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ABSTRACT

Large Language Models (LLMs) have been trained on vast corpora of data, al-
lowing them to learn internal representations of how humans would respond in
different scenarios. This makes them well-suited to simulate the actions of market
participants, to model their collective impact on financial markets and perform fi-
nancial forecasting. However, there also exist various sources of errors that could
affect the effectiveness of LLM agent-based simulations of the market. Firstly, in-
dividual market participants do not always make rational decisions, which might
not be captured by the logical reasoning process of LLMs. Secondly, the numer-
ical and financial literacy of LLMs are also not highly reliable, due to possible
knowledge gaps in their numerical understanding and possible hallucinations in
their outputs. To tackle these issues, we propose our Massively Multi-Agents
Role Playing (MMARP) method, which aims to produce highly accurate market
simulations through theory-driven prompt designs. To reduce the impact of noisy
actions caused by individual irrational investors, we leverage the LLM-generated
next-token weights to simulate repetitive prompting, and obtain the aggregated
market response. To minimize the effects of possible gaps in its numerical knowl-
edge or potential hallucinated outputs, we prompt the LLM using a range of price
inputs for each trading day. Finally, to produce simulated forecasts of market
prices, we perform the above prompting strategies across two types of LLM-agent
roles, buyers and sellers, and obtain the intersection price between their response
curves. Through experimental results, we show that MMARP can outperform
other deep-learning methods and various financial LLMs in forecasting metrics.

1 INTRODUCTION

Financial markets are complex ecosystems that are driven by millions of market participants, each
making individual decisions about the value of an asset based on available information (Fama, 1970).
While traditional deep-learning models have been developed to predict the market in the past (Ding
et al., 2015; Hu et al., 2018; Xu & Cohen, 2018), they typically do so by identifying the historical
patterns in market data, but do not fundamentally capture the individual decision-making processes
that drive these patterns. On the other hand, Large Language Models (LLMs), which have been
trained on vast corpora of human-produced data, have demonstrated the ability to learn internal
representations (Allen-Zhu & Li, 2023; Chen et al., 2024) of how humans might respond to different
prompts, enabling them to simulate human decision-making. This raises the possibility of simulating
the actions of market participants using LLM agents, to model their collective impact on the market.

Generally, works that utilize LLM agents in Finance (Zhang et al., 2024b; Yu et al., 2024a;b) have
focused on using them in advisor roles to enhance investor decision-making. For these works, the
goal is typically to maximize profits, and these models are only evaluated over their profitability
metrics (e.g., cumulative returns, Sharpe ratio). In contrast, our work seeks to use LLM agents to
simulate investor actions to study actual market dynamics, which could offer a novel framework for
financial researchers to understand and test hypotheses about market behavior. The accuracy of our
simulation would also be evaluated over forecasting metrics. This has been previously explored in
LLM agent-based simulation works, such as modeling pandemic spread across a population (Chopra
et al., 2024), or the U.S. election results (Zhang et al., 2024c). In the Finance domain, this has not
been studied in detail. Some recent works have began to explore the use of LLM agents to model
investor actions (Zhang et al., 2024a; Gao et al., 2024), but these were evaluated qualitatively based
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on how reasonable their behavior is, but not their actual predictive performances. In this work, we
aim to produce effective simulations of actual market behavior to generate accurate price predictions.

However, accurately simulating participants in the market is a difficult task. We can identify two
challenges: Firstly, individual market participants do not always make rational decisions (Daniel &
Titman, 1999). LLMs, while excelling at performing logical reasoning, might not be able to capture
these irrational behavior when simulating investor actions (Alsagheer et al., 2024; Ma et al., 2024),
which reduces their effectiveness in this use case. Secondly, the numerical and financial literacy of
LLMs are also not highly reliable. In the past, LLMs have been shown to make simple but crucial
mistakes when handling numerical values1, or produce hallucinations when performing reasoning
on financial texts (Koa et al., 2024). Because of these limitations, it might not be fully reasonable to
assume LLM agents can accurately replicate actual investor behavior (see Figure 1), which would
reduce the effectiveness of utilizing LLM agents to model participant behaviors in financial markets.

Price: +0.60% from previous Close

Opinion: Too Expensive

Price: +0.70% from previous Close

Opinion: Too Cheap

You are an investor buying AAPL stock. Given a 

set of news and the current market price, 

consider if it is too expensive or too cheap.

News: […]

Price: +0.50% from previous Close

Opinion: Too Cheap

P
ri
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em

Quantity Demanded
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Figure 1: Left: Given the same set of news and a range of prices, the LLM does not give consistent
judgments on whether the price is too “cheap” or “expensive”. Right: Market participants do not
always make rational decisions, resulting in actions that are not the most optimal. Because of these,
it might not be reasonable to assume LLM agents can accurately replicate actual investor behavior.

To deal with the above-mentioned challenges, we propose our Massively Multi-Agents Role Playing
(MMARP) framework, which utilizes a series of theory-informed prompt designs to produce highly
accurate market simulations. Firstly, to reduce the impact of noisy actions caused by individual ir-
rational investors, we leverage LLM-generated next-token weights to simulate repetitive prompting
in order to obtain the aggregated market response, which is known to be less noisy and observable.
Secondly, to minimize the effects of possible gaps in its numerical knowledge or potential halluci-
nated outputs, we prompt the LLM across a range of price inputs for each trading day to obtain the
aggregated response function. Finally, to produce simulated prediction of market prices, we perform
the above prompting strategies across two types of LLM-agent roles, buyers and sellers, and obtain
the intersection price between their response functions. Crucially, this is also the same mechanism
in which market equilibrium prices are determined in economic markets (Mankiw & Taylor, 2020).

To demonstrate the effectiveness of MMARP, we perform experiments over some financial datasets
and show that our method can outperform other deep-learning methods and various financial LLMs
in forecasting metrics. In addition, we do a rigorous model study to show that the simulated behavior
is valid, by comparing our generated response curves to theory-based demand curves in economics.

The main contributions of this paper can be summarized as:

• We investigate the validity of using LLM agents to model market participants in financial markets,
which has not been extensively studied before this work. We observe various sources of stochastic
errors that could reduce the overall simulation accuracy, which include irrational investor behav-
iors, the lack of numerical understanding in LLMs, and possible hallucination in LLM outputs.

• We propose a method that aims to produce highly accurate market simulations through theory-
driven prompt designs. This is done through simulating the aggregate market response using the
LLM-generated next-token weights, prompting across a range of prices for each trading day, and
using the intersection point between the LLM response curves to obtain accurate price forecasts.

1LLMs are known to make simple but crucial mistakes when handling numbers, such as comparing the mag-
nitude between 9.11 and 9.9. See: https://x.com/goodside/status/1812977352085020680.
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• We conduct experiments across multiple financial datasets to show that MMARP can outperform
other LLM-agent based methods in both the forecasting and profitability metrics. We also perform
an extensive model study to verify the validity of the simulated market behavior using MMARP.

2 BACKGROUND

LLM Agents in Financial Simulations. Since the advent of Large Language Models (LLMs),
works have also started to explore the use of LLM agents in Finance. Early works first explored
augmented single-LLM agent models with tool-use (Zhang et al., 2024b) or memory (Yu et al.,
2024a) to enhance their capabilities in making investing decisions. Later works would explore
the use of multiple LLM agents, such as a group of seven analyst agents working with a manager
agent (Yu et al., 2024b) to provide investing recommendations. Across these works, the main goal is
generally to maximize profits, and the performances are only evaluated on their profitability metrics.

More recently, works have began exploring the use of LLM agents to simulate market participants,
which are more closely related to our work. Some of these include Agent-based Simulated Financial
Market (Gao et al., 2024), which simulates the actions of four different types of investors, and
StockAgent (Zhang et al., 2024a), which modeled the actions of up to 200 LLM agents to study
their aggregate behaviors on price trends. In these works, each LLM agent is used to represent a
single investor, which could limit the effectiveness of the simulation, given that the market consists
of transactions from millions of investors each day. Currently, these agent-based simulations are
only studied empirically to observe if the simulated actions and overall price trends are reasonable.

Another closely related set of works are those on macro-level LLM-agent simulations. These works
seek to simulate the behavior of entire systems such as the economy (Li et al., 2024), which usually
consists of millions of humans and cannot be individually modeled by a single LLM agent. To
do so, these works usually use a single LLM agent to model entire groups of the same archetypes
(Chopra et al., 2024). For example, to predict the U.S. election results (Zhang et al., 2024c), it might
be sufficient to simulate by the unique voter demographics, instead of each voter individually. Our
work follows this idea by seeking to model the buyers and sellers in financial markets as a whole.

Numerical and Financial Literacy of LLMs. The numerical understanding of LLMs is not well-
studied in literature. Different LLMs have different methods of tokenizing numbers (Jun, 2024),
which could affect their numeracy level. Empirically, LLMs have been shown to fail at simple
numerical tasks1. The root of this problem likely stems from the continuous nature of numerical
values (Golkar et al., 2023). Unlike individual words, which are finite in nature, it is impossible for
LLMs to encounter all possible numerical values during training, resulting in possible gaps in its
numerical knowledge. It has been shown that the ability of LLMs to handle numbers correlates with
how frequently those numbers occur in the train data (Razeghi et al., 2022), and they are usually
unable to extrapolate outside the range of numbers they have been trained on (Wallace et al., 2019).

On the other hand, LLMs have been extensively shown to be able to process text-based financial
data, through multiple tasks such as sentiment analysis and financial forecasting (Xie et al., 2023;
Wu et al., 2023). However, it has also been observed that they can produce hallucinations (Koa et al.,
2024) when performing reasoning on financial texts, which could reduce their overall reliability.

Irrational Participants in Financial Markets. In financial markets, the individual demand (Fried-
man, 1949) for an asset can be modeled as a function d(X), where X consists of the input factors
such as the price or the non-price determinants such as its future price expectations (Mankiw &
Taylor, 2020). For each individual, the demand function can further be split into two components:

d(X) = drational(X) + ϵ(X), (1)

where drational(X) represents the non-stochastic, rational component which is typically represen-
tative of the whole market, while ϵ(X) represents the stochastic, irrational component, which can
be affected by the idiosyncrasies of each individual (McFadden, 1972) and is difficult to predict.

On the market-level, the aggregate demand for an asset from all individuals can then be modeled by:

D(X) =

N∑
i=1

(drational,i (X) + ϵi (X)) , (2)
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where N represents the total number of participants that are currently trading the asset in the market,
and drational(X) is assumed to be consistent across all individuals, when given the same inputs X .

Using the law of large numbers, the irrational component from each individual would have a very
small impact on the overall market demand (Lal, 1975; Lux & Marchesi, 1999). Hence, we have:

lim
N→∞

N∑
i=1

ϵi(X) = 0. (3)

As such, the demand for an asset in a market with a large number of participants can be modeled by:

D(X) ≈
N∑
i=1

drational,i(X). (4)

This can typically be visualized as a demand curve, which is a downward sloping curve, where the
gradient is determined by the price elasticity of the asset and the intercept is determined by its non-
price determinants. Similarly, the supply of an asset can also be calculated the same way, resulting
in a supply curve with an upward slope. Finally, the market price of an asset is typically determined
by finding the intersection point between the demand and supply curves (Mankiw & Taylor, 2020).

3 MASSIVELY MULTI-AGENTS ROLE-PLAYING

The Massively Multi-Agents Role-Playing (MMARP) framework consists of three components. To
reduce noise from individual irrational investors, we use LLM-generated next-token weights to sim-
ulate repetitive prompting, yielding an aggregated market response. To address gaps in LLMs’
numerical knowledge or potential hallucinations, we prompt across a range of price inputs for each
trading day to derive an aggregated LLM response function. Finally, we repeat these across buyer
and seller roles to obtain the intersection of their response functions as the simulated market prices.

3.1 PROBLEM FORMULATION

To investigate the validity of using Large Language Model (LLM) agents to model market partici-
pants, we first look at the process in which the agents are utilized in financial multi-agent systems.

Given some input information X of an asset, such as its price or news information, an LLM agent
is typically prompted to produce an actionable response α. This response may take the form of a
binary buy or sell decision (Gao et al., 2024; Yu et al., 2024b) or some quantitative values indicating
the price and quantity of the asset to transact (Zhang et al., 2024a). For an LLM, the response is
sampled from its generated next-token probability based on the provided inputs. For example, given
the price of an asset, we can prompt an LLM whether to buy an asset. This can be formulated as:

α ∼ ld(X), (5)
where ld(X) represents the LLM generative function that outputs the token probability for whether
to buy an asset. For an LLM agent to realistically simulate a market buyer, this function should ac-
curately emulate the demand function of the individual, i.e., ld(X) = d(X), matching their actions.

3.2 IRRATIONAL PARTICIPANTS IN FINANCIAL MARKETS

Following Equation 1, the individual demand function d(X) is composed of a rational component
drational(X) and a stochastic error term ϵ(X), which accounts for irrational or unpredictable indi-
vidual behaviors. Given that LLMs predominantly generate outputs that are grounded in reasoning
and logical patterns derived from training data (Kojima et al., 2022), they might struggle to simulate
the irrational components of investor behavior accurately (Alsagheer et al., 2024; Ma et al., 2024).

To deal with this problem, a possible solution is then to generate a large number of outputs from the
LLM. By drawing a large number of response samples α, we would then be simulating the aggregate
behavior across a large number of market participants, which would give us

∑N
i=1 αi = D(X).

Then, by following the approximation found in Equation 4, we can obtain the equivalent simulation:
N∑
i=1

αi ≈
N∑
i=1

drational,i(X). (6)
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Given that LLMs excel at rational reasoning, this becomes a more realistic task, as the stochastic
error term ϵ(X) is now minimized. This shows that while it is difficult to use LLM agents to direct
model individual participants, it is possible to utilize them to simulate the aggregate market demand.

Following the assumption that each rational participant would make the same reasonable response
given the same inputs, the samples can all be drawn from the same LLM prompt ld(X). In this case,
by providing the LLM with a set of defined options (e.g., Expensive, Cheap), we can also directly
extract the ratio of their generated token probabilities to represent the ratio of the expected responses
from the market. This “trick” allows us to simulate the behavioral patterns of large-scale populations
using LLMs without repetitive prompting, which would minimize unnecessary computation costs.

3.3 HALLUCINATIONS AND KNOWLEDGE GAPS IN LLMS

Next, for an LLM to accurately simulate market reasoning, it would also need to understand and
respond to the input information X in the same way as participants do. However, various sources
of errors exist. Firstly, LLMs are known to produce hallucinations in their outputs (Zhang et al.,
2023), which would result in responses that differ from actual participants. While this is a problem
common to all LLM works, it has also been observed in those dealing with financial texts (Koa et al.,
2024). Secondly, the ability of LLMs to understand the numerical price values is not well-studied in
literature. Empirically, LLMs have been shown to be weak at handling numerical-based tasks (Dziri
et al., 2024; Frieder et al., 2024), without the use of external tools like interpreters (Gao et al., 2023).

From the observations above, we can further break down the LLM generative function into two:
ld(X) = l̄d(X) + ϵ̄(X), (7)

where l̄d(X) is the general internal knowledge representation of the LLM, while ϵ̄(X) represents
the stochastic error term that can arise from both its imprecise numerical understanding and the
hallucinated outputs produced by the LLM. This reduces the effectiveness of using LLM agents to
model market participants, due to the possible unpredictable random errors. In addition, by using
an LLM agent to simulate investor decisions across multiple time-steps, these error terms can also
accumulate, which could further limit the performance of the overall simulation. This has been
previously observed in financial agent-based works (Zhang et al., 2024a), where the simulation
results were shown to diverge greatly across multiple runs, over a trading period of only 10 days.

To deal with this limitation, we take inspiration from Monte-Carlo simulations, which are commonly
used in finance (Metropolis & Ulam, 1949). We prompt the LLM over a range of prices in the input,
i.e., X1, X2, · · · , XM . For each price, we get a response ld(Xj), which can contain stochastic noise
due to knowledge gaps and hallucinations. Across the price range, we get the aggregate function:

LD(X) = l̄d(X) +
1

M

M∑
j=1

ϵ̄(Xj), (8)

where the numerical understanding l̄d(X) is assumed to be fixed across runs given a frozen LLM.

Similar to how individual irrational behavior is smoothed out in a large population, we can also apply
the law of large numbers in this case. As the number of price points M increases, the stochastic noise
from the LLM’s knowledge gaps and hallucinations would tend towards a fixed mean c, which gives
us the general internal knowledge of the LLM, plus a constant error offset. Formally, we then have:

lim
M→∞

1

M

M∑
j=1

ϵ̄(Xj) = c. (9)

Therefore, the aggregated LLM function over a large range of prices would be represented by:
LD(X) ≈ l̄d(X) + c, (10)

which removes the stochastic component. For an ideal market simulation, the function LD(X)
should resemble a market demand curve (Schultz, 1924) when the outputs are plotted on a graph.

3.4 SIMULATION-BASED FINANCIAL FORECASTING

While the previous steps show that it is possible to simulate the market demand response across
multiple price points, they are still not sufficient to obtain the actual price forecasts of the asset.

5
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In economics, the price value of an entity is typically uncovered through the interaction between its
demand and supply (Mankiw & Taylor, 2020). To simulate this, we repeat the above steps using
a different prompt to simulate the sellers for the asset in the market ls(X). Similarly, aggregating
across a range of prices, we can also obtain the agent-simulated market supply response LS(X).

Following economic theory, to obtain the price forecast for that day, we can then find the equilibrium
point yeq in which the two curves intersect, i.e., LD(X) = LS(X). In addition, note that each
demand and supply LLM responses also contain a constant error offset c (shown in Equation 10),
which could possibly lead to imprecisions in the price forecasts. Following this, we additionally
introduce a learnt linear function f to remove this. Our price forecast ŷ can then be obtained through:

ŷ = f(yeq). (11)

Through MMARP, this step then allows us to obtain price forecasts using LLM multi-agent simula-
tions, which differs from both traditional deep-learning methods (which only capture historical pat-
terns) or single LLM-based reasoning methods (which could be affected by stochastic noise terms).

4 EXPERIMENTS

We perform two categories of experiments on MMARP. In the first, we probe the LLM agents across
different price values, contextual information and agent roles to study how closely their responses
match real-life demand and supply curves. Given that it is difficult to collect the real-life behavioral
curves of an actual market (which would requires all transactional data points), these experiments
are evaluated qualitatively, which is similar to many agent-based simulation works in Finance (Gao
et al., 2024; Zhang et al., 2024a). In the second, we use these curves to produce market price
forecasts, which can then be evaluated quantitatively. This was not commonly done in previous
agent-related works (Zhang et al., 2024b; Yu et al., 2024a;b), which focused on profitability metrics.

Through these experiments, our work aims to answer two research questions:

1. Does the simulated response behavior of MMARP accurately replicate those in real-life markets?

2. How does MMARP perform against deep-learning and LLM methods in financial forecasting?

Datasets We evaluate MMARP over three datasets related to financial markets. The first dataset is
stock price data for 5 large-capital stocks from the U.S. stock market, namely AAPL, MSFT, TSLA,
WMT and XOM. The second dataset is exchange rate data for USD against 3 popular currencies,
namely EUR, JPY and GBP. The third dataset is commodity price data for 3 items across different
markets, namely Gasoline (Energy), Wheat (Agriculture) and Gold (Precious Metals). For the con-
textual information, we provide economic and financial news collected from Reuters2. In addition,
tweets that mentioned each stock (Koa et al., 2024) were also provided for the stock dataset. The
experiments were conducted over the period of year 2020-2022. We provide all new information
between the previous and current market close times, to forecast the percentage change between the
close prices based on this context. More information on the dataset can be found in Appendix A.

Baselines For the forecasting experiments, we evaluate the performance of MMARP against base-
lines from traditional deep-learning models and both general and financial-based LLMs. For deep-
learning models, we explore the use of Long Short-Term Memory (LSTM) networks (Li et al.,
2019), Attentive Gated Recurrent Units (GRU) (Sawhney et al., 2020) and Transformer-based mod-
els (Yang et al., 2022). For LLMs, we explore the use of GPT-4o and Mistral-v0.3 for the general
models, and InvestLM (Yang et al., 2023b) and FinGPT (Yang et al., 2023a) for the models that are
fine-tuned for financial tasks. Descriptions of their implementation can be found in Appendix B.

Experimental Settings MMARP requires an embedding-visible LLM to generate its simulated re-
sponses. We report the performance of the model using Mistral-7B-Instruct-v0.3 in the
main results, and explore other open-weights LLMs in the ablation study. On the forecasting task,
the deep-learning models and linear transformation function in MMARP require fitting, which is
done using a 6:1:3 data split. All forecasting results are compared over the test set. For evalua-
tion, we compare the Mean-Squared Error (MSE), and the information coefficient (IC) between the
prediction and ground truth series, a metric often used in finance prediction works (Lin et al., 2021).

2https://www.reuters.com/
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5 RESULTS

Next, we will discuss the performance of MMARP in tackling each of the proposed research ques-
tions, evaluating the quality of its simulated data points and the accuracy of its price forecasts.

5.1 QUALITY OF SIMULATION

To study the accuracy of the MMARP simulated results, we study its response behavior across dif-
ferent numerical prices and contexts. For the plots below, each data point represents the probability
of a “buy” action for the agent at each price point, given the same contextual information. This ac-
tion is calculated from the LLM-generated next-token probabilities. Note that the independent and
dependent axes in our plots are also swapped to emulate the supply and demand curves in economics.

Figure 2: Examples of the generated response curves across three different domains (i.e., stocks,
currencies and commodities). In each plot, for each point, the prompts are the same except for the
input prices. We observe the probability of Buy action from the LLM agent at different price points.

From Figure 2, we can make the following observations:

• It can be observed that the LLM’s responses to the price points are not precise, which highlights
the above-mentioned limitations in understanding numerical price values. For example, at some
points, it is more likely for the LLM to buy the entity at a higher price, despite being provided with
the same information. This observation might also indicate their limitations in simulating rational
investors’ actions in the market, restricting their applications in agent-based financial models.

• On the other hand, by plotting the best-fit line across all the points, we can observe a downward
sloping trend, which is the same as the real-life demand curve in economics. In other words, the
higher the price of the entity, it should be less likely for the LLM to choose to buy it (assuming all
other factors stay the same). This line represents our aggregate function LD(X) in Equation 10,
which represents the LLM’s internal understanding of the market demand based on its train data.

• Across the different domains, there are differences in the agent response behaviors. For example,
when gasoline prices fall, we observe that the buy probability remains relatively static at a high
value. The demand for gasoline is typically inelastic (Havranek et al., 2012; Nicol, 2003), given
that it is a versatile source of energy for household and transportation, and the LLM responses are
likely reflecting this. The impact of non-price factors on the LLM responses will be studied next.

Next, we observe the LLM response behaviors given different contextual information in the prompts.
In economics (Mankiw & Taylor, 2020), the positioning and slope of the demand curve are affected
by the non-price determinants and price elasticity of demand respectively. A decrease in demand
causes the curve to shift to the left, while lower price elasticity results in a less steep slope, reflecting
reduced sensitivity to price changes. To observe how closely LLM response behaviors follow real-
life market behavior, we qualitatively compare multiple plots given these different characteristics.

From Figure 3, we can make the following observations:

• The left figure compares two curves of AAPL stock across different contexts. The “Low Demand”
curve shows the LLM response behavior on 30 Apr 2021, where it is discussed that there was
potential market overvaluation of the stock. On the other hand, the “High Demand” curve shows
the behavior on 8 Jul 2020, where Deutsche Bank has just raised its price target for AAPL stock.
On the figure, we see that for the period of low demand, there is a lower buy probability for the
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Figure 3: Examples of the generated response curves for stocks under different scenarios. On the
left, the agents are prompted for buying AAPL stock on days with high and low demand. In the
middle, the agents are prompted for buying stocks with different price elasticities. On the right, the
agent is now in a Seller role, and we observe the probability of Sell action at different price points.

same price points, resulting in the curve positioned towards the left. Similarly, for the period of
high demand, there are a higher buy probabilities, positioning the curve towards the right instead.

• The middle figure compares the curves of AAPL and WMT stocks on 27 Jul 2022. On this
date, it was reported that there is a fall in demand for consumer electronics such as smartphones
and tablets, which impacted the sales of both Apple and Walmart. The price elasticity for both
companies are not the same, affecting the responses differently. Apple products have more substi-
tutes and are positioned towards the luxury end, making the company more sensitive to changes
in economic conditions (i.e., elastic demand). Walmart, while carrying Apple products, also sell
necessities such as groceries, making it less sensitive to economic changes (i.e., inelastic demand).

• Finally, in the right figure, we look at the LLM agent in a different role. Here, the agent was now
prompted for the probability of a “sell” action at each price point. We can see that by plotting the
best-fit line, we now observe an upward sloping trend, similar to a market supply curve. Here, the
higher the price of the entity, the more likely for the LLM to choose to sell. This line represents
the agent-simulated market supply response LS(X), which also closely follows real-life behavior.

5.2 FORECASTING PERFORMANCE COMPARISON

Figure 4: The interaction between buy-
ers and seller agents (i.e., demand and
supply) let us obtain the price forecasts.

To obtain market forecasts using MMARP simulation,
we extract the intersection points between the agent-
simulated demand and supply responses (see Figure 4),
given the same information contexts for each day.

From Table 1, we observe that MMARP outperforms all
LLMs in all metrics. Following the motivation of our
work, LLMs are usually prone to hallucinations and have
known gaps in their numerical knowledge, which limit
their performance in this regression-based stock predic-
tion task. Additionally, the financial LLMs are typically
used for binary or percentile-based classification tasks,
likely due to limitations on exact numerical reasoning.

On the other hand, MMARP did not outperform some
deep-learning methods in the MSE metric for price pre-
diction. It is possible that the poorer MSE performance is
due to the difference in value scales, despite the linear transformation that was done. In our exper-
iments, the deep-learning based models were only trained on stock price values for this task, while
the LLMs were originally trained on a variety of numerical values from its large data-set, with no
additional fine-tuning. For example, the LLM agents sometimes predict large changes in price such
as 5,000% for stock prices, which is highly unlikely for the selected stock companies in this work.

Finally, MMARP outperformed all models, including deep-learning models, on the IC metric. The
IC metric shows that it can understand the price trends in a similar manner as the ground truth
values (i.e., the larger the price change, the larger the predicted value in general). We note that this
result could be related to the earlier observation, where we show that LLM might not be precise in
numerical reasoning but is able to capture general trends in the data. It might be possible to obtain
better MSE through more complex transformation functions, which can be explored in future works.
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Table 1: Performance comparisons of MMARP against baselines. (↓) signifies lower is better, while
(↑) signifies higher is better. The second-best results are underlined; the best results are boldfaced.

Stocks Exchange Rate Commodities

MSE (↓) IC (↑) MSE (↓) IC (↑) MSE (↓) IC (↑)

Deep-Learning

LSTM 1.62×10−3 -0.0320 6.84×10−5 -0.007 9.99×10−4 -0.0382
GRU + Att 7.37×10−4 0.0283 7.82×10−5 0.0216 8.06×10−4 0.0033
Transformer 7.09×10−4 -0.0536 6.97×10−5 0.0119 1.01×10−3 -0.0112

General LLMs

GPT-4o 1.00×10−3 0.0171 7.66×10−5 -0.0114 1.07×10−3 0.0917
Mistral-v0.3 1.70×10−3 -0.0428 6.70×10−5 0.0135 1.17×10−3 0.0928

Financial LLMs

InvestLM 6.38×10−3 0.0002 1.86×10−2 0.0002 1.95×10−2 0.0485
FinGPT 7.44×10−4 -0.0270 7.33×10−5 -0.0271 1.03×10−3 0.0213
FinMA 3.91×10−3 0.0111 1.21×10−4 -0.0441 3.60×10−3 -0.0099

Ours

MMARP 7.12×10−4 0.0630 6.67×10−5 0.0425 8.86×10−4 0.1005

5.3 ABLATION STUDIES

To investigate the effectiveness of the model design, we additionally explored different methodolo-
gies for the components of MMARP, in order to study their impact on the overall model behavior.
Three components were studied: the prompt design, the type of LLM used and the simulation scale.

Prompt Design To obtain the probability for Buy or Sell, we provide the LLM agents with binary
options for their responses. For the buyer agent, it is asked whether the asking price is Too Expensive
or Too Cheap, where the second option gives the Buy probability. The seller agent is asked whether
the bid price is Too Low or Too Good, where the second option would give us the Sell probability.

Figure 5: Given the choice between Too Ex-
pensive and Just Right, the LLM would tend
towards choosing the more neutral Just Right
option, resulting in mostly simulated buyers.

Figure 6: Given the choice between Too Low
and Too High, the LLM unlikely choose Too
High, given that it does not make logical
sense. This results in few simulated sellers.

The set of binary options were purposefully designed to be extreme opposites in order to “force” the
LLM to pick a side, such that the demand plot can be observed. By allowing the LLM to choose
between more reasonable options such as whether the price is Too Expensive or Just Right (where
those who selected Just Right would be simulated as buyers), LLMs tend to prefer the more neutral
Just Right option, resulting in a high Buy probability regardless of given price point (see Figure 5).

Additionally, the semantic meaning of the options also have to be taken into account. For example,
for the seller agent, given the opposite choice between whether the price is Too Low or Too High
(where those who did not select Too Low would be simulated as sellers), close to zero LLM agents
would pick Too High, as no offered price would logically to be “too high” to any potential seller.
This would result in close to zero Sell probability regardless of any given price point (see Figure 6).
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Table 2: Ablation study of MMARP utilizing
different open-weights LLMs as its base.

MSE (↓) IC (↑)

MMARP-Qwen 7.34×10−4 0.0301
MMARP-Llama 7.04×10−4 0.0407
MMARP-Gemma 7.17×10−4 0.0506
MMARP-Mistral 7.12×10−4 0.0630

Different Large Language Models MMARP re-
quires an embedding-visible LLM to produce its
simulated responses, by utilizing the generated next-
token probabilities. We also explore the use of
other open-weights LLMs to implement MMARP,
which include Qwen2-7B-Instruct, Gemma-2-9b-it
and Meta-Llama-3.1-8B-Instruct. These models
were chosen to represent the different methods of
tokenizing numbers, and the model parameters were
chosen to be as similar as possible. Table 2 reports
the ablation results on the stock dataset. We can observe that the MSE of all models lie close to each
other, which highlights the consistency of the MMARP method. Any sources of stochastic errors
are mostly removed from the repeated prompting, and the final predictions are representative of the
LLM understanding of financial values learnt from their original corpora of training data. This result
differs from previous works on financial agent-based simulation, which showed that different LLMs
can produce vastly different results (Zhang et al., 2024a). On the IC metric, the two best performing
models are Gemma and Mistral, which use the same numerical embedding method (i.e., every digit
is its own token). The Mistral LLM family is also often discussed to be good at mathematical tasks
(McNichols et al., 2024) and used to tune mathematical-based LLMs (Mitra et al., 2024; Tang et al.,
2024). This could point to the effectiveness of this digit tokenizing method and its usefulness in
other numerical-based tasks such as understanding financial values, which is observed in MMARP.

Figure 7: Information coefficient of forecasts
from different number of prompted price values.

Scale of Simulation In MMARP, by prompting
the LLM agent across a range of price values,
we minimize the stochastic error terms caused
by the LLM’s knowledge gaps and hallucina-
tions. This result stems from the law of large
numbers: as number of trials in a probability-
based experiment increases, the sample average
of the outcomes will converge to the expected
value (in our case, a constant error term). To
study the effectiveness of repeated sampling in
MMARP, we plot the number of prompted price
values against the achieved information coeffi-
cient (IC) of the price forecasts. This ablation
study is conducted over the stock price dataset.

From Figure 7, when the number of simulated
price points is small, we can observe high variance in the IC results. On average, the IC starts low
but increases with the number of points, occasionally achieving high values likely due to random
chance. As the number of prompted price points grows bigger, the IC then stabilizes towards a fixed
value, converging at the maximum possible value obtainable given the knowledge base of the LLM.

6 CONCLUSION

In this work, we explored the use of LLMs to model real-life market participants to produce sim-
ulated price market forecasts. For this task, we highlighted two challenges: the stochastic actions
caused by non-rational individuals in the market, and the stochastic errors caused by the numerical
knowledge gaps and possible hallucinated outputs of LLMs. To handle these challenges, we propose
a prompt design framework, MMARP, which simulate repetitive prompting using LLM-generated
next-token weights and probe the LLM across a range of price inputs to obtain an aggregated re-
sponse function that can represent actual market behavior. To verify the effectiveness of MMARP,
we conducted extensive experiments across three market-based datasets on stock prices, exchange
rates and commodity prices. Empirically, we can observe that the LLM’s responses to individual
price points are not precise, which would limit their effectiveness if they are used directly in agent-
based financial models. However, we also find that its aggregate response function contains the
traits of actual market behavior, which could be exploited to produce realistic market simulations.
To evaluate this quantitatively, we then produce price forecasts using the intersection point of the re-
sponse functions of LLM agents in buyer and seller roles. We find that our simulated price forecasts
show strong competitive results, and can also outperform other baseline models using the IC metric.
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A DATASET

To verify the effectiveness of MMARP, we conducted extensive experiments across three market-
based datasets on stock prices, exchange rates and commodity prices. The data for stock prices and
exchange rates can be found on Yahoo Finance, while the data for commodities can be found on
Kaggle. We collect data for the period of 01/01/2020 to 31/12/2022, for a total of 755 market days.

For the forecasting task, in order to compare with the trained deep-learning, we split the data into a
train-valid-test ratio of 6:1:3. We then evaluate on the test set only, regardless if the model requires
training. The duration and number of trading days for the split data sets can be found in Table 3.

For the contextual information for all three tasks, we provide the LLM with economic and financial
news collected from Reuters. In addition, tweets that mentioned each stock were also provided for
the stock dataset, given that stock prices are often also affected by public sentiment (Pagolu et al.,
2016). This is taken from the SN2 dataset (Koa et al., 2024), which follow the same format as the
popular StockNet dataset (Xu & Cohen, 2018), updated for the year 2020-2022. We provide the new
information that are received between the previous and current day’s market close time, and forecast
the change between these close prices. Some statistics of the text datasets can be found in Table 4.

Table 3: Price dataset statistics.

Duration Trading Days

Train Set Jan 01 ’20 - Oct 20 ’21 450
Valid Set Oct 21 ’21 - Feb 07 ’22 75
Test Set Feb 22 ’22 - Dec 31 ’22 226

Table 4: Text dataset statistics.

Tweets News

Avg. texts per day 16 69
Max texts per day 1,599 187
Total no. of texts 17,536 76,217

B BASELINES

We evaluate the performance of MMARP against baselines from traditional deep-learning models
and both general and financial-based LLMs. We note that there are few available baselines that
directly perform numerical stock prediction, or use text data only. For most models, we either adapt
the last layer in order to do regression prediction, or otherwise remove the other input modalities.

LSTM (Li et al., 2019): The selected LSTM model is the closest model to our task, which uses text
data to do regression-based prediction. This specific model also uses differential privacy techniques
to hide sensitive information within the text data, which is beyond the scope of our work. We keep
the time-series component in this model, allowing it more information than our MMARP method.

GRU + Attention (Sawhney et al., 2020): This model combines GRU with an attention mechanism
to do stock movement prediction. In particular, the attention layer enhances the model’s ability
to capture key information from noisy, unstructured text data. Similarly, we keep the time-series
component for utilizing GRU. We adapt the binary classification layer to do regression predictions.

Transformer (Yang et al., 2022): This is a transformer-based architecture tailored for financial
forecasting. It excels in processing hierarchical, numeric-heavy financial data and performing multi-
task learning using text and audio data. However, we remove the audio processing component due
to a lack of data for this modality. Similarly, we adapt the final layer to do regression predictions.

Llama 3.1: A refined version of Meta’s Llama 3 (Dubey et al., 2024), optimized for diverse language
understanding and reasoning tasks. We directly prompt the LLM to produce a numerical prediction.

Mistral-v0.3: An updated version of Mistral v0.1 (Jiang et al., 2023), which have shown good results
on math-related tasks. Similarly, we directly prompt the LLM to produce a numerical prediction.

InvestLM (Yang et al., 2023b): One of the earliest LLMs for financial-forecasting. The model was
trained to produce binary predictions. For our task, we prompt the LLM for a numerical prediction.

FinGPT (Yang et al., 2023a): Another financial-trained LLM, which can do stock forecasting in
percentiles. However for our task, we prompt the LLM for numerical prediction for fair comparison.

FinMA (Xie et al., 2023): An open-sourced financial LLM trained to do general financial tasks,
such as sentiment analysis, financial QA, etc. We prompt the LLM to make numerical predictions.
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C EXAMPLE CONTEXT

Here, we provide the contextual information used in Section 5.1 to generate the LLM responses.

Contextual Information for AAPL on 2020-07-20

- Apple (AAPL) has opened a megastore in Beijing amidst criticism from
the U.S.

- AAPL is currently experiencing below-average trading volume.
- Historical performance data indicates that AAPL has had an average

increase of 1.33% five days after similar trading conditions, with a
standard deviation of 6.26%. The worst performance was a decrease of
47.29%, while the best was an increase of 31.53%.

- Over a ten-day period, the average increase is 2.72% with a standard
deviation of 9.52%, and the worst performance was a decrease of
54.19%, while the best was an increase of 35.52%.

- Over a thirty-day period, the average increase is 6.70% with a
standard deviation of 20.95%, with the worst performance being a
decrease of 96.43% and the best an increase of 74.26%.

- There are high expectations for AAPL’s stock performance, with some
predictions suggesting it could reach $450 by fall.

- AAPL is favored to extend higher in the near term according to some
analysts.

- The stock is currently experiencing significant options activity, with
large call options being purchased.

- AAPL is considered a key player in the tech sector, with its
performance impacting broader market indices like the SPY and QQQ.

- The company is expected to benefit from upcoming 5G phone launches and
advancements in technology.

Contextual Information for AAPL on 2021-04-30

- Apple ($AAPL) reported a remarkable revenue growth of 54%
year-over-year for Q1, marking the highest growth rate since 2012.

- The company’s revenue for Q1 reached $89.6 billion, significantly
surpassing expectations.

- iPhone sales were particularly strong, generating $47.9 billion, a 66%
increase compared to the previous year.

- Apple announced a 7.3% increase in its quarterly dividend, raising it
to $0.22 per share.

- The company is actively engaging in share repurchases, committing a
substantial portion of its operating cash flow to this effort.

- Apple’s market capitalization is approximately $2 trillion.
- Despite strong earnings, the stock experienced a decline in price

following the announcement, indicating potential market
overvaluation.

- Apple is facing antitrust charges from EU regulators related to its
App Store practices, which could impact its operations in the music
streaming market.

- The stock is currently a focus among traders, with significant options
activity noted.

Contextual Information for AAPL on 2022-07-27

- Bank of America has cut Apple’s price target from $200 to $185, citing
concerns over foreign exchange impacts on sales.

- Apple is currently discounting iPhones in China for a limited time.
- AAPL’s stock has shown mixed performance, with a recent decline of

approximately 0.36% to 0.9% in various reports.
- Upcoming earnings reports for Apple are anticipated, with significant

attention from investors and analysts.
- There is notable bearish sentiment in the options market for AAPL,

with a higher percentage of put options compared to call options.
- Apple has filed patents related to self-driving and vehicle software,

indicating ongoing innovation in the automotive sector.
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Under review as a conference paper at ICLR 2025

- Analysts are closely monitoring AAPL’s performance in the context of
broader market trends and economic data releases.

Contextual Information for WMT on 2022-07-27

Walmart’s stock ($WMT) has recently experienced significant volatility,
primarily due to a major profit warning that led to a sharp decline
in its share price, dropping approximately 9.5% in after-hours
trading. This decline resulted in a loss of about $36 billion in
market capitalization. The company cut its full-year profit
forecast, which has raised concerns among investors about the
overall health of the retail sector, leading to similar declines in
other retailers like Target and Costco.

Key factors contributing to Walmart’s stock performance include:
- A decrease in demand for certain consumer electronics, such as

smartphones and tablets.
- Rising inventories and price cuts implemented by Walmart in response

to inflationary pressures.
- The Walton family’s fortune decreased by $12.9 billion due to the

stock’s decline.
- Despite the profit warning, Walmart reported a projected increase in

same-store sales of 6%, indicating some resilience in its core
business.

Analysts have reacted by adjusting their price targets for Walmart, with
some lowering their expectations significantly. The overall
sentiment in the market suggests a cautious outlook for Walmart and
the retail sector as a whole, with fears of a potential recession
impacting consumer spending.
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