
Leveraging Audio and Visual Recurrence for
Unsupervised Video Highlight Detection

Zahidul Islam1 Sujoy Paul2 Mrigank Rochan1

1University of Saskatchewan, Canada 2Google DeepMind

Abstract

With the exponential growth of video content, the need for automated methods to
extract key moments or highlights from lengthy videos has become increasingly
pressing. Existing methods typically require expensive manually labeled annota-
tions or a large external dataset for weak supervision. Hence, we propose a novel
unsupervised approach which capitalizes on the premise that significant moments
tend to recur across multiple videos of the similar category in both audio and visual
modalities. Surprisingly, audio remains under-explored, especially in unsupervised
algorithms, despite its potential to detect key moments. Our approach first groups
videos into pseudo-categories using a clustering technique. Then, by measuring
clip-level feature similarities across all videos within each pseudo-category for both
audio and visual modalities, we obtain audio and visual pseudo-highlight scores,
respectively. We combine these scores to create audio-visual pseudo ground-truth
highlights for each video, which we subsequently use to train an audio-visual
highlight detection network. Extensive experiments and ablation studies on three
benchmarks show the superior performance of our method compared to prior work.

1 Introduction

Video highlight detection, a critical task in the realm of video content analysis, aims to automatically
identify the most important or engaging segments from lengthy video content [1, 2, 13, 44]. As
the volume of video data on the internet continues to surge, there is a growing demand for efficient
methods to navigate and consume such content with applications ranging from sports broadcasting
to content creation, education, marketing, surveillance, entertainment, and beyond. Supervised
approaches for highlight detection are popular but require expensive manually annotated frame-level
supervision [1, 15, 43, 47, 12, 15, 34, 23]. To address this, there is a stream of research on weakly
supervised learning [44, 46, 3, 13, 29], which utilizes video-level labels such as video category as a
weak supervision signal. However, they typically require a large external dataset, such as web-crawled
videos, for model training. In light of this, the largely unexplored development of unsupervised
algorithms are promising for automated highlight detection without any labels. Hence, we introduce
an innovative unsupervised method which leverages cues from both audio and visual components
of the video to improve video highlight detection. Interestingly, audio cues are often overlooked,
but they can be highly informative for highlight detection. To the best of our knowledge, our work
represents the first attempt to exploit both audio and visual components in unsupervised learning for
video highlight detection without requiring any large external dataset.

Videos with similar content or actions, tend to exhibit recurrence of key moments in both the audio and
visual modalities. By recurrence, we mean the repetition of specific patterns or features in multiple
videos of similar categories. These may manifest as audio cues, like the repeated occurrence of
specific sounds or phrases, or as visual cues, such as the reappearance of particular objects or scenes.
For example, in cooking videos, close-up shots of food depicting certain actions appear frequently,
such as chopping vegetables, stirring ingredients, or the sizzling sound of food being cooked.
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Figure 1: In cooking videos, close-up shots of
food depicting various actions (chopping, pan-
frying) are recurring highlight moments (1st and
2nd rows). In gymnastics videos, recurring audio
cues, such as cheers and claps, occur when specta-
tors react to interesting acrobatic moves (3rd and
4th rows).

Similarly, in sports videos, cheering of the
crowd or the excitement in the commentator’s
voice may recur as audio cues, while the slow-
motion replay of a goal or a player’s celebration
may recur as visual cues, both signaling key
moments for highlight. We also visualize these
observations in Figure 1. In this work, we com-
bine the strengths of both auditory and visual
cues to detect highlights through their inherent
recurrence.

We propose an unsupervised algorithm to iden-
tify and leverage these recurrences and generate
a supervisory signal in the form of audio-visual
pseudo-highlights for training a highlight detec-
tion network end-to-end. During testing, we con-
catenate the top-scoring clips of an input video
to generate its highlight. The proposed unsuper-
vised method not only outperforms state-of-the-
art unsupervised methods on benchmark high-
light detection datasets but also demonstrates
comparable or superior performance to state-of-
the-art weakly supervised methods.

2 Our Approach

Let’s say we have a set of M unlabeled videos {Vj}Mj=1. We split each video Vj into clips with an
equal number of frames, resulting in n clips. From each clip ci (where i = 1, 2, ...n), we extract its
corresponding visual features vi ∈ Rdv using a pre-trained visual feature extractor and audio features
ai ∈ Rda using a pre-trained audio feature extractor. Each video Vj can then be represented using its
set of visual features, {vi}ni=1, and audio features, {ai}ni=1. Our highlight detection method predicts
a set of highlight scores {hi}ni=1, where hi indicates the highlight score of each clip ci in video Vj .
Next, we discuss the three broad steps in our approach as illustrated in Figure 2.
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Figure 2: An overview of our unsupervised video highlight detection framework.

Generating Pseudo-Categories: In this step, we assign the unlabeled videos to multiple groups
using a clustering-based approach. We refer to these groups as pseudo-categories. From each video
Vj in the training set of a dataset, we calculate the mean of its clip-level visual features {vi}ni=1

as v̄ = 1
n

∑n
i=1 vi. Similarly, we calculate the mean of its clip-level audio features {ai}ni=1 as ā.

Subsequently, we concatenate v̄ and ā to obtain a video-level audio-visual feature representation
f̄ = [v̄; ā] of the video, which we utilize for clustering. We reduce the dimensionality of f̄ using
UMAP [26], resulting in transformed f̄ ∈ R10, which is a common pre-processing step in clustering

2



literature [37, 25]. Following standard practice for finding an optimal number of clusters, we
iteratively apply the K-means clustering algorithm using the transformed features f̄ of the videos for
a range of values for K. For each K, we calculate a standard clustering fitness metric, the Silhouette
Coefficient (SC) [38], and choose the K with the highest SC as the optimal number of clusters. We use
the cluster labels assigned by clustering with the optimal K as our pseudo-categories for the videos.
These pseudo-categories are generated by clustering video-level audio-visual features extracted from
pre-trained classification models, potentially grouping together videos with similar semantics. Next,
we utilize these pseudo-categories when generating the audio-visual pseudo-highlight for each video.

Generating Audio-Visual Pseudo-Highlight: For each video, we first compare each of its clips with
all the clips across videos of the same pseudo-category using their audio and visual features to obtain
audio pseudo-highlight and visual pseudo-highlight scores, respectively. We then aggregate these
scores to generate audio-visual pseudo-highlight of the video. Let, there are K videos assigned to a
particular pseudo-category, and {ak}Sk=1 represents a set of audio features corresponding to all the S
clips across all K videos of that pseudo-category. We assign an audio pseudo-highlight score aphi to
the i-th clip of a video based on how repetitive the corresponding audio features ai are in the videos of
that pseudo-category (referred to as audio recurrence). We use cosine similarity to compare the audio
features of a clip ai in a video with all the clips in the pseudo-category. We can write aphi computation
as, aphi =

1
S

∑S
k=1 ai · ak/∥ai∥∥ak∥. Similarly, we also compute a visual pseudo-highlight score

vphi for the ith clip of a video based on the similarity of the corresponding visual features vi in that
pseudo-category (referred to as visual recurrence): vphi =

1
S

∑S
k=1 vi · vk/∥vi∥∥vk∥. Finally, for

each clip in a video, we compute the average of audio and visual pseudo-highlight scores and select
the top t% clips based on the average scores to obtain the audio-visual pseudo-highlight (AV-PH) of
the video, which we use as the supervision to train our highlight detection network.

Audio-Visual Highlight Detection Network: We adopt the audio-visual highlight detection network
from [1], which has been shown to be highly effective for supervised highlight detection. The network
is optimized by minimizing the binary cross-entropy loss between the predicted highlight scores and
the generated audio-visual pseudo-highlights (AV-PH). Further details about the network architecture
and its training can be found in Appendix A.2.

3 Experiments

Datasets and Comparison Methods: We evaluate our method using three benchmark video highlight
detection datasets: YouTube Highlights [41], TVSum [40], and QVHighlights [21]. On YouTube
and TVSum, we compare our approach with state-of-the-art weakly supervised methods, including
TC [46], MN [13], LM[44], RRAE [45], MBF [4], CVS [30], DSN [29], and VESD [3], as well as
unsupervised methods, including SG [24], BT [39], CHD [2], and MT [22]. Among the compared
methods, MN, TC, and MT utilize both visual and audio modalities. On QVHighlights, we compare
with unsupervised approaches that do not utilize textual queries: BT [39] and CHD [2].

Main Results: In Table 1, we compare the performance of our approach on YouTube. Without any
weak supervision or external dataset for training, our unsupervised approach not only outperforms the
prior methods but also improves the state-of-the-art by almost 3%. On QVHighlights, our approach

Method RRAE LM MN TC MT CHD Ours

Ext. data ✓ ✓ ✓ ✓ ✓ ✗ ✗
mAP 38.30 56.40 61.38 62.97 65.10 65.39 68.30

Table 1: Highlight detection results on YouTube.
Our approach outperforms all prior unsupervised and
weakly supervised methods.

Method BT CHD Ours

mAP 14.36 15.82 18.38
HIT@1 20.88 17.10 24.71

Table 2: Highlight detection results on the
QVHighlights test split from the QVHighlights
evaluation server.

significantly outperforms (see Table 2) both of the prior unsupervised methods BT and CHD which,
similar to our work, do not utilize query information. CHD does not evaluate on QVHighlights, so
we implement and evaluate their method on this dataset to compare with our approach. In Table 3, we
compare our approach on TVSum with unsupervised and weakly supervised methods that do not rely
on an external dataset for training. Again, we achieve state-of-the-art performance outperforming the
best prior method CHD by about 8%. Moreover, in Table 4, we compare with weakly supervised
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Method MBF CVS SG DSN CHD Ours

Ext. data ✗ ✗ ✗ ✗ ✗ ✗
t-5 mAP 34.50 37.20 46.20 42.40 52.76 60.34

Table 3: Results results on TVSum. We compare
with existing unsupervised and weakly super-
vised methods that do not rely on external data.

Method VESD LM MN TC MT Ours

Ext. data ✓ ✓ ✓ ✓ ✓ ✗
t-5 mAP 42.30 56.30 73.24 76.82 78.30 60.34

Table 4: Comparison with prior works that utilize
external data on TVSum. Even without external
data, our method exceeds three of these methods.

Method TVSum YouTube QVHighlights val

t-5 mAP mAP mAP HIT@1

AV(V-PH) 53.35 62.76 17.58 20.19
AV(A-PH) 58.34 66.36 17.81 23.10
Ours 60.34 68.30 18.41 26.26

Table 5: Analyzing the impact of audio and vi-
sual modality on generating pseudo-highlights.

Method TVSum YouTube QVHighlights val

t-5 mAP mAP mAP HIT@1

Pseudo-highlight 52.59 58.71 17.60 23.61
Ours 60.34 68.30 18.41 26.26

Table 6: Evaluating quality of audio-visual pseudo-
highlights as supervision for highlight detection.

methods on TVSum that require a large external dataset of web-crawled videos for training. Even
without the advantage of external data, our method outperforms three of these methods.

Ablation Studies: We examine the impact of each modality and their combination for pseudo-
highlight generation in Table 5. The audio-visual highlight detection model AV, trained solely with
audio pseudo-highlights (A-PH), outperforms the version trained with visual pseudo-highlights
(V-PH). This indicates that recurring moments in the audio can provide strong cues for detecting
highlights, emphasizing the significance of audio modality. The results also show combined audio-
visual pseudo-highlights (AV-PH) are more effective than using either modality alone, as these two
modalities can contain complementary information about potential highlight moments. Additionally,
to evaluate the quality of generated pseudo-highlights as supervision, we use the audio-visual pseudo-
highlight scores of each video as predictions and compare them (see Table 6) with the predictions
of our highlight detection model trained on audio-visual pseudo-highlights. Despite potential noise
in the pseudo-highlight supervision, our model learns from it during training, demonstrating its
value and achieving better performance than using the pseudo-highlights directly as predictions. We
provide additional experiment details in Appendix A.3 and ablation studies in Appendix A.4.

Qualitative Results: We visualize the prediction of our method on an example test video from
TVSum in Figure 3. The video shows the preparation of a sandwich, with mostly close-up shots of
food indicated as highlights. Our model correctly identifies most of the highlight moments.

Figure 3: Qualitative results on a test video of sandwich preparation from TVSum. Highlight clips
(in green) are shown with our predicted scores (in blue) and ground truth regions (in yellow).

4 Conclusion

We introduce a novel unsupervised audio-visual highlight detection framework. Our core idea is
based on the premise that videos of similar categories tend to contain key moments that are repetitive
in both audio and visual modalities across multiple videos. Leveraging this observation, we construct
audio-visual pseudo-highlights to train our model. Extensive experiments showcase the effectiveness
of our framework and reveal that cues from the often overlooked yet informative audio modality,
when coupled with the visual modality, lead to a significant improvement in unsupervised learning of
video highlight detection.
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A Appendix

A.1 Related Work

Video Highlight Detection: Most of the existing approaches for highlight detection rely on manually
annotated frame-level supervision [12, 15, 34, 43, 47, 1, 23]. However, these annotations are laborious
and expensive to obtain. To address this limitation, some works focus on using only video-level tags
or category information as weak supervision [45, 3, 13, 29, 44, 46]. Several works adopt ranking
frameworks. For example, LM [44] exploits video duration and ranks clips from shorter videos
higher, whereas, Ye et al. [46] leverages temporal reasoning and encodes cross-modal relationships
using an efficient audio-visual tensor fusion mechanism. However, these methods require training on
large-scale external data. A recent unsupervised method based on contrastive learning [2] does not
utilize any external data. However, they do not exploit audio for unsupervised learning. Some recent
works explore supervised query-based highlight detection, where the goal is to extract highlight
relevant to a given textual query [21, 23, 27]. In contrast, we focus on unsupervised audio-visual
highlight detection which does not rely on any text input.

Video Summarization: When summarizing videos, the aim is to generate a coherent and concise
synopsis of the video, whereas video highlight detection aims to extract significant moments. Earlier
works on video summarization utilize unsupervised heuristics such as representativeness and diversity
of the selected clips [16, 17, 39, 20, 24, 30, 40, 51]. Some methods use only weak video-level
supervision [3, 29, 32, 35], while others employ supervised learning [9, 10, 11, 36, 48, 49, 50]. Recent
works focus on capturing contextual dependencies using recurrent networks [49, 50] or attention
layers [6, 14]. Our work is partly related to a recent study on instructional video summarization [28],
which uses visual data and textual transcripts to construct pseudo-summaries comprised of the most
salient steps to train their model. However, they do not exploit audio modality and require category
information of videos for weak supervision.

A.2 Audio-Visual Highlight Detection Network

We adopt the network architecture from prior work [1] for our audio-visual highlight detection
network (AV), a network design that has been proven to be highly effective in supervised highlight
detection. At its core, our network initially employs unimodal self-attention layers [42] to capture
clip-level temporal relationships within each modality using their features. Subsequently, these self-
attended visual and audio features are fed into bimodal cross-attention layers to encode cross-modal
dependencies and produce bimodal attended features. Finally, the self-attended features and bimodal
attended features are combined and forwarded to fully-connected layers to predict the highlight score
of each clip in the video.

More concretely, given a video with n clips, our audio-visual model processes the clip-level visual
features {vi}ni=1 using a self-attention layer Attnv→v and the clip-level audio features {ai}ni=1 using
another self-attention layer Attna→a. Then, two bimodal attention layers Attnv→a and Attna→v

process the self-attended visual features {vvi }ni=1 and self-attended audio features {aai }ni=1 to produce
bimodal attended features, {vai }ni=1 and {avi }ni=1, respectively. Finally, a score regressor module
(SR) combines self-attended and bimodal attended features using learnable weights and passes them
through two fully-connected layers to predict the highlight score hi for each clip in the video. These
operations can be expressed as follows:

{vvi }ni=1 = Attnv→v({vi}ni=1) (1)
{aai }ni=1 = Attna→a({ai}ni=1) (2)

{avi }ni=1 = Attna→v({aai }ni=1, {vvi }ni=1) (3)
{vai }ni=1 = Attnv→a({vvi }ni=1, {aai }ni=1) (4)

{hi}ni=1 = SR({vvi }ni=1, {aai }ni=1, {vai }ni=1, {avi }ni=1) (5)

The training procedure for our network follows the standard approach used in the supervised network
[1]. However, instead of using ground-truth annotations, we use audio-visual pseudo-highlights as
the supervisory signal to train our network. We optimize our network by minimizing the binary
cross-entropy loss between the predicted highlight scores and the audio-visual pseudo-highlights
(AV-PH).
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A.3 Datasets and Settings

We evaluate our method using three benchmark highlight detection datasets: YouTube Highlights
[41], TVSum [40], and QVHighlights [21]. YouTube Highlights is constructed by mining YouTube
videos related to six specific categories such as parkour, gymnastics, skiing, and so on, with about 100
videos in each category. We utilize the train and test splits provided in this dataset. TVSum has 50
videos across 10 diverse categories. Following prior works [1, 2, 35], we randomly split this dataset
with 80% of the videos for training and 20% for testing, and we run our experiments on this dataset
five times and report the average performance. QVHighlights is larger with over 10,000 videos. It is
primarily designed for query-focused video highlight detection and moment retrieval. Each video is
associated with a textual query and corresponding saliency/highlight scores. The dataset comes with
standard train, validation, and test splits with a ratio of 70:15:15. Since our method only requires
videos, we ignore the user query annotations. For a fair comparison, on QVHighlights, we evaluate
our method against prior non-query-based methods.

Features: For YouTube and TVSum, we follow prior work [2, 1] and use a 3D-CNN comprised of a
ResNet-34 backbone to extract visual features from each clip. For QVHighlights dataset, following
[21, 23], we extract visual features using SlowFast [7] and video encoder of CLIP (ViT-B/32) [33].
For all datasets, we employ PANN [19] audio network pre-trained on AudioSet [8] to extract audio
features.

Evaluation Metrics: Following prior works on QVHighlights [23, 21], we report our performance
using Mean Average Precision (mAP), which considers the highlight scores for all the clips, and
HIT@1, which considers the hit ratio of the clip with the highest score for each video. We consider
only the clips rated as Very Good by users for evaluation. On YouTube, we evaluate using mAP, and
on TVSum, we report mAP on the top five predicted clips (top-5 mAP) as in prior works [2, 1]. All
metrics are reported as percentages.

Implementation Details: We implement our models using PyTorch [31]. For YouTube and TVSum,
we utilize one self-attention and one bi-modal attention module in our audio-visual highlight detector
network, as in the previous method [1]. However, since QVHighlights is a much larger dataset,
following previous studies [23], we introduce an additional self-attention module and fully connected
layer in the score regressor to handle the increased complexity and scale of the data. We use Adam to
optimize [18] our models. We train our models for 20 epochs with a learning rate of 2.5× 10−3 on
TVSum and for 100 epochs with a learning rate of 5×10−3 on YouTube. For QVHighlights, we train
our models with a learning rate of 5× 10−4 for 10 epochs. As mentioned in Sec. 2, we empirically
select the number of clusters, K, by maximizing the Silhouette Coefficient. For all three datasets,
we search in the range of 4 to 15 to find the value of K. For YouTube, TVSum, and QVHighlights,
we find the optimal values of K to be 6, 8, and 7, respectively. Following prior works [2, 13], we
select the top t = 50% clips based on the audio-visual pseudo-highlight scores (AV-PH) to create
pseudo-highlights for training.

A.4 Additional Ablation Studies

We conduct extensive ablation studies to analyze the relative impact of each component of our
approach. For QVHighlights, we follow prior work [21, 23] and utilize its val split due to limited
number of submissions to the evaluation server. For TVSum and YouTube, we use the test split. We
define the following baselines for our experiments.

• A, V, and AV: A and V denote unimodal models with a single self-attention layer that is
trained on only audio and visual features, respectively. AV denotes the audio-visual highlight
detection model in our proposed method.

• A-PH, V-PH, and AV-PH: A-PH refers to audio-visual highlight detection model that is
trained using only audio pseudo-highlights. V-PH indicates the model trained using only
visual pseudo-highlights. Finally, AV-PH, trained using audio-visual pseudo-highlights, is
the proposed model.

Unimodal vs. Bimodal Setting: Next, we analyze the effectiveness of our approach in unimodal
settings, where only one modality is available during both pseudo-highlight generation and model
training. We train the visual unimodal model (V) using visual pseudo-highlights and the audio
unimodal model (A) using audio pseudo-highlights. We compare their performance with our approach

9



in Table 7. While both unimodal settings perform competitively with prior methods, learning from
both visual and audio features (i.e., our method) together significantly boosts performance.

Method TVSum YouTube QVHighlights val

top-5 mAP mAP mAP HIT@1

V(V-PH) 55.02 59.98 16.38 21.35
A(A-PH) 55.45 62.07 17.37 22.06
AV(AV-PH) (Ours) 60.34 68.30 18.41 26.26

Table 7: Ablation on unimodal vs. bimodal setting. We analyze the relative contribution of each
modality by using only one modality during both pseudo-highlight generation and model training.

Similarity Metrics: To analyze the effectiveness of cosine similarity in our audio and visual pseudo-
highlight generation method, we replace it with another popular similarity measure, Pearson’s
Correlation Coefficient (PCC) [5]. While cosine similarity only considers the similarity of orientation
of two feature vectors, PCC considers the linear relationship between features, incorporating both
orientation and magnitude. Table 8 indicates that cosine similarity is more effective in capturing the
similarity between audio or visual features for pseudo-highlight generation.

Method TVSum YouTube QVHighlights val

top-5 mAP mAP mAP HIT@1

PCC 52.59 58.71 17.60 23.61
Cosine (Ours) 60.34 68.30 18.41 26.26

Table 8: Ablation on similarity metrics in pseudo-highlight generation. We replace the cosine
similarity in our method with Pearson’s correlation coefficient (PCC).

Audio-Visual Fusion Techniques: In Table 9, we explore various methods of combining audio
and visual features during training, as done in previous work [1]. We compare our method with
SAearly and SAlate. In SAearly, both audio and visual features are first concatenated and then fed into
a single self-attention layer. However, in SAlate, each modality is initially processed using separate
self-attention layers in a two-stream fashion, and the output features are concatenated for highlight
detection. Our fusion scheme, consisting of a bimodal attention module, significantly outperforms
these alternative fusion schemes due to its ability to better capture complex cross-modal interactions.

Method TVSum YouTube QVHighlights val

top-5 mAP mAP mAP HIT@1

SAearly 56.68 61.23 16.25 17.87
SAlate 53.74 65.61 17.78 23.87
AV(AV-PH) (Ours) 60.34 68.30 18.41 26.26

Table 9: Effect of different audio-visual fusion strategies for combining audio and visual features
during training.

Comparison with Supervised Setting: In Table 10, we compute the highlight detection performance
when real ground-truths are used for training our model instead of the audio-visual pseudo-highlights.
This denotes the fully supervised version of our model. Interestingly, our unsupervised method
demonstrates strong performance compared to its supervised counterpart. On YouTube, our method
underperforms by only 2% compared to the supervised model. This showcases the effectiveness of
the proposed pseudo-highlight mechanism as an alternative supervisory signal for highlight detection
if manual annotations are not available.

Real Categories vs. Pseudo-categories: To analyze the quality of our generated pseudo-categories
for audio-visual pseudo-highlight generation, we replace them with real category information in
the datasets. Note that the QVHighlights dataset does not have category information, so we limit

10



Method TVSum YouTube QVHighlights val

top-5 mAP mAP mAP HIT@1

AV(Supervised) 68.41 70.18 23.99 32.32
AV(AV-PH) (Ours) 60.34 68.30 18.41 26.26

Table 10: Comparison with the supervised version of our model which uses ground-truth highlight
annotations for training instead of our audio-visual pseudo-highlights.

our comparison and analysis to the YouTube and TVSum datasets. Table 11 shows that we obtain
better performance using our generated pseudo-categories in comparison to the real categories. We
argue that manually annotated category labels can contain ambiguities. Through our clustering-based
pseudo-categories, we are able to group semantically related videos that may have been manually
labeled as different categories. As a result, our clustering-based pseudo-categories enable us to
generate better audio-visual pseudo-highlights compared to using real categories.

Method TVSum YouTube

Real categories 56.37 64.28
Pseudo-categories (Ours) 60.34 68.30

Table 11: Comparison of using pseudo-categories and real categories in our method. Generating
audio-visual pseudo-highlights using our clustering-based pseudo-categories performs better.

How does the amount of pseudo-highlights impact the performance? We reduce the amount
of training data in each dataset to 25%, 50%, and 75%, yielding different amounts of audio-visual
pseudo-highlights. Table 12 shows that training with more pseudo-highlights improves performance.
This suggests that using more pseudo-highlights for supervision is beneficial for video highlight
detection.

TVSum YouTube QVHighlights val

top-5 mAP mAP mAP HIT@1

25% 47.31 60.55 17.63 23.23
50% 55.37 62.16 18.13 23.68
75% 54.64 64.25 18.16 24.26
100% (Ours) 60.34 68.30 18.41 26.26

Table 12: Impact of the amount of pseudo-highlights on the performance of our model. More
pseudo-highlights yield better results.

Impact of different number of clusters, K: In Table 13, we compare the performance of our method
for different values of number of clusters, K. Results show a performance drop for non-optimal
values of K, while the optimal values chosen by our method in Sec. 2 yield best results.

Number of clusters 6 7 8

TVSum 52.84 54.76 60.34
YouTube 68.30 63.96 63.56
QVHighlights 17.80 18.41 18.02

Table 13: Ablation on the different number of clusters, K. The optimal values of K selected by our
method yield best results.

Generalization capability on out-of-distribution data: To assess how our models generalize to
out-of-distribution samples, we conducted additional experiments in which we evaluated (see Tables
14 and 15) a model trained on one dataset (YouTube) on another dataset (TVSum), and vice versa.
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Despite some drop in performance, the model trained on YouTube outperforms previous methods
when evaluated on TVSum. Our TVSum-trained model performs comparably to prior work on
YouTube, with the decrease in performance possibly due to the small number of training videos in
TVSum. These results suggest that our models have strong generalization capabilities and are able to
retain significant efficacy when tested on datasets different from those used in training.

Method MBF CVS SG DSN CHD Ours Ours (YouTube-trained)

top-5 mAP 34.50 37.20 46.20 42.40 52.76 60.34 55.91

Table 14: Highlight detection results on TVSum. The column, Ours (YouTube-trained), indicates the
performance of the model trained on YouTube when evaluated on TVSum.

Method RRAE LM-A LM-S MN TC MT CHD Ours Ours (TVSum-tained)

mAP 38.30 50.50 56.40 61.38 62.97 65.10 65.39 68.30 62.55

Table 15: Highlight detection results on YouTube. The column, Ours (TVSum-trained), indicates the
performance of the model trained on TVSum when evaluated on YouTube.

A.5 Additional Qualitative Results

We present additional qualitative results of our method in Figure 4. The video from the YouTube
dataset depicts a dog show, and the highlights mostly consist of acrobatics, such as jumping over
obstacles.

Figure 4: Additional qualitative results. We show the highlight clips (in green) along with the
predicted scores of our method (in blue), and the ground truth highlight regions are indicated in
yellow. For the dog show video from the YouTube dataset, our method correctly selects clips featuring
interesting acrobatic movements, such as jumping over obstacles.
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