.

References

Tadashi Kozuno, Eiji Uchibe, and Kenji Doya. Theoretical Analysis of Efficiency and Robustness
of Softmax and Gap-Increasing Operators in Reinforcement Learning. In Proceedings of the
International Conference on Machine Learning, pages 2995-3003, 2019.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen Reinforcement Learning. In
Advances in Neural Information Processing Systems, pages 4235-4246, 2020a.

Hisham Husain, Kamil Ciosek, and Ryota Tomioka. Regularized Policies are Reward Robust. In
Proceedings of the International Conference on Artificial Intelligence and Statistics, pages 64—72,
2021.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2nd
edition, 2018.

Jens Kober, J] Andrew Bagnell, and Jan Peters. Reinforcement Learning in Robotics: A Survey.
International Journal of Robotics Research, 32(11):1238-1274, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-Level
Control through Deep Reinforcement Learning. Nature, 518(7540):529-533, 2015.

Stephan Zheng, Alexander Trott, Sunil Srinivasa, Nikhil Naik, Melvin Gruesbeck, David C Parkes,
and Richard Socher. The Al Economist: Improving Equality and Productivity with AI-Driven Tax
Policies. arXiv preprint arXiv:2004.13332, 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement Learning with
Deep Energy-based Policies. In Proceedings of the International Conference on Machine Learning,
pages 1352-1361, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the
International Conference on Machine Learning, pages 1861-1870, 2018.

Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe Policy Iteration.
In Proceedings of the International Conference on Machine Learning, pages 307-315, 2013.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region
Policy Optimization. In Proceedings of the International Conference on Machine Learning, pages
1889-1897, 2015.

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. ChainerRL: A Deep
Reinforcement Learning Library. Journal of Machine Learning Research, 22(77):1-14, 2021.

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Belle-
mare. Dopamine: A Research Framework for Deep Reinforcement Learning. arXiv preprint
arXiv:1812.06110, 2018.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. RLIlib: Abstractions for Distributed Reinforcement
Learning. In Proceedings of the International Conference on Machine Learning, pages 3053-3062,
2018.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation Matters in Deep Policy Gradients: A Case Study on PPO
and TRPO. In Proceedings of the International Conference on Learning Representations, 2020.

Johan Samir Obando Ceron and Pablo Samuel Castro. Revisiting Rainbow: Promoting More
Insightful and Inclusive Deep Reinforcement Learning Research. In International Conference on
Machine Learning, volume 139, pages 1373-1383, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl Gym. arXiv preprint arXiv:1606.01540, 2016.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the Average: an Analysis of KL Regularization in Reinforcement Learning. In Advances
in Neural Information Processing Systems, pages 12163—-12174, 2020b.

Marc G Bellemare, Georg Ostrovski, Arthur Guez, Philip Thomas, and Rémi Munos. Increasing the
Action Gap: New Operators for Reinforcement Learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 14761483, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An Evaluation Platform for General Agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Hado Hasselt. Double Q-Learning. In Advances in Neural Information Processing Systems, pages
2613-2621, 2010.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-Learning. In Proceedings of the AAAI Conference on Artificial Intelligence, page 2094-2100,
2016.

Christopher JCH Watkins and Peter Dayan. Q-Learning. Machine learning, 8(3-4):279-292, 1992.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Advances in Neural
Information Processing Systems, pages 1057-1063, 2000.

Rémi Munos and Csaba Szepesvdri. Finite-Time Bounds for Fitted Value Iteration. Journal of
Machine Learning Research, 9(27):815-857, 2008.

Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist.
Approximate Modified Policy Iteration and its Application to the Game of Tetris. Journal of
Machine Learning Research, 16:1629-1676, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous Control with Deep Reinforcement Learning. In
Proceedings of the International Conference on Learning Representations, pages 1-14, 2015.

10

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In Proceedings of International Conference on Machine Learning, pages
1587-1596, 2018.

Mohammad Gheshlaghi Azar, Vicen¢ G6mez, and Hilbert J Kappen. Dynamic Policy Programming.
Journal of Machine Learning Research, 13(1):3207-3245, 2012.

Mohammad Ghavamzadeh, Hilbert Kappen, Mohammad Azar, and Rémi Munos. Speedy Q-Learning.
In Advances in Neural Information Processing Systems, pages 2411-2419, 2011.

Nino Vieillard, Bruno Scherrer, Olivier Pietquin, and Matthieu Geist. Momentum in Reinforcement
Learning. In Proceedings of the International Conference on Artificial Intelligence and Statistics,
pages 2529-2538, 2020c.

Hiroyuki Yamada. cpprb, 1 2019. URL https://gitlab.com/ymd_h/cpprbl

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Deep Conservative Policy Iteration. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 6070-6077,
2020d.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing Bottlenecks in Deep Q-
Learning Algorithms. In Proceedings of the International Conference on Machine Learning, pages
2021-2030, 2019.

Vijay R Konda and John N Tsitsiklis. Actor-Critic Algorithms. In Advances in Neural Information
Processing Systems, pages 1008—-1014, 2000.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems. arXiv preprint arXiv:2005.01643, 2020.

Kenny Young and Tian Tian. Minatar: An Atari-Inspired Testbed for Thorough and Reproducible
Reinforcement Learning Experiments. arXiv preprint arXiv:1903.03176, 2019.

11

https://gitlab.com/ymd_h/cpprb

	Introduction
	Background
	Preliminaries
	Dynamic programming, and its extensions to practical RL algorithms

	ShinRL
	Environments
	Solvers

	Case Studies
	Delving into the results of DQL
	Comparing VI, KL-regularized VI, CVI, and Munchausen DQL
	Evaluating robustness of the SAC algorithm to adversarial rewards

	Conclusion

