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Abstract—Sampled Gabor phase retrieval — the problem of
recovering a square-integrable signal from the magnitude of
its Gabor transform sampled on a lattice — is a fundamental
problem in signal processing, with important applications in areas
such as imaging and audio processing. Recently, a classification
of square-integrable signals which are not phase retrievable from
Gabor measurements on parallel lines has been presented. This
classification was used to exhibit a family of counterexamples
to uniqueness in sampled Gabor phase retrieval. Here, we show
that the set of counterexamples to uniqueness in sampled Gabor
phase retrieval is dense in L2(R), but is not equal to the whole
of L2(R) in general. Overall, our work contributes to a better
understanding of the fundamental limits of sampled Gabor phase
retrieval.

Index Terms—Phase retrieval, Gabor transform, sampling
result

I. INTRODUCTION

Phase retrieval is a term broadly applied to problems in
which information about complex phase needs to be inferred
from data. The origins of phase retrieval can be traced back
to the years 1915 – 1929 when W. H. Bragg and W. L. Bragg
(among others) used X-ray diffraction images of crystals in
order to illuminate their atomic structure [1], [2], [3], [4],
[5]. Since then phase retrieval has found applications in
various fields such as crystallography, electron microscopy and
astronomy [6], [7], [8].

Gabor phase retrieval refers to problems in which signals
f ∈ L2(R) have to be reconstructed from magnitudes of their
Gabor transform,

Gf(x, ω) := 21/4
∫
R
f(t)e−π(t−x)2e−2πitω dt, (x, ω) ∈ R2.

It has been used in a range of audio processing tasks, including
the phase vocoder for time-stretching and pitch-shifting of
audio signals [9], as well as speech enhancement and source
separation [10].

In this contribution, we will specifically focus on the
sampled Gabor phase retrieval problem which is the re-
covery of signals f from the magnitude measurements

(|Gf(x, ω)|)(x,ω)∈Λ where Λ ⊂ R2 is a lattice1. We focus
on this sampling problem because magnitude information on
the entire time-frequency plane R2 is not available in practice.
Instead, only a finite number of measurements are stored and
inferences are made based on them. We consider the sampled
setup proposed above as a natural and useful compromise
between the fully continuous case, where no sampling occurs,
and the fully discrete case, where the signals are finite-
dimensional vectors.

A. Prior arts: Counterexamples to uniqueness in sampled
Gabor phase retrieval

In the following, we will focus on counterexamples to
uniqueness in sampled Gabor phase retrieval; i.e. signals
whose Gabor transform magnitudes agree on a lattice but
which are fundamentally different from each other. Before
introducing the concept of a counterexample rigorously, we
need to emphasise that there is one ever-present ambiguity in
Gabor phase retrieval: the global phase ambiguity. Two signals
f, g ∈ L2(R) are said to agree up to global phase if they are
equivalent with respect to the relation

f ∼ g : ⇐⇒ f = eiαg, for some α ∈ R.

Notably, f ∼ g implies |Gf | = |Gg| such that signals which
agree up to global phase cannot be recovered from Gabor
transform magnitudes. With this in mind, we define the set
of counterexamples.

Definition I.1 (Counterexamples). Let Λ ⊂ R2. The set of
counterexamples to uniqueness in Gabor phase retrieval on Λ
is defined by

C(Λ) :=
{
f ∈ L2(R)

∣∣ |Gf | = |Gg| on Λ and f ̸∼ g,

for some g ∈ L2(R)
}
.

An element f ∈ C(Λ) is called a counterexample to uniqueness
in sampled Gabor phase retrieval on Λ.

1A lattice Λ ⊂ R2 is a discrete subset of the time-frequency plane that can
be written as LZk where L ∈ R2×k is a matrix with linearly independent
columns and k ∈ {1, 2}.



Counterexamples to uniqueness in sampled Gabor phase
retrieval are interesting for two reasons. First, they allow us
to better understand the fundamental limits of sampled Gabor
phase retrieval, which in turn can guide future research towards
achieving uniqueness. In addition, they offer the opportunity
to explore the potential relationship between uniqueness and
stability in phase retrieval [11].

Let us briefly summarise the recent research on counterex-
amples in Gabor phase retrieval. The relationship between
the Gabor transform and the Bargmann transform (which is
described in more detail in Section II) allows for the relation of
the Gabor phase retrieval problem to a phase retrieval problem
for entire functions. This was realised in [12], [13]. Then,
following these ideas, a characterisation of all entire functions
of exponential-type whose magnitudes agree on any set of
infinitely many equidistant parallel lines was proven in [14].

Using this characterisation and noting that all lattices are
a subset of some set of infinitely many equidistant parallel
lines, it becomes possible to construct various types of coun-
terexamples. This idea has been applied in [15] to construct
explicit counterexamples to uniqueness in sampled Gabor
phase retrieval on any lattice. (See [14] for a more in-depth
explanation.) An extension of the results in [15] has appeared
in [16].

B. Our contributions
In this contribution, we show that the set of counterexamples

C(Λ) is dense in L2(R) when Λ ⊂ R2 is a lattice or a set of
equidistant parallel lines. We also show that the Gaussian is
not a counterexample for quadratic lattices, Λ = aZ2, with
a ∈ (0, 1). Therefore, the set of counterexamples is dense but
not equal to the whole of L2(R) in general. We prove these
two results by using the connection between the Bargmann
transform and the Gabor transform as well as some classical
results from complex analysis.

Note that this contribution is a condensed and modified
version of the section on the fragility of uniqueness in sampled
Gabor phase retrieval in the larger manuscript [11]. Apart
from a comprehensive treatment of counterexamples, the larger
manuscript also discusses the stability of Gabor phase retrieval
as well as its potential connection with uniqueness in sampled
Gabor phase retrieval. Here, we focus specifically on showing
that the counterexamples are dense.

Notation
Rotation by θ ∈ R on R2 is denoted by Rθ : R2 → R2; in

matrix notation, we have

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Translation by x ∈ R on Lp(R), where p ∈ [1,∞], is denoted
by Tx : Lp(R) → Lp(R); i.e.

Tx f(t) = f(t− x), t ∈ R,

for f ∈ Lp(R). Finally, the normalised Gaussian is denoted
by

φ(t) = 21/4e−πt2 , t ∈ R.

II. THE RELATION BETWEEN THE BARGMANN AND
GABOR TRANSFORM

As mentioned before, we will make use of the well-known
connection between the Bargmann transform and the Gabor
transform [17]. The Fock space F2(C) is the Hilbert space of
all entire functions for which the norm induced by the inner
product

(F,G)F :=

∫
C
F (z)G(z)e−π|z|2 dz

is finite. The Bargmann transform B : L2(R) → F2(C),

Bf(z) := 21/4
∫
R
f(t)e2πtz−πt2−π

2 z2

dt, z ∈ C,

acts as an isomorphism between L2(R) and F2(C). It is
related to the Gabor transform by the formula

Gf(x,−ω) = eπixωBf(x+ iω)e−
π
2 (x2+ω2), (1)

for (x, ω) ∈ R2. It is the formula above that allows us to relate
the Gabor phase retrieval problem to a phase retrieval problem
for entire functions. We are going to use this relation in the
sequel.

III. THE SET OF COUNTEREXAMPLES IS DENSE

In this section, we show that the set of counterexamples
C(Λ) is dense in L2(R) when Λ ⊂ R2 is a lattice or a set
of equidistant parallel lines. Our strategy will be to design
entire functions H±

δ ∈ F2(C) which converge to a constant
as δ → 0, do not agree up to global phase and still satisfy
|H+

δ | = |H−
δ | on R + iaZ. Once these entire functions have

been designed, we can multiply them with Bf and take the
inverse Bargmann transform in order to get counterexamples
on R× aZ that are close to f ∈ L2(R).

We design the functions H±
δ ∈ F2(C) by modifiying the

counterexamples on R× aZ,

h±(t) := φ(t)

(
cosh

(
πt

a

)
± i sinh

(
πt

a

))
, t ∈ R,

presented in [15]. To accomplish this, we compute the
Bargmann transforms of h± which are given by

z 7→
(
1∓ i + (1± i)e

πz
a

)
e−

πz
2a

up to a constant depending on a. Next, we note that time-
shifting h± by u ∈ R will produce additional counterexamples
on R× aZ according to the covariance property of the Gabor
transform [17]. For f ∈ L2(R), it holds that

BTu f(z) = Bf(z − u)eπuze−
π
2 u2

, z ∈ C,

such that the Bargmann transforms of the counterexamples
Tu h

±, with u = − a
π log δ, are given by

z 7→
(
1∓ i + (1± i)δ · eπz

a

)
δ−aze−

πz
2a

up to a constant depending on a and δ. After multiplying by
δaze

πz
2a , it follows that

z 7→ 1∓ i + (1± i)δ · eπz
a



are entire functions whose magnitudes agree on R+iaZ (which
do not agree up to global phase) and we define

H±
δ (z) := 1± iδ · e

πz
a , z ∈ C, (2)

after multiplying by (1± i)/2.

Theorem III.1. Let a > 0. Then, C(R × aZ) is dense in
L2(R).

Proof. Let ϵ > 0 and f ∈ L2(R). We want to show that there
exist g± ∈ L2(R) which do not agree up to global phase, are
ϵ-close to f in L2(R) and satisfy

|Gg+| = |Gg−| on R× aZ.

To do so, we note that the monomials

en(z) :=

(
πn

n!

)1/2

zn, n ∈ N0, z ∈ C,

form an orthonormal basis for the Fock space F2(C) [17].
Therefore, the space of complex polynomials is dense in
F2(C) and we can find P ∈ C[z] such that

∥Bf − P∥F <
ϵ

2
.

Let us now consider the entire functions H±
δ defined in

equation (2) and note that G±
δ := H±

δ · P ∈ F2(C) since
Gδ

± are entire functions of exponential-type. Hence, we can
define the signals g±δ := B−1G±

δ ∈ L2(R). To establish the
desired properties of g±δ , we will work with their Bargmann
transforms G±

δ . First, we note that |H+
δ | = |H−

δ | on R+ iaZ
implies |G+

δ | = |G−
δ | on R + iaZ and thus |Gg+δ | = |Gg−δ |

on R× aZ by equation (1). Secondly, we note that the entire
functions G±

δ do not agree up to global phase: indeed, both
entire functions H±

δ have infinitely many roots but no root
of H+

δ is a root of H−
δ and vice versa. At the same time, P

is a polynomial and has only finitely many roots. It follows
that G+

δ does have roots which are not roots of G−
δ (and vice

versa) and thus G+
δ ̸∼ G−

δ . By the linearity of the Bargmann
transform, we can conclude that g+δ ̸∼ g−δ . Finally, we note
that the definition of H±

δ in equation (2) directly implies that

∥P − P ·H±
δ ∥F = δ∥z 7→ P (z) · eπz/a∥F ,

and so there exists a δ > 0 depending on a, ϵ and P (which
in turn depends on f and ϵ) such that

∥P − P ·H±
δ ∥F <

ϵ

2
.

We conclude

∥f − g±δ ∥2 = ∥Bf −Hδ
± · P∥F

≤ ∥Bf − P∥F + ∥P −Hδ
± · P∥F < ϵ.

Remark III.2 (Some explanations on the proof). As Bf ∈
F2(C), for f ∈ L2(R), we know that Bf is either an entire
function of exponential-type or an entire function of second
order. If Bf is of second order, then its type is either strictly

smaller than π/2 or exactly π/2. In most of these cases, it
holds that Bf ·H±

δ ∈ F2(C) and thus we can define

g±δ := B−1
(
Bf ·H±

δ

)
∈ L2(R),

with
δ <

ϵ

∥z 7→ Bf(z)eπz/a∥F
,

to obtain counterexamples which are ϵ-close to f in L2(R). We
note that g±δ are small additive perturbations of our original
signals f .

Unfortunately, there is one case in which this simple strategy
does not work: the one in which Bf is a second-order entire
function of type π/2. Indeed, in this case, it is not guaranteed
that Bf ·H±

δ is in the Fock space. — Two striking examples
for why this can fail can be found in [18]. — As the only
situation in which Bf · H±

δ is not in the Fock space occurs
when Bf is exactly of order two and of type π/2, it seems
obvious that the functions f for which Bf · H±

δ ∈ F2(C)
holds must be dense in L2(R). We can prove this by realising
that the complex polynomials are dense in F2(C).

Theorem III.1 continues to hold for any set of infinitely
many equidistant parallel lines. We can show this by consid-
ering the entire functions

H±
δ (z) := 1± iδ exp

(
πeiθ

a

(
z − λ0

))
and realising that the corresponding signals g±δ ∈ L2(R)
satisfy

|Gg+δ | = |Gg−δ | on Rθ (R× aZ) + λ0,

where a > 0, λ0 ∈ R2 ≃ C. The statement for general lattices
follows from the same consideration because all lattices are
subsets of some set of infinitely many equidistant parallel lines.
We therefore arrive at the following result.

Theorem III.3. Let Λ ⊂ R2 be a set of equidistant parallel
lines or a lattice. Then, C(Λ) is dense in L2(R).

To illustrate our main results, we construct counterexamples
that are close to the Hermite functions and plot their spectro-
grams.

Example III.4. Consider the n-th Hermite function Hn ∈
L2(R) given by

BHn(z) = en(z) =

(
πn

n!

)1/2

zn, z ∈ C.

By equation (1), the Gabor transform of the Hermite function
is

GHn(x, ω) = e−πixωBHn(x− iω)e−
π
2 (x

2+ω2)

=

(
πn

n!

)1/2

e−πixω (x− iω)
n
e−

π
2 (x

2+ω2),

for (x, ω) ∈ R2. If we plot the magnitude of the above (for n =
5), we obtain Figure 1a. Next, we want to find counterexamples
which are close to Hn. According to Remark III.2, we can
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Fig. 1. The Gabor magnitude of the fifth Hermite function (Figure 1a) and of
a counterexample g+δ to sampled Gabor phase retrieval on R× 1

4
Z (Figure 1b).

define g+δ := B−1(BHn·H+
δ ). Let us visualise the spectrogram

of g+δ , i.e.

Gg+δ (x, ω) = GHn(x, ω) ·H+
δ (x− iω), (x, ω) ∈ R2,

in Figure 1b (for n = 5, a = 1
4 and δ = 1

50 exp(−10π)).

IV. THE GAUSSIAN IS NOT A COUNTEREXAMPLE

Finally, we can show that the Gaussian is not a coun-
terexample on aZ2 if a ∈ (0, 1). Specifically, we prove the
following result.

Theorem IV.1. Let 0 < a < 1 and f ∈ L2(R) be such that

|Gf(x, ω)|2 = |Gφ(x, ω)|2, (x, ω) ∈ aZ2.

Then, there exists an α ∈ R such that f = eiαφ.

Since the Bargmann transform of the Gaussian is one,
equation (1) implies that the theorem above is equivalent to
the following lemma.

Lemma IV.2. Let 0 < a < 1 and let F ∈ F2(C) be such that

|F (z)| = 1 = |Bφ(z)|, z ∈ aZ+ iaZ.

Then, there exists an α ∈ R such that F = eiα.

The intuition for the proof of this lemma comes from the
maximum modulus principle: we note that we are considering
a second order entire function F which is bounded on all
lattice points; this suggests that F should be constant in
the entire complex plane as long as the lattice is dense
enough. This intuition is indeed correct, as evidenced by the
following result independently discovered by V. G. Iyer [19]
and A. Pfluger [20].

Theorem IV.3. Let h be an entire function such that

lim sup
r→∞

logMh(r)

r2
<

π

2
,

where Mh(r) := max|z|=r|h(z)|. If there exists a constant
κ > 0 such that

|h(m+ in)| ≤ κ, m, n ∈ Z,

then h is constant.

Proof of Lemma IV.2. Consider the function h(z) := F (az),
for z ∈ C. It holds that

|h(z)| = |F (az)| ≤ ∥F∥F · eπ
2 |az|2 = ∥F∥F · eπa2

2 |z|2 ,

for z ∈ C, such that

lim sup
r→∞

logMh(r)

r2
≤ lim sup

r→∞

(
log∥F∥F

r2
+

πa2

2

)
=

πa2

2
<

π

2
.

Additionally,

|h(m+ in)| = |F (am+ ian)| = 1, m, n ∈ Z,

holds such that the assumptions of Theorem IV.3 are met and
we can conclude that h is constant. As |h(0)| = 1, it follows
that there must exist an α ∈ R such that h = eiα which implies
F = eiα.

We have therefore shown that the set of counterexamples
is not equal to the whole of L2(R) when Λ is a sufficiently
dense quadratic lattice.

Remark IV.4. A natural confusion that might arise in con-
nection with Theorem IV.1 is in how far it is different from the
result in [21] on shift-invariant spaces with Gaussian genera-
tor V 1

β (φ). While Theorem IV.1 implies that the Gaussian can
be distinguished from all other functions in L2(R) based on
its sampled Gabor magnitude measurements, the result in [21]
only implies that it can be distinguished from the functions in
V 1
β (φ) ⊂ L2(R).
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