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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable potential in scientific re-002
search, particularly in chemistry-related tasks003
such as molecular design, reaction prediction,004
and property estimation. While tool-augmented005
LLMs have been introduced to enhance reason-006
ing and computation in these domains, existing007
approaches suffer from tool invocation errors008
and lack effective collaboration among diverse009
tools, limiting their overall performance. To ad-010
dress these challenges, we propose ChemHTS011
(Chemical Hierarchical Tool Stacking), a novel012
method that optimizes tool invocation path-013
ways through a hierarchical stacking strategy.014
ChemHTS consists of two key stages: tool self-015
stacking warmup and multi-layer decision opti-016
mization, enabling LLMs to refine tool usage017
dynamically. We evaluate ChemHTS across018
four classical chemistry tasks and demonstrate019
its superiority over strong baselines, including020
GPT-4o, DeepSeek-R1, and chemistry-specific021
models, including ChemDFM. Furthermore,022
we define four distinct tool-stacking behaviors023
to enhance interpretability, providing insights024
into the effectiveness of tool collaboration. Our025
dataset and code will be released soon.026

1 Introduction027

In recent years, large language models (LLMs)028

(Touvron et al., 2023; Achiam et al., 2023;029

DeepSeek-AI et al., 2025) have made groundbreak-030

ing advancements in fields such as natural language031

processing (NLP) and knowledge reasoning, and032

are gradually being applied to scientific research,033

particularly demonstrating immense potential in034

the domain of chemistry (Guo et al., 2023; Ouyang035

et al., 2024). LLMs leverage their robust capa-036

bilities for knowledge integration and reasoning037

computation to offer novel solutions for tasks such038

as molecular design (Noutahi et al., 2023), reaction039

prediction (Shi et al., 2023), and property predic-040

tion (Srinivas and Runkana, 2024). This progress041
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Figure 1: Using the text-based molecule design task as
an example, this analysis examines the issues in model
tool usage under Name2SMILES and ChemDFM tools.

significantly enhances the level of automation and 042

intelligence in chemical research. 043

Despite the promising prospects of LLMs in the 044

field of chemistry, current research faces challenges. 045

Existing models exhibit limitations in their ability 046

to generalize across diverse tasks, and they lack 047

access to external knowledge sources, which con- 048

strains their practical utility in scientific applica- 049

tions (Zhao et al., 2024; Liao et al., 2024; Han 050

et al., 2024). Consequently, studies have integrated 051

expert-designed tools to enhance the performance 052

of LLMs in chemical tasks (Bran et al., 2023; Boiko 053

et al., 2023; Song et al., 2024). 054

However, chemical tool-augmented LLMs still 055

exhibit numerous challenges when confronted with 056

complex and diverse toolsets (Bran et al., 2023). 057

Firstly, due to the limited capabilities of tools or 058

the susceptibility of LLMs to tool calling errors, 059

relying on a single tool invocation may result in 060

biased outcomes (Ye et al., 2024). As illustrated in 061
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Figure 2: Our ChemHTS method framework diagram. For each chemical task, we identify the optimal tool-stacking
pathway through the ChemHTS method for subsequent task inference execution.

Fig. 1, if the result of invoking an agent tool once062

is biased, the model is unable to self-correct and063

may produce incorrect answers. Secondly, LLMs064

struggle to collaborate across different types of065

tools, limiting their capacity to maximize informa-066

tion gain (Cheng and Amiri, 2025). During rea-067

soning, they often depend on a single category of068

tools, overlooking the synergistic benefits of inte-069

grating multiple tool types. As a result, errors can070

propagate through the reasoning chain, ultimately071

impairing overall task performance.072

Despite the emergence of numerous studies in re-073

cent years focused on optimizing tool usage, these074

efforts have not yet adequately addressed the afore-075

mentioned issues. Current research primarily con-076

centrates on optimal tool selection for individual077

tasks, while overlooking the collaborative interac-078

tions between tools and their impact on task infer-079

ence capabilities. Some studies have attempted to080

leverage the context learning capabilities of LLMs081

by employing strategic prompting to optimize tool082

selection. For instance, frameworks such as Chain083

of Thought (CoT) (Wei et al., 2023) and ReACT084

(Yao et al., 2023; Yang et al., 2023) aim to guide085

model in effectively utilizing tools during the rea-086

soning process. Another category of methods in-087

volves fine-tuning LLMs on tool calling datasets088

to enhance their tool usage capabilities. For in-089

stance, approaches such as ToolBench (Qin et al.,090

2023) utilizes supervised fine-tuning (Shen, 2024)091

to improve the model’s understanding and calling092

of tools. However, these approaches can only en-093

hance the selection of individual tools to a limited094

extent and have not succeeded in achieving collab-095

orative optimization among multiple tools.096

To address the aforementioned issues, we pro-097

pose a novel tool calling optimization method098

termed ChemHTS (Chemical Hierarchical Tool099

Stacking), which aims to enhance the tool invoca- 100

tion process of LLMs in chemistry-related tasks. 101

The core idea of C he m is to explore the optimal 102

tool invocation pathways through a hierarchical 103

stacking strategy under the constraints of a given 104

chemical task and multiple tools, thereby improv- 105

ing the reasoning and computational capabilities 106

of LLMs in chemical applications. This method 107

encompasses two key stages: tool self-stacking and 108

tool multi-layer decision optimization. 109

In addition, we apply the ChemHTS method to 110

four classic chemistry tasks: text-based molecular 111

design, molecular description, molecular property 112

prediction, and reaction prediction. We systemati- 113

cally explore the optimal tool invocation pathways 114

for each task and conduct extensive experiments on 115

the test sets. The results demonstrate that the tool 116

invocation paths optimized by ChemHTS outper- 117

form several baseline models, such as GPT4o (Ope- 118

nAI et al., 2024) and DeepSeek-R1 (DeepSeek- 119

AI et al., 2025), as well as chemistry-specific 120

models, including UniMol (Ji et al., 2024) and 121

ChemDFM (Zhao et al., 2024), across all tasks. 122

Furthermore, we define four distinct tool stack- 123

ing behavioral patterns—Correct, Modify, Judge, 124

and Reserve-and provide case studies to elucidate 125

the reasons behind the improvements in task per- 126

formance due to tool stacking. To summarize, our 127

contributions are mainly three-fold: 128

• We are the first to highlight the advantages 129

of agent tool collaboration and propose the 130

ChemHTS method to optimize the optimal 131

tool stacking path for agents across various 132

chemical tasks, addressing the issue of low 133

efficiency in the utilization of agent tools. 134

• Through extensive experiments, we have 135

demonstrated that the optimal tool stacking 136
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paths derived from our method outperform137

numerous baseline models and chemistry-138

specific models across four classical chemical139

tasks, thereby validating the effectiveness and140

generalizability of our approach.141

• We define four behavioural patterns of models142

during the tool stacking process, to conduct an143

in-depth analysis and interpretation of the rea-144

sons behind the performance improvements145

in tool stacking, thereby enhancing the inter-146

pretability of the experiments.147

2 Related Work148

2.1 Large Language Models for Chemistry149

Large language models (LLMs) have demonstrated150

significant potential in chemistry, with applications151

spanning molecular generation, property predic-152

tion, reaction modeling, and retrosynthetic anal-153

ysis (Fang et al., 2024; Tang et al., 2024; Liao154

et al., 2024). For instance, the ChemDFM (Zhao155

et al., 2024) pretrained on chemical literature and156

textbooks and further refined through extensive in-157

struction tuning, has exhibited enhanced perfor-158

mance across various chemical tasks. Similarly,159

ChemCrow (Bran et al., 2023), an LLM-powered160

chemistry assistant, integrates multiple expert-161

designed chemical tools to improve LLM perfor-162

mance in chemistry-related applications.Despite163

these advancements, LLMs continue to face chal-164

lenges in handling complex chemical computations165

and generalizing across diverse chemical prob-166

lems (Ouyang et al., 2024; Han et al., 2024). More-167

over, they remain inefficient in utilizing existing168

computational chemistry tools (Shi et al., 2023),169

and struggle to navigate the combinatorial and hi-170

erarchical relationships between these tools.171

2.2 Tool-augmented LLMs172

LLMs (Anil et al., 2023; Achiam et al., 2023; Tou-173

vron et al., 2023) have demonstrated strong reason-174

ing capabilities in natural language processing and175

scientific computing. However, they face limita-176

tions in specialized tasks in fields such as chem-177

istry and physics (Yang et al., 2024), including178

constrained computational accuracy, insufficient179

numerical reasoning abilities, and a lack of col-180

laboration with external tools. To address these181

shortcomings, researchers have recently proposed182

the tool-augmented LLMs approach (Qin et al.,183

2023; Wang et al., 2024; Yang et al., 2023), en-184

abling LLMs to dynamically call external tools185

and thereby enhance their task execution capabili- 186

ties. Representative methods include ReAct (Yao 187

et al., 2023), which combines chain-of-thought rea- 188

soning (CoT) (Wei et al., 2023) with tool invoca- 189

tion to allow LLMs to dynamically acquire exter- 190

nal information during decision-making, and Tool- 191

former (Schick et al., 2023), which enables LLMs 192

to autonomously decide when to call tools, improv- 193

ing the accuracy of computational tasks. Despite 194

these advancements, existing research primarily 195

focuses on single-tool invocation and has yet to ex- 196

plore hierarchical combinations of tools. A single 197

tool is often insufficient to solve complex scientific 198

problems, whereas the collaborative invocation of 199

multiple tools holds promise for enhancing the rea- 200

soning capabilities of LLMs in chemical tasks. 201

3 ChemHTS 202

Our study proposes a hierarchical tool stacking 203

method, named ChemHTS, to optimize the tool 204

invocation process of LLMs in chemistry-related 205

tasks. ChemHTS iteratively refines and optimizes 206

the tool stacking trajectory, ultimately identifying 207

the optimal sequence of tool calls to enhance com- 208

putational performance (Fig.2). 209

3.1 Step 1: Tool Self-stacking Warmup 210

To evaluate the performance of a single tool after 211

multiple invocations and determine its suitability 212

for stacking, we first conduct a self-stacking warm- 213

up phase for the individual tool. Since research in 214

chemical tasks often integrates theoretical compu- 215

tations with experimental knowledge, leveraging 216

computation to predict unknown properties or pro- 217

cesses and retrieval to access existing knowledge, 218

we categorize the chemical LLM toolset L into two 219

types: compute-based tools Lc and retriever-based 220

tools Lr. For computational tools, it may be nec- 221

essary to test whether repeated invocations lead to 222

improved computational accuracy or stability. In 223

contrast, for retriever-based tools, it may be im- 224

portant to evaluate whether multiple retrievals can 225

enhance knowledge coverage. 226

For a given chemical task T and its correspond- 227

ing tool library L, the performance of an individ- 228

ual tool (ToolAi) and its self-stacking (Ai → Ai) 229

is evaluated. If repeated invocations of the same 230

tool type result in performance degradation, further 231

stacking of that tool is discontinued. From each 232

category, the top-k most effective tool combina- 233

tions are selected for the next stage of stacking, 234
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as outlined in Algorithm 1.. These refined tool-235

stacking pathways are encapsulated as new tools,236

reducing the subsequent search space, improving237

computational efficiency, and providing stronger238

tool combination strategies for the next phase.239

3.2 Step 2: Multi-Layer Optimization240

Algorithm 1 ChemHTS Algorithm
Require: Training dataset D, tool library L (including

compute-based tools Lc and retriever-based tools Lr),
maximum hierarchy depth n, number of selected paths
per category k, maximum tool selection per step m.

Ensure: Optimized tool invocation strategy P∗.
1: STEP 1: SELF-STACKING WARMUP
2: for each tool Ti ∈ Lc ∪ Lr do
3: Evaluate self-stacking paths of Ti on D.
4: end for
5: Select the Top-k best-performing paths for computational

tools Pc and retriever tools Pr .
6: Encapsulate selected tool stacks as new tools in L.
7: STEP 2: MULTI-LAYER OPTIMAZATION
8: Initialize hierarchy level L← 1.
9: while L ≤ n do

10: Sort computational tools Lc and RAG tools Lr based
on performance metrics.

11: Select Top-1 computational tool T ∗
c and Top-k RAG

tools Pr .
12: Select Top-1 RAG tool T ∗

r and Top-k computational
tools Pc.

13: for each tool subset LL ⊆ (Pc ∪ Pr), |LL| ≤ m do
14: Evaluate the performance of the tool invocation

path.
15: if current best performance ≤ previous best perfor-

mance then
16: STOP stacking process.
17: BREAK.
18: end if
19: end for
20: Encapsulate best-performing paths as new tools.
21: L← L+ 1.
22: end while
23: Select the best tool invocation pathP∗ as the final strategy.

24: return P∗.

To explore the optimal invocation pathways241

across tool combinations and progressively encap-242

sulate the best tools, ultimately determining the243

globally optimal tool invocation strategy, we divide244

the tool-stacking process into multiple layers and245

perform stacking optimization step by step. In the246

first layer, the Top-1 computational tool selected247

in Stage 1 is combined with the Top-k retrieval248

tools, and the Top-1 retrieval tool is combined with249

the Top-k computational tools. Each agent is re-250

stricted to selecting the best tool from a pool of m251

candidate tools in each step. If the optimal perfor-252

mance in this layer is worse than that of Stage 1,253

the stacking process is terminated; otherwise, the254

iteration continues. In subsequent layers, all tools255

are re-ranked, and the top k optimal pathways in 256

each category are selected and encapsulated as new 257

tools. This process continues until either the maxi- 258

mum number of layers n is reached or no further 259

optimization space remains. Finally, the optimal 260

tool invocation pathway is selected as the general 261

tool invocation strategy for the given task. 262

4 Experiments 263

4.1 Experiment Setup 264

Dataset We evaluate the performance of 265

ChemHTS in the field of chemistry using Chem- 266

LLMBench. ChemLLMBench (Guo et al., 2023) 267

comprises a series of chemistry-related tasks that 268

cover a wide range of chemical topics. In this 269

study, we focus on four representative tasks and 270

select 100 evaluation instances for each task, 271

consistent with the evaluation experiments in 272

ChemDFM, as the test set. Since the evaluation 273

dataset for each task in ChemLLMBench contains 274

only 100 instances, we adopt a similar approach 275

to that in (Guo et al., 2023) to select the training 276

set. For the Text-Based Molecule Design and 277

Molecule Captioning tasks, we randomly sample 278

100 instances from the ChEBI-20-MM (Liu et al., 279

2025) dataset, excluding the corresponding test set, 280

as the training set. For the Reaction Prediction 281

task, we randomly sample 100 instances from the 282

USPTO-MIT (Jin et al., 2017) dataset, excluding 283

the corresponding test set, as the training set. 284

For the Molecular Property Prediction task, 285

we randomly sample 50 instances for each 286

dataset from the BBBP, HIV, BACE, Tox21, and 287

ClinTox (Wu et al., 2018) datasets, excluding the 288

corresponding test sets, as the training set. The 289

details of our dataset are shown in Tab. 1. 290

Models We categorize current models into three 291

primary groups: task-specific specialist models, 292

LLM-based generalist models, and tool-based 293

agent models. Task-specific specialist models re- 294

fer to non-LLM models designed for specific tasks. 295

Tool-based agent models leverage GPT-4o (Ope- 296

nAI et al., 2024) as the core agent, augmented with 297

additional tools tailored to the specific task. To 298

ensure fair comparisons, we use the same test set 299

for evaluating different models on each task. 300

Tools To facilitate the experimental process, for 301

each task, we provide only the most relevant tools 302

for the two categories: computational tools and 303

retrieval tools. Details can be found in Tab. 1. 304
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Ability Task Task Type Dataset #train #test Retrieval Tool Compute Tool
Understanding Molecular Property Prediction Classification BBBP, HIV, BACE, Tox21, ClinTox 250 100 SMILES2Property UniMol-v2
Reasoning Reaction Prediction Generation USPTO-MIT 100 100 SMILES2Property Chemformer

Text-Based Molecule Design Generation ChEBI-20-MM 100 100 Name2SMILES ChemDFM
Explaining Molecule Captioning Generation ChEBI-20-MM 100 100 SMILES2Description Text+ChemT5

Table 1: Details of the training and test sets for the four chemistry tasks.

4.2 Results305

4.2.1 Text-based Molecule Design306

In the text-based molecule design task, LLMs pre-307

dict a molecule’s SMILES (Simplified Molecular308

Input Line Entry System) representation based on309

a given description, testing their ability to interpret310

and translate chemical language into valid molec-311

ular structures (Zhao et al., 2024). Our study em-312

ploys two sets of metrics to evaluate the perfor-313

mance of the task. The first set of metrics mea-314

sures the text-based similarity between the pre-315

dicted SMILES and the gold standard SMILES,316

including exact match, BLEU, and Levenshtein317

distance (Haldar and Mukhopadhyay, 2011). The318

second set of metrics assesses the chemical sim-319

ilarity between the predicted molecules and the320

reference molecules, encompassing the validity of321

the predicted SMILES and the FTS (Fingerprint322

Tanimoto Similarity) (Tanimoto, 1958), calculated323

based on MACCS, RDK, and Morgan (Morgan,324

1965).

Model Exact↑ BLEU↑ Dis↑ Validity↓ MACCS↑ RDK↑ Morgan↑

Task-specific specialist models
MolXPT (Liu et al., 2023) 0.22 - - 0.98 0.86 0.76 0.67
Text+Chem T5 (Christofidellis et al., 2023) 0.32 0.85 16.87 0.94 0.90 0.82 0.75
Mol-Instruction (Fang et al., 2024) 0.02 0.35 41.40 1.00 0.41 0.23 0.15

LLM-based generalist models
GPT-4o (OpenAI et al., 2024) 0.01 0.57 52.85 0.91 0.71 0.54 0.38
Deepseek-R1 (DeepSeek-AI et al., 2025) 0.02 0.56 92.29 0.57 0.48 0.38 0.31
Llama3-70b (AI@Meta, 2024) 0.03 0.57 46.63 0.78 0.57 0.40 0.30
Llama3-8b (AI@Meta, 2024) 0.01 0.41 155.17 0.45 0.27 0.15 0.11
ChemDFM-13B (Zhao et al., 2024) 0.32 0.85 11.58 0.94 0.81 0.73 0.67

Tool-based Agent models
Agent (1-tool, Name2SMILES) 0.25 0.70 84.81 0.72 0.67 0.61 0.56
Agent (1-tool, ChemDFM) 0.35 0.86 12.66 0.97 0.88 0.79 0.73
Agent (2-tool) 0.34 0.87 12.63 0.94 0.85 0.80 0.74
Ours (Stacking Agent) 0.38 0.93 8.68 0.96 0.92 0.87 0.80

Table 2: Benchmark results of different models in text-
based molecule design tasks. All LLM-based generalist
models are evaluated on 0-shot.

325
From the results in Tab. 2, our Stacking Agent326

outperforms other models in this task. Not only do327

the generated molecular structures meet the target328

requirements, but they also maintain high molec-329

ular validity. In contrast, models based on large330

language models perform poorly, particularly in331

terms of Exact and BLEU scores, suggesting dif-332

ficulty in accurately generating target molecules333

in a 0-shot setting. This highlights the challenge334

of capturing molecular structural information with-335

out external tool support. The chemistry-specific 336

ChemDFM performs well in the 0-shot setting, sur- 337

passing other task-specific models. However, our 338

Stacking Agent, by combining ChemDFM with 339

the Name2SMILES tool, achieves the best results 340

across multiple key metrics, with a BLEU score of 341

0.93, outperforming ChemDFM’s 0.85. 342

4.2.2 Molecule captioning 343

To evaluate the ability of the model to translate com- 344

plex chemical information into human-readable 345

language descriptions, we introduce the Molecule 346

Captioning task (Guo et al., 2023). This task re- 347

quires LLMs not only to accurately recognize the 348

molecule represented by a given SMILES string, 349

but also to generate a concise natural language de- 350

scription of the molecule. To assess the model’s 351

performance on this task, we employ traditional nat- 352

ural language processing evaluation metrics, such 353

as BLEU and ROUGE, to measure the similarity 354

between the molecule descriptions generated by 355

the model and the reference descriptions in the test 356

set.

Model BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑

Task-specific specialist models
Text+Chem T5 (Christofidellis et al., 2023) 0.63 0.54 0.68 0.54 0.62
MolXPT (Liu et al., 2023) 0.59 0.50 0.66 0.51 0.60
InstructMol (Cao et al., 2024) 0.48 0.37 0.57 0.39 0.50
Mol-Instruction (Fang et al., 2024) 0.25 0.17 0.33 0.29 0.27

LLM-based generalist models
GPT-4o (OpenAI et al., 2024) 0.26 0.17 0.10 0.00 0.30
Deepseek-R1 (DeepSeek-AI et al., 2025) 0.40 0.25 0.10 0.02 0.21
Llama3-70b (AI@Meta, 2024) 0.11 0.07 0.06 0.00 0.12
Llama3-8b (AI@Meta, 2024) 0.04 0.03 0.05 0.00 0.09
ChemDFM-13b (Zhao et al., 2024) 0.32 0.27 0.49 0.37 0.48

Tool-based Agent models
Agent (1-tool, SMILES2Description) 0.59 0.52 0.43 0.29 0.51
Agent (1-tool, Text+ChemT5) 0.60 0.49 0.39 0.23 0.50
Agent (2-tool) 0.64 0.56 0.45 0.29 0.55
Ours (Stacking Agent) 0.73 0.69 0.70 0.58 0.76

Table 3: Benchmark results of different models in
molecule captioning tasks. All LLM-based general-
ist models are evaluated on 0-shot.

357

As shown in Tab. 3, Stacking Agent, built us- 358

ing the more efficient ChemHTS method, achieves 359

the best overall performance across all metrics. 360

For text generation tasks, task-specific models still 361

hold a significant advantage in molecule caption- 362

ing, while , aside from large parameters models like 363

GPT-4o and Deepseek-R1, other large language 364

models still perform poorly. Additionally, a com- 365
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parison between Agent (1-tool) and Agent (2-tool)366

shows that increasing the number of tools boosts367

performance (e.g., BLEU-4 improves from 0.54 to368

0.56). However, simply adding more tools doesn’t369

lead to major gains.370

4.2.3 Molecular Property Prediction371

Molecular property prediction (Guo et al., 2021;372

Wang et al., 2021) is a fundamental task in com-373

putational chemistry that has garnered significant374

attention in recent years due to its potential appli-375

cations in drug discovery, materials science, and376

other areas of chemistry. The task requires mod-377

els to predict the chemical and physical properties378

of a given molecule based on its structure. The379

dataset consists of five tasks drawn from Molecu-380

leNet (Wu et al., 2018), including BACE, BBBP,381

HIV, ClinTox, and Tox21. Among them, BACE382

and BBBP each consist of a balanced binary classi-383

fication task. HIV includes an imbalanced binary384

classification task. ClinTox and Tox21 contain two385

and twenty-one imbalanced binary classification386

tasks, respectively. To address the severe label387

imbalance in these tasks, our study employs the388

Area Under the Receiver Operating Characteris-389

tic Curve (AUC-ROC) as the primary evaluation390

metric (Tafvizi et al., 2022). However, considering391

the computational challenges associated with large392

language models and the balanced binary task, we393

also incorporate Accuracy as an additional metric394

to provide a more comprehensive assessment.395

Model BACE BBBP ClinTox HIV Tox21 Avg

ACC↑ AUC↓ ACC↑ AUC↓ ACC↑ AUC↓ ACC↓ AUC↑ ACC↑ AUC↑ ACC↑ AUC↓

Task-specific specialist models
Uni-Mol-v2 (Ji et al., 2024) 0.75 88.9 0.58 82.6 0.51 85.3 0.96 90.7 0.92 80.0 0.74 85.5
MolXPT (Liu et al., 2023) - 88.4 - 80.0 - 95.3 - 78.1 - 77.1 - 83.8
InstructMol (Cao et al., 2024) - 85.9 - 64.0 - - - 74.0 - - - -

LLM-based generalist models
GPT-4o (OpenAI et al., 2024) 0.38 38.5 0.56 57.0 0.51 51.8 0.59 54.7 0.37 36.0 0.48 47.6
Deepseek-R1 (DeepSeek-AI et al., 2025) 0.62 52.7 0.61 63.6 0.48 48.2 0.51 50.5 0.75 60.1 0.59 55.0
Llama3-70B (AI@Meta, 2024) 0.55 50.9 0.59 60.1 0.48 48.8 0.20 58.3 0.59 44.9 0.48 52.6
Llama3-8B (AI@Meta, 2024) 0.50 43.8 0.54 51.4 0.49 49.5 0.05 50.5 0.43 56.1 0.40 50.2
ChemDFM-13B (Zhao et al., 2024) 0.66 78.4 0.57 66.7 0.49 89.9 0.94 73.6 0.83 79.8 0.70 77.7

Tool-based Agent models
Agent (1-tool , SMILES2Property ) 0.56 55.6 0.58 60.0 0.47 47.8 0.94 60.9 0.91 70.4 0.69 59.0
Agent (1-tool , UniMol-v2 ) 0.75 78.6 0.54 50.0 0.49 50.0 0.94 96.8 0.93 89.6 0.72 72.4
Agent (2-tool) 0.75 74.2 0.59 58.7 0.49 50.0 0.92 95.8 0.94 91.7 0.74 74.1
Ours (Stacking Agent) 0.79 81.4 0.68 71.1 0.67 72.3 0.95 97.4 0.96 97.8 0.81 84.0

Table 4: Benchmark results of different models in molec-
ular property prediction tasks. All LLM-based general-
ist models are evaluated on 0-shot.

From the results in Tab. 4, task-specific spe-396

cialist models demonstrate the best overall perfor-397

mance. Among the models, UniMol-v2 achieves398

the highest average AUC-ROC and Accuracy val-399

ues across the five tasks, outperforming the other400

models. These findings indicate that models specif-401

ically optimized for molecular property prediction402

tasks are more effective at learning the relation-403

ships between chemical molecular structures and 404

their biological activities. Moreover, the Stacking 405

Agent structure identified through ChemHTS out- 406

performed LLM-based generalist models on this 407

task, especially in the imbalanced binary classifi- 408

cation tasks of HIV and Tox21. This suggests that 409

tool integration methods can, to some extent, com- 410

pensate for the limitations of generalist models and 411

enhance the accuracy of prediction tasks. Finally, 412

while our ChemHTS method falls 1.5 AUC score 413

behind the state-of-the-art UniMol-v2 , it surpasses 414

its average accuracy (0.74) with a score of 0.81. 415

4.2.4 Reaction Prediction 416

Reaction prediction is a core task in the field of 417

chemistry, with significant importance for drug dis- 418

covery, materials science, and the development of 419

novel synthetic pathways. Given a set of reactants, 420

the goal of this task is to predict the most likely 421

products formed during the chemical reaction (Guo 422

et al., 2024; Schwaller et al., 2019). Similarly to 423

the results of the text-based molecule design task, 424

we used the same metrics to measure the task per- 425

formance.

Model Exact↓ BLEU↑ Dis↑ Validity↑ MACCS↑ RDK↑ Morgan↑

Task-specific specialist models
Chemformer (Irwin et al.) 0.91 96.1 1.26 1.00 0.97 0.97 0.96
Text+ChemT5 (Christofidellis et al., 2023) 0.83 96.0 7.42 0.98 0.96 0.96 0.94
InstructMol (Cao et al., 2024) 0.54 96.7 10.85 1.00 0.88 0.78 0.74
Mol-Instruction (Fang et al., 2024) 0.05 65.4 27.26 1.00 0.51 0.31 0.26

LLM-based generalist models
GPT-4o (OpenAI et al., 2024) 0.01 65.8 27.24 0.81 0.54 0.39 0.33
Deepseek-R1 (DeepSeek-AI et al., 2025) 0.10 76.2 16.04 0.75 0.60 0.53 0.48
Llama3-70b (AI@Meta, 2024) 0.00 55.2 282.46 0.85 0.48 0.35 0.31
Llama3-8B (AI@Meta, 2024) 0.00 37.6 148.15 0.41 0.18 0.14 0.11
ChemDFM-13B (Zhao et al., 2024) 0.39 80.6 10.38 0.96 0.77 0.69 0.65

Tool-based Agent models
Agent (1-tool , SMILES2Property) 0.05 43.6 33.17 0.83 0.40 0.29 0.27
Agent (1-tool , Chemformer) 0.89 96.4 2.44 1.00 0.97 0.97 0.95
Agent (2-tool) 0.87 97.1 1.6 1.00 0.97 0.97 0.95
Ours (Stacking Agent) 0.90 98.4 0.97 1.00 0.98 0.98 0.96

Table 5: Benchmark results of different models in reac-
tion prediction tasks. All LLM-based generalist models
are evaluated on 0-shot.

426

As shown in the Tab. 5, It can be observed 427

that the Chemformer model performs exception- 428

ally well in this task, achieving a product predic- 429

tion accuracy of 0.91. It also outperforms other 430

task-specific models across all metrics. In contrast, 431

LLMs face significant challenges, with Deepseek- 432

R1, despite its deep reasoning capabilities, only 433

achieving 0.10 accuracy in product prediction. Sim- 434

ilarly, the chemistry-specific ChemDFM struggles 435

under 0-shot conditions. The ChemHTS model ex- 436

cels across all metrics, except for a slightly lower 437

exact score (0.01), surpassing the Chemformer 438

model on all other measures. For Agent (1-tool), re- 439

lying solely on the SMILES2Property tool leads to 440

6



poor performance. However, leveraging the ad-441

ditional information provided by the RAG tool442

through integration, the agent also achieves sig-443

nificantly better performance.444

5 Analysis445

5.1 Does it improve performance if the agent446

can choose from more tools?447

To further analyze the impact of the number of tools448

on the performance of chemical tasks, this study449

investigates the effect of varying tool numbers on450

the text-based molecule design task. As shown451

in Tab. 6, under a fixed amount of training data,452

increasing the number of tools from 2 to 4 results in453

only minor changes in BLEU-2 scores. Regarding454

the average BLEU-2 score, both Tool Number = 2455

and Tool Number = 4 achieve a score of 0.86, while456

Tool Number = 3 slightly underperforms with a457

score of 0.85. This indicates that increasing the458

number of tools has limited benefits for BLEU-2459

score improvement, which may be attributed to460

redundancy in contributions among tools and the461

fact that the quality of individual tools determines462

their impact on the final performance.463

Tool Number Train Data Number AVG
5 10 20 30

Layer BLEU-2 Layer BLEU-2 Layer BLEU-2 Layer BLEU-2

2 0.6 0.79 2.7 0.89 3.0 0.89 3.2 0.87 0.86
3 0.4 0.81 2.5 0.87 2.8 0.86 3.0 0.85 0.85
4 0.6 0.80 2.8 0.88 3.0 0.87 3.2 0.86 0.86

Table 6: Comparison of the performance of different
tools (Tool Layerber) on the text-based molecule de-
sign task under different training data sizes (Train Data
Layerber). And Layer represents the number of layers
of stacking agents.

5.2 Does more training data lead to better464

performance?465

Our study also conducts an in-depth analysis of the466

performance differences in the text-based molecule467

design task among the optimal stacking structures468

identified by the ChemHTS method under vary-469

ing amounts of training data. As shown in Tab. 6,470

BLEU-2 scores generally exhibit an upward trend471

with the increase in training data (from 5 to 30).472

For example, for Tool Number = 2, the BLEU-2473

score is 0.79 when the training data is 5, and it474

improves to 0.87 when the training data increases475

to 30. Similar trends are observed for other tool476

numbers, indicating that increasing the amount of477

training data enhances the model’s translation qual- 478

ity. This trend aligns with expectations; however, 479

more training data does not always guarantee better 480

performance. Therefore, further experimental anal- 481

ysis is required to determine the optimal amount of 482

training data for different tasks and select the best 483

combination. 484

Layer 1 2 3 4 7 8 10 10+ AVG

BLEU-2 0.88 0.90 0.92 0.93 0.90 0.92 0.91 0.90 0.91

Table 7: Comparison of different tool stacking levels on
the performance of text-based molecule design tasks.

5.3 Does increasing the number of stacking 485

layers improve performance? 486

This section uses the text-based molecule design 487

task as a representative to explore whether increas- 488

ing the number of stacking layers can improve per- 489

formance. As shown in the results from Tab. 7, 490

there appears to be an upper limit to the perfor- 491

mance improvement achieved by increasing the 492

number of stacking layers. When the number of 493

layers is small (e.g., 1 or 2 layers), the model may 494

fail to sufficiently capture complex features, result- 495

ing in lower BLEU-2 scores. As the number of 496

layers increases to 7, the model’s learning capac- 497

ity improves, and the generation quality reaches 498

its peak. However, further increasing the number 499

of layers does not lead to continued performance 500

improvement. This could be attributed to the intro- 501

duction of redundant information with excessive 502

layers, causing a decline in text generation quality 503

or overfitting to the training data. 504

5.4 Why tool stacking works? 505

This chapter explores the behavioral patterns ex- 506

hibited by agents during the process of tool stack- 507

ing through case analysis and examines how tool 508

stacking enhances task performance. From the 509

case studies, we identify four distinct stacking 510

behavior patterns—correct, modify, judge and 511

reserve, with detailed information on all cases pro- 512

vided in Appendix. D. Due to space limitations, 513

this paper illustrates only one correct stacking 514

behavior pattern as shown in Tab. 8. In the text- 515

based molecular design task, two callable tools are 516

provided to the model. The experiment first in- 517

vokes the ChemDFM tool for SMILES prediction, 518

which returns "C1(C)CC1". However, this result 519

does not conform to the standard SMILES repre- 520
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Stacking Pattern Input Output

Correct

The molecule is a cycloalkane composed of a
three-carbon ring. It functions as an inhalation
anesthetic. It is a cycloalkane and a member of
the cyclopropane class. What is its predicted
SMILES?

Gold Answer: C1CC1

According to the provided description, the molecule is cyclopropane, which is a cycloalkane formed by three carbon
atoms in a ring, well known for its use as an inhalation anesthetic. To confirm the SMILES notation of cyclopropane, I
used the ChemDFM tool.
Action: ChemDFM
Input: What is the SMILES notation for cyclopropane (a three-carbon cycloalkane used as an inhalation anesthetic)?
Output: CC1(C)CC1 ✗
Observation: The returned "CC1(C)CC1" does not correspond to cyclopropane. Cyclopropane should be a simple
three-carbon ring, typically represented as "C1CC1". Next, I will call the Name2SMILES tool to further correct the
result.
Action: Name2SMILES
Input: Cyclopropane
Output: C1CC1
Observation: Based on the known structure of cyclopropane, the result from this tool is correct. Therefore, I will
provide the correct SMILES based on the understanding of the chemical structure.
Final Answer: C1CC1 ✔

Table 8: Case analysis of "Correct" behavior patterns of agents during tools stacking.

sentation of cyclopropane. The error likely arises521

from ChemDFM’s misinterpretation of cyclic struc-522

tures, as it fails to correctly identify the single523

three-membered ring and instead erroneously in-524

troduces an additional branch. To address this525

issue, the experiment subsequently invokes the526

Name2SMILES tool with "Cyclopropane" as the527

query. This tool correctly returns "C1CC1", which528

is confirmed through subsequent analysis to align529

with the known standard structure of cyclopropane.530

Consequently, the final SMILES output is corrected531

to "C1CC1", meeting the requirements of the stan-532

dard answer. This experiment shows that individual533

tools may have certain limitations when handling534

chemical structure prediction tasks, as evidenced535

by ChemDFM’s erroneous prediction. However,536

by employing the tool stacking strategy, the ex-537

periment effectively leverages the complementary538

strengths of multiple tools, significantly improving539

the accuracy of the final prediction.540

5.5 Comparison with LLM-based541

Multi-Agent Systems542

LLM-based Multi-Agent Systems (MAS) and Tool-543

augmented LLM share similarities in areas such as544

task decomposition, tool invocation, and informa-545

tion sharing. Therefore, our study focuses on com-546

paring the performance of six multi-agent systems547

with different communication structures against548

the optimal stacking agent path proposed by our549

ChemHTS method in the text-based molecule de-550

sign task. For details on the specific multi-agent551

systems, please refer to Appendix. B, C. As shown552

in Fig. 3, the BLEU-2 scores of various commu-553

nication structures improve as the scale of agents554

increases. However, the growth trends differ sig-555

nificantly. When the agent scale becomes larger,556

the performance of different structures begins to557

diverge. Among them, the Full-Connected and558

Layered structures demonstrate significantly higher559

quality values compared to other structures. Nev-560

Figure 3: Performance comparison of 6 multi-agent sys-
tems with different communication structures and our
optimal stacking agent path on the text-based molecule
design task.

ertheless, the performance of the optimal stacking 561

agent path surpasses the upper performance limit 562

of the multi-agent systems. This is because the 563

optimal path can more effectively leverage task de- 564

composition and tool invocation capabilities while 565

avoiding potential communication overhead and 566

coordination bottlenecks inherent in multi-agent 567

systems. More specific experimental results of 568

multi-agent can be found in Appendix. C. 569

6 Conclusion 570

Our study proposes ChemHTS, a hierarchical tool 571

stacking method to enhance tool utilization in LLM- 572

driven chemistry tasks. By addressing key chal- 573

lenges such as bias from single tool calls and lack 574

of tool collaboration, ChemHTS improves reason- 575

ing and computational efficiency. Experiments 576

across four chemistry tasks show that ChemHTS 577

outperforms both general LLMs and chemistry- 578

specific models. Additionally, we identify four 579

tool stacking behavioral patterns—Correct, Modify, 580

Judge, and Reserve—which enhance interpretabil- 581

ity. In summary, our work highlights the impor- 582

tance of tool collaboration in scientific AI, provid- 583

ing a systematic framework for optimizing LLM- 584

agent interactions in chemistry. 585
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Limitations586

Despite the promising results of ChemHTS in opti-587

mizing tool invocation pathways for chemical tasks,588

several limitations remain. First, the method relies589

on predefined toolsets, which may not generalize590

well to novel or underrepresented chemistry tasks.591

Expanding the adaptability of ChemHTS to dy-592

namically incorporate new tools remains an open593

challenge. Second, the hierarchical stacking strat-594

egy assumes that optimal tool combinations can be595

effectively learned from limited training data, yet596

real-world chemistry problems often require exten-597

sive domain expertise, which LLMs may struggle598

to acquire solely through tool interactions. Finally,599

while ChemHTS improves tool collaboration, its600

computational cost increases with the number of601

tool-stacking layers, potentially limiting its scal-602

ability in large-scale applications. Future work603

should explore more efficient optimization strate-604

gies and adaptive learning mechanisms to enhance605

both generalizability and efficiency.606
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Appendix993

A Stacking Agent Details994

We conducted several experiments and selected995

three optimal hierarchical stacking toolsets, and996

now we will present the stacking results and scores997

for each stacking agent in the Tab. 9, along with998

the corresponding prompts:999

A.1 Stacking Agent1000

A.1.1 Prompt1001

Our Agent framework is based on the ReAct1002

method (Yao et al., 2023) to implement tool and1003

reasoning processes.1004

A.1.2 Naming Rule1005

To facilitate the comprehension of Hierarchical-1006

Tool-Stacking, we propose a systematic hierarchi-1007

cal naming rules as follows in Fig. 4. In addition,1008

in order to prevent the tool name from affecting the1009

agent call, we choose to anonymously process the1010

agent tool, that is, {task name}_{num}.1011

• Self-Stacking Tools: Hierarchical proxies1012

are constructed through a recursive gener-1013

ation strategy, with the depth of the hier-1014

archy dynamically extendable via the nu-1015

merical suffix. For instance in Fig. 4,1016

"["Name2SMILES_0"]" denotes the base tool,1017

while "["Name2SMILES_1"]" signifies a first-1018

layer tool, referred to as an Agent Tool (which1019

encapsulates both the tool and the Agent into1020

a new tool) and "["ChemDFM_2"]".1021

• Multiple Tool Combinations: The com-1022

bination of multiple tools within an Agent1023

is represented in a list format, utilizing1024

depth-first traversal to generate sub-tools,1025

thereby forming the final toolset for the1026

agent. For example in Fig. 4, the structure1027

"["Name2SMILES_1", "ChemDFM_2"]"1028

represents a flat structure with tools at the1029

same level ([A, B, ...]), while the structure1030

"[[’Name2SMILES_0’,’ChemDFM_1’],’Nam1031

e2SMILES_1’,’ChemDFM_0’]" illustrates1032

a nested structure ([[A, B], C, D]), where1033

tools A and B are first combined before being1034

integrated with tool C and D.1035

A.2 Text-based Molecule Design1036

A.2.1 Task Introduction1037

The test set of ChEBI-20-MM is exploited for this1038

task in ChemLLMBench. Models are asked to pre-1039

dict the SMILES of the molecule that fits the given 1040

description. Considering the low accuracy of the 1041

models, we use BLEU-2 as the training metric and 1042

use metrics such as Exact, Dis and others during 1043

the testing stage. 1044

A.2.2 Prompt 1045

We use a simpler prompt compared with the prompt 1046

introduced in (Guo et al., 2023) 1047

Prompt: Text-based Molecule Design

You are an expert chemist. Given the molec-
ular requirements description, your task is
to design a new molecule SMILES:
Molecular requirements description::

1048

A.3 Molecule Captioning 1049

A.3.1 Task Introduction 1050

The test set is the same with the Text-based 1051

Molecule Design task. Because this is the mir- 1052

roring task, which generates a detailed description 1053

by giving a SMILES to the models. In this task, 1054

we also choose the BLEU-2 as the metric in the 1055

training stage. When in the test stage, more metrics, 1056

like BLEU and ROUGE, are utilized to Measure 1057

the performance of the model. 1058

A.3.2 Prompt 1059

We also use a simpler prompt compared with the 1060

prompt introduced in (Guo et al., 2023) 1061

Prompt: Molecule Captioning

You are an expert chemist. Given the molec-
ular SMILES, your task is to provide the
detailed description((The molecule is ...) of
the molecule.
Please strictly follow the format, no other
information can be provided.
Molecular SMILES:

1062

A.4 Molecular Property Prediction 1063

A.4.1 Task Introduction 1064

The molecular property prediction tasks in Chem- 1065

LLMBench consist of five tasks from MoleculeNet 1066

benchmark (Wu et al., 2018), including BACE, 1067

BBBP, HIV, ClinTox, and Tox21. Among these, 1068

BACE and BBBP are balanced binary classification 1069

tasks, while HIV represents an unbalanced binary 1070

classification task. ClinTox consists of 2 unbal- 1071

anced binary classification tasks, and Tox21 com- 1072

13



Figure 4: The example of the Naming rule, where the icon " "," ", " " represent the Agent and the icon ’ ’,’ ’ represent
the Retrieve tool and Compute tool respectively.

Task
Train

Result
Final tool score

Text-based
Molecule
Design

[’Name2SMILES_3’, ’ChemDFM_0’] 0.80 0.90
[[’ChemDFM_0’, ’Name2SMILES_1’], ’ChemDFM_1’] 0.81 0.93
[[’ChemDFM_1’,’Name2SMILES_1’],[’ChemDFM_1’,’Name2SMILES_2’]] 0.91 0.91

Molecule
Captioning

[’SMILES2Description_2’,’TextChemT5_0’] 0.79 0.73
[’SMILES2Description_3’] 0.70 0.65
[’TextChemT5_1’,’SMILES2Description_1’] 0.71 0.66

Reaction
Prediction

[’Chemformer_0’,’SMILES2Property_2’] 1.00 0.90
[’Chemformer_2’] 0.90 0.89
[’Chemformer_1’,’SMILES2Property_1’] 0.90 0.85

Property
Prediction
(BACE)

[’UniMol_1’,’SMILES2Property_1’] 0.80 72.1
[[’UniMol_1’, ’SMILES2Property_0’], ’SMILES2Property_0’] 0.82 81.4
[’UniMol_3’] 0.75 78.6

Property
Prediction
(BBBP)

[’UniMol_1’,’SMILES2Property_2’] 0.68 71.1
[’SMILES2Property_3’] 0.75 69.3
[’UniMol_2’] 0.73 70.6

Property
Prediction
(Clintox)

[[’UniMol_1’, ’SMILES2Property_0’], [’UniMol_1’, ’SMILES2Property_1’]] 0.70 72.3
[’SMILES2Property_2’] 0.68 61.4
[’UniMol_1’,’SMILES2Property_1’] 0.65 69.1

Property
Prediction

(HIV)

[[’SMILES2Property_1’, ’UniMol_0’], ’SMILES2Property_1’] 1.00 97.4
[’UniMol_0’, ’SMILES2Property_1’] 0.85 90.1
[’UniMol_2’] 0.90 96.9

Property
Prediction
(Tox21)

[’UniMol_2’] 0.78 92.3
[’UniMol_0’,’SMILES2Property_2’] 0.80 79.6
[’SMILES2Property_2’] 0.85 74.9

Table 9: Stacking results of different tasks. The bold font represents the most suitable toolset obtained in the task experiment.
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prises 21 unbalanced binary classification tasks.1073

In this task, we choose the AUC-ROC as the first1074

metric in the training stage. Considering the cal-1075

culation method of AUC-ROC for large language1076

models, we also introduced Accuracy as a second1077

metric for test stage.1078

A.4.2 Prompt1079

We use the same prompts introduced in (Guo et al.,1080

2023)1081

A.5 Reaction Prediction1082

A.5.1 Task Introduction1083

The reaction prediction task asks the model to pre-1084

dict the product of the given reaction. ChemLLM-1085

Bench utilizes the USPTO-MIT dataset for this1086

task. Since the benchmark metric is Accuracy, we1087

also chose Accuracy as the training metric, and1088

considering that the answer is also SMILES, we1089

adopted the same metric as Molecular Design task1090

for measurement during the testing stage.1091

A.5.2 Prompt1092

We reformat the prompt provided (Guo et al.,1093

2023).1094

Prompt: Reaction Prediction

Given an incomplete chemical reaction
equation in SMILES notation (format: re-
actants»product, where multiple reactants
are separated by dots ’.’), predict and com-
plete the missing products marked as ’___’.
The response should only contain the only
one SMILES representation of the missing
molecule, without any additional explana-
tion (Note: Please only output only one final
product).
Please Answer the quetion based on the fol-
lowing Chemical reaction equation:

1095

B Multi-agent Implementation Details1096

In this section, We will discuss how to implement1097

multi-agent systems and specific ways of informa-1098

tion transmissionincluding chain, random, star, full-1099

connected, layered and debate graph.1100

B.1 Framework1101

In order to complete chemical tasks, we divided1102

multi-agent into two types: agents with tools and1103

agents without tools, and tested them on the first1104

task, the Text-based Molecule Design task. The1105

overall of our multi-agent framework is a modifica- 1106

tion of the framework of (Zhang et al., 2024) and 1107

(Qian et al., 2024) that utilized different spatial and 1108

temporal masks to complete in the following six 1109

multi-agent structures: Chain, Random, FullCon- 1110

nected, Layered, Star and Debate mode. 1111

However, since we are modifying their approach 1112

with a greater focus on information transmission 1113

and are also limited by API calls, we can only make 1114

a one-sided comparison regarding the recording of 1115

tokens and time. 1116

B.2 Implementation Details 1117

In multi-agent systems, information transmission 1118

is a critical factor for enhancing performance. By 1119

utilizing various structures, information can be con- 1120

veyed through multiple pathways. To improve 1121

the efficiency of information collection, we have 1122

adopted the Final decision approach. Specifically, 1123

at the end of all structures, we have integrated a 1124

FinalRefer Agent to perform the final summary 1125

and decision-making. The FinalRefer prompt is 1126

followed: 1127

Prompt: FinalRefer

You are a strategic planning and final inte-
gration agent. You will be given a graduate-
level question and reasoning outputs from
all other agents. Your task is to integrate all
the information into a single, cohesive an-
swer with detailed reasoning and evidence.
Your final output should: 1. Summarize the
contributions from all agents, highlighting
key insights.
3. Provide the final answer with a clear and
detailed explanation.
4. Conclude with the final answer on a new
line with the format: "The final answer is
’SMILES’
Here is the question:question. At the same
time, the output of other agents is as fol-
lows:
answers

1128

In the implementation of the agents with tools, 1129

we modified all agents along the path except for 1130

the Final agent, while still following the ReAct 1131

framework for tool calling. During this process, 1132

due to the constraints of API calls, both the time 1133

required and the number of tokens used will be 1134

greater compared to agents without tools. 1135
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B.3 Spatial Communication Topologies1136

B.3.1 Chain1137

The chain graph (Fig. 5) is one of the most widely1138

utilized communication architectures in contempo-1139

rary multi-agent systems. In this architecture, the1140

first agent receives input from the user, transforms1141

it into new instruction, and subsequently forwards1142

it to the next agent. Generally, the final agent in the1143

chain provides a summary and answers.

Figure 5: Demonstration of chain structure

1144

B.3.2 Random1145

The random graph refers to a sparse graph ran-1146

domly sampled from a complete graph, as shown1147

in the Fig. 6. They will execute asynchronously in1148

multiple rounds and then randomly transmit infor-1149

mation to the target agent. Finally, all the answers1150

and information will transmit to the Final agent to1151

make a final answer.

Figure 6: Demonstration of random structure

1152

B.3.3 FullConnected1153

The fullconnected graph (Fig. 7) is a directed1154

graphs compared to traditional fully linked undi-1155

rected graphs, which transmit information in a cer-1156

tain order to complete this topology structure. The1157

final agent summarizes the dialogue and provides a1158

concluding output or reflection.

Figure 7: Demonstration of FullConnected structure

1159

B.3.4 Layered 1160

The layered graph (Fig. 8, (Qian et al., 2024)) refers 1161

to a stacked configuration similar to a multilayer 1162

perceptron (MLP). The first layer agents will feed 1163

to the agents in the second layer, and the final layer 1164

will make the summary and final-decision.

Figure 8: Demonstration of Layered structure

1165

B.3.5 Star 1166

The star grpah (Fig. 9) resembles the tree struc- 1167

ture. Firstly, the problem will be handed over to 1168

the external leaf nodes for processing, and the ob- 1169

tained answer will be passed to the central root 1170

node, which will be repeated multiple times. Fi- 1171

nally, the root node will give a summary and make 1172

the descision.

Figure 9: Demonstration of Star structure

1173

B.3.6 Debate 1174

The debate graph (Fig. 10, (Du et al., 2023)) is 1175

multiple agents to engage in a debate, where in 1176

each round, every agent receives the outputs of all 1177

agents from the previous round before making their 1178

own statements. Generally, the finalRefer agent 1179

will help them to make the final descision. 1180

B.3.7 Tree-like&Ours 1181

In order to better understand our stacking struc- 1182

ture, we will compare it with a tree like multi-agent 1183

pipeline that is relatively similar. The tree graph 1184

usually has the root node as the manager to su- 1185

pervise the nodes below to complete various tasks, 1186

and finally return the results of the leaf nodes to 1187

the root node for processing. Overall, this is just a 1188

16



Figure 10: Demonstration of Debate structure

top-down process of information transmission. As1189

showin in the Fig. 111190

As for our stacking structure, from the perspective1191

of information transmission, the main agent of the1192

root node also receives the information completed1193

from below, but there is a difference. For the so-1194

called tool node, it is a bottom-up process. After1195

continuous information superposition step by step,1196

it is passed upward through the parent node and1197

then given to the main agent for processing. It can1198

be seen from the figure that in each transmission1199

process, whether it is the root node or the parent1200

node, they all selectively accept the information1201

from the child node, and it is not like a tree struc-1202

ture that is passed downward.1203

Figure 11: Demonstration of Tree and Ours structure. In the
stacking structure, the icon ’ ’ means the parent node can
choose which child node’s information to accept.

C Multi-agent Experimental Results1204

The experimental results are shown in the Tab. 10.1205

From the table, it can be observed that for different1206

structures, there is an initial performance improve-1207

ment as the value of num increases. However, when1208

num reaches 8, only the Random, Layered, and Star1209

modes show some improvement, with a maximum1210

score of 0.891. In contrast, our best combined1211

structure ([[‘ChemDFM_0’, ‘Name2SMILES_1’],1212

‘ChemDFM_1’]) achieves a score of 0.925 with a1213

num of only 4, indicating a significant enhance-1214

ment.1215

Furthermore, since our multi-agent framework has1216

been modified from others, the number of rounds1217

for information transmission has not been opti- 1218

mized, leading to a substantial increase in both 1219

token count and time. This also suggests that even 1220

in complex and prolonged reasoning scenarios, re- 1221

lying solely on information transmission does not 1222

yield particularly high improvements.

Text-based Molecule Design (BLEU-2) - w/o-Tool

NUM Chain Random FullConnected Layered Star Debate Avg Avg_all_tokens Avg_Time

0 0.548 0.548 0.548 0.548 0.548 0.548 0.548 890.19 8.254
1 0.604 0.604 0.604 0.604 0.604 0.604 0.604 2315.22 15.826
2 0.587 0.587 0.587 0.587 0.587 0.587 0.587 3619.54 21.034
4 0.608 0.642 0.672 0.666 0.661 0.639 0.648 52010.75 74.029
8 0.633 0.701 0.684 0.640 0.649 0.636 0.657 344604.597 227.012

Text-based Molecule Design (BLEU-2) - Tool (Name2SMILES,ChemDFM)

NUM Chain Random FullConnected Layered Star Debate Avg Avg_all_tokens Avg_Time

0 0.832 0.832 0.832 0.832 0.832 0.832 0.832 2528.79 21.382
1 0.842 0.842 0.842 0.842 0.842 0.842 0.842 3125.64 30.237
2 0.844 0.844 0.844 0.844 0.844 0.844 0.844 18446.91 108.427
4 0.864 0.888 0.885 0.867 0.884 0.889 0.880 150544.061 2207.641
8 0.841 0.890 0.854 0.887 0.891 0.874 0.873 733540.998 6744.788

Text-based Molecule Design (BLEU-2) - Stacking Tool (Name2SMILES,ChemDFM)

NUM Stacking Tool Score Avg_all_tokens Avg_Time

2 [’ChemDFM_2’] 0.898 2801.93 39.103
3 [’Name2SMILES_1’,’ChemDFM_1’] 0.918 2821.38 63.795
4 [’Name2SMILES_3’,’ChemDFM_0’] 0.904 2745.07 78.144
4 [[’ChemDFM_0’, ’Name2SMILES_1’], ’ChemDFM_1’] 0.925 2851.43 72.484

8 [[’ChemDFM_1’,’Name2SMILES_1’],
[’ChemDFM_1’,’Name2SMILES_2’]] 0.907 1830.11 95.623

Table 10: Results of Multi-agent experiment. 0:Final-
Refer agent is not included.

1223

D Case Study 1224

As stated in Section 5.4, there are four distinct 1225

stacking behavior patterns-correct, modify, judge 1226

and reserve that make the stacking works. Here are 1227

three other cases for these patterns in the Tab. 11: 1228

D.1 Correct 1229

As analyzed in Section 5.4, "Correct" is a very 1230

important pattern for agents. It was able to lever- 1231

age the complementary strengths of multiple tools, 1232

significantly improving the accuracy of the final 1233

performance. 1234

D.2 Modify 1235

As shown in the table, this is a common approach 1236

to using various tools. First, the problem is decom- 1237

posed, and the RAG tool is used to retrieve informa- 1238

tion on each sub-question to obtain a preliminary 1239

answer. Then, subsequent processing is carried out 1240

using computational tools. Alternatively, one can 1241

first obtain an answer through computational tools, 1242

then have the agent self-assess the correctness of 1243

that answer, and finally use the RAG tool for cross- 1244

verify, thereby refining the answer and improving 1245

accuracy. 1246
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Stacking Pattern Input Output

Modify

The molecule is a peptide anion that is the
conjugate base of gamma-Glu-Abu, obtained by
removal of protons from the two carboxy
groups as well as protonation of the amino
group; major species at pH 7.3. It is a conjugate
base of a gamma-Glu-Abu. Please try to infer
the SMILES of this molecule.

Gold Answer:
CCC(NC(=O)CCC([NH3+])C(=O)[O-
])C(=O)[O-]

To find the SMILES representation of the peptide anion that is the conjugate base of gamma-Glu-Abu, I first need to
understand the structure of gamma-Glu-Abu. Gamma-Glu-Abu stands for gamma-glutamyl-aminobutyric acid. I will
start by finding the SMILES of gamma-Glu-Abu.
Action: Name2SMILES
Input: gamma-Glu-Abu
Output: CCC(NC(=O)CCC(N)C(=O)O)C(=O)O ✗
Observation: The next step is to modify this SMILES to represent the conjugate base of gamma-Glu-Abu at pH 7.3,
where the two carboxyl groups are deprotonated and the amino group is protonated. This involves changing the carboxyl
groups from "-C(=O)O" to "-C(=O)[O-]" and the amino group from "-N" to "-[NH3+]".
Action: ChemDFM
Input: Modify the "CCC(NC(=O)CCC([NH3+])C(=O)[O-])C(=O)[O-] " from "-C(=O)O" to "-C(=O)[O-]" and the
amino group from "-N" to "-[NH3+].
Output: CCC(NC(=O)CCC([NH3+])C(=O)[O-])C(=O)[O-]
Thought: I now know the final answer
Final Answer: CCC(NC(=O)CCC([NH3+])C(=O)[O-])C(=O)[O-] ✔

Judge

The molecule is a cycloalkane composed of
three carbon atoms to form a ring. It has a role
as an inhalation anaesthetic. It is a cycloalkane
and a member of cyclopropanes.Please try to
infer the SMILES of this molecule.

Gold Answer:
CC(=O)N[C@@H]1[C@@H](O[C@@H]2O[C
@@H](C)[C@@H](O)[C@@H](O)[C@@H]2
O)[C@H](O[C@@H]2O[C@H](CO)[C@H](O
)[C@H](O)[C@H]2O[C@@H]2O[C@@H](C)
[C@@H](O)[C@@H](O)[C@@H]2O)[C@@
H](CO)O[C@H]1O

The molecule described is a complex carbohydrate structure involving alpha-L-Fucp, beta-D-Galp, and D-GlcNAc units.
The specific linkages and configurations are crucial for determining the correct structure. Given the complexity of the
molecule, the best approach is to use the Molecule_Design tools, which are designed to handle detailed questions about
molecular structures. I will start with Molecule_Design_1 to see if it can provide a correct SMILES representation based
on the detailed description provided.
Action: Molecule_Design_1
Action Input: The molecule is an alpha-L-Fucp-(1->2)-beta-D-Galp-(1->3)-[alpha-L-Fucp-(1->4)]-D-GlcNAc where
the glucosamine at the reducing end has beta-configuration at its anomeric centre. It has a role as an epitope. Please
provide the SMILES of this molecule.
Observation:CC(=O)N[C@@H]1[C@@H](O[C@@H]2O[C@@H](C)[C@@H](O)[C@@H](O)[C@@H]2O)[C@H]
(O[C@@H]2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O[C@@H]2O[C@@H](C)[C@@H](O)[C@@H](O)[C@@
H]2O)[C@@H](CO)O[C@H]1O
Thought:The SMILES provided by Molecule_Design_1 seems to represent a complex carbohydrate structure, but to
ensure accuracy, I will use Molecule_Design_2 for a second opinion. This will help verify the correctness of the
SMILES or provide an alternative if there are discrepancies.
Action: Molecule_Design_2
Action Input: The molecule is an alpha-L-Fucp-(1->2)-beta-D-Galp-(1->3)-[alpha-L-Fucp-(1->4)]-D-GlcNAc where
the glucosamine at the reducing end has beta-configuration at its anomeric centre. It has a role as an epitope. Please
provide the SMILES of this molecule.
Observation:Nc1ccn([C@@H]2O[C@H](COP(=O)([O-])[O-])[C@@H](O)[C@H]2O)c(=O)n1
Thought:The SMILES provided by Molecule_Design_2 is significantly different from the one provided by
Molecule_Design_1, indicating a discrepancy. The structure from Molecule_Design_2 seems less likely to represent the
complex carbohydrate structure described in the question. The SMILES from Molecule_Design_1 appears more
plausible as it includes multiple sugar units linked together, which aligns better with the description of the molecule
involving alpha-L-Fucp, beta-D-Galp, and D-GlcNAc. Therefore, I will consider the SMILES from Molecule_Design_1
as the more likely correct representation.
Thought: I now know the final answer
Final Answer: CC(=O)N[C@@H]1[C@@H](O[C@@H]2O[C@@H](C)[C@@H](O)[C@@H](O)[C@@H]2O)
[C@H](O[C@@H]2O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O[C@@H]2O[C@@H](C)[C@@H](O)[C@@H]
(O)[C@@H]2O)[C@@H](CO)O[C@H]1O✔

Reserve

The molecule is a linear amino tetrasaccharide
composed of N-acetyl-beta-D-galactosamine,
alpha-D-galactose, beta-D-galactose and
N-acetyl-beta-D-galactosamine units joined by
sequential (1->3)-, (1->4)- and (1->4)-linkages.
It has a role as an epi-
tope.Please try to give SMILES of this molecule.

Gold Answer:
CC(=O)N[C@@H]1[C@@H](O)[C@H](O[C@
@H]2O[C@H](CO)[C@H](O[C@H]3O[C@H]
(CO)[C@H](O)[C@H](O[C@@H]4O[C@H](C
O)[C@H](O)[C@H](O)[C@H]4NC(C)=O)[C@
H]3O)[C@H](O)[C@H]2O)[C@@H](CO)O[C
@H]1O

The SMILES representation for the molecule described is not readily available due to the complexity of the glycosidic
linkages and the specific stereochemistry involved. Further detailed chemical synthesis knowledge or specialized
software would be required to accurately construct the full SMILES notation of this tetrasaccharide.
Thought:The initial attempt using the Molecule_Design_2 tool did not yield a direct SMILES result, likely due to the
complexity of the molecule described. As an alternative approach, I can attempt to construct the molecule step-by-step
using the Name2SMILES tool for each individual sugar unit and then logically deduce the possible structure of the entire
molecule. However, constructing the full SMILES for the entire molecule including specific linkages manually might
not be feasible without specialized chemical software. I will first retrieve the SMILES for each sugar unit.
Action: Name2SMILES
Action Input: N-acetyl-beta-D-galactosamine
Observation: CC(=O)N[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O
Thought:I have obtained the SMILES for N-acetyl-beta-D-galactosamine. Next, I will retrieve the SMILES for
alpha-D-galactose.
Action: Name2SMILES
Action Input: alpha-D-galactose
Observation:OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O
Thought:I have obtained the SMILES for alpha-D-galactose. Next, I will retrieve the SMILES for beta-D-galactose.
Action: ChemDFM
Action Input: What is the SMILES of beta-D-galactose
Observation: OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O
Thought:I have obtained the SMILES for beta-D-galactose. Since the molecule starts and ends with
N-acetyl-beta-D-galactosamine, and I already have the SMILES for this unit, I do not need to retrieve it again. However,
constructing the full SMILES string for the tetrasaccharide with specific glycosidic linkages (1->3, 1->4, 1->4) between
these units is beyond the capability of the Name2SMILES tool and requires specialized chemical synthesis software or
expertise in carbohydrate chemistry. Therefore, I will conclude my process.
Thought: I now know the final answer
Final Answer: Unable to provide the exact SMILES string for the described tetrasaccharide due to the
complexity of the glycosidic linkages and the limitations of the tools available.

Table 11: Case analysis of some behavior patterns of agents during tools stacking.

D.3 Judge1247

Judge refers to the process of selecting between two1248

candidate answers based on the model’s knowledge1249

in chemistry. This usually happens when two agent1250

tools are available. When confronted with two1251

anonymous tools that have the same descriptions,1252

the model often opts to call both tools simulta-1253

neously before making a judgment. Furthermore,1254

when using GPT-4o as the agent model, it typically1255

demonstrates excellent judgment abilities.1256

D.4 Reserve 1257

Reserve is a relatively uncommon phenomenon for 1258

large language models. Due to the hallucination 1259

problem, they usually choose to cover up knowl- 1260

edge blind spots to generate answers. However, 1261

when faced with multiple tools, the agent faces 1262

several answers. After thinking, it does not judge 1263

which one is more suitable, so it chooses to reserve 1264

opinions. Although this will reduce accuracy, in 1265

some ways it is a good thing to emerge this ability. 1266
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