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Abstract

With the increasing capabilities of large lan-001
guage models (LLMs), in-context learning002
(ICL) has emerged as a new paradigm for nat-003
ural language processing (NLP), where LLMs004
make predictions based on contexts augmented005
with a few examples. It has been a significant006
trend to explore ICL to evaluate and extrap-007
olate the ability of LLMs. In this paper, we008
aim to survey and summarize the progress and009
challenges of ICL. We first present a formal010
definition of ICL and clarify its correlation to011
related studies. Then, we organize and discuss012
advanced techniques, including training strate-013
gies, prompt designing strategies, and related014
analysis. Additionally, we explore various ICL015
application scenarios, such as data engineering016
and knowledge updating. Finally, we address017
the challenges of ICL and suggest potential di-018
rections for further research. We hope that our019
work can encourage more research on uncover-020
ing how ICL works and improving ICL.021

1 Introduction022

With the scaling of model size and data size (Brown023

et al., 2020; Chowdhery et al., 2023; OpenAI, 2023;024

Touvron et al., 2023a,b), large language models025

(LLMs) demonstrate the in-context learning (ICL)026

ability, that is, learning from a few examples in027

the context. Many studies have shown that LLMs028

can perform a series of complex tasks through029

ICL, such as solving mathematical reasoning prob-030

lems (Wei et al., 2022c). These strong abilities031

have been widely verified as emerging abilities for032

large language models (Wei et al., 2022b).033

The key idea of in-context learning is to learn034

from analogy. Figure 1 gives an example that de-035

scribes how language models make decisions via036

ICL. First, ICL requires a few demonstration ex-037

amples to form a prompt context. These examples038

are usually written in natural language templates.039

Then, ICL concatenates a query question and the040
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Figure 1: Illustration of in-context learning. ICL re-
quires a prompt context containing a few demonstration
examples written in natural language templates. Taking
this prompt and a query as the input, large language
models are responsible for making predictions.

piece of prompt context together to form the input, 041

which is then fed into the language model for pre- 042

diction. Different from supervised learning, which 043

requires a training stage that uses backward gra- 044

dients to update model parameters, ICL does not 045

perform parameter updates. The model is expected 046

to learn the pattern hidden in the demonstration and 047

accordingly make the right prediction. 048

As a new paradigm, ICL has multiple attractive 049

advantages. First, since the demonstration is writ- 050

ten in natural language, it provides an interpretable 051

interface to communicate with LLMs (Brown et al., 052

2020). This paradigm makes it much easier to in- 053

corporate human knowledge into LLMs by chang- 054

ing the demonstration and templates (Liu et al., 055

2022; Lu et al., 2022; Wei et al., 2022c; Wu et al., 056

2023b). Second, in-context learning is similar to 057

the decision process of human beings by learning 058

from analogy (Winston, 1980). Third, compared 059

to supervised training, ICL is a training-free learn- 060

ing framework. This could not only greatly reduce 061

the computational costs for adapting the model 062

to new tasks, but also make language-model-as-a- 063

service (Sun et al., 2022) possible and can be easily 064

applied to large-scale real-world tasks. 065

Despite being promising, there are also interest- 066

ing questions and intriguing properties that require 067
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Figure 2: Taxonomy of in-context learning.

further investigation in ICL. Although a range of068

vanilla GPT models show excellent ICL capability,069

several studies have found that this capability can070

be significantly improved through adaptation dur-071

ing pretraining (Min et al., 2022b; Li et al., 2024c).072

Moreover, the performance of ICL is sensitive to073

specific settings, including the prompt template, the074

selection and order of demonstration examples, and075

other factors (Wang et al., 2023e; Liu et al., 2024b).076

Additionally, optimizing the conciseness of demon-077

stration examples and improving the computational078

efficiency of ICL are critical areas of ongoing re-079

search (Liu et al., 2024a). Furthermore, despite080

preliminary explanations (Dai et al., 2023a; Jiang,081

2023), the underlying working mechanism of ICL082

remains unclear and requires further investigation.083

With the rapid growth of studies in ICL, our084

survey aims to sensitize the community toward the085

current progress. In the following sections, we086

delve into an in-depth discussion of related studies,087

and we summarize the key findings in Appendix A.088

We highlight the challenges and potential directions 089

and hope our work provide a useful roadmap for 090

beginners interested in this area and shed light on 091

future research. 092

2 Definition and Formulation 093

Following Brown et al. (2020), we here provide a 094

formal definition of in-context learning: 095

In-context learning is a paradigm that 096

allows language models to learn tasks 097

given only a few examples in the form of 098

demonstration. 099

Formally, given a query input text x and a set 100

of candidate answers Y = {y1, . . . , ym}, a pre- 101

trained language model M takes the candidate an- 102

swer with the maximum score as the prediction,1 103

conditioned a demonstration set C. C contains 104

an optional task instruction I and k demonstration 105

1Y could be class labels or a set of free-text phrases.
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examples, thus C = {I, s(x1, y1), . . . , s(xk, yk)}106

or C = {s′(x1, y1, I), . . . , s′(xk, yk, I)}, where107

s′(xi, yi, I) is an example written in natural lan-108

guage according to the task. The likelihood of a109

candidate answer yj comes from a scoring function110

f on the whole input sequence:111

P (yj | x) ≜ fM(yj , C, x) (1)112

The final predicted label ŷ is the candidate answer113

with the highest probability:114

ŷ = argmax
yj∈Y

P (yj | x). (2)115

According to the definition, we can see that ICL116

differs from related concepts as follows: (1) Prompt117

Learning: prompts can be discrete templates or soft118

parameters that encourage the model to predict the119

desired output. ICL can be regarded as a subclass120

of prompt tuning where the demonstration exam-121

ples are part of the prompt. Liu et al. (2023c) made122

a thorough survey on prompt learning, but ICL was123

not included in their study. (2) Few-shot Learning:124

few-shot learning is a general machine learning ap-125

proach that involves adapting model parameters to126

perform a task with a limited number of supervised127

examples (Wang and Yao, 2019). In contrast, ICL128

does not require parameter updates and is directly129

performed on pretrained LLMs.130

3 Model Training131

Although LLMs have demonstrated promising ICL132

capability directly, many studies revealed that these133

ICL capabilities can be further enhanced through134

specialized training before inference (Chen et al.,135

2022; Gu et al., 2023; Shi et al., 2024).136

3.1 Pretraining137

One straightforward direction to boost the ICL ca-138

pability of LLMs is through pretraining or con-139

tinual pretraining. For instance, Gu et al. (2023)140

and Shi et al. (2024) proposed to reorganize pre-141

training corpora by aggregating related contexts,142

making models learn to reason across prior demon-143

strations. Differently, Li et al. (2024c) introduced144

a meta-distillation pretraining process, which al-145

lows LLMs to reason with distilled demonstration146

vectors, thereby enhancing ICL efficiency without147

compromising its effectiveness.148

3.2 Warmup149

Another way to enhance ICL ability is adding a150

continual training stage between pretraining and151

Pre-training

LM

Original Corpus
Warmup

Instruction

x1 y1 x2 y2 x*

Pretrained LM

Different task
Prompts 

y*x1 x2 Xn-1 xn···

Retrieve

Text
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Text
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Text
aboutTopic 1 Topic 2

Topic 1 Topic 2 Topic 1 Topic 2

Figure 3: Illustration of model training methods to en-
hance ICL capabilities through two different stages: pre-
training and warmup.

ICL inference, which we call model warmup for 152

short. Warmup is an optional procedure for ICL, 153

which adjusts LLMs before inference by modifying 154

or adding parameters. 155

As most pretraining data are not tailored for 156

ICL (Chen et al., 2022), researchers have intro- 157

duced various warmup strategies to bridge the 158

gap between pretraining and ICL inference. Both 159

Min et al. (2022b) and Wang et al. (2022b) pro- 160

posed to continually finetune LLMs on a broad 161

range of tasks with multiple demonstration exam- 162

ples, which boosts ICL abilities. To encourage 163

the model to learn input-label mappings from the 164

context, Wei et al. (2023a) proposed symbol tun- 165

ing, which substitutes natural language labels (e.g., 166

“positive/negative sentiment”) with arbitrary sym- 167

bols (e.g., “foo/bar”). Chen et al. (2022) proposed 168

a self-supervised method to align raw text with 169

ICL formats in downstream tasks. Besides, mul- 170

tiple studies have indicated the potential value of 171

instructions (Mishra et al., 2021; Wei et al., 2022a). 172

Tuning the 137B LaMDA-PT (Thoppilan et al., 173

2022) on over 60 datasets verbalized via natural 174

language instruction templates, FLAN (Wei et al., 175

2022a) improves the ability of LLMs to follow in- 176

structions, boosting both the zero-shot and few-shot 177

ICL performance. Chung et al. (2022) and Wang 178

et al. (2022b) proposed to further scale up instruc- 179

tion tuning with more than 1000+ task instructions. 180

4 Prompt Designing 181

In this section, we focus on the principles of ICL 182

during inference, including demonstration organi- 183

zation (§4.1) and instruction formatting (§4.2) . 184

4.1 Demonstration Organization 185

Many studies have shown that the performance of 186

ICL strongly relies on the demonstration surface, 187

including the selection, formatting, and ordering 188

of demonstration examples (Zhao et al., 2021; Lu 189
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Category Methods Demonstration Acquisition LLMs Features

Demonstration
Selection

KATE (Liu et al., 2022) Human design GPT-3 KNN Selection
MI (Sorensen et al., 2022) Human design GPT-3 Mutual Information
EPR (Rubin et al., 2022) Human design GPT-{J, 3}/CodeX Score-based Retrieval

IDS (Qin et al., 2023) Human design GPT-3.5 Iterative Selection
AdaICL (Mavromatis et al., 2023) Human design GPT-{J, Neo} Selective Demonstration

UDR (Li et al., 2023d) Human design GPT-Neo-2.7B Unified Retrieval

Demonstration
Reformatting

SG-ICL (Kim et al., 2022) LM generated GPT-J Auto Demonstration Generation
AutoICL (Yang et al., 2023a) LM generated GPT-3.5-Turbo-0301 Reasoning Path Generation

MSP (Yang et al., 2023b) Human design GPT series Adjusting Demonstration Weight
ICV (Liu et al., 2024a) Human design Falcon-7b / Llama-7b Demonstration Embedding

Demonstration
Ordering

GlobalE & LocalE (Lu et al., 2022) Human design GPT-{2, 3} Best Order Selection
ICCL (Liu et al., 2024b) Human design Llama2/Mixtral/Qwen Ordering from Simple to Complex

Table 1: Summary of representative demonstration designing methods.

et al., 2022). In this subsection, we survey demon-190

stration organization strategies and classify them191

into three categories, as shown in Table 1.192

4.1.1 Demonstration Selection193

Demonstrations selection aims to answer a funda-194

mental question: Which samples are good exam-195

ples for ICL? We categorize the related studies into196

two approaches: unsupervised methods based on197

predefined metrics and supervised methods.198

Unsupervised Method A straightforward ap-199

proach to selecting ICL examples is to choose200

the nearest neighbors of input instances based on201

their similarities (Liu et al., 2022; Tanwar et al.,202

2023; Qin et al., 2023). Distance metrics, such203

as L2 distance or cosine similarity based on sen-204

tence embeddings, are commonly used for this pur-205

pose. For example, Liu et al. (2022) proposed206

KATE, the first kNN-based unsupervised retriever207

for selecting in-context examples. Similarly, k-NN208

cross-lingual demonstrations can be retrieved for209

multi-lingual ICL to strengthen source-target lan-210

guage alignment (Tanwar et al., 2023). Su et al.211

(2023) proposed to combine graphs and confidence212

scores to select diverse and representative examples.213

In addition to distance metrics, mutual informa-214

tion (Sorensen et al., 2022) and perplexity (Gonen215

et al., 2023) have proven valuable for prompt se-216

lection without labeled examples or specific LLMs.217

Furthermore, using output scores of LLMs as unsu-218

pervised metrics has shown effectiveness in demon-219

stration selection (Wu et al., 2023b; Nguyen and220

Wong, 2023; Li and Qiu, 2023). Particularly, Wu221

et al. (2023b) selected the best subset permutation222

of kNN examples based on the code length for data223

transmission to compress label y given x and C.224

Li and Qiu (2023) used infoscore, i.e., the aver-225

age of P (y|xi, yi, x)P (y|x) for all (x, y) pairs in226

a validation set with a diversity regularization.227

Supervised Method Though off-the-shelf re- 228

trievers offer convenient services for extensive NLP 229

tasks, they are heuristic and sub-optimal due to the 230

lack of task-specific supervision. To address this 231

issue, numerous supervised methods have been de- 232

veloped (Rubin et al., 2022; Ye et al., 2023; Wang 233

et al., 2023e; Zhang et al., 2022a). EPR (Rubin 234

et al., 2022) introduced a two-stage method to train 235

a dense retriever for demonstration selection. For a 236

specific input, it first utilized unsupervised methods 237

(e.g., BM25) to recall similar examples as candi- 238

dates and then used this data to build a supervised 239

dense retriever. Following EPR, Li et al. (2023d) 240

adopted a unified demonstration retriever to select 241

demonstrations across different tasks. Unlike prior 242

work that retrieves individual demonstrations, Ye 243

et al. (2023) proposed retrieving entire demonstra- 244

tion sets to model inter-relationships between ex- 245

amples. Additionally, Mavromatis et al. (2023) 246

introduced AdaICL, a model-adaptive method that 247

employs LLM to predict the unlabeled data set, 248

generating an uncertainty score for each instance. 249

Based on prompt tuning, Wang et al. (2023e) 250

viewed LLMs as topic models that can infer con- 251

cepts θ from a few demonstrations and generate to- 252

kens based on these concepts. They represent latent 253

concepts with task-related concept tokens, which 254

are learned to maximize P (y|x, θ). Demonstra- 255

tions are selected based on their likelihood to infer 256

the concept variable using P (θ|x, y). Additionally, 257

reinforcement learning was introduced by Zhang 258

et al. (2022a) for example selection. They formu- 259

lated demonstration selection as a Markov decision 260

process (Bellman, 1957) and selected demonstra- 261

tions via Q-learning. The action is choosing an 262

example, and the reward is defined as the accuracy 263

of a labeled validation set. 264

In order to have a more intuitive comparison of 265

the performance of several unsupervised methods, 266

we select topk (Liu et al., 2022), votek (Su et al., 267
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Model Method SST5 SST2 CQA SNLI News Avg

GPT2
topk 40.1 74.9 30.2 39.7 62.7 49.5
votek 32.4 51.0 29.8 35.8 25.5 34.9
mdl 43.3 86.7 32.7 41.4 68.0 54.4

GPT-J
topk 46.9 84.6 58.4 60.7 69.1 63.9
votek 33.8 87.3 63.4 43.1 25.3 50.6
mdl 37.6 87.9 64.1 59.8 68.2 63.5

Qwen2
topk 54.1 83.3 76.3 68.2 64.9 69.4
votek 55.3 86.9 76.1 51.6 65.3 67.0
mdl 54.6 86.1 77.1 65.0 63.2 69.2

Llama3
topk 53.0 90.3 76.1 64.0 74.0 71.5
votek 54.9 88.9 72.6 57.7 78.3 70.5
mdl 54.4 89.1 76.5 59.9 74.6 70.9

Table 2: Fair comparison of demonstration selection
methods. CQA and News are abbreviations of Com-
monsense QA and AG News, respectively. The best
results are bolded. Our experiments on topk (Liu et al.,
2022), votek (Su et al., 2023), mdl (Wu et al., 2023b)
show that topk selects the most effective examples on
average.

2023), mdl (Wu et al., 2023b) to conduct experi-268

ments. The result is shown in Table 2. The details269

of the experiment can be found in Appendix B.270

4.1.2 Demonstration Reformatting271

In addition to directly selecting examples from272

training data, another research trend involves utiliz-273

ing LLMs to reformat the representation of exist-274

ing demonstrations (Kim et al., 2022; Yang et al.,275

2023a; Hao et al., 2022b; Yang et al., 2023b; Liu276

et al., 2024a; Li et al., 2024a). For instance, Kim277

et al. (2022) proposed generating demonstrations278

directly from LLMs to reduce the reliance on exter-279

nal demonstration data. Structured Prompting (Hao280

et al., 2022b) proposed to encode demonstration281

examples separately with special positional embed-282

dings, which are then provided to the test examples283

using a rescaled attention mechanism. Diverging284

from these methods, other approaches focus on285

modifying the latent representation of demonstra-286

tions (Liu et al., 2024a; Li et al., 2024a). Specifi-287

cally, Liu et al. (2024a) developed In-Context Vec-288

tors (ICVs) derived from the latent embeddings of289

demonstration examples in LLMs. These ICVs are290

used during inference to adjust the latent states of291

the LLM, thereby enhancing the model’s ability to292

follow the demonstrations more effectively.293

4.1.3 Demonstration Ordering294

Ordering the selected demonstration examples is295

also an important aspect of demonstration organi-296

zation. Lu et al. (2022) have proven that order sen- 297

sitivity is a common problem and always exists for 298

various models. To handle this problem, previous 299

studies have proposed several training-free meth- 300

ods for sorting demonstration examples. Particu- 301

larly, Liu et al. (2022) arranged examples based on 302

their proximity to the input, positioning the closest 303

example as the rightmost demonstration. Lu et al. 304

(2022) introduced global and local entropy metrics, 305

finding a positive correlation between these metrics 306

and the ICL performance. Consequently, they uti- 307

lized the entropy metric to determine the optimal 308

demonstration ordering. Additionally, ICCL (Liu 309

et al., 2024b) suggested ranking demonstrations 310

from simple to complex, thereby gradually increas- 311

ing the complexity of demonstration examples dur- 312

ing the inference process. 313

4.2 Instruction Formatting 314

A common way to format demonstrations is con- 315

catenating examples (x1, y1), . . . , (xk, yk) with a 316

template T directly. However, in some tasks that 317

need complex reasoning (e.g., math word prob- 318

lems and commonsense reasoning), it is not easy 319

to learn the mapping from xi to yi with only k 320

demonstrations. Although template engineering 321

has been studied in prompting (Liu et al., 2023c), 322

some researchers aim to design a better format of 323

demonstrations for ICL by describing tasks with 324

the instruction I . Honovich et al. (2023) found that 325

given several demonstration examples, LLMs can 326

generate task instructions themselves. Consider- 327

ing the generation abilities of LLMs, Zhou et al. 328

(2023c) proposed an Automatic Prompt Engineer 329

for automatic instruction generation and selection. 330

To further improve the quality of the automatically 331

generated instructions, several strategies have pro- 332

posed using LLMs to bootstrap off its own genera- 333

tions (Wang et al., 2023f; Chen et al., 2024). Addi- 334

tionally, chain-of-thought (CoT) (Wei et al., 2022c) 335

introduces intermediate reasoning steps between 336

inputs and outputs to enhance problem-solving and 337

comprehension. Recent advancements have also 338

emphasized the process of enhancing step-by-step 339

reasoning in models (Zhang et al., 2023c; Wang 340

et al., 2022a; Zhou et al., 2023a). 341

4.3 Scoring Function 342

The scoring function determines how to transform 343

the predictions of a language model into an estima- 344

tion of the likelihood of a specific answer. The Di- 345

rect method uses the conditional probability of can- 346
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Method Target Efficiency Coverage Stability

Direct M(yj | C, x) +++ + +
PPL PPL(Sj) + +++ +
Channel M(x | C, yj) + + ++

Table 3: Summary of different scoring functions. Cov-
erage refers to task coverage.

didate answers represented by tokens in the model’s347

vocabulary (Brown et al., 2020). The answer with348

the highest probability is selected as the final an-349

swer, but this method restricts template design by350

requiring answer tokens to be at the end of input351

sequences. Perplexity (PPL) is another commonly352

used metric that computes the sentence perplexity353

of the entire input sequence Sj = {C, s(x, yj , I)},354

which includes tokens from demonstration exam-355

ples C, the input query x, and the candidate label356

yj . PPL evaluates the probability of the sentence,357

eliminating token position limitations but requiring358

additional computation time. Min et al. (2022a)359

proposed using channel models (Channel) to com-360

pute the conditional probability in reverse, estimat-361

ing the likelihood of the input query given the label.362

This approach requires language models to gener-363

ate every token in the input, potentially boosting364

performance under imbalanced training data. We365

summarize all three scoring functions in Table 3.366

5 Analysis367

To understand ICL, recent studies attempt to inves-368

tigate what influence ICL performance (Shin et al.,369

2022; Yoo et al., 2022; Kossen et al., 2023) and370

why ICL works (Dai et al., 2023a; Irie et al., 2022).371

In this section, we present a detailed elaboration372

of influencing factors (§5.1) and learning mecha-373

nisms (§5.2) of ICL, as illustrated in Figure 4.374

5.1 Influencing Factors375

We discuss relevant research addressing what influ-376

ences ICL performance, including factors both in377

the pretraining stage and in the inference stage.378

5.1.1 Pretraining Stage379

We first introduce factors that influence the pre-380

training stage. The diversity of pretraining cor-381

pora significantly impacts ICL performance (Shin382

et al., 2022; Yadlowsky et al., 2023; Raventós et al.,383

2023). In particular, Shin et al. (2022) found that384

the source domain is more important than the cor-385

pus size, suggesting that combining multiple cor-386

pora may lead to the emergence of ICL ability.387

Similarly, Raventós et al. (2023) empirically identi- 388

fied a task diversity threshold beyond which LLMs 389

exhibit strong ICL capabilities in unseen tasks. An- 390

other line of research investigates the impact of data 391

distribution on ICL (Chan et al., 2022; Wies et al., 392

2023). For instance, Chan et al. (2022) demon- 393

strated that ICL capability emerges when the train- 394

ing data exhibits specific distributional properties, 395

such as burstiness, wherein items appear in clusters 396

rather than being uniformly distributed over time. 397

Beyond these works, several studies have investi- 398

gated the impact of model architecture and training 399

process on ICL performance (Wei et al., 2022b; 400

Brown et al., 2020; Ding et al., 2024). Wei et al. 401

(2022b) investigated the emergent abilities of many 402

large-scale models on multiple tasks. They sug- 403

gested that a pretrained model acquires some emer- 404

gent ICL abilities when it reaches a large scale 405

of pretraining steps or model parameters. Ding 406

et al. (2024) pointed out that the in-context sam- 407

ples should attend to each other during inference, 408

indicating that current causal LLMs may lead to 409

suboptimal ICL performance. 410

5.1.2 Inference Stage 411

During inference, there are also multiple proper- 412

ties of demonstration examples that influence ICL 413

performance. Min et al. (2022c) proved that input- 414

label settings such as the pairing format, the expo- 415

sure of label space, and the input distribution con- 416

tribute substantially to ICL performance. However, 417

contrary to the conclusion in Min et al. (2022c) 418

that input-label mapping matters little to ICL, latter 419

studies showed that the accurate mapping influence 420

ICL performance significantly (Yoo et al., 2022; 421

Pan et al., 2023a; Tang et al., 2023a). Wei et al. 422

(2023b) further pointed that flipped or semantically- 423

unrelated input-label mapping also can be learned. 424

From the perspective of demonstration construc- 425

tion, recent literature focuses on the diversity and 426

simplicity of demonstrations (An et al., 2023), the 427

order of samples (Lu et al., 2022; Zhang et al., 428

2022b; Liu et al., 2023b), and the similarity be- 429

tween demonstrations and queries (Liu et al., 2022). 430

For example, Liu et al. (2022) found that demon- 431

stration samples with embeddings closer to those 432

of the query samples typically yield better perfor- 433

mance than those with more distant embeddings. 434

Notably, despite efforts to refine demonstrations to 435

optimize the performance, there still remain clear 436

feature biases during ICL inference (Si et al., 2023). 437

Overcoming strong prior biases and ensuring the 438
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Figure 4: Summary of factors that have a relatively strong correlation to ICL performance and different perspectives
to explain why ICL works.

model gives equal weight to all contextual informa-439

tion remain challenges (Kossen et al., 2023).440

5.2 Learning Mechanism441

From a learning mechanism perspective, we delve442

into the research addressing why ICL is effective.443

5.2.1 Functional Modules444

The ICL capability is intimately connected to spe-445

cific functional modules within Transformers. As446

one of the core components, the attention module447

is a focal point in the study of ICL mechanism (Ols-448

son et al., 2022; Bietti et al., 2023; Dai et al., 2023a;449

Irie et al., 2022; Li et al., 2023c; Gao et al., 2023;450

Zhang et al., 2023b). Particularly, Olsson et al.451

(2022) identified specific attention heads, referred452

to as “induction heads”, that can replicate previous453

patterns for next-token prediction, thus progres-454

sively developing ICL capabilities. Additionally,455

Wang et al. (2023b) focused on the information456

flow in Transformers and found that during the457

ICL process, demonstration label words serve as458

anchors, which aggregate and distribute key infor-459

mation for the final prediction.460

5.2.2 Theoretical Interpretation461

In this subsection, we introduce the theoretical in-462

terpretations of ICL from different views.463

Bayesian View In the Bayesian framework, ICL464

is explained as implicit Bayesian inference, where465

models perform ICL by identifying a shared latent466

concept among examples (Xie et al., 2022; Wies467

et al., 2023; Ahuja et al., 2023; Jiang, 2023; Wang468

et al., 2023e). Additional perspectives suggest that469

LLMs encode the Bayesian Model Averaging al-470

gorithm via the attention mechanism (Zhang et al.,471

2023b). As the number of in-context examples in-472

creases, implicit Bayesian inference becomes anal-473

ogous to kernel regression (Han et al., 2023a).474

Gradient Descent View Gradient descent offers475

another valuable lens for understanding ICL. Dai476

et al. (2023a) identified a dual form between Trans- 477

former attention and gradient descent, finding that 478

GPT-based ICL behaves similarly to explicit fine- 479

tuning from multiple perspectives. Other studies 480

have attempted to establish connections between 481

ICL and gradient descent in simplified regression 482

settings (von Oswald et al., 2023; Ahn et al., 2023; 483

Mahankali et al., 2023; Li et al., 2023c). For in- 484

stance, von Oswald et al. (2023) showed that linear 485

attention-only Transformers with manually con- 486

structed parameters are closely related to models 487

learned by gradient descent. Li et al. (2023c) found 488

that self-attention-only Transformers exhibit sim- 489

ilarities with models trained via gradient descent. 490

However, the simplified settings used in these stud- 491

ies have led to debates about the direct applicability 492

of these connections in real-world contexts (Shen 493

et al., 2024). Fu et al. (2023) argued that Trans- 494

formers perform ICL on linear regression using 495

higher-order optimization techniques rather than 496

gradient descent. 497

Other Views Beyond connecting ICL with a sin- 498

gle algorithm, researchers have analyzed it from 499

various perspectives, including ability decoupling, 500

algorithmic learning, and information theory. Pan 501

et al. (2023b) decoupled ICL capabilities into task 502

recognition ability and task learning ability, each 503

manifesting under different conditions. Another 504

typical theory abstracts ICL as an algorithmic learn- 505

ing problem (Akyürek et al., 2023; Garg et al., 506

2022; Li et al., 2023e; Bai et al., 2023b), where 507

Transformers dynamically select algorithms, such 508

as gradient descent and ridge regression, tailored to 509

different ICL instances. Moreover, Hahn and Goyal 510

(2023) utilized information theory to show an er- 511

ror bound for ICL under linguistically motivated 512

assumptions, explaining how next-token prediction 513

can bring about the ICL ability. 514

These analytical studies have taken an essen- 515

tial step to explain ICL. However, most of them 516

focused on simple tasks and small models. Extend- 517

7



ing analysis on extensive tasks and large models518

may be the next step to be considered.519

6 Application520

Given its user-friendly interface and lightweight521

prompting method, ICL has broad applications on522

traditional NLP tasks (Kim et al., 2022; Min et al.,523

2022b; Zhu et al., 2023b). Particularly, by using524

demonstrations that explicitly guide the reasoning525

process, ICL manifests remarkable effects on tasks526

requiring complex reasoning (Wei et al., 2022c; Li527

et al., 2023b; Zhou et al., 2022) and compositional528

generalization (Zhou et al., 2023a).529

We explore several emerging and prevalent530

applications of ICL, including data engineering,531

model augmentation, and knowledge updating. 1)532

Data Engineering: Unlike traditional methods533

such as human annotation and noisy automatic534

annotation, ICL generates relatively high-quality535

data at a lower cost, leading to improved perfor-536

mance. (Wang et al., 2021; Khorashadizadeh et al.,537

2023; Ding et al., 2023). 2) Model Augmentation:538

The context-flexible nature of ICL shows promise539

in model augmentation. It can enhance retrieval-540

augmented methods by prepending grounding doc-541

uments to the input (Ram et al., 2023). Addition-542

ally, ICL for retrieval demonstrates potential in543

steering models toward safer outputs (Panda et al.,544

2023; Meade et al., 2023). 3) Knowledge Up-545

dating: LLMs often contain outdated or incorrect546

knowledge (Dong et al., 2023). ICL has demon-547

strated efficacy in revising such knowledge through548

carefully crafted demonstrations, yielding higher549

success rates compared to gradient-based meth-550

ods (De Cao et al., 2021).551

As mentioned above, ICL has yielded significant552

benefits on both traditional and emergent NLP ap-553

plications. The tremendous success of ICL in NLP554

has inspired researchers to explore its potential in555

various modalities beyond text (elaborated in Ap-556

pendix D), including vision (Bar et al., 2022; Wang557

et al., 2023c), vision-language (Tsimpoukelli et al.,558

2021; Alayrac et al., 2022), as well as speech appli-559

cations (Wang et al., 2023a; Zhang et al., 2023d).560

7 Challenges and Future Directions561

In this section, we review existing challenges and562

discuss future directions for ICL.563

Efficiency and Scalability The use of demonstra-564

tions in ICL introduces two challenges: (1) higher565

computational costs with an increasing number of566

demonstrations (efficiency), and (2) fewer learn- 567

able samples due to the maximum input length of 568

LLMs (scalability). Prior research has attempted to 569

mitigate these issues by distilling lengthy demon- 570

strations into compact vectors (Li et al., 2024d,c) or 571

expediting LLM inference times (Liu et al., 2023d). 572

However, these methods often involve a trade-off in 573

performance or necessitate access to model param- 574

eters, which is impractical for closed-source mod- 575

els like ChatGPT and Claude (Zhou et al., 2023b). 576

Thus, enhancing the scalability and efficiency of 577

ICL with more demonstrations remains a signifi- 578

cant challenge. 579

Generalization ICL heavily relies on high- 580

quality demonstrations selected from annotated ex- 581

amples, which are often scarce in low-resource 582

languages and tasks. This scarcity poses a chal- 583

lenge to the generalization ability of ICL (He et al., 584

2024). Given that there is a substantial discrepancy 585

in the availability of annotated high-resource data 586

and low-resource data, the potential to leverage 587

high-resource data to address low-resource tasks is 588

highly appealing (Chatterjee et al., 2024; Tanwar 589

et al., 2023). 590

Long-context ICL Recent advances in context- 591

extended LLMs have spurred research into the 592

impact of ICL when using an increasing number 593

of demonstration examples (Agarwal et al., 2024; 594

Bertsch et al., 2024). However, researchers have 595

found that increasing the number of demonstrations 596

does not necessarily enhance performance and may 597

even be detrimental. These performance declines 598

indicate a need for further investigation. Addition- 599

ally, Li et al. (2024b) developed LongICLBench, 600

which includes diverse extreme-label classification 601

tasks, revealing further weaknesses of LLMs in 602

comprehending extended demonstrations. 603

8 Conclusion 604

In this paper, we comprehensively review the ex- 605

isting literature on ICL, examining advanced tech- 606

niques, conducting analytical studies, discussing 607

relevant applications, and identifying critical chal- 608

lenges and potential directions for future research. 609

To our knowledge, this is the first comprehensive 610

survey dedicated to ICL. We aim to highlight the 611

current state of research in ICL and provide insights 612

to guide future work in this promising area. 613
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Limitations614

This paper offers a comprehensive examination and615

summary of current methodologies and analyses in616

the area of In-Context Learning (ICL). However,617

given the extensive body of related work, partic-618

ularly in demonstration design and the principle619

analysis of ICL, we may have overlooked some620

equally valuable contributions. Additionally, we621

outline several future directions for research in ICL,622

including long-context ICL, efficiency and scala-623

bility in ICL, etc. We plan to leave these aspects624

for future work.625
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A Takeaway1660

Through a comprehensive literature review of ICL,1661

we have discovered takeaways across several do-1662

mains. These include training, demonstration de-1663

sign, scoring functions, analysis, and ICL applica-1664

tions that go beyond text.1665

A.1 Training1666

To further enhanced ICL capabilities, methods pro-1667

pose to train the LLMs in the stage of pre-training1668

and warmup before ICL inference.1669

3 Takeaway: (1) The key idea of training before1670

inference is to bridge the gap between pretraining1671

and downstream ICL formats by introducing ob-1672

jectives close to in-context learning. Warmup is1673

optional for ICL as many pretrained LLMs have1674

manifested the ICL ability. (2) Compared to in-1675

context finetuning involving demonstration, instruc-1676

tion finetuning without a few examples as demon-1677

stration is simpler and more popular. All these1678

warmup methods improve the ICL capability by1679

updating the model parameters, which implies that1680

the ICL capability of the original LLMs has great1681

potential for improvement. Therefore, although1682

ICL does not strictly require model warmup, we1683

recommend adding a warmup stage before ICL in-1684

ference. (3) The performance advancement made1685

by warmup encounters a plateau when increasingly1686

scaling up the training data, indicating that LLMs1687

only need a small amount of data to adapt to learn 1688

from the context during warmup. 1689

A.2 Demonstration Organization 1690

The performance of ICL strongly relies on the 1691

demonstration surface, including the selection, for- 1692

matting, and ordering of demonstration examples. 1693

3 Takeaway: (1) Demonstration selection 1694

strategies improve the ICL performance, but most 1695

of them are instance level. Since ICL is mainly 1696

evaluated under few-shot settings, the corpus-level 1697

selection strategy is more important yet underex- 1698

plored. (2) The output score or probability distri- 1699

bution of LLMs plays an important role in instance 1700

selecting. (3) For k demonstrations, the size of 1701

search space of permutations is k!. How to find the 1702

best orders efficiently or how to approximate the 1703

optimal ranking better is also a challenging ques- 1704

tion. (4) Adding chain-of-thoughts can effectively 1705

decompose complex reasoning tasks into intermedi- 1706

ate reasoning steps. During inference, multi-stage 1707

demonstration designing strategies are applied to 1708

generate CoTs better. How to improve the CoT 1709

prompting ability of LLMs is also worth explor- 1710

ing. (5) In addition to human-written demonstra- 1711

tions, the generative nature of LLMs can be utilized 1712

in demonstration designing. LLMs can generate 1713

instructions, demonstrations, probing sets, chain- 1714

of-thoughts, and so on. By using LLM-generated 1715

demonstrations, ICL can largely get rid of human 1716

efforts on writing templates. 1717

A.3 Scoring Function 1718

The scoring function determines how to transform 1719

the predictions of a language model into an esti- 1720

mation of the likelihood of a specific answer. The 1721

answer with the highest probability is selected as 1722

the final answer. 1723

3 Takeaway: (1) Although directly adopting 1724

the conditional probability of candidate answers is 1725

efficient, this method still poses some restrictions 1726

on the template design. Perplexity is also a sim- 1727

ple and widely scoring function. This method has 1728

universal applications, including both classification 1729

tasks and generation tasks. However, both methods 1730

are still sensitive to demonstration surface, while 1731

Channel is a remedy that especially works under 1732

imbalanced data regimes. (2) Existing scoring func- 1733

tions all compute a score straightforwardly from 1734

the conditional probability of LLMs. There is lim- 1735

ited research on calibrating the bias or mitigating 1736

the sensitivity via scoring strategies. 1737
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A.4 Analysis1738

Numerous analytical studies investigate influencing1739

factors of ICL during both the pretraining and infer-1740

ence stages, and attempt to figure out the learning1741

mechanisms of ICL from the perspective of func-1742

tional modules and theoretical interpretation.1743

3 Takeaway: (1) Knowing and considering why1744

ICL works and what factors may influence can help1745

us improve the ICL performance. (2) Although1746

some analytical studies have taken a preliminary1747

step to explain ICL, most of them are limited to1748

simple tasks and small models. Extending analysis1749

on extensive tasks and large models may be the1750

next step to be considered. (3) Among existing1751

work, explaining ICL with gradient descent seems1752

to be a reasonable, general, and promising direction1753

for future research. If we build clear connections1754

between ICL and gradient-descent-based learning,1755

we can borrow ideas from the history of traditional1756

deep learning to improve ICL.1757

A.5 In-context Learning Beyond Text1758

The tremendous success of ICL in NLP has in-1759

spired researchers to explore in-context learning in1760

different modalities beyond natural language with1761

promising results.1762

3 Takeaway: (1) Properly formatted data (e.g.,1763

interleaved image-text datasets for vision-language1764

tasks) and architecture designs are key factors1765

for activating the potential of in-context learning.1766

Exploring it in a more complex structured space1767

such as for graph data is challenging and promis-1768

ing (Huang et al., 2023a). (2) Findings in textual1769

in-context learning demonstration design and selec-1770

tion cannot be trivially transferred to other modal-1771

ities. Domain-specific investigation is required to1772

fully leverage the potential of in-context learning1773

in various modalities.1774

B Experimental Detail1775

In the experiment, we utilize 8 demonstra-1776

tions and test on gpt2 (Radford et al., 2019),1777

gptj (Wang and Komatsuzaki, 2021), LLaMA3-1778

8B-Instruct(AI@Meta, 2024) and Qwen2-7B-1779

Instruct (Bai et al., 2023a). All experiments are1780

executed on a single NVIDIA A100 (80G). For1781

datasets we choose sst2 (Socher et al., 2013a),1782

sst5 (Socher et al., 2013b), commonsense_qa (Tal-1783

mor et al., 2019), ag_news (Zhang et al., 2015)1784

and snli (Bowman et al., 2015). For the last two1785

datasets, we only select 1000 data from the train-1786

Benchmark Tasks #Tasks

BIG-Bench
(Srivastava et al., 2022) Mixed tasks 204

BBH
(Suzgun et al., 2023) Unsolved problems 23

PRONTOQA
(Saparov and He, 2023) Question answering 1

MGSM
(Shi et al., 2022) Math problems 1

LLMAS
(Valmeekam et al., 2022) Plan and reasoning tasks 8

OPT-IML Bench
(Iyer et al., 2022) Mixed tasks 2000

Table 4: New challenging evaluation benchmarks for
ICL. For short, we use LLMAS to represent LLM As-
sessment Suite (Valmeekam et al., 2022).

ing set for retrieval and the first 1000 data from 1787

the test set for testing. During the inference phase, 1788

a PPL-based approach is employed. The entire 1789

code framework is built upon OpenICL (Wu et al., 1790

2023a), for which we extend our gratitude to the 1791

authors. 1792

C Evaluation and Resources 1793

C.1 Traditional Tasks 1794

As a general learning paradigm, ICL can be ex- 1795

amined on various traditional datasets and bench- 1796

marks, e.g., SuperGLUE (Wang et al., 2019), 1797

SQuAD (Rajpurkar et al., 2018). Implementing 1798

ICL with 32 randomly sampled examples on Su- 1799

perGLUE, Brown et al. (2020) found that GPT- 1800

3 can achieve results comparable to state-of-the- 1801

art (SOTA) finetuning performance on COPA and 1802

ReCoRD, but still falls behind finetuning on most 1803

NLU tasks. Hao et al. (2022b) showed the po- 1804

tential of scaling up the number of demonstration 1805

examples. However, the improvement brought by 1806

scaling is very limited. At present, compared to 1807

finetuning, there still remains some room for ICL 1808

to reach on traditional NLP tasks. 1809

C.2 New Challenging Tasks 1810

In the era of large language models with in-context 1811

learning capabilities, researchers are more inter- 1812

ested in evaluating the intrinsic capabilities of large 1813

language models without downstream task finetun- 1814

ing (Bommasani et al., 2021). 1815

To explore the capability limitations of LLM on 1816

various tasks, Srivastava et al. (2022) proposed 1817

the BIG-Bench (Srivastava et al., 2022), a large 1818

benchmark covering a large range of tasks, includ- 1819

ing linguistics, chemistry, biology, social behav- 1820

19



ior, and beyond. The best models have already1821

outperformed the average reported human-rater1822

results on 65% of the BIG-Bench tasks through1823

ICL (Suzgun et al., 2023). To further explore tasks1824

actually unsolvable by current language models,1825

Suzgun et al. (2023) proposed a more challenging1826

ICL benchmark, BIG-Bench Hard (BBH). BBH in-1827

cludes 23 unsolved tasks, constructed by selecting1828

challenging tasks where the state-of-art model per-1829

formances are far below the human performances.1830

Besides, researchers are searching for inverse scal-1831

ing tasks,2 that is, tasks where model performance1832

reduces when scaling up the model size. Such1833

tasks also highlight potential issues with the cur-1834

rent paradigm of ICL. To further probe the model1835

generalization ability, Iyer et al. (2022) proposed1836

OPT-IML Bench, consisting of 2000 NLP tasks1837

from 8 existing benchmarks, especially benchmark1838

for ICL on held-out categories.1839

Specifically, a series of studies focus on ex-1840

ploring the reasoning ability of ICL. Saparov and1841

He (2023) generated an example from a synthetic1842

world model represented in first-order logic and1843

parsed the ICL generations into symbolic proofs1844

for formal analysis. They found that LLMs can1845

make correct individual deduction steps via ICL.1846

Shi et al. (2022) constructed the MGSM bench-1847

mark to evaluate the chain-of-thought reasoning1848

abilities of LLMs in multilingual settings, finding1849

that LLMs manifest complex reasoning across mul-1850

tiple languages. To further probe more sophisti-1851

cated planning and reasoning abilities of LLMs,1852

Valmeekam et al. (2022) provided multiple test1853

cases for evaluating various reasoning abilities on1854

actions and change, where existing ICL methods1855

on LLMs show poor performance.1856

In addition, Tang et al. (2023b) proposed a1857

benchmark called SAMSum, which is a human-1858

annotated dataset specifically designed for multi-1859

turn dialogue summarization, to evaluate the qual-1860

ity of dialogue summaries generated by LLMs via1861

ICL.1862

C.3 Open-source Tools1863

Noticing that ICL methods are often implemented1864

differently and evaluated using different LLMs and1865

tasks, Wu et al. (2023a) developed OpenICL, an1866

open-source toolkit enabling flexible and unified1867

ICL assessment. With its adaptable architecture,1868

OpenICL facilitates the combination of distinct1869

2https://github.com/inverse-scaling/prize
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components and offers state-of-the-art retrieval and 1870

inference techniques to accelerate the integration 1871

of ICL into advanced research. 1872

D In-Context Learning Beyond Text 1873

The tremendous success of ICL in NLP has in- 1874

spired researchers to explore its potential in differ- 1875

ent modalities, including visual, vision+language 1876

and speech tasks as well. 1877

D.1 Visual In-Context Learning 1878

Employing masked auto-encoders (MAE) for im- 1879

age patch infilling, the model trained by Bar et al. 1880

(2022) generates consistent output images at in- 1881

ference, demonstrating robust ICL capabilities for 1882

tasks like image segmentation. This method is 1883

expanded in Painter (Wang et al., 2023c), which 1884

incorporates multiple tasks to develop a general- 1885

ist model with competitive performance. SegGPT 1886

(Wang et al., 2023d) further builds on this by inte- 1887

grating diverse segmentation tasks and exploring 1888

ensemble techniques to enhance example quality. 1889

Additionally, Wang et al. (2023g) introduce the 1890

Prompt Diffusion model, the first diffusion-based 1891

model with ICL abilities, guided by an extra text 1892

prompt for more precise image generation, as illus- 1893

trated in Figure 5. 1894

Similar to ICL in NLP, the effectiveness of visual 1895

in-context learning greatly depends on the choice 1896

of demonstration images, as shown in research by 1897

(Zhang et al., 2023a) and (Sun et al., 2023). To 1898

optimize this, Zhang et al. (2023a) examine two 1899

strategies: using an unsupervised retriever to select 1900

the nearest samples with an existing model, and a 1901

supervised approach to train a specialized retriever 1902

to boost ICL performance. These approaches im- 1903

prove results by ensuring semantic similarity and 1904

better alignment in viewpoint, background, and ap- 1905

20
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pearance. Beyond retrieval, Sun et al. (2023) also1906

investigate a prompt fusion technique to further1907

enhance outcomes.1908

D.2 Multi-Modal In-Context Learning1909

In the vision-language domain, a vision encoder1910

paired with a frozen language model demonstrates1911

multi-modal few-shot learning capabilities after1912

training on image-caption datasets, as shown by the1913

Frozen model (Tsimpoukelli et al., 2021). Extend-1914

ing this, Flamingo integrates a vision encoder with1915

large language models (LLMs) for enhanced in-1916

context learning across multi-modal tasks, leverag-1917

ing large-scale web corpora (Alayrac et al., 2022).1918

Similarly, Kosmos-1 exhibits zero-shot, few-shot,1919

and multi-modal chain-of-thought prompting abil-1920

ities (Huang et al., 2023b). METALM intro-1921

duces a semi-causal language modeling objective1922

to achieve strong ICL performance across vision-1923

language tasks (Hao et al., 2022a). The ICL-1924

D3IE approach employs a novel in-context learning1925

framework that iteratively updates diverse demon-1926

strations—including hard, layout-aware, and for-1927

matting demonstrations to train large language1928

models (LLMs) for enhanced document informa-1929

tion extraction (DIE)(He et al., 2023). Recent1930

advancements include creating instruction tun-1931

ing datasets from existing vision-language tasks1932

or with advanced LLMs like GPT-4, connecting1933

LLMs with powerful vision foundational models1934

like BLIP-2 for multi-modal learning (Xu et al.,1935

2023b; Li et al., 2023a; Liu et al., 2023a; Zhu et al.,1936

2023a; Dai et al., 2023b).1937

D.3 Speech In-Context Learning1938

In the speech area, Wang et al. (2023a) treated text-1939

to-speech synthesis as a language modeling task.1940

They use audio codec codes as an intermediate rep-1941

resentation and propose the first TTS framework1942

with strong in-context learning capability. Subse-1943

quently, VALLE-X (Zhang et al., 2023d) extend the1944

idea to multi-lingual scenarios, demonstrating su-1945

perior performance in zero-shot cross-lingual text-1946

to-speech synthesis and zero-shot speech-to-speech1947

translation tasks.1948
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