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ABSTRACT

Deep graph generative modeling has proven capable of learning the distribution of
complex, multi-scale structures characterizing real-world graphs. However, one of
the main limitations of existing methods is their large output space, which limits
generation scalability and hinders accurate modeling of the underlying distribu-
tion. To overcome these limitations, we propose a novel approach that signifi-
cantly reduces the output space of existing graph generative models. Specifically,
starting from the observation that many real-world graphs have low graph band-
width, we restrict graph bandwidth during training and generation. Our strategy
improves both generation scalability and quality without increasing architectural
complexity or reducing expressiveness. Our approach is compatible with existing
graph generative methods, and we describe its application to both autoregressive
and one-shot models. We extensively validate our strategy on synthetic and real
datasets, including molecular graphs. Our experiments show that, in addition to
improving generation efficiency, our approach consistently improves generation
quality and reconstruction accuracy. The implementation is made available1.

1 INTRODUCTION

Learning the underlying distribution of graphs for generative purposes finds important applications
in diverse fields, where objects can be naturally described through their structures (Hamilton et al.,
2017). Deep graph generative modeling has recently been proven capable of learning both global
and fine-grained structural properties, along with their complex interdependencies (Guo & Zhao,
2022). These results have shown promise for many applications, such as in the biomedical domain,
where essential objects (molecules, gene networks, tissues, etc.) can be represented as graphs (Li
et al., 2022). Despite these promises, several open challenges remain.

Applications in these domains require modeling graphs with a high number of nodes N that leads
to a large output space, where the number of possible edges is in O(N2). At the same time, many
real-world graphs are sparse, and they are characterized by a small number of semantically rich
connections which need to be accurately modeled (e.g., a small subset of chemical bonds can confer
radically different properties in a molecular graph).

Recent research has focused on accurately learning complex dependencies leveraging generative
models such as variational autoencoders (VAEs) (Grover et al., 2019), recurrent neural networks
(RNNs) (You et al., 2018), normalizing-flow models (Shi et al., 2020) and score-based models (Niu
et al., 2020). A general limitation of these approaches is their high time complexity and output
space O(N2). This limits both their scalability and makes accurate prediction of sparse connections
challenging, as the ratio of observed to possible edges can be extremely small. For this reason, more
tractable methods have been proposed, which leverage different architectures (Li et al., 2018; Liu
et al., 2018; Dai et al., 2020), generate coarse-grained motifs (Jin et al., 2018; Liao et al., 2019),
or change the output representation, such as transforming graphs to sequences (Goyal et al., 2020)
or using domain-specific encodings such as molecular SMILES (Gómez-Bombarelli et al., 2018).
Although these approaches are more scalable, they trade-off efficiency with model complexity, ex-
pressiveness, or have limited applicability because of domain-specific choices.

1The implementation will be publicly released upon unblinding.
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To overcome the limitations of existing approaches, we propose a novel strategy: BwR (Bandwidth-
Restricted) graph generation. BwR leverages a permutation of the adjacency matrix to restrict
the graph bandwidth, reducing both the time complexity and the output space from O(N2) to
O(N · φ̂), where φ̂ is the estimated bandwidth. As will be shown, φ̂ is low for many classes of
real-world graphs, such as those characterizing the biomedical domain. During training, BwR lever-
ages bandwidth-restricted adjacency matrices; during sampling, it constrains the generation within
a bandwidth-restricted space, which reduces both time complexity and output space without losing
expressiveness.

This strategy brings two key advantages. First, reducing time complexity improves generation scal-
ability (i.e., time and memory requirements). Second, reducing the output space simplifies learning
the underlying data distribution, while also making the ratio of observed to possible edges less im-
balanced, with a positive impact on generation quality. Importantly, BwR can be easily integrated
into virtually all existing graph generative methods, as it is orthogonal to the generative model ar-
chitecture. Therefore, it does not increase model complexity nor add domain-specific constraints.

Contributions. We summarize our main contributions as follows:

• We show that many real-world classes of graphs, such as molecules, are characterized by a
low graph bandwidth.

• Building on this property, we propose BwR (Bandwidth-Restricted) graph generation, a
novel strategy for graph generation that constrains the bandwidth, drastically reducing time
complexity and output space.

• BwR can be applied to virtually all existing graph generation methods. We describe its
application to an autoregressive method, GraphRNN (You et al., 2018); a one-shot VAE-
based method, Graphite (Grover et al., 2019); and a one-shot score-based method, EDP-
GNN (Niu et al., 2020).

• We experimentally validate BwR on both synthetic and real-world datasets, with a focus on
real-world molecular datasets. Our results show that, in addition to being more efficient in
terms of time and memory used, BwR consistently improves reconstruction accuracy and
generative quality across datasets and methods.

2 BACKGROUND

Graph Generative Models. Graph generative models seek to learn the underlying distribution
of graph datasets. A model is trained on a set of observed graphs G = {G1, . . . , GS} ∼ p (G),
where each graph Gi = (Vi, Ei) is defined by its set of nodes Vi = (v1, . . . , vN ) and edges Ei ⊆
Vi × Vi. The model learns the distribution pmodel (G) ≈ p (G) that allows sampling new graphs.
Broadly, graph generative models can be categorized as autoregressive (You et al., 2018; Shi et al.,
2020; Goyal et al., 2020; Li et al., 2018; Liu et al., 2018) or one-shot (Kipf & Welling, 2016;
Ma et al., 2018; Grover et al., 2019; Niu et al., 2020) models. A common way to represent the
graph topology is through its adjacency matrix Aπ ∈ N × N . The adjacency matrix depends on
a specific node ordering π, defined as a bijective function π : V → [1, N ]. Autoregressive models
treat graph generation as a sequential decision process, conditioning each new node on the already-
generated graph, with time complexity and output space in O(N2). One-shot models sample the
whole topology of the graph from a latent distribution, and they need to consider edges between
every pair of nodes, thus also leading to a time complexity and output space in O(N2). In contrast,
BwR allows reducing time complexity and output space of both classes of models to be in O(N · φ̂),
with no loss of expressiveness and without increasing model complexity. Additionally, our approach
is orthogonal and compatible with other methods proposed to increase GNN efficiency—such as
graph partitioning (Jia et al., 2020)—as it is largely independent of the generative method.

Graph Ordering. Given that our method imposes a specific node ordering, it is related to other
works that have investigated ordering in graph generation. A unique challenge of graph generative
models is that the set of all possible orderings leads to up to N ! different adjacency matrices for
the same graph (Liao et al., 2019). Choosing a specific ordering π does not rigorously correspond
to maximum-likelihood estimation (MLE), and can make the reconstruction loss ambiguous (Liao
et al., 2019). For this reason, several methods have been proposed to improve likelihood estimation
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Figure 1: Overview of our strategy and comparison with standard generation methods. (Top) In a
standard graph generative method, the model is trained on adjacency matrices A derived through
a specific canonical ordering on the graph (e.g., BFS or DFS). During sampling, the model needs
to predict edges from a space in O

(
N2

)
. (Bottom) Our bandwidth-restricted graph generation

leverages the Cuthill-Mckee (C-M) ordering (Cuthill & McKee, 1969) to reduce the bandwidth
φ(A) of each adjacency matrix. The C-M order results in an adjacency matrix that is a band matrix,
with all-zero entries outside a φ(A)-sized band. A is re-parameterized as Aopt ∈ N × φ(A), which
is used for training. During sampling, only edges in an N × φ(A) space (yellow) are considered as
candidates, thus drastically reducing the output space to O (N × φ(A)).

and reduce ambiguity in graph generative models (Liao et al., 2019; Chen et al., 2021; Winter et al.,
2021). We note that these works are orthogonal with respect to our contribution. Indeed, bandwidth-
optimized graphs define a canonical family of node orderings, and existing methods could be used
to improve likelihood estimation.

Graph Bandwidth. We define graph bandwidth through the graph bandwidth problem (Unger,
1998). Intuitively, the graph bandwidth problem can be seen as placing the nodes of a graph on a
line such that the length of the longest edge in the graph is minimized. The bandwidth of the graph
is then simply the length of the longest edge. We provide a formal definition of the graph bandwidth
problem in Appendix A.1.

Importantly, an ordering that minimizes φ results in an adjacency matrix where all non-zero entries
lie in a narrow band along the diagonal (hence the term “bandwidth”). This enables a compact
matrix representation of N × φ instead of N2 (Figure 1) and drastically reduces the space required
to represent the graph when φ ≪ N . The maximum size of the off-diagonal band of the adjacency
matrix is known as the matrix’s bandwidth, which we denote as φ(A). Figure 2 shows the bandwidth
of two adjacency matrices of a molecular graph. We note that for an ordering π, φ(π) = φ(Aπ). The
graph bandwidth problem has been shown to be NP-hard for general graphs (Papadimitriou, 1976).
However, in practice, efficient heuristic approaches work well for general graphs and are routinely
leveraged in applications2. One such heuristic is the Cuthill-McKee (C-M) algorithm (Cuthill &
McKee, 1969), which is based on a variation of BFS search, has linear time complexity O(|E|)
(Chan & George, 1980), and has been extensively studied from a theoretical perspective (Turner,
1986). We leverage the C-M algorithm for BwR, though our strategy is independent of the choice
of the bandwidth minimization algorithm. We define the bandwidth of the adjacency matrix derived
with the C-M algorithm as φ̂.

To the best of our knowledge, the concept of graph bandwidth has been used in the context of GNNs
only by Balog et al. (2019), with the explicit purpose of improving dense implementations on custom
hardware. Their work does not leverage the bandwidth in the model itself and does not target graph
generation.

2Additional details about bandwidth complexity and references are included in Appendix A.1.
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Figure 2: Bandwidth of two adjacency matrices
of the same molecular graph. The left adjacency
matrix is given by a BFS ordering, the right ad-
jacency matrix is given by a Cuthill-McKee or-
dering.

Dataset N φ̂
Saving
Factor

ZINC250k 23.2± 4.5 3.3± 0.8 3.9± 1.0
MCF-7 26.1± 10.7 4.1± 1.3 3.5± 1.2

MOLT-4 25.8± 10.3 4.0± 1.3 3.5± 1.2
Mutagenicity 28.5± 14.1 5.5± 2.2 2.9± 1.1

NCI1 29.3± 13.4 4.3± 1.5 3.7± 1.3
PC-3 26.1± 10.6 4.1± 1.4 3.5± 1.2
QM9 18.0± 2.9 5.3± 1.5 2.0± 0.4

SF-295 25.8± 10.3 4.0± 1.3 3.5± 1.2
UACC257 25.8± 10.3 4.0± 1.3 3.5± 1.2

Yeast 21.1± 8.8 3.6± 1.2 3.3± 1.1

Peptides-func 150.9± 84.5 5.7± 2.6 13.5± 6.5
DD 277.7± 217.3 36.0± 20.7 4.1± 1.4

ENZYMES 31.7± 13.3 5.4± 2.2 3.3± 1.2

KKI 27.0± 19.5 7.2± 5.1 2.2± 0.6
OHSU 82.0± 43.7 20.0± 13.2 2.4± 0.7

Table 1: Number of nodes, C-M bandwidth,
and saving factor of a set of chemical and bi-
ological datasets. The first section of the table
consists of small molecules, the second section
of large molecules, and the third of brain net-
works. See Appendix A.4 for more details.

3 BANDWIDTH-RESTRICTED GRAPH GENERATION

In this section we describe BwR, our novel approach for improving graph generation. First, we mo-
tivate our approach by empirically showing that many classes of real-world graphs have low graph
bandwidth in Section 3.1. As BwR can be combined with different existing generative methods,
we first describe its general strategy and principles in Section 3.2. Then, we detail the strategies for
bandwidth-restricted graph generation applied to an autoregressive model based on GraphRNN (You
et al., 2018) in Section 3.3, and two distinct one-shot models based on Graphite (Grover et al., 2019)
and EDP-GNN (Niu et al., 2020) in Section 3.4.

3.1 BANDWIDTH OF REAL-WORLD BIOMEDICAL DATASETS

A key observation that motivates the present work is that many real-world graphs, such as those
characterizing the biomedical domain, have low φ̂. Table 1 shows the empirical bandwidth computed
with the C-M algorithm for a diverse set of chemical and biological datasets. For each dataset, a
saving factor summarizes the space reduction. The saving factor is the ratio of the number of edges
in the bandwidth-restricted graph to the number of edges in the complete graph (i.e. the size of a
non-bandwidth-restricted adjacency matrix). As shown, a bandwidth reparameterization leads to a
saving factor > 3 for most small-molecule datasets (e.g., 3.8 ± 1.0 for ZINC250k). The saving
factor is even higher for datasets including larger molecules (e.g., 13.5 ± 6.5 for the Peptides-func
dataset). Significant savings are also confirmed on non-molecular datasets, such as brain networks.

The C-M algorithm consistently reduces φ(π) compared to the orderings routinely used in graph
generation (BFS, DFS, etc.). Figure 2 compares the adjacency matrices of a molecular graph given
by BFS and C-M, and their respective bandwidths. The bandwidth decreases from 8 to 3, which
translates into a two-fold reduction of the output space. Additional examples of adjacency matrices
for molecular graphs given by BFS, DFS, RDKit (Landrum, 2006), and C-M orderings are shown in
Figure 4 (Appendix A.2). As shown, the C-M ordering consistently leads to the lowest φ. Overall,
the C-M algorithm allows reducing the bandwidths of all the considered datasets. For example, 95%
of the molecules in ZINC250k have φ̂ ≤ 4 (Figure 5, Appendix).

3.2 RESTRICTING GRAPH BANDWIDTH

Starting from the observation that many real-world graphs have low bandwidth, we propose to re-
duce the output space of a graph generative model from N × N to3 N × φ̂. As the goal of graph

3Technically, as the adjacency matrix is symmetric, only a triangular matrix is generated both in the standard
formulation and in our bandwidth-restricted re-parameterization.
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generation is to learn a distribution of the data p (G), we assume that, given φ̂data the maximum
empirical bandwidth on the training set Gtrain, we can reduce the output space of the generative
model to N × φ̂data without losing expressiveness (i.e., without losing the ability to generate in-
distribution graphs). In general, we achieve this reduction through two complementary mechanisms:
(1) imposing a bandwidth-reducing ordering and (2) restricting the output space to a dataset-specific
bandwidth φ̂data or a graph-specific bandwidth φ̂ (Figure 1, bottom).

During training, for each graph we use the precomputed adjacency matrix Aπ∗
with the ordering π∗

given by the previously introduced C-M algorithm. We remark that, given the linear time complexity
of the C-M algorithm, our preprocessing does not introduce any additional overhead compared to
standard orderings such as BFS/DFS. Notably, just restricting training examples to a specific canon-
ical ordering does not guarantee that such an ordering will be respected during generation (Chen
et al., 2021), and does not provide any advantage in time complexity or output space reduction,
since the complete adjacency matrix needs to be generated. Therefore, we also re-parameterize the
adjacency matrix as Aπ∗

opt ∈ N×φ̂data (or N×φ̂ for each graph), dropping the zeros outside the band-
width. During sampling, only edges belonging to the reduced matrix are considered as candidates,
thus constraining the output space and reducing the time complexity, without losing expressiveness.

Below, we discuss the details of our strategy applied to different models and highlight model-specific
choices and advantages.

3.3 AUTOREGRESSIVE GRAPH GENERATION

Autoregressive graph generation approaches recursively generate the edges of a single node (You
et al., 2018) or a group of nodes, (Liao et al., 2019) conditioned on the previously generated sub-
graph. We will focus on GraphRNN (You et al., 2018), although a similar approach could be applied
to virtually any autoregressive graph generative model.

In GraphRNN, the probability of node vi being connected to node vj , with π(vj) < π(vi), is
parameterized by an output function fθ applied to the hidden state of an RNN over the previous
rows of the adjacency matrix:

p[(vi, vj) ∈ E ] = fθ(RNNϕ(A
π
1:i−1))j

where θ and ϕ are parameters learned to maximize the likelihood of the data. Additional model
details are provided in Appendix A.3.3.

We note that a d-unit fθ can generate graphs with at most bandwidth d. Potentially, we could
set d to be the maximum number of nodes N of any graph we want to generate, which would
ensure maximum expressiveness. Instead, we set d equal to the maximum bandwidth of any Aπ

we would want to generate, greatly increasing efficiency and reducing training signal sparsity for
low bandwidth graphs. We find the order π for each graph G by using the C-M algorithm and set
d = φ̂data as the maximum bandwidth of all of the Aπ in the training data. Compared to generating
N rows of length d = N , we generate O(N/φ̂data)-times fewer edges.

In the original GraphRNN model, You et al. (2018) used a random BFS ordering during training,
and set d = Mdata < N , with Mdata defined as the maximum number of nodes in the BFS queue at
any time in the training data. Mdata is estimated empirically by sampling 100,000 BFS orderings per
dataset and setting Mdata to be roughly the 99.9 percentile of the empirical distribution of maximum
queue sizes. Critically, we observe that Mdata derived in You et al. (2018) approximates the maximum
bandwidth across all possible BFS orderings. In contrast, φ̂data is derived by explicitly reducing the
bandwidth. Notably, our approach allows significantly shrinking d, thus directly reducing the output
space and the time complexity. For example, on the DD dataset (Dobson & Doig, 2003) of protein
graphs, the authors set d = Mdata = 230, whereas we derive d = φ̂data = 122, a nearly two-fold
reduction.

3.4 ONE-SHOT GRAPH GENERATION

One-shot graph generative models sample the entire graph topology simultaneously. Typically the
topology is represented by putting edge probabilities on each pair of nodes, resulting in a complete
graph with a probability placed on each edge by the generative model (Simonovsky & Komodakis,
2018; Grover et al., 2019; Thomas & Welling, 2016). We will call this graph the edge-probability
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graph. Our key insight is that the complete edge probability graph can be replaced with a bandwidth-
restricted edge-probability graph (Figure 1, bottom).

One-shot models can be divided into two main categories: (1) Node-embedding-based models sam-
ple node embeddings from the latent distribution and compute the edge-probability graph based on
pairwise relationships, and (2) Adjacency-matrix-based models directly output the edge-probability
graph. We focus on both categories, considering a model based on Graphite (Grover et al., 2019)
and a model based on EDP-GNN (Niu et al., 2020).

Node-embedding-based one-shot generation. Graphite (Grover et al., 2019) is a VAE-based ap-
proach with one latent vector zi ∈ Rd per node with standard Gaussian prior. The encoder network
uses graph convolution layers (Kipf & Welling, 2017) on the input adjacency matrix A ∈ RN×N and
node features X ∈ RN×k to derive the mean and standard deviation of the variational marginals,
µ,σ = GNNϕ(A,X), where µ,σ ∈ RN×d. We will focus on the case without additional node
features, so X can be a positional encoding dependent on the node ordering. The decoder network
outputs edge probabilities:

p[(vi, vj) ∈ E ] = GNNθ(Â,X,Z)i,j (1)

where Â is fully-connected and Z are samples from N (µ,σ). Further architectural details are
described in Appendix A.3.4. In our bandwidth-restricted version of Graphite, we constrain the
bandwidth of Â. For graph G, we get the bandwidth φ(Aπ) for π found using the C-M algorithm
and build a new edge set:

Ê = {(i, j) | 1 ≤ |i− j| ≤ φ(Aπ)} (2)
where 1 ≤ i, j ≤ N . With the new edge set, the decoder message passing steps are reduced from
complexity in O(N2) to O(N · φ̂). During generation, the standard Graphite model samples the
number of nodes from the empirical distribution of the training data. In our bandwidth-restricted
version, both the number of nodes and the bandwidth φdata are sampled from the empirical distribu-
tion of the training data, thus further reducing the output space.

Adjacency-matrix-based one-shot generation. EDP-GNN (Niu et al., 2020) is a score-based
model in which a GNN is trained to match the score function of the data distribution. Intuitively,
EDP-GNN learns to denoise the upper-right triangle of the adjacency matrix. Our modification de-
noises the bandwidth-restricted upper-right triangle, thus reducing the modeled output space (Figure
6, Appendix). In EDP-GNN, a multi-layer perceptron (MLP) predicts the final edge features from
intermediate edge features Â built by message passing layers and edge-update layers:

sθ(A)i,j = MLP(Âij). (3)

To constrain the bandwidth, we restrict (i, j) ∈ Ê (Eq. 2) in the final MLP and in all of the message
passing and edge-update layers using the same approach described for Graphite. This drastically
reduces the time complexity and output space. Further details are included in Appendix A.3.5.

4 EXPERIMENTS

We experimentally validate our method on both synthetic and real graphs, comparing bandwidth-
constrained architectures and non-constrained baselines.

4.1 METRICS AND EXPERIMENTAL SETUP

We measure two goals of the models: closeness of the sample distribution to the true distribution
of graphs, and reconstruction quality. In order to measure the quality of the sample distribution
consistently with the recent literature, we use the Maximum Mean Discrepancy (MMD) between
sampled and test graph statistics (You et al., 2018). The graph statistics we compare are degree,
clustering coefficient, node orbit counts following You et al. (2018), and spectrum (the eigenvalues
of the normalized graph Laplacian) following Liao et al. (2019). To track overall sample quality, we
compute the mean MMD2 across all four MMD metrics4. Reconstruction quality is measured by
comparing the reconstructed graph and the original input graph using the Area Under the Precision

4We note that previous works usually report MMD2 but they indicate MMD in the results.
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COMMUNITY2 PLANAR GRID2D DD ENZYMES PROTEINS

MMD2 ↓ AUPRC ↑ MMD2 ↓ AUPRC ↑ MMD2 ↓ AUPRC ↑ MMD2 ↓ AUPRC ↑ MMD2 ↓ AUPRC ↑ MMD2 ↓ AUPRC ↑

GraphRNN Standard 0.028 0.376 0.265 0.545 0.323 0.642 0.174 0.299 0.023 0.445 0.017 0.533
BwR [ours] 0.024 0.421 0.233 0.652 0.240 0.999 0.234 0.318 0.016 0.602 0.020 0.716

Graphite Standard 0.055 0.706 0.361 0.975 0.649 0.453 0.368 0.804 0.107 0.925 0.153 0.95
BwR [ours] 0.047 0.747 0.468 0.990 0.528 0.915 0.273 0.840 0.038 0.950 0.037 0.933

EDP-GNN Standard 0.030 – 0.459 – 0.645 – OOM – 0.092 – 0.077 –
BwR [ours] 0.040 – 0.474 – 0.590 – 0.299 – 0.027 – 0.024 –

Table 2: Graph generation results on generic datasets. Bold indicates best results compared to the
other model of the same type and dataset. Significance was determined by Welch’s t-test with five
replicates per model. Models are considered comparable when p ≥ 0.05. MMD2 denotes average
MMD2 across four metrics (degree, cluster, orbit, spectra). Due to space limitations, we provide
all the individual metrics in Table 4. OOM denotes out-of-memory issues. Hyphen (–) denotes not
applicable metric/model.

ZINC250K PEPTIDES-FUNC

Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑ Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑

GraphRNN Standard 0.025 0.045 0.012 0.071 0.038 0.668 0.009 0.004 0.000 0.108 0.030 0.809
BwR [ours] 0.011 0.044 0.005 0.057 0.029 0.783 0.008 0.001 0.001 0.123 0.033 0.903

Graphite Standard 0.049 0.516 0.005 0.043 0.153 0.999 0.169 0.235 0.030 0.293 0.182 0.987
BwR [ours] 0.009 0.307 0.002 0.019 0.084 0.995 0.056 0.216 0.011 0.198 0.120 0.993

EDP-GNN Standard 0.174 0.055 0.024 0.170 0.106 – 0.159 0.041 0.047 0.213 0.115 –
BwR [ours] 0.015 0.528 0.004 0.023 0.143 – 0.050 0.371 0.007 0.144 0.143 –

Table 3: Graph generation results on molecular datasets. Bold indicates best results compared to the
other model of the same type and dataset. Significance was determined by Welch’s t-test with five
replicates per model. Models are considered comparable when p ≥ 0.05. Graph statistics (degree,
cluster, orbit, spectra) are reported as MMD2. Mean computed across individual statistics for each
model/dataset. Hyphen (–) denotes not applicable metric/model.

Recall Curve (AUPRC). For GraphRNN, we compare the reconstructed row and the original row;
for Graphite, we compare the reconstucted graph and the original graph5.

We compare our bandwidth-restricted versions (+BwR) of the models based on GraphRNN (You
et al., 2018), Graphite (Grover et al., 2019), and EDP-GNN (Niu et al., 2020) to their standard base-
lines (i.e. without BwR). Our models are described in Section 3 and additional details are provided in
Appendix A.3. Each model architecture is individually hyperoptimized (details in Appendix A.3.2).
All the experiments are repeated five times and significance is determined by Welch’s t-test (models
are considered comparable when p-value ≥ 0.05).

4.2 GENERIC GRAPH GENERATION

Datasets. We evaluated our models on six standard graph generation datasets, including both syn-
thetic and real-world graphs: (1) Community2, 1500 two-community graphs generated using an
Erdös–Renyi model with 60–160 nodes; (2) Planar, 1500 random planar graphs with 64 nodes
made using Delaunay triangulation; (3) Grid2d, 66 distinct two-dimensional grids with side lengths
between 10 and 20; (4) DD, 918 protein graphs with amino acids as nodes (Dobson & Doig, 2003);
(5) Enzymes, 556 protein graphs of enzyme tertiary structures from the BRENDA database (Schom-
burg et al., 2004); and (6) Proteins, 904 protein graphs from the Protein Data Bank (Dobson & Doig,
2003). Additional details on the datasets are provided in Appendix A.4.2.

Results. Table 2 summarizes the results for generic graph generation. Extended results are shown in
Table 4 (Appendix). As shown, our approach consistently achieves superior or competitive perfor-
mance across datasets and methods. GraphRNN+BwR and Graphite+BwR outperform their stan-
dard counterparts in five out of six datasets, with comparable performance on the sixth. BwR im-
proves EDP-GNN generation quality in two out of six datasets, with comparable performance on

5Reconstruction quality is less easily definable for score-based models, therefore we omit AUPRC in EDP-
GNN evaluation.
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PROTEINS GRID2D

Ground truth

Graphite+BwR

Predicted (AUPRC = 0.74)

Graphite Graphite+BwRGraphite

Ground truth Ground truth Ground truthPredicted (AUPRC = 0.82) Predicted (AUPRC = 0.17) Predicted (AUPRC = 0.89)

Figure 3: Comparison of Graphite reconstructions with and without BwR on samples from PRO-
TEINS (left) and Grid2D (right). The addition of BwR improves reconstruction quality and AUPRC
of generated graphs by constraining the bandwidth.

the others. Notably, the dataset with the largest graphs, DD (mean 277.7 nodes per graph), could not
be trained using standard EDP-GNN due to out-of-memory (OOM) issues. In contrast, we are able
to train our EDP-GNN+BwR, thus highlighting its lower memory complexity. We observe that, in
several GraphRNN and Graphite experiments, the mean MMD is comparable between the standard
and the BwR versions, but the AUPRC is significantly better in our version (e.g., on ENZYMES).
This highlights how BwR improves the accuracy of the reconstructed graphs even when bulk statis-
tical distributions are comparable. We also show examples of reconstructed adjacency matrices in
Figure 3. In the PROTEINS example (left), the standard model must predict edges in a much larger
and imbalanced output space. In the Grid2d example (right), the standard model predicts edges far
outside the bandwidth, which is inherently impossible with BwR. Overall, results show that BwR
consistently improves or matches sampling quality at a fraction of the time/memory cost.

4.3 MOLECULAR GENERATION

Datasets. We evaluate our models on real-world molecular datasets to show the benefits of BwR
for de novo molecular generation. We consider two datasets. ZINC250k (Irwin et al., 2012) in-
cludes 249,455 drug-like small molecules extracted from the ZINC database, averaging 23.14 heavy
atoms (nodes) each. Peptides-func (Dwivedi et al., 2022) is a recently published dataset of peptide
structures that includes 15,535 molecules, averaging 150.94 heavy atoms (nodes) each. Compared
to common small-molecule benchmarks, this dataset includes significantly larger molecular graphs
and functional motifs (amino acids). Therefore, it allows us to test the advantages of a reduced time
complexity and output space given by our bandwidth-constrained generation. Additional datasets
detailes are provided in Appendix A.4.3.

Results. Table 3 shows the results on molecular graph generation. BwR achieves superior or com-
petitive performance on both datasets across all methods. GraphRNN+BwR significantly improves
reconstruction accuracy with a comparable generation quality with respect to the standard baseline.
Graphite+BwR leads to a significantly better generation quality with comparable reconstruction ac-
curacy with respect to the standard baseline. Finally, EDP-GNN+BwR, achieves comparable results
with respect to its standard counterpart. However, we remark that, even when generation results are
comparable, our approach still significantly reduces time/memory complexity.

5 CONCLUSION

We presented BwR, a novel approach to reduce the time/space complexity and output space of graph
generative models. Leveraging the observation that many real-world graphs have low graph band-
width, our method restricts the bandwidth of the adjacency matrices during training and generation.
Our method is compatible with virtually all existing graph generative models, and we described its
application to autoregressive, VAE-based, and score-based models. Our extensive results on both
synthetic, biological, and chemical datasets showed that our strategy consistently achieves superior
or comparable generation quality compared to the standard methods, while significantly reducing
time/space complexity. Currently, our strategy leverages random Cuthill-McKee orderings to reduce
the bandwidth. Future work will explore other—potentially even learned—bandwidth-minimizing
orderings, while further theoretically studying the distribution of orderings induced by our approach.
Future work will also extend our strategy to additional settings, such as conditional generation, larger
graphs, and new state-of-the-art models.
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A APPENDIX

A.1 BANDWIDTH DETAILS

We provide a definition of bandwidth through the graph bandwidth problem (Unger, 1998). Intu-
itively, the graph bandwidth problem can be seen as placing the nodes of a graph on a line such
that the length of the longest edge in the graph is minimized. The bandwidth of the graph is then
simply the length of the longest edge. Given a graph G = (V, E) on N vertices, each ordering
π : V → [1, N ] defines a graph linearization. We define the distance between nodes vi and vj in
the ordering π as distπ (vi, vj) = |π (vi)− π (vj)|. The bandwidth of the ordering π is defined as
the maximum stretch of any edge on the linearization, i.e. φ (π) = max(vi,vj)∈E distπ (vi, vj). The
bandwidth of a graph G is the minimum bandwidth across all possible orderings, i.e.:

φ (G) = min
π:V→[1,N ]

φ (π) (4)

The graph bandwidth problem has been shown to be NP-hard for general graphs (Papadimitriou,
1976), and also for simpler classes of graphs such as trees and even caterpillar trees (Monien, 1986).
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Exact polynomial solutions exist for very restricted classes of graphs, and approximate superpoly-
nomial solutions have been proposed for general graphs (Feige, 2000; Cygan & Pilipczuk, 2010).
However, in practice, efficient heuristic approaches work well for general graphs and are routinely
leveraged in applications. The Cuthill-McKee (C-M) algorithm (1969), which is based on a variation
of BFS search, has linear time complexity O(|E|) (Chan & George, 1980), and has been extensively
studied from a theoretical perspective (Turner, 1986).

A.2 BANDWIDTH VISUALIZATION

In Figure 4, we show the adjacency matrix A and the bandwidth φ(A) for a random set of 10
molecules from ZINC250k. The RDKit ordering is computed using the canonical atom ranking
provided by the RDKit library. For the BFS, DFS and C-M, we randomly sample 100 orderings and
plot the one with the highest φ (this approximates the output space needed to correctly model the
graph for each ordering).

In Figure 5, we show the distribution of bandwidth of ZINC250k adjacency matrices using the C-M
algorithm and the canonical SMILES order.

A.3 MODEL DETAILS

Each model was re-implemented and somewhat modified to facilitate the pairwise comparison with
and without the BwR modification.

A.3.1 OPTIMIZATION

All models were trained for 100 epochs of 30 training batches and nine validation batches. The
batch size was fixed at 32. The AdamW optimizer (Loshchilov & Hutter, 2019) was used with a
cosine annealed learning rate (Loshchilov & Hutter, 2017). The initial learning rate was hyperopti-
mized (Appendix A.3.2), and the weight decay parameter was either set to zero or hyperoptimized.
GraphRNN and Graphite were trained using binary cross entropy to measure reconstruction accu-
racy. EDP-GNN was trained using mean squared error loss.

A.3.2 HYPEROPTIMIZATION

Hyperparameters were separately optimized for each combination of node order and dataset. The
hyperparameters were chosen to minimize mean validation MMD2 in the case of GraphRNN and
EDP-GNN, and MMD2 − AUPRC in the case of Graphite. All hyperoptimizations used 20 outer-
loop steps of the Weights and Biases (Biewald, 2020) Bayesian hyperoptimizer. For the specific
hyperparameter ranges, see the model details below.

A.3.3 GRAPHRNN

GraphRNN (You et al., 2018) is an autoregressive model for generating adjacency matrices. We
used the GraphRNN-S variant which uses an MLP to predict a whole row at once of the adjacency
matrix from the RNN’s hidden state.

GraphRNN data pre-processing. GraphRNN was trained using teacher forcing to autogressively
predict the next row of the re-parameterized adjacency matrices Aopt ∈ N×φ̂data (Figure 1, bottom).
In order to prepare the data, a row of zeros was prepended and appended to each Aopt to serve as the
initial inputs and final outputs for the model. Next, a column with an indicator for whether the row
was the first or last was prepended. This resulted in training data of the form:

1 0 · · · 0
0 Aopt

0,0 · · · Aopt
0,φ̂data

...
...

. . .
...

0 Aopt
N,0 · · · Aopt

N,φ̂data

1 0 · · · 0

 . (5)

In order to train the model, the data were placed into PackedSequence objects in PyTorch
(Paszke et al., 2019), enabling batched training with variable sequence lengths.
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Figure 4: Adjacency matrix and bandwidth φ for different orderings (canonical RDKit, BFS, DFS
and Cuthill-McKee) for a random set of 10 molecules from ZINC250k.

GraphRNN architecture. The architecture is a two layer MLP followed by a four layer GRU
followed by two layer MLP:

GraphRNN layers
1. Linear(φ̂data + 1 7→ 128)
2. BatchNorm1D
3. ReLU
4. Linear(128 7→ 128)
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Figure 5: Distribution of bandwidth of ZINC250k adjacency matrices using the C-M algorithm and
the canonical SMILES order.

5. GRU(4 layers, 128 7→ 128)
6. Linear(128 7→ 128)
7. BatchNorm1D
8. ReLU
9. Linear(128 7→ φ̂data + 1)

GraphRNN hyperoptimization. The GraphRNN hyperparameter ranges were:

• Learning rate ∼ Log Uniform [10−4, 10−2]

• Weight decay ∼ Log Uniform [10−5, 10−1].

GraphRNN sampling. Rows of the data matrix constructed in Eq. 5 were sampled according to
the logits ℓ output at the last layer of the model adjusted by a temperature parameter, τ . That yielded
row i edge probabilities:

p[(vi, vj) ∈ E ] ∼ Bernoulli
(
1

τ
ℓi,j+1

)
. (6)

τ was selected for each model to minimize mean MMD on the validation data. The sampling process
was halted when an indicator was sampled.

A.3.4 GRAPHITE

Graphite (Grover et al., 2019) is a VAE adapted for graph data with one set of latent variables per
node. Graphite predicts edge probabilities using a pairwise kernel between node representations at
the end of the decoder. We kept the general design while making a few architectural changes for
simplicity and performance.

Graphite data pre-processing. For every graph G = (V, E) the node order was selected using
either BFS (standard variation) or C-M (BwR variation). In the C-M case, we also found the band-
width resulting from the order φ̂. We constructed node features X ∈ RN×16 using transformer-style
positional encodings (Vaswani et al., 2017). In the original work, Grover et al. (2019) used one-hot
positional encodings when there were no node features. For each graph, an edge set was constructed
for the decoder model. In the BFS case, the edge set corresponding to a fully connected graph was
used. In the C-M case, the edge set for a graph with bandwidth φ̂ was defined as in Eq. 2.

Graphite architecture. The architecture was implemented using PyTorch Geometric (Fey &
Lenssen, 2019). With respect to the original implementation, we used GINE layers (Hu et al.,
2020) rather than graph convolutions, and GELU activation (Hendrycks & Gimpel, 2020) rather
than ReLU. Each GINE layer contained a two-layer MLP with the following architecture:

GINE MLP layers with hidden dimension h
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1. Linear(h 7→ 2h)
2. BatchNorm1D
3. GELU
4. Linear(2h 7→ h)
5. BatchNorm1D
6. GELU.

We made use of a stack of GINE layers, which we refer to as GINEStack (Algorithm 1). The
Graphite encoder was a GINEStack with h = 32. The variational marginals µ,σ were 32-
dimensional and computed using a single linear layer each from the output of the encoder. The
decoder also employed a GINEStack with h = 32 with a few modifications (Algorithm 2). The
most consequential change in our experiments was replacing the final edge probability layer. Rather
than a dot product as in the original implementation, we observed better performance and lower vari-
ance with a two-layer MLP that takes as input concatenated pairs of node embeddings (Algorithm
2, final three lines).

Algorithm 1: GINEStack

Inputs: node features X ∈ RN×d, edge list E , edge features E ∈ R|E|×k hidden dimension h

Outputs: updated node features X̂
X = Linear(d 7→ h)(X)
X = BatchNorm1D(X)
X = GELU(X)
X0 = GINE(X, E , E)
X1 = GINE(X0, E , E)
X2 = GINE(X1, E , E)

X̂ = [X0|X1|X2]

Algorithm 2: Graphite decoder. ◦ denotes function composition.
Inputs: node features X ∈ RN×16, embeddings Z ∈ RN×32, edge list E , edge features
E ∈ R|E|×k

Outputs: edge probability logits ℓ ∈ R|E|

P = Linear(16 7→ 32)(X)
P = GELU(BatchNorm1D)(P ))
X0 = Z + P
X1 = GINEStack(X0, E , E)
X2 = [P |X1]
X3 = GELU ◦ BatchNorm1D ◦ Linear(112 7→ 32)(X2)
K = [X|X3]
ℓ1i,j = Linear(32 7→ 1) ◦ GELU ◦ Linear(96 7→ 32)[Ki|Kj ]

ℓ2i,j = Linear(32 7→ 1) ◦GELU ◦Linear(96 7→ 32)[Kj |Ki] # j, i order to preserve symmetry
ℓi,j = ℓ1i,j + ℓ2i,j

Graphite loss function. The loss was the standard VAE loss function with a hyperoptimized
weight β on the KL divergence term:

L(E , ℓ,µ,σ) = β

|E|

N∑
i=1

(
µ2 + σ2 − log[σ]− 1

2

)
i

+
1

|E|
BCE(ℓ, E) (7)

where ℓ denotes the model predicted edge logits and BCE is the binary cross entropy.

Graphite hyperoptimization. The Graphite hyperparameter ranges were:

• Learning rate ∼ Log Uniform [10−4, 10−2]

• KL-divergence weight (β) ∼ Log Uniform [1, 10−5].
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Graphite sampling. The latent variables Z were sampled independently from the standard normal
distribution. Edge probabilities were then sampled from the decoder’s edge probabilities (Eq. 1,
Algorithm 2). The number of nodes and bandwidths used to construct the decoder’s message passing
graph were sampled from the empirical distribution of the training data.

A.3.5 EDP-GNN

EDP-GNN (Niu et al., 2020) is a permutation invariant score-based generative model for graphs.
Niu et al. (2020) used annealed Langevin dynamics to sample from their model and used a variance
schedule with six time steps. We switched to the DDPM (Ho et al., 2020) framework, which we
found led to more reliable results and faster sampling in preliminary experiments.

EDP-GNN data pre-processing. For every graph G = (V, E) a node order was selected using
either BFS (standard variation) or C-M (BwR variation). In the C-M case, we also found the band-
width φ̂. We then constructed an edge set E ′ of edges not in the original graph, which the model was
trained to distinguish from the real edges. In the BFS case, these were all of the edges not in E , i.e.
E ′ = {(i, j)∀i ̸= j}− E . In the C-M case, these were the edges included in a graph with φ(G) = φ̂

(Eq. 2), and not in E , that is, E ′ = Ê − E . Edge features E ∈ R|E|+|E′| were constructed to encode
whether each edge is in E or E ′ with 1 to indicate ∈ E and -1 to indicate ∈ E ′. Node features
X ∈ RN×16 were constructed using transformer-style positional encodings (Vaswani et al., 2017).
Time embedding features T used for time conditioning were constructed using 128-dimensional
positional encodings.

EDP-GNN diffusion hyperparameters. We used a cosine variance schedule (Nichol & Dhariwal,
2021) with 200 steps. The effect of this schedule on a restricted adjacency matrix of a planar graph is
shown in Figure 6. We used the noise predicting parameterization ϵθ introduced by Ho et al. (2020).

t = 0 t = 20 t = 40 t = 60 t = 80

t = 100 t = 120 t = 140 t = 160 t = 180

Figure 6: Visualization of cosine variance schedule forward diffusion with 200 steps on a planar
graph with restricted bandwidth.

EDP-GNN architecture. Our implementation of EDP-GNN was built using the previously intro-
duced GINEStack (Algorithm 1) followed by a two layer MLP operating on edge features pairs
of node representations to predict the sampled noise ϵ. The resultant architecture for the molecular
datasets is shown in Algorithm 3. We used a node embedding size of 64 for the generic datasets
instead of 128.

EDP-GNN hyperoptimization. The learning rate was hyperoptimized with a distribution ∼ Log
Uniform [10−4, 10−2].

EDP-GNN sampling. We used the DDPM sampling algorithm (Ho et al., 2020).

A.4 DATASETS

All datasets were filtered so that there was one connected component per example.
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Algorithm 3: Modified EDP-GNN architecture. ◦ denotes function composition.

Inputs: node features X ∈ RN×16, edge list E∪ = E ∪ E ′, edge features E ∈ R|E∪|, time
embeddings T ∈ R128

Outputs: noise predictions ϵθ ∈ R|E∪E′|

P = GELU ◦ Linear(16 7→ 128)(X)
T0 = GELU ◦ Linear(128 7→ 128)(T ) X0 = T0 + P
X1 = GINEStack(X0, E∪, E)
X2 = [P |T0|X1]
X3 = GELU ◦ BatchNorm1D ◦ Linear(768 7→ 128)(X2)
K = [X|X3]
E0 = GELU ◦ Linear(1 7→ 128)(E)
ϵ1i,j = Linear(128 7→ 1) ◦ GELU ◦ Linear(384 7→ 128)[Ki|Kj |E0

i,j ]

ϵ2i,j = Linear(128 7→ 1) ◦ GELU ◦ Linear(384 7→ 128)[Kj |Ki|E0
j,i] # j, i order to preserve

symmetry
ϵθ,i,j = ϵ1i,j + ϵ2i,j

A.4.1 EXAMPLE DATASETS FOR TABLE 1

All datasets, except Peptides-func, are available through the TUDataset collection (Morris et al.,
2020). Peptides-func is available in the Long Range Graph Benchmark (Dwivedi et al., 2022).

A.4.2 GENERIC DATASETS

Community2. For each graph the number of nodes N was sampled uniformly between 60 and
160. Each community was then generated using an Erdos-Renyi model with edge probability 0.3.
Then edges between the two communities were sampled with probability 0.05. Finally, the largest
connected component of the resultant graph was selected.

Planar. For each graph 64 2D node coordinates were sampled uniformly between zero and one. A
Delaunay triangulation was performed on these coordinates. Two nodes were considered adjacency
if they shared a vertex in the triangulation.

Grid2d. All unique pairs of side lengths between 10 and 20 were enumerated. For each side length
pair, a 2D grid graph was generated. Since this yielded only 66 graphs, each graph in the training
and validation sets were included five times with different random BFS and C-M orders each time.

DD. The DD graphs were filtered so that each had between 100 and 500 nodes as in (You et al.,
2018), going from 1178 to 918 graphs.

Enzymes. The enzymes graphs were filtered so that each had 10 ≤ N ≤ 125 going from 600 to
556 graphs.

Proteins. The proteins graphs were filtered so that each had 10 ≤ N ≤ 125 going from 1113 to
904 graphs.

A.4.3 MOLECULAR DATASETS

ZINC250k. No filtering was required.

Peptides-func. Removing graphs with more than one connected component filtered 15535 graphs
down to 15375.
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COMMUNITY2 PLANAR GRID2D

Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑ Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑ Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑

GraphRNN Standard 0.016 0.046 0.024 0.024 0.028 0.376 0.056 0.309 0.617 0.08 0.265 0.545 0.403 0.0 0.714 0.174 0.323 0.642
BwR [ours] 0.034 0.041 0.017 0.006 0.024 0.421 0.06 0.311 0.481 0.079 0.233 0.652 0.037 0.797 0.066 0.061 0.24 0.999

Graphite Standard 0.146 0.047 0.015 0.011 0.055 0.706 0.289 0.304 0.749 0.104 0.361 0.975 0.5 1.299 0.601 0.198 0.649 0.453
BwR [ours] 0.114 0.047 0.015 0.013 0.047 0.747 0.311 0.323 1.108 0.128 0.468 0.99 0.069 1.969 0.038 0.035 0.528 0.915

EDP-GNN Standard 0.037 0.056 0.02 0.008 0.03 - 0.229 0.4 1.121 0.086 0.459 - 0.428 1.378 0.661 0.113 0.645 -
BwR [ours] 0.066 0.048 0.032 0.014 0.04 - 0.179 0.377 1.249 0.092 0.474 - 0.415 1.452 0.392 0.101 0.59 -

DD ENZYMES PROTEINS

Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑ Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑ Deg. Cluster Orbit Spectra Mean ↓ AUPRC ↑

GraphRNN Standard 0.066 0.155 0.41 0.065 0.174 0.299 0.011 0.045 0.021 0.018 0.023 0.445 0.004 0.04 0.015 0.01 0.017 0.533
BwR [ours] 0.092 0.229 0.489 0.125 0.234 0.318 0.003 0.039 0.01 0.014 0.016 0.602 0.012 0.045 0.011 0.013 0.02 0.716

Graphite Standard 0.316 0.316 0.656 0.186 0.368 0.804 0.204 0.046 0.099 0.078 0.107 0.925 0.293 0.096 0.111 0.114 0.153 0.95
BwR [ours] 0.239 0.245 0.492 0.118 0.273 0.84 0.042 0.038 0.052 0.018 0.038 0.95 0.037 0.043 0.052 0.016 0.037 0.933

EDP-GNN Standard OOM OOM OOM OOM OOM OOM 0.098 0.069 0.159 0.042 0.092 - 0.119 0.064 0.082 0.045 0.077 -
BwR [ours] 0.184 0.208 0.738 0.065 0.299 - 0.027 0.033 0.036 0.013 0.027 - 0.027 0.038 0.021 0.012 0.024 -

Table 4: Graph generation results on generic datasets, extended. Bold indicates best results com-
pared to the other model of the same type and dataset. Significance was determined by Welch’s t-test
with five replicates per model. Models are considered comparable when p ≥ 0.05. Graph statistics
(degree, cluster, orbit, spectra) are reported as MMD2. Mean computed across individual statistics
for each model/dataset. OOM denotes out-of-memory issues. Hyphen (–) denotes not applicable
metric/model.

A.5 ADDITIONAL EXPERIMENTAL RESULTS

A.5.1 GENERIC GRAPH GENERATION

Extended results with individual metrics are shown in Table 4.
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