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Abstract

When trained on biased datasets, Deep Neural Networks (DNNs) often make pre-
dictions based on attributes derived from features spuriously correlated with the
target labels. This is especially problematic if these irrelevant features are easier for
the model to learn than the truly relevant ones. Many existing approaches, called
debiasing methods, have been proposed to address this issue, but they often require
predefined bias labels and entail significantly increased computational complexity
by incorporating extra auxiliary models. Instead, we provide an orthogonal perspec-
tive from the existing approaches, inspired by cognitive science, specifically Global
Workspace Theory (GWT). Our method, Debiasing Global Workspace (DGW),
is a novel debiasing framework that consists of specialized modules and a shared
workspace, allowing for increased modularity and improved debiasing performance.
Additionally, DGW enhances the transparency of decision-making processes by
visualizing which features of the inputs the model focuses on during training and
inference through attention masks. We begin by proposing an instantiation of GWT
for the debiasing method. We then outline the implementation of each component
within DGW. At the end, we validate our method across various biased datasets,
proving its effectiveness in mitigating biases and improving model performance.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable advancements across various domains,
such as image classification (He et al., 2019; Xie et al., 2020), generation (Wang and Gupta, 2016;
Kataoka et al., 2016), and segmentation (Luo et al., 2017; Zheng et al., 2014). However, DNNs
often show limited generalization capability to out-of-distribution (OOD) data and are susceptible
to biases present in their training datasets (Torralba and Efros, 2011). These biases occur when
irrelevant features, like background color, correlate with target labels, causing the models to rely
on these features for making predictions (Geirhos et al., 2020). This reliance on biased features
leads to poor performance when the model encounters new data that does not share the same biases.
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Biased datasets possess many bias-aligned samples, where irrelevant features correlate with the
labels, and a small number of bias-conflicting samples, where these features do not align with the
labels. Models trained on such data indeed tend to focus on the bias-aligned samples, leading to poor
generalization (Hendrycks et al., 2021b,a).

Various debiasing methods have been proposed to prevent a network from relying on spurious
correlations when trained on a biased dataset. Some methods assume that biased features are “easier”
to learn than robust ones, leading to the use of auxiliary models that exploit these biased features
to guide the main model’s training (Nam et al., 2020; Sanh et al., 2020). Strategies such as re-
weighting samples (Liu et al., 2021; Nam et al., 2020) and data augmentation (Kim et al., 2021; Lee
et al., 2021) are common but often struggle with insufficiently diverse samples. Other approaches
involve identifying specific biases before training (Hong and Yang, 2021; Kim et al., 2019; Li
and Vasconcelos, 2019; Sagawa et al., 2019), allowing the model to ignore or correct these biases.
Although effective, this requires accurate bias identification and extensive manual labeling (Bahng
et al., 2020; Tartaglione et al., 2021).

In this work, we depart from the above perspectives and focus on a novel and completely different
approach to implement a debiasing framework. In modern ML and AI, it has been argued that it is
better to build an intelligent system from many interacting specialized modules rather than a single
“monolithic” entity to deal with a broad spectrum of conditions and tasks (Goyal and Bengio, 2022;
Minsky, 1988; Robbins, 2017). Toward this end, we focused on a cognitive science framework
proposed to underlie perception, executive function, and consciousness: Global Workspace The-
ory (GWT). GWT is a crucial element of modern cognitive science that models human consciousness
arising from integrating and broadcasting information across specialized, unconscious processes in
the brain (Baars, 1993, 2005). Many recent studies proposing a deep-learning implementation of
GWT (Bengio, 2017; Goyal et al., 2021; VanRullen and Kanai, 2021) have demonstrated their effec-
tiveness in allowing a model to have general-purpose functionality, increased modularity, improved
performance, and interpretable representation learning. This perspective is expected to be well suited
for application in implementing debiasing methods.

Therefore, we propose the Debiasing Global Workspace (DGW), a novel instantiation of GWT for
debiasing to eliminate the negative effect of the misleading correlations. Our debiasing approach
involves specialized modules (acting as the specialists in GWT) and an attention-based information
bottleneck (acting as the global workspace in GWT). This allows the model to achieve straight-
forward, functional modularity and effective debiasing performance while providing interpretable
representation by visualizing which attributes are essential for accurate predictions and which are
irrelevant and likely to cause errors.

The rest of this paper is organized as follows. We begin in Section 2 with a review of related work
and relevant background literature. Then, in Section 3, we propose a conceptual modification of the
GWT to implement a debiasing method. This involves defining specialized modules and the shared
global workspace (Section 3.1). Then, we provide a step-by-step framework for defining the essential
deep-learning components of our debiasing model within an AI system (Section 3.2). In Section 4,
we empirically test our method on biased datasets, including Colored MNIST, Corrupted CIFAR10,
and Biased FFHQ, and demonstrate that DGW effectively separates and understands intrinsic and
biased features through both performance metrics and visualizations. Finally, we conclude with a
discussion of future work and limitations of our approach in Section 5.

2 Related Work

There have been a variety of different debiasing methods for DNNs, and there also have been several
connection points between GWT and neural networks. We review these approaches here.

2.1 Debiasing Methods

Debiasing with predefined forms of bias or specific bias labels. This method involves identi-
fying specific biases before training (Hong and Yang, 2021; Kim et al., 2019; Li and Vasconcelos,
2019; Sagawa et al., 2019). The model then learns to ignore or correct these biases. Although
effective, it depends on accurately identifying biases beforehand, which can be challenging. Another
approach (Bahng et al., 2020; Tartaglione et al., 2021) uses bias labels to tag data, allowing the model
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to differentiate between biased and unbiased data during training. This improves learning but requires
extensive manual labeling.

Debiasing using the easy-to-learn heuristic. Biases are “easier” for models to learn (Nam et al.,
2020) than intrinsic features. Techniques like dynamic training schemes, re-weighting samples, and
data augmentation (Geirhos et al., 2018; Lee et al., 2021; Minderer et al., 2020; Li and Vasconcelos,
2019; Lim et al., 2023) help models focus on unbiased features. However, these methods struggle with
insufficient diverse samples. Complex models can learn invariant features or correct representations
but are difficult to design and train (Tu et al., 2022; Zhao et al., 2020; Agarwal et al., 2020; Bahng
et al., 2020; Geirhos et al., 2018; Goel et al., 2020; Kim et al., 2019; Li et al., 2020; Minderer et al.,
2020; Tartaglione et al., 2021; Wang et al., 2020).

Others. SelecMix (Hwang et al., 2022) creates new training samples by mixing pairs with similar
labels but different biases, or different labels but similar biases, using an auxiliary contrastive
model. Although effective, this adds significant training complexity. χ2 model (Zhang et al., 2023)
learns debiased representations by identifying Intermediate Attribute Samples (IAS) and using a
χ-structured metric learning objective. However, its reliance on training dynamics to identify IASs
makes it different from our approach and out of the scope of our study.

2.2 Deep Learning and Global Workspace Theory

In neuroscience and cognitive science, there is an ongoing effort to develop theories of conscious-
ness (ToCs) to identify the neural correlates of consciousness, as reviewed by Seth and Bayne (2022).
One such theory is the Global Workspace Theory (GWT) (Baars, 1993; Dehaene and Changeux,
2011; Mashour et al., 2020), which is inspired by the ‘blackboard’ architecture used in artificial
intelligence. In this architecture, a centralized blackboard resource facilitates information sharing
among specialized processors.

Recent studies have aimed to bridge the gap between neuroscience and deep learning, focusing
on practical solutions for implementing a GWT using current deep learning components while
considering the equivalent brain mechanisms (Goyal and Bengio, 2022; Minsky, 1988; Robbins,
2017; Goyal et al., 2021; Hong et al., 2024). Bengio (2017) emphasized learning high-level concepts
by selecting key elements through attention, forming a low-dimensional conscious state similar
to language, which aids in better representation learning. Mashour et al. (2020) details GWT’s
implementation in neuroscience, suggesting that consciousness arises from extensive information
sharing across brain regions via a central network of neurons.

Inspired by GWT, our Debiasing Global Workspace (DGW) framework manages intrinsic and biased
attributes in neural networks. DGW integrates information from intrinsic and bias specialists, ensuring
disentangled representations are considered in decision making. Unlike prior works focusing on
monolithic architecture or general-purpose learning, our approach uniquely applies these theories to
debiasing neural networks.

3 Method

We propose the Debiasing Global Workspace (DGW), an instantiation of GWT for debiasing. DGW
learns the composition of attributes in a dataset and provides interpretable explanations for the
model’s decisions. We introduce the conceptual framework of GWT for debiasing first (Section 3.1),
its implementation in a deep learning framework next (Section 3.2), and the training objectives
last (Section 3.3).

3.1 The Conceptual Instantiation of Debiasing Global Workspace

Figure 1 depicts a conceptual overview of our proposed DGW framework. The conceptual flow of
the DGW proceeds through a sequence of steps that we describe in detail here.

Step 0. To learn disentangled representations of intrinsic and biased attributes, we introduce
two specialists: intrinsic ϕi and biased ϕb. In the original GWT, the specialists connect to the
global workspace before any stimulus appears, coupling their latent spaces bidirectionally with the
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Figure 1: The conceptual framework of Debiasing Global Workspace (DGW). (a) Section 3.1: When
attention selects inputs from specialists (Step 0), its latent space activation is copied into the DGW
and immediately translated into representations suitable for each module (Step 1). We control which
module is mobilized into the workspace to receive and process the corresponding data effectively.
For example, upon recognizing the digit “zero,” the corresponding classifiers are activated in the
workspace. The classifier ψi is initiated for intrinsic attributes (Step 2-1), and the classifier ψb

is activated for learning bias attributes (Step 2-2). (b) Broadcast in Section 3.2: The information
broadcast in DGW can demonstrate interpretable representation for attribute learning. (c) Section 3.3:
Unlike the original GWT, where task definitions can be preset in Step 0, we address them using our
training objectives using relative attribution score. The generic figure is inspired by (VanRullen and
Kanai, 2021, Fig. 3)

workspace. We modify this setup to control the connections to backpropagate different information
to two specialists separately (black and red connections between specialists and DGW in Step 0
in Fig. 1). Specifically, the intrinsic and bias specialists function identically in the forward pass.
However, during the backpropagation stage, only the intrinsic attribute encoder updates its parameters
and learns, while the bias attribute encoder remains frozen and does not undergo parameter updates
when the task of the model is to find intrinsic attributes.

Step 1. The DGW acts as an independent and intermediate shared latent space trained to perform
unsupervised neural translation between the C latent spaces from the specialized modules. The
translation system is optimized to ensure that successive translation and back translation (e.g., a cycle
from A to B, then back to A) return the original input (Goyal et al., 2021; VanRullen and Kanai,
2021). We implement specific operations to mimic the translation system by leveraging the residual
operations (He et al., 2016) and a variant of mixup (Verma et al., 2019).

Posner (1994) argues that attention determines what information is consciously perceived and what is
discarded in brains. In GWT, attention selects the information that enters the workspace. When a
specific module is connected to the workspace through attention, its latent space activation vector is
copied into the DGW. This internal copy serves as a bidirectional connection interface between the
corresponding module and the DGW.

When a new stimulus, such as the digit “zero,” appears, its latent activity transfers to the corresponding
internal copy inside the workspace, initiating a broadcast to all other domains. This shared latent
space (Si

latent in Fig. 1) uses translations and back translations from all modules to compute and
train via error backpropagation. We introduce a recurrent, top-down pathway, and it can sometimes
be considered as a key to account for the global ignition property observed in the brain when an
input reaches consciousness, and the corresponding module is mobilized into the conscious global
workspace (VanRullen and Kanai, 2021).
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Step 2. The incoming information is then immediately broadcast and translated (via the shared
latent space) into the latent space of all other modules. In GWT, this translation process is automatic.
However, we modify this to manually enforce learning of intrinsic and biased attribute representation
with different loss functions. Specifically, we enforce the classifier ϕi to learn intrinsic attributes
through error backpropagation from specific training objectives (Step 2-1 in Fig. 1). Step 2-2
simultaneously enforces the connection to the classifier ψb and limits backpropagation to the intrinsic
specialist ϕi to learn the bias attribute representations.

3.2 Roadmap to Implement Debiasing Global Workspace

Here, we present our deep-learning-based implementation of the DGW. It combines and organizes
existing components for effective debiasing frameworks in a way that is consistent with the cognitive-
science-inspired DGW framework described above.

Two specialized modules and the shared workspace. DGW uses two independent specialists, the
intrinsic attribute encoder ϕi and the bias attribute encoder ϕb. From these, we derive concatenated
features E = [ϕi(x);ϕb(x)] ∈ RL×D. To connect specialists and the shared workspace, we
define e ∈ {Ei,Eb}, where Ei = [ϕi(x); sg(ϕb(x))] and Eb is vice versa, with sg(·) as the stop-
gradient operator. We introduce the Global Latent Attention (GLA) module, which acts as a shared
workspace that encourages the synchronization among the input feature vector E via a latent feature
representation Slatent.

Latent-slot binding specific to each input. The GLA module uses a set number of latent em-
beddings or latent slots C. These latent slots represent the learnable embedding vectors in the
DGW, and perform competitive attention (Vaswani et al., 2017) on the input features e. We define
slatent ∈ {Si

latent,S
b
latent} ∈ RC×D where Ci is number of slots for intrinsic features and Cb for bias

features, with C = Ci + Cb. The attention mechanism is such that:

A(e, slatent) = softmax

(
k(e) · q(slatent)

⊤
√
D

)
∈ RC×L, (1)

where, k, q are linear projection matrices, and the softmax function normalizes the slots, creating
competition among them. The slots are refined iteratively using the following:

s
(n+1)
latent = GRU

(
s
(n)
latent,Normalize

(
A(e, s

(n)
latent)

⊤
)
· v (E)

)
, (2)

where, s(n)latent is the latent slot representation after n iterations, GRU (Cho et al., 2014) is a recurrent
neural network, and v is another liner projection matrix. The initial slots s(0)latent are initialized with
learnable queries following (Jia et al., 2022).

The above computations can be considered to implement a shared global workspace (Goyal et al.,
2021; Hong et al., 2024) as they enable different parts of the model to compete for attention,
integrating and broadcasting information similar to GWT.

Broadcast updated information to specialists. Specialists update their states using information
from the shared workspace. The inverted cross-attention mechanism allows specialists to query and
interact with updated latent slots s(n+1)

latent , updating their states through:

ē = e⊕
(
A

(
s
(n+1)
latent , e

)
· v

(
s
(n+1)
latent

))
∈ RL×D, (3)

where v is a linear projection matrix. Here, as the meaning of information broadcast, ⊕ can be
instantiated with various computational operations, including a residual connection (He et al., 2016).
The other way of operation is a modified version of Manifold Mixup (Verma et al., 2019), which
interpolates feature embeddings to capture higher-level information:

ē = Mixα

(
e,
(
A

(
s
(n+1)
latent , e

)
· v

(
s
(n+1)
latent

)))
,

where Mixα(a, b) = α · a+ (1− α) · b, and α ∼ Beta(β, β). The updated feature vector ē is then
fed to the classifier ψi and ψb. We compare the performance of using residual connections versus
our modified Manifold Mixup in Section 4.1.
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In GWT, the information broadcast through the global workspace is a necessary and sufficient
condition for conscious perception (VanRullen and Kanai, 2021). Intuitively, the attention mask
A(s

(n+1)
latent , e) can be seen as artificial phenomenal consciousness, indicating the immediate subjective

experience of sensations and perceptions. These non-negative relevance scores depend on x through
the averaged attention weight, allowing us to show interpretable representations for intrinsic and
biased attributes in our analysis (Section 4.2).

3.3 Training Objectives

Here, we summarize the objective functions to train our framework. We have two linear classifiers
ψi and ψb that take the updated concatenated vector ē from the previous module as input to predict
the target label y. Our training objectives consist of: i) the relative attribute score learning phase, and
ii) the attribute composition phase.

Relative attribute score learning phase. In this phase, we define two tasks within the conceptual
framework for: identifying intrinsic attributes and identifying biased attributes. Without specific
information about bias types, we utilize the relative difficulty score of each data sample, as proposed
by Nam et al. (2020). Specifically, we train ϕb, Sb

latent, and ψb to focus on bias attributes using
generalized cross entropy (GCE) (Zhang and Sabuncu, 2018), while ϕi, Si

latent and ψi are trained
with the cross entropy (CE) loss. Samples with high CE loss from ψb are considered bias-conflicting
compared to those with low CE loss. We define the relevance score function:

Score(ē, y) ≜ CE(ψb(ē), y)
/(

CE(ψi(ē), y) + CE(ψb(ē), y)
)
.

Thus, the objective function is defined using the above relative difficulty score of each data sample:

Lrel = Score(ē, y) · CE(ψi(ē), y) + λrelGCE(ψb(ē), y),

where λrel is the weight that adjusts between two loss terms. This loss function balances the learning
between intrinsic and biased attributes, ensuring effective identification and separation of these
attributes during the training phase.

Attribute-composition phase. We swap the disentangled latent vectors among the training sets (Lee
et al., 2021). We randomly permute the intrinsic and bias features in each mini-batch, creating
Eswap = [ϕi(x);ϕb

swap(x)] where ϕb
swap(x) denotes the randomly permuted bias attributes. This

process produces augmented bias-conflicting latent vectors. As similar as the definition of e, we
define eswap ∈ {Ei

swap,E
b
swap} and generate ēswap following the same process described in eqs 1, 2

and 3. The objective function for this phase is:

Lswap = Score(ē, y) · CE(ψi(ēswap), y) + λswapGCE(ψb(ēswap), ỹ),

where ỹ denotes target labels for permuted bias attributes ϕb
swap(x), and λswap is the balancing

weight between two loss terms. Notice that the relevance score Score(ē, y) is re-used to reduce
computational complexity. This loss function implies that by swapping bias features, the model
learns to handle a wider variety of bias-conflicting samples, improving its ability to generalize beyond
the specific biases present in the training data. Consequently, the model becomes more robust as
it learns to focus on intrinsic features while disregarding spurious correlations, resulting in better
performance on unbiased data. Furthermore, augmenting the training data in this manner helps the
model generalize better to new, unseen data by exposing it to a wider range of possible biases during
training.

Entropy regularization. We empirically incorporate an additional regularization term on the latent
slot attention mask to enhance performance:

Lent = H(A(s
(n)
latent, e)) +H(A(s

(n)
latent, eswap)),

where A(s
(n)
latent, e) and A(s

(n)
latent, eswap) are attention masks from the last iteration of eq. 2. Minimizing

entropy H(A) = H(a1, . . . , a|A|) = (1/|A|)
∑

i −ai · log(ai) encourages the attention masks to be
consistent over the input features captured by the latent slots. This regularization ensures the model’s
attention remains focused and interpretable across different input scenarios.
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Final loss. The total loss function is a combination of the above components: Ltotal = Lrel +
λswap · Lswap + λent · Lent. Here, λswap and λent are weights that adjust the importance of the feature
augmentation and entropy regularization, respectively. This comprehensive loss function ensures bal-
anced training that enhances the model’s ability to learn and generalize effectively while maintaining
interpretability and robustness.

4 Experiments

Here, we present our experimental results, focusing on performance evaluation on various biased
datasets (Section 4.1), interpretable analysis for attribute-centric representation learning (Section 4.2),
and additional qualitative and quantitative analyses (Section 4.3).

Datasets. Following the previous work (Lee et al., 2021), we used three well-known benchmark
datasets for debiasing methods to evaluate DGW’s performance and interpretability:

• Colored MNIST (C-MNIST) and Corrupted CIFAR10 (C-CIFAR-10): These synthetic
datasets are designed to test model generalization on unbiased test sets by varying the ratio
of bias-conflicting samples (0.5%, 1%, 2%, and 5%).

• Bias FFQH (BFFHQ): This real-world dataset from FFHQ (Karras et al., 2019) contains
face images annotated with age (intrinsic attribute) and gender (bias attribute). Most samples
are young women and old men, creating a high correlation between age and gender. For
BFFHQ, we included 0.5% bias-conflicting samples in the training set and used a bias-
conflicting test set to ensure robust evaluation.

At inference time, we evaluate the models on clean data where no bias-conflicting samples exist.

4.1 Performance Evaluation

Baselines. Our set of debiasing baselines includes six different approaches1: Vanilla network,
HEX (Wang et al., 2018), EnD (Tartaglione et al., 2021), ReBias (Bahng et al., 2020), LfF (Nam
et al., 2020), and LFA (Lee et al., 2021). Vanilla refers to the classification model trained only with
the original cross-entropy (CE) loss without debiasing strategies. EnD leverages the explicit bias
labels, such as the color labels in the C-MNIST dataset, during the training phase. HEX and ReBias
assume an image’s texture as a bias type, whereas LfF, LFA, and our method do not require any prior
knowledge about the bias type. Furthermore, we configure a naive debiasing approach integrated
with GWT implementation: V+CCT. CCT (Hong et al., 2024) proposed an instantiation of GWT
applicable to implement an interpretable model. To compare our DGW, we simply configure the
direction fusion of the Vanilla network with CCT as a GWT debiasing method.

Implementation details. Following the implementation details from Lee et al. (2021), we used a
fully connected network for attribute encoders with three hidden layers for C-MNIST and ResNet-18
for C-CIFAR-10 and BFFHQ. We employed a fully connected classifier with double the hidden units
to handle the combined output from the intrinsic attribute encoder ϕi and the bias attribute encoder
ϕb.

During testing, only the intrinsic classifier ψi(e) was used for final predictions. We used batch sizes
of 256 for C-MNIST and C-CIFAR-10, and 64 for BFFHQ, respectively. Two concepts and size of 8
were used for C-MNIST, 5 and 16 for C-CIFAR-10, and 10 and 32 for BFFHQ, respectively. We
trained our model and baselines with three trials and reported the averaged accuracy and standard
deviation. More details of experimental settings are explained in the Appendix C.4.

Performance Comparison. Table 1 shows that ReBias outperforms DGW on C-MNIST because
it uses additional predefined bias labels. This gives ReBias a specific advantage. However, DGW
excels without needing predefined bias labels, making it more versatile. DGW, with all operators,

1We only establish baselines that can be directly tested. For example, χ2 (Zhang et al., 2023) is not included
because its code is not publicly available, and SelecMix (Hwang et al., 2022) is not included because it is a
data-augmentation method that differs from our method category and has high training complexity, taking over
approximately four times longer than our method. Additionally, although the authors of SelecMix claim it runs
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Table 1: Test accuracy (%) on unbiased test sets of C-MNIST and C-CIFAR-10, and the bias-
conflicting test set of BFFHQ with varying ratio of bias-conflicting samples. (∗) denotes methods
tailored to predefined forms of bias, (°) methods using bias labels, (†) methods relying on the easy-
to-learn heuristic, and (‡) methods combined with GWT. V+CCT indicates the direct integration of
Vanilla and CCT. DGW+M refers to DGW with our mixup strategy, and DGW+R refers to DGW
with residual connection. Performance for HEX and EnD is from (Lee et al., 2021), while results for
Vanilla, ReBias, LfF, LFA, V+CCT and DGW are from our evaluation. The best-performing results
are shown in bold, and the second-best results are underlined.

Dataset Ratio (%) Vanilla HEX∗ EnD° ReBias∗ LfF† LFA† V+CCT‡ DGW+M‡ DGW+R‡

C-MNIST

0.5 36.2±1.8 30.3±0.8 34.3±1.2 72.2±1.5 47.5±3.0 67.4±1.7 26.3±1.1 68.9±2.8 70.3±1.2

1.0 50.8±2.3 43.7±5.5 49.5±2.5 86.6±0.6 64.6±2.5 79.0±1.0 40.1±2.1 81.3±1.2 77.4±0.4

2.0 65.2±2.1 56.9±2.6 68.5±2.2 92.7±0.3 74.9±3.7 85.0±0.8 56.2±1.8 84.6±1.5 85.3±0.7

5.0 81.6±0.6 74.6±3.2 81.2±1.4 97.1±0.6 80.2±0.9 88.7±1.3 73.4±0.8 88.9±0.2 89.1±0.6

C-CIFAR-10

0.5 22.8±0.3 13.9±0.1 22.9±0.3 20.8±0.2 25.0±1.5 27.9±1.0 15.2±0.3 29.6±0.5 30.4±2.2

1.0 26.2±0.5 14.8±0.4 25.5±0.4 24.4±0.4 31.0±0.4 34.3±0.6 20.6±0.4 34.9±0.4 33.6±2.4

2.0 31.1±0.6 15.2±0.5 31.3±0.4 29.6±2.9 38.3±0.4 40.3±2.4 24.6±0.5 41.3±1.0 42.0±1.9

5.0 42.0±0.3 16.0±0.6 40.3±0.9 41.1±0.2 48.8±0.9 50.3±1.1 35.6±0.8 52.3±0.8 50.3±1.9

BFFHQ 0.5 54.5±0.6 52.8±0.9 56.9±1.4 58.0±0.2 63.6±2.9 59.5±3.8 52.6±1.1 66.9±1.0 65.6±3.3

Figure 2: Visualization of Ai and Ab for the C-MNIST dataset

also outperforms LFA across all datasets, demonstrating its robustness and flexibility in debiasing
image classification tasks. Furthermore, the poor performance of V+CCT highlights the importance
of finding the proper configuration for debiasing methods, indicating the effectiveness of our DGW
configuration as a debiasing method.

4.2 Analysis for Interpretable Attribute Representation

To make the analysis of interpretable attribute representation learning in our model more intuitive,
let us explore the attention mask patterns A(s

(n+1)
latent , e) for the C-MNIST and C-CIFAR-10 datasets.

In the broadcast in our formulation (A(s
(n+1)
latent , e) in eq. 3)), DGW generates two attention masks:

Ai = A(Si
latent,E

i) for intrinsic attributes, focusing on essential features like shape, and Ab =
A(Sb

latent,E
b) for biased attributes, capturing non-essential features like color.

For the C-MNIST dataset, intrinsic attention masks highlight the shapes of the digits, ignoring colors.
For instance, the digits “0,” “6,” and “8” consistently highlight shape regions (Fig. 2(a)), showing
that the model focuses on shape for classification. Conversely, bias attention masks highlight color
regions, not shapes. Digits “1,” “5,” “2,” and “8” in yellow/magenta/green show nearly identical
masks (Fig. 2(b)), indicating a focus on color. This confirms that the biased components of DGW
capture color information, which is irrelevant for digit recognition.

For the C-CIFAR-10 dataset, intrinsic masks focus on uncorrupted parts of the images (Fig. 3(b)),
highlighting true object features. For example, masks for a truck, car, dog, and horse highlight
uncorrupted areas, avoiding noise. Bias masks, on the other hand, focus on corrupted areas, showing

on an RTX 3090, we found that our environment with a 24GB RTX A6000 could not handle the real-life dataset
BFFHQ, indicating significant computational resource requirements.
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Figure 3: Visualization of Ai and Ab for the C-CIFAR10 dataset

Figure 4: t-SNE plots for intrinsic and bias features on C-MNIST (with 0.5% setting).

no overlap with intrinsic masks (Fig. 3(c)). This complementary relationship illustrates the effective
segregation of essential (intrinsic) and non-essential (biased) information.

In summary, for C-MNIST, intrinsic masks focus on digit shapes, while bias masks focus on colors.
For C-CIFAR-10, intrinsic masks highlight uncorrupted parts, and bias masks cover corrupted parts.
This clear separation supports the model’s robustness and interpretability, ensuring decisions are
based on relevant features while ignoring spurious correlations. More visualization results can be
found in Appendix C.5.

4.3 Quantitative and Qualitative Analysis

We provide additional analysis to compare our DGW (DGW+M in Table 1) method with Vanilla
and LFA (Lee et al., 2021). More experimental results with different settings can be found in
Appendix C.6.

t-SNE and Clustering. We measure clustering performance using t-SNE (van der Maaten and
Hinton, 2008) and V-Score (Rosenberg and Hirschberg, 2007) on features from various models cap-
turing intrinsic and bias attributes on C-MNIST. V-Score represents homogeneity and completeness,
with higher values indicating better clustering. In Fig. 4, our DGW’s ϕi captures intrinsic attributes
effectively, resulting in tighter clusters and better separation, as indicated by the V-Score. Bias
attributes are well captured by the ϕb, as shown in Fig. 4(d).

Model Similarity. We visualize model similarity using Centered Kernel Alignment (CKA) (Raghu
et al., 2021; Kornblith et al., 2019; Cortes et al., 2012), comparing similarities between all pairs of
layers for different models. In this analysis, I and B denote ϕi and ϕb. As shown in Fig. 5, Vanilla
and LFA possess similar weights across many layers, while DGW shows fewer similarities in both
initial and deeper layers, indicating different behavior across layers compared to baselines.

Model Reliability. We evaluate model generalizability using Expected Calibration Error (ECE)
and Negative Log Likelihood (NLL) (Guo et al., 2017). ECE measures calibration error, and NLL

9



Figure 5: Representations of similarities for vanilla and different methods with all pairs of layers on
C-CIFAR-10 (0.5% setting). High similarity score denotes high values.

Table 2: ECE (%) and NLL under different settings on C-CIFAR-10.
Ratio (%): 0.5 1.0 2.0 5.0

Model ECE NLL ECE NLL ECE NLL ECE NLL

Vanilla 13.75 5.99 13.14 9.87 12.25 6.65 13.76 5.99
LFA 12.09 5.81 11.45 7.27 10.25 5.14 7.56 3.09
DGW (Ours) 11.85 5.71 11.53 6.88 9.96 4.41 7.55 3.01

assesses probabilistic quality. As shown in Table 2, DGW consistently has the lowest ECE and NLL,
indicating better generalizability compared to baselines.

5 Conclusion

In this work, we introduced Debiasing Global Workspace (DGW), a framework designed to learn
debiased representations of attributes in neural networks. By leveraging attention mechanisms
inspired by the Global Workspace Theory, our method effectively differentiates between intrinsic and
biased attributes, enhancing both performance and interpretability. Comprehensive evaluations across
various biased datasets demonstrated that DGW improves model robustness and generalizability
on biased data and provides interpretable insights into the model’s decision-making process. Our
approach results in tighter clusters and better model separation, indicating superior performance in
both intra- and inter-classification tasks. Furthermore, DGW shows enhanced model reliability and
generalizability, making it a better solution for addressing biases in real-world applications. Future
work could focus on reducing this complexity, exploring the scalability of DGW to even larger and
more diverse datasets, and extending the framework into a general-purpose drop-in layer to enhance
robust performance across a wider range of image recognition tasks.

Limitations. We acknowledge that introducing our modules can increase training complexity,
including model size and training time. This represents a trade-off between performance and decision-
making transparency. Although our additional overhead is minimal, further analysis is necessary to
optimize and streamline the process.
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Appendix

A Reproducibility

All source codes, figures, models, etc., are available at https://github.com/jyhong0304/
debiasing_global_workspace.

B Background

Object-Centric Representation Learning. Humans outperform sophisticated AI technologies due
to our exceptional ability to recombine previously acquired knowledge, allowing us to extrapolate to
novel scenarios (Fodor and Pylyshyn, 1988; Goyal and Bengio, 2022; Greff et al., 2020). Pursuing
representations that generalize compositionally has been a significant research topic, with object-
centric representation learning (Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020; Chang
et al., 2022; Jia et al., 2022) emerging as a prominent effort. This approach represents each object in
an image with a unique subset of the image’s latent code, enabling compositional generalization due
to its modular structure.

Due to its simple yet effective design, Slot-Attention (SA) (Locatello et al., 2020) has gained
significant attention in unsupervised object-centric representation learning. Its iterative attention
mechanism allows SA to learn and compete between slots for explaining parts of the input, showing a
soft clustering effect on visual inputs (Locatello et al., 2020). Some recent works on implementing a
cognitive architecture using object-centric methods have been proposed (Hong et al., 2024; Didolkar
et al., 2023). Our approach also emphasizes compositional generalization in debiasing learning, using
the slot-based method to implement a crucial module. The benefits of this method are noteworthy
and deserve further exploration.

C Further Experimental Results and Details

In this section, we explain further experimental results and details. All experiments are conducted
with three different random seeds and 95% confidence intervals.

C.1 Hardware Specification of The Server

The hardware specification of the server that we used to experiment is as follows:

• CPU: Intel® CoreTM i7-6950X CPU @ 3.00GHz (up to 3.50 GHz)

• RAM: 128 GB (DDR4 2400MHz)

• GPU: NVIDIA GeForce Titan Xp GP102 (Pascal architecture, 3840 CUDA Cores @ 1.6
GHz, 384-bit bus width, 12 GB GDDR G5X memory)

C.2 Datasets

We describe the details of biased datasets, Colored MNIST (C-MNIST), Corrupted CIFAR-10
(C-CIFAR-10), and BFFHQ.

Colored MNIST. Following existing studies (Nam et al., 2020; Kim et al., 2019; Li and Vasconcelos,
2019; Bahng et al., 2020; Darlow et al., 2020; Lee et al., 2021), this biased dataset comprises two
highly correlated attributes: color and digit. We added specific colors to the foreground of each digit,
generating bias-aligned and bias-conflicting samples for different ratios of bias-conflicting samples:

• 0.5%: (54751:249)

• 1%: (54509:491)

• 2%: (54014:986)

• 5%: (52551:2449)
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Corrupted CIFAR-10. Among 15 different corruptions introduced in the original
dataset (Hendrycks and Dietterich, 2018), we selected types including Brightness, Contrast,
Gaussian Noise, Frost, Elastic Transform, Gaussian Blur, Defocus Blur, Impulse Noise, Saturate, and
Pixelate, related to CIFAR-10 classes (Krizhevsky and Hinton, 2009). We used the most severe level
of corruption for the dataset, with the following bias-aligned and bias-conflicting samples:

• 0.5%: (44832:228)

• 1%: (44527:442)

• 2%: (44145:887)

• 5%: (42820:2242)

BFFHQ. The dataset is created by using the Flickr-Faces-HQ (FFHQ) Dataset (Karras et al., 2019),
focusing on age and gender as two strongly correlated attributes. The dataset includes 19200 training
images (19104 bias-aligned and 96 bias-conflicting) and 1000 testing samples.

C.3 Image Preprocessing

Following Lee et al. (2021), our model is trained and evaluated using fixed-size images. For C-
MNIST, the size is 28× 28; for C-CIFAR-10, it is 32× 32, and for BFFHQ, it is 224× 224. Images
for C-CIFAR-10 and BFFHQ are preprocessed using random crop and horizontal flip transformations,
as well as normalization along each channel (3, H, W) with a mean of (0.4914, 0.4822, 0.4465)
and standard deviation of (0.2023, 0.1994, 0.2010). We do not use augmentation techniques for
C-MNIST.

C.4 Performance Evaluation

Training Details. For training, we use the Adam (Kingma and Ba, 2014) optimizer with default
parameters (i.e., betas = (0.9, 0.999) and weight decay = 0.0) provided in the PyTorch™framework.
We define two different learning rates: LRDGW for our DGW modules, and LR for the remaining modules
in our method, including encoders and classifiers. For C-MNIST, LR is 0.01, while LRDGW is 0.0005
for C-MNIST-2%, 0.002 is for the remaining ratios of datasets. For C-CIFAR-10, LR is 0.001, and
LRDGW is 0.0001. For BFFHQ, LR is 0.0001 and 0.0002 is for LRDGW.

We utilize StepLR for learning rate scheduling, with a decaying step set to 10K for all datasets. The
decay ratio is 0.5 for both C-MNIST and C-CIFAR-10 and 0.1 for BFFHQ. Following (Lee et al.,
2021), we adjust the learning rate after performing feature augmentation.

We set the hyperparameters (λre, λswapb , λswap, λent) for our proposed loss functions (Section 3.3 in
the main text). (10, 10, 1, 0.01) is set for the ratio of 0.5% of C-MNIST, and (15, 15, 1, 0.01) for the
ratio of 1%, 2%, and 5% of C-MNIST. We set (1, 1, 1, 0.01) for C-CIFAR-10, and (2, 2, 0.1, 0.01)
for BFFHQ.

Our proposed mixup strategy uses the hyperparameter β to select the mixing coefficient α ∼
Beta(β, β). For BFFHQ, we set 0.5, whereas 0.2 for C-MNIST and C-CIFAR-10.

We provide the scripts, including all hyperparameter setups, in our Git repository (Section A) to
reproduce our performance evaluation.

C.5 Analysis for Interpretable Attribute Representation

Initialization of Concept Slots. The initialization of concept slots is crucial for our model’s
performance, tailoring the attention mechanisms to each dataset. We set the initial number of concept
slots (C) as follows:

• For C-MNIST, C is set to 2, reflecting its simple attribute composition

• For C-CIFAR-10, C is set to 10, accommodating its diverse features

• For BFFHQ, C is set to 10, capturing a wide range of human facial features
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Figure A-1: Visualization of attention masks Ai for the C-MNIST dataset

Figure A-2: Visualization from the C-MNIST dataset showing attention masks Ab, highlighting color
patterns. Digits in similar colors (e.g., 2, 3, 0, and 6) share similar attention mask patterns.

Additional Visualization on C-MNIST dataset. Figure A-1 displays the attention masks Ai =
A(Si

latent,E
i) generated by eq. 3 in the main text for C-MNIST, showing the model focuses on digit

shapes, ignoring color. Fig. A-2 shows the attention masks Ab = A(Sb
latent,E

b) generated by eq. 3 in
the main text, highlighting how the model responds to color patterns. Similar colors, like the purple
digits 2, 3, 0, and 6, have similar attention masks, indicating the model’s sensitivity to color.

Visualization on BFFHQ dataset. Figure A-3 shows DGW’s behavior on the BFFHQ dataset,
where the intrinsic components display complementary behavior within themselves (concept slots
6 and 9), focusing on specific facial features like cheeks for gender classification. This behavior is
due to BFFHQ’s focus on human facial shapes for gender classification, where the model prioritizes
critical facial features, filtering out less relevant data.

C.6 Quantitative and Qualitative Analysis

t-SNE and Clustering. We provide more results with t-SNE plots and clustering scores with
V-Score (Rosenberg and Hirschberg, 2007) as illustrated in Fig. A-4 and A-5. V-Score, a harmonic
mean between homogeneity and completeness, is widely used to evaluate clustering. A higher
V-Score indicates tighter intra-class clusters and better inter-class separation.

In Fig. A-4, intrinsic features from baselines and the intrinsic attribute encoder ϕi are used. It
consistently shows a higher V-Score, implying better classification and intrinsic attribute capture
compared to baselines. V-Scores are higher in setting (ii) than (i) because more bias-conflicting
samples are used for training in setting (ii).

In Fig. A-5, features from the bias attribute capturing layer of LFA and the bias attribute encoder
ϕb are utilized. It shows a higher V-Score compared to LFA, indicating more effective bias attribute
separation. Overall, our method outperforms baselines, demonstrating robust separation of intrinsic
and bias attributes to improve debiasing process.

Model Similarity. We use Centered Kernel Alignment (CKA) (Raghu et al., 2021; Kornblith et al.,
2019; Cortes et al., 2012) to visualize similarities between all pairs of layers in different models,
helping us understand model behavior. The bias and intrinsic attribute encoders ϕb and ϕi in our
approach are compared.
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Figure A-3: Face images with attention masks. The first column shows the original image, the next
two columns show attention masks Ai from concept slots 6 and 9, and the last column shows masks
Ab.

Figure A-4: t-SNE plots for intrinsic features on C-MNIST (with (i) 1.0% and (ii) 2.0% settings).
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Figure A-5: t-SNE plots for bias features on C-MNIST (with 0.5% setting).

Figure A-6: Representations of similarities for vanilla model and different methods with all pairs of
layers on C-CIFAR-10 (5.0% setting). A high similarity score denotes high values.

In Fig. A-6 and Fig. A-7, Vanilla and LFA models show similar weights in many layers, represented
by bright colors.

In contrast, our method shows significantly lower similarity values, indicating different weights and
behaviors across layers compared to Vanilla and LFA. Our method affects deeper layers more, where
the attention module is inserted, suggesting a distinct impact on model behavior.

Model Reliability. To evaluate the generalizability of models, we measure Expected Calibration
Error (ECE) and Negative Log Likelihood (NLL) (Guo et al., 2017), where ECE is to measure
calibration error and NLL is to calculate the probabilistic quality of a model. In detail, ECE aims to
evaluate whether the predictions of a model are reliable and accurate, which is a simple yet sufficient
metric for assessing model calibration and reflecting model generalizability (Guo et al., 2017).

In Table A-1, our method consistently shows the lowest ECE, indicating better calibration and
reliability. For C-MNIST, it presents a higher NLL compared to baselines. Since C-MNIST includes
color bias only in the training set, it prevents overfitting by being less affected by bias, leading to
better overall model performance. This trend is consistent across different settings in C-MNIST,
providing insights into analyzing and explaining dataset bias types and complexity characteristics.

Figure A-7: Representations of similarities for vanilla model and different methods with all pairs of
layers on BFFHQ (0.5% setting). A high similarity score denotes high values.
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Table A-1: ECE (%) and NLL under different settings on C-MNIST and C-CIFAR-10.

Dataset C-MNIST C-CIFAR-10

Ratio (%) 0.5 1.0 2.0 5.0 0.5 1.0 2.0 5.0
ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL

Vanilla 10.9 13.17 7.97 6.45 5.70 5.71 9.54 4.10 13.75 5.99 13.14 9.87 12.25 6.65 13.76 5.99
LFA 4.35 67.72 2.79 36.46 2.09 18.35 7.59 3.09 12.09 5.81 11.45 7.27 10.25 5.14 7.56 3.09
DGW 3.41 271.71 2.03 143.36 1.73 41.44 1.61 20.19 11.85 5.71 11.53 6.88 9.96 4.41 7.55 3.01
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