
Under review as a conference paper at ICLR 2022

FEDDROP: TRAJECTORY-WEIGHTED DROPOUT
FOR EFFICIENT FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning (FL) enables edge clients to train collaboratively while pre-
serving individual’s data privacy. As clients do not inherently share identical data
distributions, they may disagree in the direction of parameter updates, resulting
in high compute and communication costs in comparison to centralized learning.
Recent advances in FL focus on reducing data transmission during training; yet
they neglected the increase of computational cost that dwarfs the merit of reduced
communication. To this end, we propose FedDrop, which introduces channel-wise
weighted dropout layers between convolutions to accelerate training while min-
imizing their impact on convergence. Empirical results show that FedDrop can
drastically reduce the amount of FLOPs required for training with a small increase
in communication, and push the Pareto frontier of communication/computation
trade-off further than competing FL algorithms.

1 INTRODUCTION

In the light of the importance of personal data and the recent strict privacy regulations, e.g. the General
Data Protection Regulation (GDPR) of the European Union (Voigt & Von dem Bussche, 2017; Wolters,
2017; Politou et al., 2018), there is now a great amount of risk, responsibility (Edwards et al., 2016;
Culnan & Williams, 2009) and technical challenges for securing private data centrally (Sun et al.,
2014); it is often impractical to upload, store and use data on central servers. To this end, federated
learning (FL) (McMahan et al., 2017; Li et al., 2019a) enables multiple edge compute devices to
learn a global shared model collaboratively in a communication-efficient way without collecting
their local training data. When compared against naïve decentralized SGD, Federated averaging
(FedAvg) (McMahan et al., 2017) and subsequent FL algorithms (Li et al., 2020; Karimireddy et al.,
2020) reduce the burden of data transmission by many orders of magnitude.

While these communication-efficient methods can notably alleviate the difficulties of using FL in
scenarios with limited bandwidth or data-quota, they, however, entail a drastic increase in computation
cost, which has rarely been addressed by previous literature on FL. It has been argued that communi-
cation is several orders of magnitude more expensive than computation on edge devices (Li et al.,
2019a; Huang et al., 2013). Yet existing FL methods optimize for communication so aggressively that
an iPhone 12 Pro running as a FedAvg client in our test1 would spend at least 16 minutes on training,
before even transmitting 180 MB of data, which only takes fraction of a second under the modern
5G infrastructure. The savings in communication thus are completely dwarfed by the expensive
computation.

In a FL setup, models trained by the clients may disagree on the gradient direction to update the same
neurons if the user data distributions are non-IID. In Figure 1, we demonstrate this effect with an
initial round of FedAvg training. It turns out that clients sharing similar data distributions tend to
produce similar update trajectories to the same channel, and different distributions observe disparate
trajectories. From this example, it can be observed that the consequence of non-IID data is two-fold.
First, a naïve averaging of client parameters may cause these conflicting signals to cancel out each
other, resulting in a slow convergence of the global model. Second, neurons in a layer tend to learn
distinct features, and yet they cannot learn meaningfully if these features are absent in the client’s
training data. Since neuron training is heavily dependent on the client’s local data, it presents us an

1See Appendix F.6 for the setup.

1

Under review as a conference paper at ICLR 2022

Figure 1: We synthesized 20 clients with the Fashion-MNIST training data, where every two clients
received only the same class images to simulate a concept shift, and separately trained the same CNN
model for 1 epoch. We present all filter parameters update magnitudes for the first 8 channels (row)
in the first convolutional layer for all clients (column) after 1 round of training. The pairs of clients
grouped together with same colors (one lighter and one darker) signify that they shared the same data
distribution. Each polar plot contains the update magnitudes of all parameters in the same channel.
The length of each ray is the magnitude of the parameter update, and the parameters are arranged
radially in each plot.

opportunity: can we concentrate training effort to neurons that are correlated to the current data
distribution of the client, while paying less attention to neurons that are less relevant to the client?
To leverage this, we introduce FedDrop, which introduces SyncDrop layers to structurally sparsify
client models, and on the server-side an inter-client trajectory-based optimization of the dropout
probabilities used by SyncDrop to speed up model training. FedDrop brings two-fold advantages:
dropped neurons can simply be skipped, and thus reduce the training FLOPs required per step; and
dropout probabilities of each neuron can be tuned individually to minimize the impact on the global
averaged model updates to assist convergence. Overall, as evinced by our experiments, FedDrop
enables a much improved communication/computation trade-off relationship than traditional FL
approaches.

Our contributions in this paper are as follows:

• We present SyncDrop layers, which are synchronous structural dropouts with adaptive keep
probabilities, to reduce the computational cost required by FL.

• With SyncDrop, we formally derive the FedDrop objective that adjusts each neuron’s dropout
probability to improve convergence by minimizing the disparities among inter-client update
trajectories. We further introduce FLOPs-based constraints to enforce sparsity per FL round,
allowing the trade-off between FLOPs and communication to be tuned easily.

• Empirical results reveal that the combined method, FedDrop, attains a substantially better
communication/computation trade-off in comparison to other FL methods.

2 RELATED WORK

Federated learning. Distributed machine learning has a long history of progress and success (Peteiro-
Barral & Guijarro-Berdiñas, 2013; Li et al., 2014), yet it mainly focuses on training with IID data.
The Federated Learning (FL) paradigm and the Federated Averaging algorithm (FedAvg) initially
introduced by McMahan et al. (2017) allow clients to train collaboratively without sharing the private
data in a communication-efficient manner, To further tackle data heterogeneity, FedProx (Li et al.,
2020) introduces new regularizations, and SCAFFOLD (Karimireddy et al., 2020) presents control
variates to account for client drifts and reduce the inter-client variance. While being effective at
reducing communication, the above methods neglected the computational costs associated with the
training process.

2

Under review as a conference paper at ICLR 2022

Computation vs. communication during training. There are a few precursory methods that focus
on the joint optimization of computation and communication costs during training. Caldas et al.
(2018a) introduced federated dropout, which prunes parameters following a uniform random distribu-
tion, whereas PruneFL (Jiang et al., 2019) proposes a greedy gradient-magnitude-based unstructured
pruning. In each FL round, both methods produce a shared pruned model with fine-grained spar-
sity for all clients. Such unstructured sparsity is difficult to utilize for training acceleration, and a
shared global model cannot exploit the data distribution of individual clients. Adaptive federated
dropout (Bouacida et al., 2020) partially addresses the latter issue by allowing each client to select a
sub-model to join training. FjORD (Horvath et al., 2021) introduces ordered dropout to tackle the
problem of system heterogeneity in FL with sub-model training that dynamically changes model
capabilities using uniform sampling. FedGKT (He et al., 2020) transmits shallow layer activations to
offload training of subsequent layers to the server. However, the privacy implications were not well
explored, and the trained models were substantially larger, which may limit their inference speed on
edge devices. It is noteworthy that FedDrop differs from these approaches as it takes into account the
non-IID client data distributions in a FL setting, and computes inter-client channel selection decisions
that would minimize the impact on convergence.

Dropout algorithms in centralized training. Dropout (Hinton et al., 2012; Srivastava et al., 2014)
may improve neural network training by reducing the overfitting effect and allow it to generalize
better. It is done by randomly setting parts of the connections or weights to zero in a network, and
scaling the remaining values accordingly. Since its advent, there have been an increasing interest in
applying dropout in a structural fashion (Huang et al., 2015; Ghiasi et al., 2018; Hou & Wang, 2019).
Nonetheless, the above methods missed the opportunity to explore the implications of a structural
dropout on the FLOPs consumed by training or inference.

Structural pruning. A closely related topic is structural neuron pruning/selection for accelerated
inference. These work propose new ways to extract a smaller accurate network from the original (He
et al., 2018; Wu et al., 2019; Li et al., 2019b; Herrmann et al., 2020), and can even do so dynamically
with an input-dependent policy (Gao et al., 2019; Hua et al., 2019; Wang et al., 2020c).

3 THE FEDDROP METHOD

3.1 HIGH-LEVEL OVERVIEW

Training round
<latexit sha1_base64="ZokdMvxc8L9mWJ7SYLtxAQLwWgU=">AAAB9HicbVDLSgNBEOyNrxhfUY9eFoMgGMKuKHoRA4p4jGgSIVnC7GQ2GTIzu8zMBsOST/CqF2/i1YN/I/ghHjw4eQiaWNBQVHfR3eVHjCrtOO9WamZ2bn4hvZhZWl5ZXcuub1RUGEtMyjhkobz1kSKMClLWVDNyG0mCuM9I1e+cDfrVLpGKhuJG9yLicdQSNKAYaSNdyz23kc05BWcIe5q4Y5I7/To/uXjrfJYa2Y96M8QxJ0JjhpSquU6kvQRJTTEj/Uw9ViRCuINapGaoQJwoLxme2rd3jNK0g1CaEtoeqr8dCeJK9bif93n+7sfDkW6ryamB+F+vFuvg2EuoiGJNBB6tDGJm69AeJGA3qSRYs54hCEtqrrZxG0mEtckpY+JwJ5+fJpX9gntYcK6cXPEARkjDFmzDLrhwBEW4hBKUAUML7uEBHq2u9WQ9Wy+j0ZQ19mzCH1iv3ywqlWk=</latexit>

r + 1

O
pt

im
iz

e

Inter-Client
Trajectory Similarity

FLOPs budget

Server aggregation round <latexit sha1_base64="PIm4sDm+sXlHIia6TtJjpNe04xA=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAILkqZEUV3Fty4bMFeoB1KJk3b0CQzJGfEMvQJ3OrC7sStL+CjCD6MmbaCtv4Q+PjP+ck5J4gEN+C6n05mZXVtfSO7mdva3tndy+8f1E0Ya8pqNBShbgbEMMEVqwEHwZqRZkQGgjWC4U1ab9wzbXio7mAUMV+SvuI9TglYq6o7+YJbcqfCy+DNoXD98ZJqUunkv9rdkMaSKaCCGNPy3Aj8hGjgVLBxrh0bFhE6JH3WsqiIZMZPpoOO8Yl1urgXavsU4Kn7O5EQacxIBsVAFh9+MpLAwCx2peZ/tVYMvSs/4SqKgSk6+7IXCwwhTvfHXa4ZBTGyQKjmdmpMB0QTCvZKOXsOb3H5ZaiflbyLklt1C+VzNFMWHaFjdIo8dInK6BZVUA1RxNAjekLPDjgT59V5m7VmnHnmEP2R8/4N+SqVcQ==</latexit>r
Weighted-average model parameters

<latexit sha1_base64="jyh2aFKzWbnCX3BYtwXdp8dcU9g=">AAACCHicbZDLSsNAFIYnXmu9VcWVm2ARXJSSiKI7C25cVrAXaEuZTE/boTNJmDkRS8gL+Aa6c6sbd9KtbyH4ME7aCtr6w8DHf87hnPm9UHCNjvNpLSwuLa+sZtay6xubW9u5nd2qDiLFoMICEai6RzUI7kMFOQqohwqo9ATUvMFVWq/dgdI88G9xGEJL0p7Pu5xRNFY7tx83kYsOxE1PGuwD0iRJ2rm8U3TGsufBnUL+cvSY6qnczn01OwGLJPjIBNW64TohtmKqkDMBSbYZaQgpG9AeNAz6VIJuxePzE/vIOB27GyjzfLTH7u+JmEqth9IreLJw/zMjKfb1bFdq/ldrRNi9aMXcDyMEn01WdiNhY2CnqdgdroChGBqgTHFztc36VFGGJrusicOd/fw8VE+K7lnRuXHypVMyUYYckENyTFxyTkrkmpRJhTASk2fyQl6tB+vNerdGk9YFazqzR/7I+vgG6Fye6w==</latexit>

✓̃

Last round

Training round r
<latexit sha1_base64="PIm4sDm+sXlHIia6TtJjpNe04xA=">AAAB8nicbZDLSgMxFIYz9VbrrerSTbAILkqZEUV3Fty4bMFeoB1KJk3b0CQzJGfEMvQJ3OrC7sStL+CjCD6MmbaCtv4Q+PjP+ck5J4gEN+C6n05mZXVtfSO7mdva3tndy+8f1E0Ya8pqNBShbgbEMMEVqwEHwZqRZkQGgjWC4U1ab9wzbXio7mAUMV+SvuI9TglYq6o7+YJbcqfCy+DNoXD98ZJqUunkv9rdkMaSKaCCGNPy3Aj8hGjgVLBxrh0bFhE6JH3WsqiIZMZPpoOO8Yl1urgXavsU4Kn7O5EQacxIBsVAFh9+MpLAwCx2peZ/tVYMvSs/4SqKgSk6+7IXCwwhTvfHXa4ZBTGyQKjmdmpMB0QTCvZKOXsOb3H5ZaiflbyLklt1C+VzNFMWHaFjdIo8dInK6BZVUA1RxNAjekLPDjgT59V5m7VmnHnmEP2R8/4N+SqVcQ==</latexit>r

Parameter Update
Trajectories

Client 1

Client 2

Client 3

Client 4
<latexit sha1_base64="RVoAFbGIPqv3KWVl7wzf3eRIlpc=">AAACCXicbVDLSsNAFJ3UV62vquDGTbAILkpJpKLLghuXFewDmlIm05tm6EwSZm7UEvsF/oVb3bgTt36F4MeYphW09cCFw7n3zJ173EhwjZb1aeSWlldW1/LrhY3Nre2d4u5eU4exYtBgoQhV26UaBA+ggRwFtCMFVLoCWu7wctJv3YLSPAxucBRBV9JBwD3OKKZSr3jgZG8kdz5HGDuudNAHpL1iyapYGcxFYs9IicxQ7xW/nH7IYgkBMkG17thWhN2EKuRMwLjgxBoiyoZ0AJ2UBlSC7ibZ7rF5nCp90wtVWgGamfrbkVCp9Ui6ZVeW7388kqKv56cm4n+9TozeRTfhQRQjBGy60ouFiaE5icXscwUMxSgllCme/tpkPlWUYRpeIY3Dnj9+kTRPK/ZZxbqulmrVWTB5ckiOyAmxyTmpkStSJw3CyAN5Is/kxXg0Xo034306mjNmnn3yB8bHNyjvmqg=</latexit>

✓

<latexit sha1_base64="bssKDZ5l1+3A7tMNMGa3ZW1QEYM=">AAACD3icbVDLSgNBEJz1GeMrxqMelgTBg4RdUfQY0IPHCOYB2RBmJx0zOLO7zPSqYdmLf+BPiFe9eFK8Cv6A4Mc4eQhqLGgoqrtmusuPBNfoOB/W1PTM7Nx8ZiG7uLS8sppby9d0GCsGVRaKUDV8qkHwAKrIUUAjUkClL6DuXxwN+vVLUJqHwRn2I2hJeh7wLmcUjdTObSbe8JHkqscRUs+XHvYAaTtx07SdKzolZwh7krhjUixn3p/zx3eFSjv36XVCFksIkAmqddN1ImwlVCFnAtKsF2uIKLug59A0NKASdCsZLpDaW0bp2N1QmQrQHqo/HQmVWvelv+PLnetvj6TY03+nBuJ/vWaM3cNWwoMoRgjY6MtuLGwM7UE4docrYCj6hlCmuNnaZj2qKEMTYdbE4f49fpLUdkvufsk5NbnskREyZIMUyDZxyQEpkxNSIVXCyA25Jw/k0bq1nqwX63U0OmWNPevkF6y3LzlNoE8=</latexit>

✓1

<latexit sha1_base64="qmyHc+8U9AC2yCWZC/2zX64+Y0A=">AAACD3icbVBNS8NAEN3Ur1q/aj3qIVgED6UkRdFjQQ8eK1gVmlI222m7dDcJuxO1hFz8B/4J8aoXT4pXwT8g+GPctgpafTDweDNvd+b5keAaHefdykxNz8zOZedzC4tLyyv51cKpDmPFoM5CEapzn2oQPIA6chRwHimg0hdw5vcPhv2zC1Cah8EJDiJoStoNeIczikZq5TcSb/RIctnjCKnnSw97gLSVVNK0lS86ZWcE+y9xv0ixmn17KhzebtZa+Q+vHbJYQoBMUK0brhNhM6EKOROQ5rxYQ0RZn3ahYWhAJehmMlogtbeM0rY7oTIVoD1SfzoSKrUeSL/ky9LVt0dS7OnJqaH4X68RY2e/mfAgihECNv6yEwsbQ3sYjt3mChiKgSGUKW62tlmPKsrQRJgzcbiTx/8lp5Wyu1t2jk0uO2SMLFknm2SbuGSPVMkRqZE6YeSa3JF78mDdWI/Ws/UyHs1YX5418gvW6yc63aBQ</latexit>

✓2

<latexit sha1_base64="IE3TFD9Nm56FFYWPN2sSC7A4PsY=">AAACD3icbVDJSgNBEO1xjXGL8aiHQRE8hDDjgh4DevAYwSyQCaGnU0kau2eG7ho1DHPxD/wJ8aoXT4pXwR8Q/Bg7i+D2oODxql531fMjwTU6zrs1MTk1PTObmcvOLywuLedW8lUdxopBhYUiVHWfahA8gApyFFCPFFDpC6j550eDfu0ClOZhcIb9CJqSdgPe4YyikVq59cQbPpJc9jhC6vnSwx4gbSW7adrKbTpFZwj7L3HHZLOUeXvKH99ulFu5D68dslhCgExQrRuuE2EzoQo5E5BmvVhDRNk57ULD0IBK0M1kuEBqbxmlbXdCZSpAe6h+dyRUat2XfsGXhasvj6TY07+nBuJ/vUaMncNmwoMoRgjY6MtOLGwM7UE4dpsrYCj6hlCmuNnaZj2qKEMTYdbE4f4+/i+p7hTd/aJzanLZIyNkyBrZINvEJQekRE5ImVQII9fkjtyTB+vGerSerZfR6IQ19qySH7BePwE8baBR</latexit>

✓3

<latexit sha1_base64="TfWumr/hP2GqZSzD9E5YvIGyCD8=">AAACD3icbVBNS8NAEN3Ur1q/aj3qIVgED6UkUtFjQQ8eK1gVmlI222m7dDcJuxO1hFz8B/4J8aoXT4pXwT8g+GPctgpafTDweDNvd+b5keAaHefdykxNz8zOZedzC4tLyyv51cKpDmPFoM5CEapzn2oQPIA6chRwHimg0hdw5vcPhv2zC1Cah8EJDiJoStoNeIczikZq5TcSb/RIctnjCKnnSw97gLSVVNK0lS86ZWcE+y9xv0ixmn17KhzebtZa+Q+vHbJYQoBMUK0brhNhM6EKOROQ5rxYQ0RZn3ahYWhAJehmMlogtbeM0rY7oTIVoD1SfzoSKrUeSL/ky9LVt0dS7OnJqaH4X68RY2e/mfAgihECNv6yEwsbQ3sYjt3mChiKgSGUKW62tlmPKsrQRJgzcbiTx/8lpztld7fsHJtcKmSMLFknm2SbuGSPVMkRqZE6YeSa3JF78mDdWI/Ws/UyHs1YX5418gvW6yc9/aBS</latexit>

✓4

<latexit sha1_base64="w5bEb/fSSMEBZDoTweigkCQKBC4=">AAACFXicbVDLSsNAFJ34rPUVdekmtAguSklE0Z0FNy4r2Ac0pUymt+3QmSTM3KglZO8fiH6EW3XhTty6FvwY04egrQcuHM69Z+be44WCa7TtT2NufmFxaTmzkl1dW9/YNLe2qzqIFIMKC0Sg6h7VILgPFeQooB4qoNITUPP6Z8N+7QqU5oF/iYMQmpJ2fd7hjGIqtcxc7I4eia97HCFxkYs2xK4nYxd7gDRJkpaZt4v2CNYscSYkf/pyP8RDuWV+ue2ARRJ8ZIJq3XDsEJsxVciZgCTrRhpCyvq0C42U+lSCbsajNRJrL1XaVidQaflojdTfjphKrQfSK3iycPPjkRR7enpqKP7Xa0TYOWnG3A8jBJ+Nv+xEwsLAGkZktbkChmKQEsoUT7e2WI8qyjANMpvG4UwfP0uqB0XnqGhf2PnSIRkjQ3ZJjuwThxyTEjknZVIhjNySR/JEno0749V4M97Ho3PGxLND/sD4+AYP6qUB</latexit>

✓̃

Optimized
Dropout Keep
Probabilities

cl
ie

nt
s

channels
ch

an
ne

lscl
ie

nt
s

clients

Client 1

Client 2

Client 3

Client 4

(a) (b) (c)

Figure 2: A high-level overview of FedDrop using FedAvg as the base algorithm. Here, we use 4
training clients for illustration. During each round of server averaging, FedDrop carries out dropout
probability optimization to encourage collaboration between sparse clients for the next training round.
Intuitively, for each neuron, if clients agree upon an update direction they would use larger keep
probabilities, and a disagreement results in lower probabilities. Clients can thus focus training effort
to their specialized neurons.

FedDrop complements existing FL methods by adding new client- and server-side components.
During client training, convolutional layers are sparsified by interleaving them with channel-wise
dropout layers, namely the SyncDrop layers. Section 3.3 discusses in depth how SyncDrop layers
compute dropout decisions. Additional optimization stages during server aggregation are added to
encourage collaboration between sparse clients. Figure 2 shows how FedDrop extends traditional
FedAvg (McMahan et al., 2017). After each round of client training, the server begins by identifying

3

Under review as a conference paper at ICLR 2022

parameter update directions of each client from the previous round, and computes a cross-client
trajectory similarity matrix for each channel neuron. This is then followed by an optimization stage
that iteratively minimizes the trajectory disparities by tuning dropout keep probabilities for each
channel neuron on each client for the next training round (Section 3.6). This process also takes into
consideration the FLOPs budget constraints to sparsify client models (Section 3.4). Finally, following
FedAvg, the server broadcasts the weighted-average model parameters to all training clients in the
new round, and finally sends the optimized probabilities to the respective clients.

3.2 PRELIMINARIES AND DEFINITIONS

FedDrop complements most FL algorithms. In this paper, we focus on its use on FedAvg (McMahan
et al., 2017). We assume the training loss function of a client c ∈ C to be `c(θc), where θc comprises
the parameters {θ[l]

c : l ∈ L} of all layers in the model of client c.

In each FedAvg training round r, clients begin by training on the loss function, with initial parameters
θ(r) received from the server for this round:

θ(r+1)
c = SGDc

(
`c,θ

(r), η, E
)
. (1)

Here SGDc indicates that client c carries out stochastic gradient descent (SGD) on `c(θ
(r)
c) locally,

and it uses a learning rate η forE epochs. The FedAvg server then aggregates client model parameters
after the rth training round, by taking the weighted average of them:

θ(r+1) =
∑

c∈C λcθ
(r+1)
c , (2)

where λc is the weight of client c and is proportional to the size of its training set |Dc| with∑
c∈C λc = 1. Finally, the (r + 1)th training round starts by repeating the above procedure.

3.3 SYNCHRONIZED DROPOUT

To induce sparsity in a stochastic manner, and subsequently introduce training correlation across
clients, we designed a threshold-based dropout layer, SyncDrop, to synchronize dropout decisions
across multiple clients.

Initially for all sampled clients c ∈ C ⊆ C, the server provides them with their corresponding dropout
keep probabilities pc ∈ [0, 1]

N, and we assume p ∈ [0, 1]
C×N to be the concatenated probabilites

from all sampled clients. Each element pn
c in p denotes the keep probability of the channel neuron

n ∈ N in client c ∈ C. We additionally use p[l]
c , a slice of pc, to indicate the probabilities of all

channels in the lth layer. During training, the lth layer samples t[l]
n from a uniform distribution U(0, 1)

for all channel neurons n in the layer, where t[l]
n is shared across clients by using the same random

seed. If pn
c < t[l]

n , a channel n in client c is dropped, i.e. we set the entire channel map to zero;
otherwise, the channel values are scaled by 1/pn

c during training2. Formally, for each client c, the lth
dropout layer computes for the input x[l]:

drop
(
x[l],p[l]

c

)
, d[l]

c ◦ x[l] ◦ p[l]

c
◦−1
,where d[l]

c , 1[t[l] < p[l]

c]. (3)

Here, 1[z] is the (element-wise) indicator function, which is equal to 1 when the condition z is met
and 0 otherwise, ◦ refers to the element-wise product, the term p[l]

c
◦−1 represents the element-wise

inverse of p[l]
c , and finally all elements of t[l] are independently sampled from U(0, 1) and shared

across clients. Figure 3a provides a high-level overview of the procedure described above.

From the local perspective of a client c, the dropout decision d[l]
c is equivalent to the Bernoulli

distributions B(p[l]
c). An important distinction from independent Bernoulli distributions is that the

distribution of d[l]
c is correlated across clients c ∈ C. Given a pair of clients (i, j) for channel n:

Et∼U(0,1)
[
dn
i dn

j

]
=

∫ 1

0

1[t < pn
i] · 1[t < pn

j]dt = min
(
pn
i ,p

n
j

)
. (4)

This enables us to adjust the correlation of the same channel neurons between any pairs of clients,
and Section 3.6 makes use of this property to minimize the model update disparities across all clients.

2This is known as “inverted dropout” and implemented by PyTorch (2021) and TensorFlow (2021). Figure 7
provides ablation results on scaling for dropout to justify the design choice.

4

Under review as a conference paper at ICLR 2022

: dropped channel
: channel of 4 different clients

Ke
ep

 p
ro

ba
bi

lit
y

Channels (grouped by clients)

…
…

Client 1

…
…

Client 2

…
…

Client 3

…
…

Client 4

SyncDrop Layer (no inter-client communications)

: client channel keep probabilities
: dropped client channel
: dropout threshold, drawn from
 uniform distribution

<latexit sha1_base64="UcVjZFJgqzhJf78rxrPxujF5w/w=">AAACAXicbVBNS8NAEJ34WetX1IvgZbEIFaQkouix4MVjBdMWmlA22227dDcJuxuhhHrxr3jxoIhX/4U3/42bNgdtfTDweG+GmXlhwpnSjvNtLS2vrK6tlzbKm1vbO7v23n5Txakk1CMxj2U7xIpyFlFPM81pO5EUi5DTVji6yf3WA5WKxdG9Hic0EHgQsT4jWBupax+myFdMIF9gPSSYZ96k6pwh97RrV5yaMwVaJG5BKlCg0bW//F5MUkEjTThWquM6iQ4yLDUjnE7KfqpogskID2jH0AgLqoJs+sEEnRilh/qxNBVpNFV/T2RYKDUWoenMD1XzXi7+53VS3b8OMhYlqaYRmS3qpxzpGOVxoB6TlGg+NgQTycytiAyxxESb0MomBHf+5UXSPK+5lzXn7qJSrxZxlOAIjqEKLlxBHW6hAR4QeIRneIU368l6sd6tj1nrklXMHMAfWJ8/QPmVYA==</latexit>

u ⇠ U(0, 1)

(a) The SyncDrop layer.

…

SyncDrop

Conv+ReLU

SyncDrop

…

Ou
tp

u t
 s

pa
rsi

ty

Input sparsity

50%
dropped

4x FLOPs
Reduction

: dropped
: active

(b) Sparse convolution.

Figure 3: A high-level overview of the SyncDrop layer. (a) For each channel across all clients in
a forward pass, we draw u ∼ U(0, 1) from the uniform distribution. If the keep probability (1 −
dropout probability) of a channel in a client is less than u, then the channel is dropped from the model.
Note that no inter-client communications are required, as the clients are synchronized by sharing an
initial random seed. (b) When a convolutional layer is sandwiched between two SyncDrop layers, it
takes the advantage of both the input- and output-side sparsities. As an example, here dropping 50%
of both input and output channels can result in a 4× FLOPs reduction.

We define f̂ to be the sparsified variant of the original model f , where SyncDrop layers are placed
immediately after each convolutional layer with ReLU activation (Figure 3b). This enables convolu-
tional layers to be doubly accelerated by taking advantage of sparsities at both ends and skipping
dropped channels in input/output feature maps. Recalling the client model loss function `c, we
additionally use ˆ̀

c to denote the accelerated variant of the sparse model f̂ with probabilities pc.

It is noteworthy that active channels are sampled for each local training mini-batch. In addition, the
synchronization of dropout decisions is carried out with identical random seeds for all clients, and
thus it eliminates the need to communicate between clients. Finally, for inference, one may choose to
enable the SyncDrop layers for speed, or skip these layers entirely. In our evaluations, SyncDrop
layers are disabled for improved test accuracies.

3.4 FLOPS CONSTRAINTS

To encourage sparsity in models and for the optimization of p, we adopt a hyper-parameter r ∈ (0, 1]
that adjusts the FLOPs budget ratio, and define a shared global FLOPs-budget constraint g(p) ≥ 0
for all participating clients C ⊆ C in one round, where:

g(p) = r −
∑

c∈C
flops(f̂ ,pc)

/
(|C|flops(f)), (5)

and the terms flops(f̂ ,pc) and flops(f) respectively denote the FLOPs of a sparse model with
probabilities pc, and the FLOPs of the dense model f . Moreover, this constraint can be easily
modified to allow client- and layer-wise, and even heterogeneous budgets by summing over targets
with finer granularity. In Appendix B, we explain how the FLOPs of a model is computed.

3.5 PARAMETER INITIALIZATION

At model initialization, we set all values in p to be a uniform constant p such that g(p) = 0. Since
the training clients are sparse at initialization, the variance of each initialized parameters θ[l]

ij ∈ θ[l] of
the lth layer must satisfy the following condition:
Theorem 1 (Parameter initialization). To avoid vanishing/exploding gradients at initialization, the
variance of the parameters of the lth layer followed by a dropout layer with keep probability p should
be 2p/N , where N = C [l−1]K [l−1]2 is the size of the receptive field of each output channel.

In this paper, we introduce a modified He initialization (He et al., 2015), that is θ ∼ N (0,
√

2p/N).
In Appendix C.1 we provide a proof of this theorem. Both Hendrycks & Gimpel (2016) and Pretorius
et al. (2018) derived similar schemes for fixing parameters initialization of layers followed by dropout.
Figure 7 further justifies this decision empirically by ablation of the fixed initialization.

5

Under review as a conference paper at ICLR 2022

3.6 OPTIMIZING DROPOUT KEEP PROBABILITIES

In our experiments, we found that using a constant dropout keep probability is often detrimental to the
joint optimization of computation and communication costs. To speed up training while minimizing
the impact of model sparsity on global training convergence, we therefore aim to optimize the dropout
keep probabilities p for the following objective:

minp E
∥∥∥∑c∈Cλc∇θc ˆ̀

c −
∑

c∈Cλc∇θc`c
∥∥∥2
2
, (6)

i.e. the mean square error between the averaged gradients of all training clients with and without
SyncDrop layers. Intuitively, it aligns the parameter updates of sparse models with the original dense
variants for an improved convergence behavior. As a result of the correlated dropouts across clients
(4), the objective above can be minimized by adjusting all dropout keep probabilities pn

c across
neuron n on client c.

As it is impractical to communicate each step of SGD across clients, FedDrop instead optimizes
an alternative objective derived in the theorem below (proved in Appendix C.2) that approximately
minimizes the original:
Theorem 2 (Approximate Objective). Assuming that for a channel neuron n ∈ N and a pair of
clients i, j ∈ C, we have Ŝn

ij , λiλj max(pn
i ,p

n
j)∆θni · ∆θnj , where ∆θni ,∆θ

n
j are the param-

eter updates after a round of FL training, pn
i ,p

n
j are the current dropout keep probabilities, and

max(x,y) represents the element-wise max between x and y, the optimization objective of (6) can
be approximated by:

minq obj(Ŝ,q) , minq

∑
n∈N,i,j∈C Ŝn

ij/max(qn
i ,q

n
j). (7)

The optimized values q can subsequently be used as the new dropout keep probabilities for the next
round of FL training.

It is also desirable to have a bounded optimization to avoid extreme solutions. Without a FLOPs
constraint, both objectives (6) and (7) can be trivially minimized with p = 1, i.e. when none of the
channels are dropped, and Appendix C.2 provides the proofs of the following theorem:
Theorem 3 (Optimization bound). The objective minq

∑
nij Ŝn

ij/max(qn
i ,q

n
j) is trivially minimized

to
∑

nij Ŝn
ij when qn

c = 1 for ∀n ∈ N, c ∈ C.

To enforce sparsity, we therefore further constrain the optimization of q to be within the feasible
set g(p) ≥ 0 as defined in Section 3.4. In practice on the server-side after gathering model updates
from a round of sparse client training, we minimize the overall objective via gradient descent with
the interior point method:

minq obj(Ŝ,q)− µ log(g(q)). (8)
The term−µ log(g(q)) constrains the solution q to be within the feasible set g(q) ≥ 0, and the hyper-
parameter µ tunes the strength of the regularization, and is kept constant at 10−4. In Appendix D,
we describe the overall FedDrop algorithm in depth, and discuss the computational and memory
implications of FedDrop.

4 EXPERIMENTAL RESULTS

In this section, we present a comprehensive evaluation of both the communication and computation
costs of FedDrop and compare it against other FL algorithms, namely FedAvg (McMahan et al.,
2017), FedProx (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), and Caldas et al. (2018a).
We also introduce UniDrop for reference — a simple channel-wise dropout with a uniform keep
probability that is kept constant as the comparison baseline.

We conduct experiments on three popular open datasets CIFAR-10 (Krizhevsky et al., 2014), Fashion-
MNIST (Xiao et al., 2017) and SVHN (Netzer et al., 2011). To simulate non-IID training data
distribution with a concept shift, for every class label we split the training dataset into |C| parts to
be respectively received by the clients, where the size of all parts follow the Dirichlet distribution
D|C|(α) (Hsu et al., 2019; Wang et al., 2020b). For the full participation case, we used α = 0.5, 20
clients for CIFAR-10, and 100 clients for Fashion-MNIST and SVHN in all experiments by default.

6

Under review as a conference paper at ICLR 2022

We used a 9-layer VGG-style architecture (Simonyan & Zisserman, 2015) for CIFAR-10, wheras
Fashion-MNIST used a LeNet (Lecun et al., 1998) model and SVHN a smaller variant, and we
provide the details of the models and datasets in Appendix E.

For a fair comparison, we performed a grid-based search on the remaining hyperparameters for
baseline algorithms to find configurations that provide the best accuracy after 100 rounds of training
for each dataset. The search results suggested that typically setting the batch size B = 4 and learning
rate η = 0.02 were universally optimal for most methods under comparison. FedProx additionally
introduced a regularizer µ which was also optimized within {0.0001, 0.001, 0.01, 0.1}. Finally,
FedDrop introduces a global FLOPs budget per round as a ratio between r ∈ (0, 1] that can be
adjusted to steer the communication/computation trade-off as defined in (5), for which we specify the
values in the experiments below.

FLOPs vs. Accuracy. We first focus on the amount of FLOPs required by the algorithms, and
provide a set of comparisons across the FL methods for the same number of local epochs per round E,
given their respective optimal hyperparameters with an unbounded communication budget (Figure 4).
Here, we used a FLOPs ratio r = 0.5 for FedDrop. Frequent communication rounds allow the server
to more frequently optimize dropout keep probabilities for FedDrop, which can notably improve
convergence under the same FLOPs budget. In contrast, other methods struggle to improve their
convergence speed.

0 0.2 0.4 0.6 0.8 1 1.2

·1015

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 4.

0 1 2 3 4 5 6

·1014

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 2.

0 0.5 1 1.5 2 2.5 3

·1014

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 1.

Figure 4: Comparing FL methods with the same local training epochs per roundE used for CIFAR-10.

FLOPs vs. Communications. To bolster the trade-off between communication and computation, we
additionally conducted a hyperparameter exploration to navigate the Pareto frontiers of this trade-off
relationship. The hyperparameters include the number of local epochs per round E and the batch
size B. In addition, FedDrop can search for the Pareto optimal r in the set {0.2, 0.25, 0.333, 0.5}.
Figure 5 shows the FLOPs/communication trade-off of the FL methods. It is notable that with
decreasing FLOPs budgets, FedDrop expends minimal communications, whereas other methods
may have significantly larger communication costs to reach the same target accuracy. Conversely, in
Table 1, we show that FedDrop can be up to 3× more efficient in terms of FLOPs under the same
communication budget for the same accuracy goal.

1013 1013.2 1013.4 1013.6 1013.8

103

104

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) 85% for SVHN.

1013.4 1013.6 1013.8 1014
103

104

105

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) 85% for Fashion-MNIST.

1014.6 1014.8 1015 1015.2 1015.4

104

105

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) 80% for CIFAR-10.

Figure 5: Comparing the FLOPs vs. communication trade-off across different FL methods reaching a
target accuracy for a given dataset. We highlight the Pareto optimal points with dotted lines.

7

Under review as a conference paper at ICLR 2022

Table 1: Comparing the computational costs (in TFLOPs) required by FedDrop against other methods
given a communications budget. Multipliers in parentheses signify the magnitude of FLOPs increase
compared to FedDrop.

Dataset Acc. Comm.
Methods

FedDrop UniDrop FedAvg FedProx SCAFFOLD Caldas et al. (2018a)(McMahan et al., 2017) (Li et al., 2020) (Karimireddy et al., 2020)

CIFAR-10
70% 8 GB 391.35 964.12 (2.46×) 602.63 (1.54×) 669.59 (1.71×) 696.37 (1.78×) 715.19 (1.83×)

16 GB 244.79 856.99 (3.50×) 569.15 (2.32×) 589.24 (2.41×) 549.06 (2.24×) 622.48 (2.54×)

80% 16 GB 753.67 1526.52 (2.01×) 937.42 (1.24×) 1098.73 (1.46×) 1071.34 (1.42×) 1324.43 (1.76×)
32 GB 531.43 1298.88 (2.44×) 890.55 (1.68×) 964.21 (1.81×) 870.47 (1.64×) 1172.12 (2.21×)

Fashion-
MNIST

80% 4 GB 12.85 29.81 (2.32×) 32.68 (2.54×) 32.68 (2.54×) 31.25 (2.43×) 34.82 (2.71×)
8 GB 9.82 26.97 (2.74×) 30.54 (3.11×) 30.54 (3.11×) 26.99 (2.75×) 31.65 (3.22×)

85% 4 GB 32.83 65.30 (1.99×) 68.19 (2.08×) 68.19 (2.08×) 56.83 (1.73×) 94.78 (2.87×)
8 GB 25.69 59.62 (2.32×) 66.77 (2.60×) 62.51 (2.43×) 51.14 (1.99×) 72.02 (2.80×)

SVHN
80% 4 GB 7.72 14.43 (1.87×) 12.25 (1.59×) 12.25 (1.59×) 12.22 (1.58×) 17.54 (2.27×)

8 GB 6.45 13.08 (2.02×) 11.41 (1.77×) 11.42 (1.77×) 11.70 (1.81×) 13.48 (2.09×)

85% 4 GB 13.30 26.60 (2.00×) 19.99 (1.50×) 19.99 (1.50×) 22.19 (1.67×) 43.85 (3.30×)
8 GB 12.23 23.31 (1.91×) 17.82 (1.46×) 17.82 (1.46×) 16.15 (1.32×) 26.89 (2.20×)

Fractional Device Participation. To measure the performance of FedDrop in more practical dis-
tributed scenario, we scale the number of devices to 1000, while reducing the fraction of participation
rate φ per round to only 1%, yielding results in Table 2. We refer readers to Appendix F.5 for more
detailed trade-off results.

Table 2: Comparing the computational costs (in TFLOPs) required by FedDrop against other methods
given a communications budget with 1000 devices and 1% device participation ratio (φ = 0.01).

Dataset Acc. Comm.
Methods

FedDrop UniDrop FedAvg FedProx Caldas et al. (2018a)(McMahan et al., 2017) (Li et al., 2020)

CIFAR-10
70% 160 GB 122.74 290.98 (2.37×) 215.07 (1.75×) 213.46 (1.74×) 469.64 (3.83×)

320 GB 99.89 213.96 (2.14×) 194.50 (1.95×) 187.74 (1.88×) 238.93 (2.39×)

75% 160 GB 223.28 392.79 (1.76×) 322.47 (1.44×) 321.13 (1.44×) 735.59 (3.29×)
320 GB 128.52 319.57 (2.49×) 233.15 (1.81×) 225.55 (1.75×) 396.93 (3.09×)

Fashion-
MNIST

80% 4 GB 1.32 1.89 (1.43×) 2.70 (2.05×) 2.59 (1.96×) 2.89 (2.19×)
8 GB 1.04 1.64 (1.58×) 2.25 (2.16×) 2.32 (2.23×) 2.28 (2.19×)

85% 4 GB 4.83 6.72 (1.39×) 6.00 (1.24×) 6.01 (1.24×) 7.78 (1.61×)
8 GB 2.77 5.59 (2.02×) 5.54 (2.01×) 5.47 (1.97×) 6.50 (2.35×)

SVHN
80% 2 GB 0.66 1.11 (1.68×) 1.05 (1.59×) 1.04 (1.58×) 1.39 (2.11×)

4 GB 0.56 0.99 (1.77×) 0.95 (1.70×) 0.91 (1.62×) 1.14 (2.04×)

85% 2 GB 1.36 2.34 (1.72×) 1.65 (1.21×) 1.60 (1.18×) 3.10 (2.28×)
4 GB 0.94 2.17 (2.31×) 1.40 (1.49×) 1.37 (1.46×) 2.50 (2.66×)

Dataset Distribution Imbalance. To investigate how different data distributions affect the perfor-
mance of FedDrop rigorously, we provide a sweep of α ∈ {5, 0.5, 0.05} for the CIFAR-10 dataset
splits D|C|(α) to simulate increasing degrees of distribution imbalance in Figure 6. It shows that
FedDrop is the best method at maintaining accuracy with distribution imbalance w.r.t. the FLOPs
budget. We believe SCAFFOLD may be unsuited for larger models as it diverged under these
scenarios.

0 0.5 1 1.5 2

·1015

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 8, α = 5.

0 0.5 1 1.5 2

·1015

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 8, α = 0.5.

0 0.5 1 1.5 2

·1015

20

40

60

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 8, α = 0.05.

Figure 6: Varying α for the dataset splits D|C|(α) of CIFAR-10 with E = 8.

Ablation Study. To verify our design choice, we conduct a thorough set of ablations in Figure 7. We
observe a certain degree of accuracy drop as these components are ablated, confirming the significance

8

Under review as a conference paper at ICLR 2022

20 40 60 80 100
40

50

60

70

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

E = 4, sync

E = 4, no sync

E = 8, sync

E = 8, no sync

(a) r = 0.5

20 40 60 80 100
40

50

60

70

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

E = 4, sync

E = 4, no sync

E = 8, sync

E = 8, no sync

(b) r = 0.25

20 40 60 80 100
40

50

60

70

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

E = 4, fixed init, scaling

E = 4, scaling

E = 4, fixed init

(c) r = 0.5

20 40 60 80 100
40

50

60

70

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

E = 4, fixed init, scaling

E = 4, scaling

E = 4, fixed init

(d) r = 0.25

Figure 7: Ablation of design choices. (a, b) SyncDrop with and without synchronization. (c, d) with
and without dropout scaling and fixed initialization under different FLOPs ratio r for CIFAR-10.

of synchronization. This then further justifies the effectiveness of dropout scaling and initialization
that comes with theoretical guarantees.

20 40 60 80 100
60

65

70

75

80

85

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

50 k

10 k

5 k

1 k

(a) Optimization iterations.

20 40 60 80 100
60

65

70

75

80

85

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.01

0.001

0.0001

0.00001

(b) FLOPs regularizer.

1014 1014.2 1014.4 1014.6 1014.8
50

60

70

80

Number of FLOPs

A
cc

ur
ac

y
(%

)
0.75

0.5

0.333

0.25

(c) FLOPs vs. accuracy.

0 20 40 60 80

20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(d) Rounds vs. accuracy.

Figure 8: Sensitivity analyses of (a) optimization iterations I , (b) FLOPs constraint regularizer µ,
and (c, d) the FLOPs budget ratio r.

Sensitivity Analysis. Figure 8 produces a sensitivity analysis of the hyperparameters introduced
by our server-side probability objective minimization (7), namely the number of gradient descent
iterations I and the strength of regularization µ. It turns out that additional iterations can improve
convergence, which is desirable as the server compute budget is usually not the performance bot-
tleneck. Moreover, a broad range of regularization µ do not have an adverse impact on accuracy,
eliminating the need for a search. We also present an analysis on the effect of the FLOPs ratio r as
defined in (5). Reducing this ratio can sparsify models, for a faster initial convergence w.r.t. FLOPs.
However, it comes at a cost of a slower convergence in latter rounds.

Additional Results. In Appendix F, we provide additional results and analyses. Specifically, Ap-
pendix F.1 includes the trade-off curves for all datasets under different accuracy budgets. We examine
the performance impact on FL algorithms with different degrees of data imbalance (Appendix F.2),
and varying hyperparameters such as local epochs per round E (Appendix F.3) and the FLOPs budget
ratio r (Appendix F.4). Finally, Appendix F.5 provides full results with fractional device participation.

5 CONCLUSION

Recent federate learning (FL) algorithms focus on the reduction of communication costs, while
neglecting the expensive local compute required by edge clients. This could be further exacerbated
as the models we employ may increase in size over time to attain a higher task performance.
We presented FedDrop, a novel FL technique that uses synchronous dropout with adaptive keep
probabilities to concentrate the clients’ training effort on neurons that they specialize well, while
making the models sparse to reduce computational costs. Our experiments show that FedDrop can
push the Pareto frontiers of communication/computation trade-off of FL scenarios notably further
than existing algorithms. We believe this paves the way for future work that allow FL algorithms to
scale up models being trained considerably, and consequently improve their performance on more
challenging training tasks.

9

Under review as a conference paper at ICLR 2022

6 ETHICS STATEMENT

We believe FedDrop can have a positive impact on the environment as it aims to make federated
learning more efficient.

The federated learning algorithms require communicating locally optimized client models to global
server. In such a scenario, training data could potentially be recovered from model updates (Yin
et al., 2021; Wang et al., 2020a), and this could have privacy implications. Although our work do not
empirically address the privacy concern, we believe the added dropout layers do not bring noticeable
impact to the underlying FL algorithm, for the reasons below:

• The dropout probabilities are computed on the server with client updates, the optimized
probabilities are simply derived from information that are already collected by the base
algorithm.

• There is no inter-client information exchange or leakage, as each client only receives its
corresponding dropout probabilities.

7 REPRODUCIBILITY STATEMENT

We provide detailed information about model configuration in Appendix E, dataset splitting and
partitioning in Section 4, and hyperparameters for optimization in Section 4. We try to justify
the design choices of our method with ablation in Section 4, and all the experiments reported in
this manuscript are conducted exhaustively with broad choices of hyperparameters to ensure fair
evaluation for all methods. The code would be available during the review period and made public
upon acceptance.

10

Under review as a conference paper at ICLR 2022

REFERENCES

Core ML — integrate machine learning models into your app. Technical report, Apple Inc., 2021.
https://developer.apple.com/documentation/coreml.

Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. Adaptive federated dropout: Improving
communication efficiency and generalization for federated learning. CoRR, abs/2011.04050, 2020.
URL https://arxiv.org/abs/2011.04050.

Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. Expanding the reach
of federated learning by reducing client resource requirements. arXiv preprint arXiv:1812.07210,
arXiv:1812.07210, 2018a. https://arxiv.org/abs/1812.07210.

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konecný, H. Brendan McMahan, Virginia Smith, and
Ameet Talwalkar. LEAF: A benchmark for federated settings. ArXiv, abs/1812.01097, 2018b.
http://arxiv.org/abs/1812.01097.

Mary J Culnan and Cynthia Clark Williams. How ethics can enhance organizational privacy: lessons
from the choicepoint and TJX data breaches. Mis Quarterly, pp. 673–687, 2009.

Benjamin Edwards, Steven Hofmeyr, and Stephanie Forrest. Hype and heavy tails: A closer look at
data breaches. Journal of Cybersecurity, 2(1):3–14, 2016.

Xitong Gao, Yiren Zhao, Łukasz Dudziak, Robert Mullins, and Cheng zhong Xu. Dynamic channel
pruning: Feature boosting and suppression. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=BJxh2j0qYm.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. DropBlock: A regularization method for convolutional
networks. In Advances in Neural Information Processing Systems, volume 31, 2018. URL
https://proceedings.neurips.cc/paper/2018/file/7edcfb2d8f6a659ef4cd1e6c9b6d7079-Paper.pdf.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. http://proceedings.mlr.press/v9/glorot10a.html.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. In Advances in Neural Information Processing Systems 33,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), ICCV ’15, pp. 1026–1034, USA,
2015. IEEE Computer Society. ISBN 9781467383912. doi: 10.1109/ICCV.2015.123. URL
https://doi.org/10.1109/ICCV.2015.123.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: AutoML for model
compression and acceleration on mobile devices. In European Conference on Computer Vision
(ECCV), 2018.

Dan Hendrycks and Kevin Gimpel. Generalizing and improving weight initialization. CoRR,
abs/1607.02488, 2016. URL http://arxiv.org/abs/1607.02488.

Charles Herrmann, Richard Strong Bowen, and Ramin Zabih. Channel selection using Gumbel
softmax. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Euro-
pean Conference on Computer Vision (ECCV), pp. 241–257, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-58583-9.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580,
2012. URL http://arxiv.org/abs/1207.0580.

11

https://developer.apple.com/documentation/coreml
https://arxiv.org/abs/2011.04050
https://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1812.01097
https://openreview.net/forum?id=BJxh2j0qYm
https://proceedings.neurips.cc/paper/2018/file/7edcfb2d8f6a659ef4cd1e6c9b6d7079-Paper.pdf
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1109/ICCV.2015.123
http://arxiv.org/abs/1607.02488
http://arxiv.org/abs/1207.0580

Under review as a conference paper at ICLR 2022

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I. Venieris, and
Nicholas D. Lane. FjORD: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. CoRR, abs/2102.13451, 2021. URL http://arxiv.org/abs/2102.13451.

Saihui Hou and Zilei Wang. Weighted channel dropout for regularization of deep convolutional
neural network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp.
8425–8432, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. NeurIPS Workshop on Federated Learning for Data
Privacy and Confidentiality, abs/1909.06335, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
data distribution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16, pp. 76–92. Springer, 2020.

Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang, and G. Edward Suh. Chan-
nel gating neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
68b1fbe7f16e4ae3024973f12f3cb313-Paper.pdf.

Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley Mao, Subhabrata
Sen, and Oliver Spatscheck. An in-depth study of LTE: Effect of network protocol and application
behavior on performance. In ACM SIGCOMM 2013, pp. 363–374, 2013.

Yuchi Huang, Xiuyu Sun, Ming Lu, and Ming Xu. Channel-max, channel-drop and stochastic
max-pooling. In 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 9–17, 2015. doi: 10.1109/CVPRW.2015.7301267.

Yuang Jiang, Shiqiang Wang, Bong-Jun Ko, Wei-Han Lee, and Leandros Tassiulas. Model pruning
enables efficient federated learning on edge devices. CoRR, abs/1909.12326, 2019. URL http:
//arxiv.org/abs/1909.12326.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for federated learning.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5132–5143.
PMLR, 13–18 Jul 2020. URL http://proceedings.mlr.press/v119/karimireddy20a.html.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The CIFAR-10 and CIFAR-100 datasets.
http://www.cs.toronto.edu/ kriz/cifar.html, 2014.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pp. 2278–2324, 1998.

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed
machine learning with the parameter server. Advances in Neural Information Processing Systems,
27:19–27, 2014.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. ArXiv, abs/1908.07873, 2019a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In I. Dhillon, D. Papailiopoulos, and V. Sze
(eds.), Proceedings of Machine Learning and Systems, volume 2, pp. 429–450, 2020. URL
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In Proceedings of the IEEE International Conference on Computer
Vision, 2019b.

12

http://arxiv.org/abs/2102.13451
https://proceedings.neurips.cc/paper/2019/file/68b1fbe7f16e4ae3024973f12f3cb313-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/68b1fbe7f16e4ae3024973f12f3cb313-Paper.pdf
http://arxiv.org/abs/1909.12326
http://arxiv.org/abs/1909.12326
http://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlsys.org/paper/2020/file/38af86134b65d0f10fe33d30dd76442e-Paper.pdf

Under review as a conference paper at ICLR 2022

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pp. 1273–1282, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/housenumbers/
nips2011_housenumbers.pdf.

Diego Peteiro-Barral and Bertha Guijarro-Berdiñas. A survey of methods for distributed machine
learning. Progress in Artificial Intelligence, 2(1):1–11, 2013.

Eugenia Politou, Efthimios Alepis, and Constantinos Patsakis. Forgetting personal data and revoking
consent under the GDPR: Challenges and proposed solutions. Journal of Cybersecurity, 4(1),
2018.

Arnu Pretorius, Elan van Biljon, Steve Kroon, and Herman Kamper. Critical initialisation for deep
signal propagation in noisy rectifier neural networks. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/
2018/file/045cf83ab0722e782cf72d14e44adf98-Paper.pdf.

PyTorch. Pytorch documentation – torch.nn.functional.dropout, 2021. URL https://pytorch.org/docs/
stable/generated/torch.nn.functional.dropout.html.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

Yunchuan Sun, Junsheng Zhang, Yongping Xiong, and Guangyu Zhu. Data security and privacy in
cloud computing. International Journal of Distributed Sensor Networks, 10(7):190903, 2014.

TensorFlow. Tensorflow documentation – tf.nn.dropout, 2021. URL https://www.tensorflow.org/api_
docs/python/tf/nn/dropout.

Paul Voigt and Axel Von dem Bussche. The EU general data protection regulation (GDPR). A
Practical Guide, 1st Ed., Cham: Springer International Publishing, 10:3152676, 2017.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-yong
Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can
backdoor federated learning. arXiv preprint arXiv:2007.05084, 2020a.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Fed-
erated learning with matched averaging. In International Conference on Learning Representations,
2020b. URL https://openreview.net/forum?id=BkluqlSFDS.

Yulong Wang, Xiaolu Zhang, Xiaolin Hu, Bo Zhang, and Hang Su. Dynamic network pruning
with interpretable layerwise channel selection. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04):6299–6306, Apr. 2020c. doi: 10.1609/aaai.v34i04.6098. URL https://ojs.aaai.
org/index.php/AAAI/article/view/6098.

PTJ Wolters. The security of personal data under the GDPR: a harmonized duty or a shared
responsibility? International Data Privacy Law, 7(3):165–178, 2017.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuan-
dong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-aware effi-
cient convnet design via differentiable neural architecture search. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, pp. 10734–10742. Com-
puter Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01099. URL http:
//openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_
ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html.

13

http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
https://proceedings.neurips.cc/paper/2018/file/045cf83ab0722e782cf72d14e44adf98-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/045cf83ab0722e782cf72d14e44adf98-Paper.pdf
https://pytorch.org/docs/stable/generated/torch.nn.functional.dropout.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.dropout.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.tensorflow.org/api_docs/python/tf/nn/dropout
https://www.tensorflow.org/api_docs/python/tf/nn/dropout
https://openreview.net/forum?id=BkluqlSFDS
https://ojs.aaai.org/index.php/AAAI/article/view/6098
https://ojs.aaai.org/index.php/AAAI/article/view/6098
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Wu_FBNet_Hardware-Aware_Efficient_ConvNet_Design_via_Differentiable_Neural_Architecture_Search_CVPR_2019_paper.html

Under review as a conference paper at ICLR 2022

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms, 2017. https://github.com/zalandoresearch/fashion-mnist.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16337–16346, 2021.

14

https://github.com/zalandoresearch/fashion-mnist

Under review as a conference paper at ICLR 2022

A TABLE OF NOTATIONS

For your convenience, we provide a list of notations used in this paper in Table 3.

Table 3: Summary of notations.

Symbol Description .

c, i, j an individual client.
C set of clients.
C set of participating clients.

`c(·) training loss function of a client c.
B mini-batch size.
Dc the local training dataset of client c.
θc the parameters of all layers in the model of client c.
L softmax-cross-entropy (SCE) loss function.
f the feed-forward model.

f [l] lth layer of model f .
L the total number of layers of model f .

x,x[0] the model input.
x[L] the model output.

θ
(r+1)
c the parameters of client c in round r + 1.

η learning rate.
E epochs of local training.
r the FLOPs budget ratio as defined in Section 3.4, (0, 1].
φ the fraction of participating clients, (0, 1].
λc weight of client c proportional to the size of its training data set |Dc|.

p,q (matrix) dropout keep probabilities.
pc (vector) dropout keep probabilities of client c.
p[l]
c (vector) a slice of pc indicating the probabilities of all channels in the lth layer.

pn
c (scalar) the dropout keep probability of neuron n in client c.

t[l] thresholding vector for lth layer with n neurons.
1[z] the (element-wise) indicator function.
z◦−1 the element-wise inverse of z.
d[l]
c binary dropout decision vector of lth layer.
f̂ sparsified model.

g(·) FLOPs-budget constraint function.
ˆ̀
c loss function of client c.

S(r+1) (tensor) trajectory similarity with shape |N| × |C| × |C| as in Figure 2(b)
for the (r + 1)th round.

Sn
ij

(r+1) (scalar) trajectory similarity of neuron n between pairs of clients (i, j)
in the (r + 1)th round.

Ŝ (tensor) estimated trajectory similarity accounting for the dropout variances.
ϑ[l] flattened array of weight parameters of lth layer.

D|C|(α) Dirichlet distribution parameterized by α and |C|.
Tn a positive semidefinite matrix.
Π a permutation matrix.
hk boolean vector.

H
(
·
)

the Hessian matrix w.r.t. parameters.

B COMPUTING THE NUMBER OF FLOPS

In a sparse layer f̂ [l], the expected number of FLOPs per image-step is the sum of the flops required
by both the convolution and ReLU activation:

flops(f̂ [l]) = 2(Ĉ [l]Ĉ [l−1]K [l]2H [l]W [l] + Ĉ [l]H [l]W [l]), (9)

15

Under review as a conference paper at ICLR 2022

where K2 is the 2-dimensional kernel size, and H ×W is the output feature map size. Moreover,
Ĉ [l−1] and Ĉ [l] are the number of active input and output channels respectively; we expect Ĉ [l], the
average number of remaining output channels for layer l, to be C [l] mean

(
p[l]
c

)
, where mean(z) takes

the mean of elements in z and C [l] is the number of total output channels of layer l.

To generalize, we can rewrite the total number of FLOPs required by the overall model f̂ to be:

flops(f̂ ,pc) = 2
∑L

l=0C
[l] mean

(
p[l]

c

)(
K [l]2C [l−1] mean

(
p[l−1]

c

)
+ 1
)
H [l]W [l], (10)

and assume p[0] = 1 and p[L] = 1, since both the input and output of the model are considered to be
dense. Finally, by setting p = 1 for the entire model, we can get the number of FLOPs consumed by
the overall model per image.

C PROOFS

C.1 MODEL PARAMETER INITIALIZATION

Here, we restate Theorem 1 from Section 3.5:
Theorem 1 (Parameter initialization). To avoid vanishing/exploding gradients at initialization, the
variance of the parameters of the lth layer followed by a dropout layer with keep probability p should
be 2p/N , where N = C [l−1]K [l−1]2 is the size of the receptive field of each output channel.

The theorem proof depends on the following definitions and assumptions.
Definition 1. A convolutional layer with channel dropout decisions d[l] can be written as:

x[l+1] , relu(z[l]), where z[l] , p[l]

c
◦−1 ◦ d ◦ (ϑ[l]x[l] + b[l]), (11)

where we flatten the input features and the convolutional weights to be respectively z[l],x[l] ∈ RN×1

and ϑ[l] ∈ RC[l+1]×N [l]

, with N [l] = K [l]2C [l] being the size of the input receptive field. Recall that ◦
indicates the element-wise product, and the notation z◦−1 is the element-wise inverse of z. Here each
dropout decision in d[l] is sampled with:

d[l] , 1[t[l] < p[l]]. (12)

At initialization, we assume that p[l] shares a constant dropout keep probability p, and we can
immediately derive that for any channel neuron i at initialization:

E[d[l]

i] = p · 1 + (1− p) · 0 = p, (13)

var(d[l]

i) = E[d[l]

i

2
]− E[d[l]

i]2 = p · 1 + (1− p) · 0− p2 = p− p2. (14)

Assumption 1. We assume the model input x[0] and for each layer l the intermediate values z[l] to be
IID and all have zero-valued means. We also let the individual weight parameters ϑ[l] to be initialized
with IID and zero means, and the biases b[l] = 0. Therefore, for each layer l ∈ [1, L]:

E(z[l]

ij) = 0 for z[l]

ij ∈ z[l], (15)

E(ϑ[l]

ij) = 0 for ϑ[l]

ij ∈ ϑ[l]. (16)

Assumption 2. To avoid vanishing/exploding gradients, we restrict the variances of each value in
z[l] to be constant across all layers l ∈ [1, L], i.e.

var(z[m]

i) = var(z[n]

j) for m,n ∈ [1, L], z[m]

i ∈ z[m], z[n]

j ∈ z[n]. (17)

We adapt the proofs from (He et al., 2015; Glorot & Bengio, 2010) by taking into consideration the
variance introduced by dropout layers:

16

Under review as a conference paper at ICLR 2022

Proof. By Definition 1, for any value z[l]

i ∈ z[l], at initialization:

var(z[l]

i) = 1
p2 var(

∑
j d[l]

i ϑ
[l]

ijx
[l]

j + d[l]

i b[l]

i)

As d[l]

i , ϑ[l]

ij and x[l]

j are independent, and b[l] = 0 at initialization following Assumption 1:

= N [l]

p2 var(d[l]

i ϑ
[l]

ijx
[l]

j)

= N [l]

p2

(
var(d[l]

i) + E[d[l]

i]2
)(
var(ϑ[l]

ij) + E[ϑ[l]

ij]
2
)(
var(x[l]

j) + E[x[l]

j]2
)

− E[d[l]

i]2 E[ϑ[l]

ij]
2 E[x[l]

j]2. (18)

Again following Assumption 1, E[ϑ[l]

ij] = 0. Also, var(x[l]

j) + E[x[l]

j]2 = E
(
x[l]

j

2), E[d[l]

i] = p, and
var(d[l]

i) = p(1− p):

var(z[l]

i) =
N [l]

p
var(ϑ[l]

ij)E
(
x[l]

j

2)
. (19)

As proven by (He et al., 2015) for ReLU-nonlinearity, E
(
x[l]

j

2)
= 1

2 var(z
[l−1]

j), and using Assump-
tion 2, we can let var(z[l]

i) = var(z[l−1]

j), and solve (19) to give var(ϑ[l]

ij) = 2p
N [l] . Finally, if we are

using Gaussian distributions to initialize model parameters, then ϑ[l]

ij ∼ N
(
0,
√

2p/N [l]
)
.

C.2 OPTIMIZATION OBJECTIVE

This section provides proof sketches for the optimization objective (7) described in Section 3.6. Let’s
assume gc , λc∇θ`c, and ĝc , λc∇θ ˆ̀

c to simplify the derivations below.
Lemma 1. The sample gradient with dropout ĝc can be approximated by dc ◦ p◦−1

c ◦ gc.

Proof. Consider the 1st-order Taylor expansion of ˆ̀
c(θ):

ˆ̀
c(θc) = `c(dc ◦ p◦−1

c ◦ θc) ≈ `c(θc) +
(
∇θc`c

)ᵀ(
dc ◦ p◦−1

c ◦ θc − θc
)
.

Differentiating both sides by θc, we have the following, where H
(
`c
)

signify the Hessian of `c(θc):

∇θc ˆ̀
c −∇θc`c ≈ ∇θc

((
∇θc`c

)ᵀ(
dc ◦ p◦−1

c − 1
)
◦ θc

)
=
(
∇θc`c

)
◦
(
dc ◦ p◦−1

c − 1
)

+
(
(dc ◦ p◦−1

c − 1) ◦ θc
)ᵀ
H(`c).

We omit the second term
(
(dc ◦ p◦−1

c − 1) ◦ θc
)ᵀ
H(`c) for simplicity, as the Hessian of `c(θc) is

compute-intensive, thus:
ĝc − gc = λc

(
∇θc ˆ̀

c −∇θc`c
)
≈ gc ◦

(
dc ◦ p◦−1

c − 1
)
. (20)

In practice, we cannot obtain Sn
ij , E

[
gni g

n
j

]
, as evaluating the gradients of dense models defeats

the intention of accelerated training. We can instead estimate the value with the following lemma:
Lemma 2. E

[
gni g

n
j

]
can be approximated with E

[
ĝni ĝ

n
j

]
max(pn

i ,p
n
i), where pn

i ,p
n
i are the

dropout keep probabilities from the previous round of the neuron n of respective clients i, j.

Proof. From Lemma 1, by rearranging (20), we have gc ≈ ĝc ◦ d◦−1
c ◦ pc for client c. Therefore,

E
[
ĝni ĝ

n
j

]
≈ E

[gni gnj dn
i d

n
j

pn
i p

n
j

]
As dc and gc are independent for each client c,

= E
[
gni g

n
j

]
E
[dn

i d
n
j

pn
i p

n
j

]
By the definition of the SyncDrop layer in Section 3.3,

= E
[
gni g

n
j

] ∫ 1

0

1[t≤pn
i] 1[t≤p

n
j]

pn
i p

n
j

dt

= E
[
gni g

n
j

]min(pn
i ,p

n
j)

pn
i p

n
j

.

Rearrange to give:
E
[
gni g

n
j

]
= E

[
ĝni ĝ

n
j

]
max(pn

i ,p
n
j). (21)

17

Under review as a conference paper at ICLR 2022

Finally, we reiterate Theorem 2 that introduces the approximate objective (7):

Theorem 2 (Approximate Objective). Assuming that for a channel neuron n ∈ N and a pair of
clients i, j ∈ C, we have Ŝn

ij , λiλj max(pn
i ,p

n
j)∆θni · ∆θnj , where ∆θni ,∆θ

n
j are the param-

eter updates after a round of FL training, pn
i ,p

n
j are the current dropout keep probabilities, and

max(x,y) represents the element-wise max between x and y, the optimization objective of (6) can
be approximated by:

minq obj(Ŝ,q) , minq

∑
n∈N,i,j∈C Ŝn

ij/max(qn
i ,q

n
j). (7)

Proof. We start by deriving from (6):

minp E
∥∥∥∑c∈Cλc∇θc ˆ̀

c −
∑

c∈Cλc∇θc`c
∥∥∥2
2

= E
[(∑

c∈C(ĝc − gc)
)ᵀ(∑

c∈C(ĝc − gc)
)]

= E
[∑

i,j∈C(ĝi − gi)ᵀ(ĝj − gj)
]
,

following Lemma 1,

≈∑i,j∈C E
[(
gi ◦

(
di ◦ q◦−1

i − 1
))ᵀ(

gj ◦
(
dj ◦ q◦−1

j − 1
))]

=
∑

i,j∈C,n∈N E
[
gni g

n
j

(dn
i

qn
i
− 1
)(dn

j

qn
j
− 1
)]
,

as dc and gc are independent for each client c, and following Lemma 2,

=
∑

i,j∈C,n∈N E
[
ĝni ĝ

n
j

]
max(pn

i ,p
n
j)E

[(dn
i

qn
i
− 1
)(dn

j

qn
j
− 1
)]
,

by definition of the SyncDrop layer in Section 3.3,

=
∑

i,j∈C,n∈N E
[
ĝni ĝ

n
j

]
max(pn

i ,p
n
j)
∫ 1

0

(1[t≤qn
i]

qn
i
− 1
)(1[t≤qn

j]

qn
j
− 1
)
dt

=
∑

i,j∈C,n∈N E
[
ĝni ĝ

n
j

]
max(pn

i ,p
n
j)
(

1
max(qn

i ,q
n
j)
− 1
)

(22)

Finally, as it is impractical to use single step gradients ĝni and ĝnj on the server, we approximate them
with the respective parameter updates after one round of training, i.e. λi∆θni and λj∆θnj ; recall the
definition of Ŝ, we have

≈∑i,j∈C,n∈N
Ŝn

ij

max(qn
i ,q

n
j)
−∑i,j∈C,n∈N Sn

ij . (23)

The first term is exactly (7), and the second term is a constant and can be safely removed from the
optimization objective.

The value Ŝn
ij can be considered as the similarity of the model updates between clients i and j for the

group neuron n. Intuitively, from the perspective of an individual neuron n and the two clients i and
j, minimizing the term Ŝn

ij/max(pn
i ,p

n
j) incentivizes pn

i and pn
j to grow when Ŝn

ij is positive, and
to become smaller when it is negative.

With the derivations above, we can proceed to prove the objective in Theorem 2 is bounded with a
minimum. First, we can show that the matrix Sn is positive semidefinite for each neuron n ∈ N.

Lemma 3. The matrix Sn is positive semidefinite for all n ∈ N.

Proof. By definition, Sn = E[gngnᵀ], where gn comprises the gradient vectors of the nth neuron
across clients c ∈ C. The matrix Sn is therefore positive semidefinite, as it is an averaged sum of
samples of positive semidefinite matrices gngnᵀ.

Theorem 3 (Optimization bound). The objective minq

∑
nij Ŝn

ij/max(qn
i ,q

n
j) is trivially minimized

to
∑

nij Ŝn
ij when qn

c = 1 for ∀n ∈ N, c ∈ C.

18

Under review as a conference paper at ICLR 2022

Proof. Without loss of generality, we can permute the matrix Ŝn and the probability vector pn to
assume a descending order on the probabilities. Let Tn , ΠŜnΠᵀ and πn , Πpn denote the
respective permuted trajectory similarity and probability variants, where Π ∈ {0, 1}|C|×|C| is the
permutation matrix, such that∑

nij

Ŝn
ij

max(pn
i ,p

n
j)

=
∑

nij

Tn
ij

max(πn
i ,πn

j) and πn
1 ≥ πn

2 ≥ · · · ≥ πn
|C|. (24)

We introduce a boolean vector hk ∈ R|C|, where each element hk
c of it is defined as:

hk
c , 1[πn

k ≥ πn
c],

we then let Hk , hkhkᵀ, and it follows that Hk
ij = hk

i hk
j = 1[πn

k ≥ πn
i] 1[πn

k ≥ πn
j]. Hence, we

can rewrite:∑
nij

Tn
ij

max(πn
i ,πn

j) =
∑

nij Tn
ij min

(
1
πn

i
, 1
πn

j

)
=
∑

nij Tn
ij

(∑|C|−1
k=1

Hk
ij−H

k+1
ij

πn
k

+
H
|C|
ij

πn
|C|

)
=
∑

nij Tn
ij

(∑|C|−1
k=1

Hk
ij

πn
k
−∑|C|−1k=1

Hk+1
ij

πn
k

+
H
|C|
ij

πn
|C|

)
=
∑

nij Tn
ij

(
H1

ij

πn
1

+
∑|C|

k=2 Hk
ij

(
1
πn

k
− 1
πn

k−1

))
=
∑

n

(∑
ij

Tn
ij

πn
1

+
∑|C|

k=2

∑
ij Tn

ijh
k
i hk

j

(
1
πn

k
− 1
πn

k−1

))
=
∑

n

(
1ᵀTn1
πn

1
+
∑|C|

k=2 hkᵀTnhk
(

1
πn

k
− 1
πn

k−1

))
. (25)

It is notable that 1
πn

c
≥ 1 for all c ∈ C. The first term is bounded by a non-negative 1ᵀTn1 i.e. the

sum of all elements in a positive semidefinite matrix. The second term is also non-negative, as
hkᵀTnhk ≥ 0 by the definition of a positive semidefinite matrix Tn, and 1

πn
k
− 1
πn

k−1
≥ 0 by the

ordering proposed in (24). Notably if πn
c = 1 for all n ∈ N and c ∈ C, then the objective is trivially

minimized, with a minimum value
∑

nij Tn
ij =

∑
nij Sn

ij . We therefore include the FLOPs budgets
discussed in Section 3.4 and Appendix B into our optimizations to solve for non-trivial p.

D THE FEDDROP ALGORITHM

D.1 HIGH-LEVEL OVERVIEW

Algorithm 1 provides an overview of the FedDrop FL algorithm. It accepts the client loss functions
ˆ̀
c with SyncDrop layers, client data weights λc, the FLOPS constraints function g : [0, 1]

C×N → R,
the SGD learning rate η, the number of local epochs E the number of FL rounds R, and a client
sub-sampling ratio φ. It returns optimized model parameters θ(R+1) on the final round.

The algorithm starts by initializing model parameters θ(0) to be shared across all clients, and assigns a
uniform keep probability to p for all SyncDrop layers, which satisfies the FLOPs constraint g(p) = 0

(lines 2 and 3). After collecting trained model parameters θ(r+1)
c from the current round r + 1 (line

6), the FedDrop server computes ∆θ
(r+1)
c , i.e. the difference between the averaged model from the

previous round θ(r) with the trained model θ(r+1)
c for client c (line 7, also in Figure 2a).

It then measures the trajectory similarity Ŝn
ij

(r+1) for each neuron n between each pair of clients (i, j),
as described on line 11 and illustrated in Figure 2b. The term λi∆θ

n
i
(r+1) · λj∆θnj (r+1) computes

the dot-product between the weighted parameter updates of clients i and j, and max
(
pn
i
(r),pn

j
(r)
)

adjusts for the covariance from the synchronized dropouts of the previous round. Finally, the objective
argminq obj(Ŝ,q) is optimized to minimize the impact of model sparsity on convergence.

D.2 COMPUTATIONAL OVERHEAD OF THE OPTIMIZATION OBJECTIVE

The complexity of computing the trajectory similarity in each round is O(W |C|2), where W is the
number of parameters and |C| is the number of participating clients. Additionally, the probability

19

Under review as a conference paper at ICLR 2022

Algorithm 1 The FedDrop algorithm.

1: function FEDAVGDROP({(ˆ̀
c, λc) : c ∈ C}, g, η, E,R, φ)

2: random_initialize(θ(0),p) . Initialize parameters and a uniform keep probability.
3: for r ← 1, 2, . . . R do
4: C← subsample(C, φ) . Sample a subset of clients.
5: par for c ∈ C do
6: θ

(r+1)
c ← SGDc

(
ˆ̀
c,θ

(r),pc, η, E
)

. Client training with SyncDrop layers.
7: ∆θ

(r+1)
c ← θ(r) − θ(r+1)

c . Client update trajectories.
8: end par for

9: θ(r+1) ←∑
c∈C λcθ

(r+1)
c . Server aggregation with FedAvg.

10: for i ∈ C, j ∈ C, n ∈ N do . Trajectory-similarity estimation.

11: Ŝn
ij ← λiλj max

(
pn
i ,p

n
j

)
∆θui

(r+1) ·∆θuj (r+1)

12: end for . Optimal dropout probabilities.
13: p← argminq obj(Ŝ,q) s.t. g(q) ≥ 0 . Objective from (7)
14: end for
15: return θ(R+1)

16: end function

optimization stage on the server has a complexity of O(I|N||C|2), where I is the number of opti-
mization iterations, |N| is the number of channels in the model. As an example, the VGG-9 model
with 20 clients and I = 10k steps of optimization would require only 53 G FLOPs for computing
the trajectory similarity, and ≤ 448 G FLOPs for the optimization steps, which can often exit early
because it has converged. In practice, the server optimization only takes less than 1 minute on
average. For reference, if we use local epochs per round E = 8, and a FLOPs ratio r = 0.5, the
20 clients require a total of 25.8 T FLOPs per round. Overall, under this setting the additional
computation overhead incurred by the server is only about 2% of total computational costs. For more
practical consideration, it is noteworthy that typically, the server is much less constrained in terms of
computational power compared to the edge clients. In addition, given the above example, a single
client requires 1.29 T FLOPs and the server requires 448 G FLOPs in total. The former consumes
multiple hours of training in a realistic implementation on an iPhone 12 Pro (extrapolating from the
profiling result in Table 10), whereas the latter only requires minutes to complete on an Nvidia V100
GPU.

D.3 AN EXAMPLE HISTORY OF PROBABILITY DISTRIBUTION

To better understand the probability optimization, we plot the histogram of optimized probabilities for
each training round in Figure 9. It reveals that after multiple rounds of training, FedDrop gradually
learns the importance of channels and start to make certain channels contribute less to the model
training. Note that the histograms only provides distributions of probability values of all clients, each
client may have vastly different optimized probabilities for the same channels.

D.4 MEMORY REDUCTION

As SyncDrop layers can sparsify models, many channels in the activation map can simply be skipped
and never stored in both the forward and backward passes. For this reason, FedDrop can further
reduce the memory cost associated with training. As an example, VGG-9 equipped with SyncDrop
can see up to 40% reduction in the memory requirement for training. We summarized the memory
reduction for different scenarios in Table 4.

D.5 ACCURACY OF FLOPS ESTIMATION

To confirm the accuracy of our FLOPs estimation with the expected values, in Table 5 we sample the
dropout layers in the Fashion-MNIST model with FLOPs budget ratios r ∈ {0.25, 0.5, 0.75}, can
compute the actual FLOPs counts. Under the setting of R = 100 training rounds and local epochs

20

Under review as a conference paper at ICLR 2022

Figure 9: We present the evolution of dropout keep probabilities (horizontal axis) for multiple rounds
of training (vertical axis) for VGG-9 training with FLOPS budget ratio r = 0.5 and the number
of local epochs per round E is 4. After a few rounds of training, FedDrop can learn to distinguish
channel importance.

Table 4: Theoretical memory reductions of FedDrop with varying batch sizes.

Batch size Feature (MB) Params (MB) Total (MB) FLOPs ratio FedDrop Total (MB) Reduction (%)

4 3.02 5.82 8.83 0.75 8.08 8.53
0.5 7.33 17.07

8 6.03 5.82 11.85 0.75 10.34 12.72
0.5 8.83 25.45

16 12.06 5.82 17.88 0.75 14.87 16.86
0.5 11.85 33.73

32 24.13 5.82 29.95 0.75 23.91 20.14
0.5 17.88 40.28

per round E = 8. We found the error to be within 0.06%. The low deviation of the expected value
from the actual result is an effect of the law of large numbers.

Table 5: Comparing the estimated and actual FLOPs counts of FedDrop. The figures within parenthe-
ses represent the sampled FLOPs of 3 experiments with different random seeds.

FLOPs budget ratio r 0.25 0.5 0.75

Expected (T FLOPs) 140.97 281.85 422.50
Sampled (T FLOPs) (140.88, 140.91, 140.92) (281.78, 281.81, 281.78) (422.47, 422.48, 422.46)
Relative error (mean) 0.047% 0.021% 0.0071%
Relative error (std) 0.012% 0.005% 0.0019%

E EXPERIMENT CONFIGURATIONS

Models. Here, we provide the layout of the models used by the respective datasets. All models
listed for computer vision (CV) tasks (in Tables 6 to 8) are feed-forward CNNs. Table 9 shows the
character-level single-layer LSTM model used for the natural language processing (NLP) task. Note
that sparsity for the LSTM model were introduced for the hidden state and memory cell neurons.

21

Under review as a conference paper at ICLR 2022

Datasets. The experiments are carried out on three popular CV datasets (CIFAR-10 (Krizhevsky et al.,
2014), Fashion-MNIST (Xiao et al., 2017) and SVHN (Netzer et al., 2011)), and a natural language
dataset (Shakespeare (Caldas et al., 2018b)). We use the standard train/test split on these datasets and
report accuracy on test dataset with a global model on server-side. To simulate different heterogeneity
levels, for CV tasks we split the datasets by class label with the distribution D|C|(α) (Hsu et al., 2019;
Wang et al., 2020b), and adjust the α constant for varying the degree of data heterogeneity, α = 0.5
unless specified for all experiments. Simple data augmentation was also employed for the training
images, including random crop and normalization, and random flip in addition for CIFAR-10. For
the Shakespeare NLP dataset, we follow LEAF (Caldas et al., 2018b) for next-character prediction,
and consider each speaking role in each play as an individual client, and the resulting splits are thus
inherently heterogeneous since each local client only contains the corresponding role’s sentences.

Hyperparameters. We consider different hyperparameter settings for different tasks:

• Client Sampling. For full client participation, we use 20 clients for CIFAR-10 and 100
clients for the remaining CV and NLP tasks. To simulate the fractional client participation,
we randomly sample 10 out of 1000 clients on all datasets for CV tasks and 10 out of 660
clients on Shakespeare dataset for NLP task.

• Optimization. As for CV tasks, we searched the hyperparameters and found setting batch
size B = 4 and learning rate η = 0.02 were universally optimal for most methods. For NLP
task on Shakespeare dataset, the batch size B = 32 and learning rate η = 0.2 were similarly
found and made constant for all methods under comparison.

We noticed that the reported accuracy could be further improved if deeper models are used for
baselines as they can exhibit greater redundancy and thus benefit the performance of FedDrop.
However, we are not pursuing state-of-the-art accuracy on these datasets but instead comparing
FedDrop with other methods under fair experimental settings and validating its effectiveness. We
also noticed that there exist larger alternative datasets (Hsu et al., 2020) for evaluation. Nevertheless,
evaluating and reproducing all competing FL methods on such a large dataset is infeasible given
the limited (university) computational budgets. Alternatively, we aim to conduct a fair empirical
evaluation that demonstrate the effectiveness of FedDrop under a broad variety of scenarios.

Table 6: Layout of the model used for Fashion-MNIST training.

Layer Kernel Stride Feature shape #Params #FLOPs

1 Conv+ReLU 5× 5 1 32× 28× 28 832 652 k
2 Max Pool 2× 2 2 32× 14× 14 — 25.1 k
3 Conv+ReLU 5× 5 1 64× 14× 14 51.3 k 10.0 M
4 Max Pool 2× 2 2 64× 7× 7 — 125 k
5 Conv+ReLU 3× 3 1 64× 5× 5 36.9 k 923 k
6 Avg Pool 2× 2 1 64× 2× 2 — 1.6 k
7 FC — — 512 132 k 132 k
8 FC — — 10 5.13 k 5.13 k

Total 226 k 11.8 M

Table 7: Layout of the model used for SVHN training.

Layer Kernel Stride Feature shape #Params #FLOPs

1 Conv+ReLU 5× 5 1 32× 28× 28 2.43 k 1.91 M
2 Max Pool 2× 2 2 32× 14× 14 — 25.1 k
3 Conv+ReLU 5× 5 1 64× 10× 10 51.3 k 5.13 M
4 Max Pool 2× 2 2 64× 5× 5 — 6.4 k
5 Conv+ReLU 3× 3 1 64× 3× 3 36.9 k 333 k
6 Avg Pool 2× 2 1 64× 2× 2 — 576
7 FC — — 512 132 k 132 k
8 FC — — 10 5.13 k 5.13 k

Total 227 k 7.54 M

22

Under review as a conference paper at ICLR 2022

Table 8: Layout of the VGG-9 model used for CIFAR-10 training.

Layer Kernel Stride Feature shape #Params #FLOPs

1 Conv+ReLU 3× 3 1 32× 32× 32 896 918 k
2 Conv+ReLU 3× 3 1 64× 32× 32 18.5 k 18.9 M
3 Max Pool 2× 2 2 64× 16× 16 — 65.5 k
4 Conv+ReLU 3× 3 1 128× 16× 16 73.9 k 18.9 M
5 Conv+ReLU 3× 3 1 128× 16× 16 148 k 37.8 M
6 Max Pool 2× 2 2 128× 8× 8 — 32.8 k
7 Conv+ReLU 3× 3 1 256× 8× 8 295 k 18.9 M
8 Conv+ReLU 3× 3 1 256× 8× 8 590 k 37.8 M
9 Avg Pool 8× 8 — 256× 1× 1 — 16.4 k
10 FC — — 512 132 k 132 k
11 FC — — 512 263 k 263 k
12 FC — — 10 5.13 k 5.13 k

Total 1.53 M 134 M

Table 9: Layout of the model used for Shakespeare dataset training.

Layer Shape #Params #FLOPs

1 Encoder 80× 8 640 —
2 LSTM 8× 256 272 k 275 k
3 Decoder 256× 80 21 k 21 k

Total 293 k 296 k

F ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

F.1 TRADE-OFF CURVES

Figures 10 to 12 find the optimal configurations for each competing FL methods that produces their
corresponding communication/computation trade-off curves. It is notable that FedDrop can extend
the trade-off relationships much further and shows Pareto dominance against other algorithms under
most conditions. In these figures, the configurations explored include combinations of FLOPs budget
ratios r ∈ {0.25, 0.333, 0.5, 0.75} and local epochs per round E ∈ {1, 2, 4, 8, 16}.

1014.2 1014.4 1014.6 1014.8 1015 1015.2

104

105

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) 70%

1014.6 1014.8 1015 1015.2 1015.4

104

105

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) 80%

Figure 10: The FLOPs vs. communication trade-off curves of different FL methods reaching a target
accuracy for CIFAR-10. We highlight the Pareto optimal points with dotted lines.

23

Under review as a conference paper at ICLR 2022

1013 1013.2 1013.4 1013.6 1013.8

103

104

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) 80%

1013.4 1013.6 1013.8 1014
103

104

105

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) 85%

Figure 11: The FLOPs vs. communication trade-off curves for Fashion-MNIST.

1012.8 1013 1013.2 1013.4 1013.6

103

104

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) 80%

1013 1013.2 1013.4 1013.6 1013.8

103

104

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) 85%

Figure 12: The FLOPs vs. communication trade-off curves for SVHN.

F.2 DATA IMBALANCE

Figures 13 to 15 examine the effect of data imbalance on the performance of FedDrop. Again, it
shows that FedDrop can manage the fastest convergence when compared to other methods, and an
increase in data imbalance further enhances its effectiveness against the others.

0 0.2 0.4 0.6 0.8 1 1.2

·1015

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 4, α = 5.

0 0.2 0.4 0.6 0.8 1 1.2

·1015

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 4, α = 0.5.

0 0.2 0.4 0.6 0.8 1 1.2

·1015

20

40

60

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 4, α = 0.05.

Figure 13: Varying α for the dataset splits D|C|(α) of CIFAR-10.

F.3 VARYING LOCAL EPOCHS PER ROUND

Figures 16 and 17 adjust the number of local epochs per round, and observe that with more frequent
rounds (lower E), the accuracy gaps between FedDrop and the other methods become greater.

24

Under review as a conference paper at ICLR 2022

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)
FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 4, α = 5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 4, α = 0.5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 4, α = 0.05.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(d) E = 8, α = 5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)
FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(e) E = 8, α = 0.5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(f) E = 8, α = 0.05.

Figure 14: Varying α for the dataset splits D|C|(α) of Fashion-MNIST. Log-scale is used for clarity.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 4, α = 5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 4, α = 0.5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 4, α = 0.05.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(d) E = 8, α = 5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(e) E = 8, α = 0.5.

1013 1014
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(f) E = 8, α = 0.05.

Figure 15: Varying α for the dataset splits D|C|(α) of SVHN. Log-scale is used for clarity.

F.4 VARYING FLOPS BUDGET RATIO

Figures 18 to 20 explore varying FLOPs budget ratios r ∈ {0.75, 0.5, 0.333, 0.25}. We found that
a higher sparsity (lower ratio) can improve the overall convergence rate w.r.t. FLOPs expended.
However, the final converged accuracy may degrade; this can be fixed by simply adjusting the budget
ratio to approach 1.

25

Under review as a conference paper at ICLR 2022

0.2 0.4 0.6 0.8 1

·1014

70

75

80

85

90

Number of FLOPs

A
cc

ur
ac

y
(%

)
FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 4.

1 2 3 4 5

·1013

70

75

80

85

90

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 2.

0.5 1 1.5 2 2.5

·1013

70

75

80

85

90

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 1.

Figure 16: Comparing FL methods with the same local training epochs per round E used for SVHN.

0.2 0.4 0.6 0.8 1 1.2 1.4

·1014

70

75

80

85

90

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 4.

1 2 3 4 5 6 7

·1013

70

75

80

85

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 2.

0.5 1 1.5 2 2.5 3 3.5

·1013

70

75

80

85

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 1.

Figure 17: Comparing FL methods with the same local training epochs per round E used for
Fashion-MNIST.

F.5 FRACTIONAL DEVICE PARTICIPATION

We increase the number of all devices to 1000, and reduced the fraction of participating devices per
round to 1% for each of the datasets. All competing methods perform uniform device subsampling
each round as this was commonly reported for their original experiments McMahan et al. (2017);
Li et al. (2020); Karimireddy et al. (2020); Caldas et al. (2018a). For FedDrop to perform well, we
uniformly sample devices every 2 rounds, to train with freshly updated probabilities. In Figure 21,
Figure 22, Figure 23 and Figure 24, we compare FedDrop against all competing methods, and show
that it can bring notable improvements in both communication and computation efficiencies.

F.6 ACTUAL TRAINING RUN TIME

In Table 10, we provide the average training times per image on an iPhone 12 Pro running the Fashion-
MNIST model with a batch size of 4. Here, each result was obtained under optimal conditions where
no frequency throttling occurred. The structure of the model can be found in Table 6 of Appendix E.
Note that we were only able to report CPU run times, as Core ML (cor, 2021) currently only support
training on CPUs. We implemented a custom convolutional layer to take advantage of the sparse
input and output feature maps.

Table 10: iPhone 12 Pro run time of training on CPUs.

FLOPs Theoretical Average run time per image (µs) Average (µs) Actual
ratio speed-up 5 runs speed-up

1.0 1× 966.64 867.34 832.46 1072.06 1178.76 983.45 ± 128.50 1.00×
0.5 2× 544.40 551.54 567.80 568.44 576.32 561.70 ± 11.83 1.75×
0.25 4× 388.04 372.54 378.06 380.22 379.40 379.65 ± 4.98 2.59×

26

Under review as a conference paper at ICLR 2022

1013.8 1014 1014.2 1014.4
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(a) E = 2.

1014 1014.2 1014.4 1014.6 1014.8
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(b) E = 4.

1014.4 1014.6 1014.8 1015
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(c) E = 8.

0 20 40 60 80

20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedAvg

0.75

0.5

0.333

0.25

(d) E = 2.

0 20 40 60 80

20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)
FedAvg

0.75

0.5

0.333

0.25

(e) E = 4.

0 20 40 60 80

20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedAvg

0.75

0.5

0.333

0.25

(f) E = 8.

Figure 18: Reducing the FLOPs budget ratio r for CIFAR-10.

1012 1013
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(a) E = 1.

1012 1013
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(b) E = 2.

1012.5 1013 1013.5
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(c) E = 4.

10 20 30 40
20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(d) E = 1.

10 20 30 40
20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(e) E = 2.

10 20 30 40
20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(f) E = 4.

Figure 19: Reducing the FLOPs budget ratio r for Fashion-MNIST.

For the FedAvg motivation example in Section 1, we assumed 20 clients, with 2500 examples per
epoch on each client, and 4 training epochs per round, which is in line with our experiments with 20
devices. We extrapolate the results to 100 epochs for a batch size of 4 to estimate the run time to be
983.45µs× 2500× 4× 100 = 16.39 min without frequency throttling. As each parameter is stored
as a 32-bit float, each client would upload and download a model of size 226 k × 4 B = 904 kB once
per round; the overall transmission per client is thus evaluated to be 904 kB× 2× 100 = 176.56 MB.

27

Under review as a conference paper at ICLR 2022

1012.4 1012.6 1012.8 1013 1013.2
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(a) E = 1.

1012.41012.61012.8 1013 1013.2
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(b) E = 2.

1012.41012.61012.8 1013 1013.21013.4
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(c) E = 4.

5 10 15 20 25 30 35 40
20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(d) E = 1.

10 20 30 40
20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(e) E = 2.

10 20 30 40
20

40

60

80

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

0.75

0.5

0.333

0.25

(f) E = 4.

Figure 20: Reducing the FLOPs budget ratio r for SVHN.

1014 1014.2 1014.4 1014.6

105

105.5

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

(a) 70% for CIFAR-10.

1014.2 1014.4 1014.6 1014.8
105

106

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

(b) 75% for CIFAR-10.

Figure 21: Comparing the FLOPs vs. communication trade-off across different FL methods reaching
a target accuracy for CIFAR-10. We highlight the Pareto optimal points with dotted lines.

F.7 ADDITIONAL RESULTS ON THE MOTIVATING EXAMPLE

For reference, in Figure 25 we included all parameter update magnitudes of the first convolutional
layer for the motivating example given in Figure 1 in Section 1.

F.8 RESULTS ON THE NLP TASK

We provide results on Shakespeare dataset for full client participation in Figure 26 to Figure 28 and
fractional client participation in Figure 29 to Figure 31. The experiment configurations are introduced
in detail in Appendix E.

28

Under review as a conference paper at ICLR 2022

1012 1012.2 1012.4 1012.6

103

104

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

(a) 80% for Fashion-MNIST.

1012.4 1012.6 1012.8

103.5

104

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

(b) 85% for Fashion-MNIST.

Figure 22: Comparing the FLOPs vs. communication trade-off across different FL methods reaching
a target accuracy for Fashion-MNIST. We highlight the Pareto optimal points with dotted lines.

1011.8 1011.9 1012 1012.1 1012.2

103

103.5

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

(a) 80% for SVHN.

1012 1012.2 1012.4

103

104

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

(b) 85% for SVHN.

Figure 23: Comparing the FLOPs vs. communication trade-off across different FL methods reaching
a target accuracy for SVHN. We highlight the Pareto optimal points with dotted lines.

0 1 2 3 4

·1014

20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) CIFAR-10 with E = 4.

1011 1012 1013
20

40

60

80

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) Fashion-MNIST with E = 4.

1011 1012 1013
20

40

60

80

100

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) SVHN with E = 4.

Figure 24: Reducing device participation to 1%. Some plots use log-scale for clarity.

29

Under review as a conference paper at ICLR 2022

Figure 25: All parameter update magnitudes for each channel (row) in the first convolutional layer for
all clients (column) after 1 round of training. The pairs of clients with same colors (one lighter and
one darker) signify that they shared the same image class. The length of each ray is the magnitude of
the parameter update, and the parameters are ordered by the angles of the rays. The results are taken
from the motivating example in Figure 1.

30

Under review as a conference paper at ICLR 2022

1015 1015.2 1015.4

104

104.5

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

Figure 26: Comparing the FLOPs vs. communication trade-off across different FL methods reaching
a 50% accuracy for the Shakespeare dataset. We highlight the Pareto optimal points with dotted lines.

0 1 2 3 4 5

·1014

10

20

30

40

50

60

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) α = 0.5, E = 1, r = 0.5.

0 2 4 6 8

·1014

10

20

30

40

50

60

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) α = 0.5, E = 2, r = 0.5.

0 0.5 1 1.5

·1015

10

20

30

40

50

60

Number of FLOPs

A
cc

ur
ac

y
(%

)
FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) α = 0.5, E = 4, r = 0.5.

Figure 27: Comparing FL methods with the same local training epochs per round E used for
Shakespeare.

0 20 40 60 80 100
10

20

30

40

50

60

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 1, r = 0.5.

0 20 40 60 80 100
10

20

30

40

50

60

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 2, r = 0.5.

0 20 40 60 80 100
10

20

30

40

50

60

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 4, r = 0.5.

Figure 28: Comparing FL methods on the number of communication rounds vs. accuracy with the
same local training epochs on Shakespeare.

31

Under review as a conference paper at ICLR 2022

1014 1014.2 1014.4 1014.6 1014.8

103

103.5

Number of FLOPs

C
om

m
un

ic
at

io
ns

(G
B

)

FedDrop

UniDrop

FedAvg

FedProx

Caldas et al.

Figure 29: Comparing the FLOPs vs. communication trade-off across different FL methods reaching
a target accuracy for a given dataset. We highlight the Pareto optimal points with dotted lines.

0 0.2 0.4 0.6 0.8 1

·1014

10

20

30

40

50

60

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) α = 0.5, E = 1, r = 0.5.

0 0.2 0.4 0.6 0.8 1

·1014

10

20

30

40

50

60

Number of FLOPs

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) α = 0.5, E = 2, r = 0.5.

0 0.5 1 1.5 2

·1014

10

20

30

40

50

60

Number of FLOPs

A
cc

ur
ac

y
(%

)
FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) α = 0.5, E = 4, r = 0.5.

Figure 30: Comparing FL methods with the same local training epochs per round E used for
Shakespeare.

0 20 40 60 80 100
10

20

30

40

50

60

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(a) E = 1, r = 0.5

0 20 40 60 80 100
10

20

30

40

50

60

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(b) E = 2, r = 0.5

0 20 40 60 80 100
10

20

30

40

50

60

Number of Communication Rounds

A
cc

ur
ac

y
(%

)

FedDrop

UniDrop

FedAvg

FedProx

SCAFFOLD

Caldas et al.

(c) E = 4, r = 0.5

Figure 31: Comparing FL methods on the number of communication rounds vs. accuracy with the
same local training epochs on Shakespeare.

32

	Introduction
	Related Work
	The FedDrop Method
	High-Level Overview
	Preliminaries and Definitions
	Synchronized Dropout
	FLOPs Constraints
	Parameter Initialization
	Optimizing Dropout Keep Probabilities

	Experimental Results
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Table of Notations
	Computing the Number of FLOPs
	Proofs
	 Model Parameter Initialization
	Optimization Objective

	The FedDrop Algorithm
	High-Level Overview
	Computational Overhead of the Optimization Objective
	An Example History of Probability Distribution
	Memory Reduction
	Accuracy of FLOPs Estimation

	Experiment Configurations
	Additional Experimental Details and Results
	Trade-off Curves
	Data Imbalance
	Varying Local Epochs Per Round
	Varying FLOPs Budget Ratio
	Fractional Device Participation
	Actual Training Run Time
	Additional Results on the Motivating Example
	Results on the NLP Task

