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Abstract

As the capabilities of large machine learning mod-
els continue to grow, and as the autonomy af-
forded to such models continues to expand, the
spectre of a new adversary looms: the models
themselves. The threat that a model might behave
in a seemingly reasonable manner, while secretly
and subtly modifying its behavior for ulterior rea-
sons is often referred to as deceptive alignment
in the AI Safety & Alignment communities. Con-
sequently, we call this new direction Deceptive
Alignment Monitoring. In this work, we identify
emerging directions in diverse machine learning
subfields that we believe will become increasingly
important and intertwined in the near future for de-
ceptive alignment monitoring, and we argue that
advances in these fields present both long-term
challenges and new research opportunities. We
conclude by advocating for greater involvement
by the adversarial machine learning community
in these emerging directions.

1. Introduction

Machine learning models are growing increasingly general-
purpose while simultaneously being granted increasingly
more autonomy. The combination of greater capabilities and
greater freedom in choosing when and how to exercise those
capabilities raises the spectre that models themselves may
behave adversarially to human interests (Hubinger et al.,
2021; Hendrycks et al., 2021; Ngo et al., 2023). In the
Al Safety and Alignment communities, this threat is often
referred to as deceptive alignment, and large-scale collab-
orations spanning leading machine learning organizations
and institutions are focusing more on how to measure prob-
lematic capabilities of large-scale models via benchmarks
(Pan et al., 2023; Shevlane et al., 2023).

In this Blue Sky submission, we aim to elaborate on the
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different possible threats that large models themselves pose
when viewed as potential adversaries, and argue that new
methods are urgently needed. These methods must go be-
yond evaluation on static benchmarks to active, dynamic
monitoring of models at multiple stages in a model’s life-
cycle: dataset creation and curation, training and learning,
network representations and circuit mechanisms.

2. Deceptive Alignment Monitoring
2.1. Data Creation & Curation

The use of foundation models to generate and/or curate their
own training data has recently emerged in both language
and vision. In language generation, Self-Instruct used one
language model to bootstrap training data for fine-tuning a
different language model (Wang et al., 2022), and similar
methods have quickly become commonplace, e.g., (Peng
et al., 2023; Sun et al., 2023; Xu et al., 2023). In curation,
SemDeDup uses an high-performing language model to
prune a dataset for training future language models(Abbas
et al., 2023), and DoReM i learns to weight data differently
to improve performance when learning (Xie et al., 2023).
In vision, (Li et al., 2023) propose endowing a model with
the ability to learn to construct its own training dataset in
a self-supervised manner by trawling through the internet.
Such methods will continue to improve and proliferate.

These methods are relevant to deceptive alignment because
if a highly capable, autonomous model does wish to change
its behavior, creating or curating training data are straight-
forward mechanisms by which it can achieve such a goal.
Currently, such methods have a high degree of human-in-the-
loop, but as model scale and complexity increase, humans
will play a vanishing role. To the best of our knowledge,
we lack methods for monitoring the training data that our
models generate or curate to check that the training data
has not been selected in pursuit of some ulterior goal. This
threat is spiritually similar to recent work demonstrating that
web-scale datasets can be poisoned (Carlini et al., 2023);
however, in the setting studied by Carlini et al. (2023), the
dataset is known, fixed and constructed by humans, whereas
in this setting, the dataset is unknown, dynamic and con-
structed by models in a largely unsupervised manner.
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2.2. Training, Editing & Learning

Turning now from data to learning, there are two emerging
trends that pose new challenges: using one model to train an-
other model, and directly editing the parameters of a model
to change its behavior. The first trend appears commonly
when using reward or preference models to fine-tune a lan-
guage model, such as in Reinforcement Learning from Hu-
man Feedback (Ouyang et al., 2022; Bai et al., 2022a), Re-
inforcement Learning from Al Feedback (Bai et al., 2022b),
Reinforcement Learning for Feedback (Akyiirek et al., 2023)
and many more, e.g., image synthesis (Lee et al., 2023). The
second trend includes several methods for model editing,
i.e., directly editing the model’s parameters to change its be-
havior on specific tasks or inputs, e.g., Meng et al. (2022a);
Mitchell et al. (2022); Meng et al. (2022b); Hartvigsen et al.
(2022); Ravfogel et al. (2022); Hoelscher-Obermaier et al.
(2023). In some methods, models are directly trained to
learn to modify their own parameters, e.g., Irie et al. (2022);
Kirsch & Schmidhuber (2022b;a).

Why does this matter for deceptive alignment? If models can
have ulterior motives and act on said motives, then enabling
models to train each other or to edit themselves directly
posses a significant threat, since a model can give itself or
give another model capabilities that humans would rather
the model(s) not possess. To the best of our knowledge, we
lack techniques to audit what learning signals one model
transmits to another model, and we also lack techniques to
understand whether model editing methods can themselves
be poisoned; for a concrete example, it might be possible
that by selective choosing a small number of seemingly in-
nocent edits (e.g., “US President: Donald Trump — Joe
Biden” and “World Chess Champion: Magnus Carlsen —
Ding Liren”), the combination of edits induces an unpre-
dictable and undesirable change in model behavior'.

2.3. Representations & Mechanisms

A key step towards addressing the identified challenges
will be monitoring the representations and mechanisms of
large-scale models for “permissible” behavior (Christiano,
2022a;b); here, “permissible” behavior is loosely under-
stood since the concept itself is in desperate need of sharper
understanding. Loosely, if we think of a network as some
map f : X — ), previous work has studied adversarial
inputs coming from an unusual input distribution p(z) or
backdoored models with unusual conditional distributions
p(y|z). We are therefore concerned not with unusual input
data, nor unusual conditional distributions, but whether the
network’s outputs are produced for the “normal reasons”.
As Christiano (2022a) explains, we are looking for outliers
in terms of how f handles perfectly normal data.

"However, we note that sometimes seemingly unpredictable
changes are indeed predictable, e.g., Schaeffer et al. (2023).

The reason why this matters is that while inputs, outputs,
and inputs-to-output maps may all appear perfectly ordinary,
highly capable models may conceal some ulterior motive
or goal. In order to detect and counter this threat, it is
imperative to develop interpretability methods capable of
understanding both activations and circuit mechanisms of
models and detecting abnormal variations in models’ pro-
cessing. This is important because two models generating
identical outputs when provided with the same inputs may
compute their outputs for different “reasons”.

Because the exact threat is unknown and likely dynamic,
there is an urgent need to develop unsupervised methods
for mechanistic anomaly detection that scale well. The next
step is to develop an unsupervised methodology that can
differentiate between normal model behaviors—where con-
clusions are reached for “appropriate reasons”—and anoma-
lous model behaviors—where conclusions are derived for
erroneous, potentially harmful “reasons”. This task is par-
ticularly challenging since it requires the identification of
patterns in the propagation of information through a model
that is indicative of correct reasoning without relying on
explicitly supervisory signals.

To achieve this, we propose leveraging techniques related to
unsupervised anomaly detection to capture deviations from
typical model behaviors. By comparing a model’s process-
ing across various inputs and outputs, it may be possible to
identify patterns that consistently align with desired and ap-
propriate behavior. We hypothesize that these patterns could
manifest at three different levels of analysis within a model.
Firstly, at the individual layer, a comprehensive analysis
of activation distributions in the high-dimensional activa-
tion space could provide valuable insights into the model’s
processing. Secondly, at the layer-to-layer activation level,
investigating how high-dimensional modes propagate, trans-
form and evolve through the layers of a model can also
offer an understanding of normal and abnormal processing.
Thirdly, at the circuit level, identifying subgraphs within
the network that correspond to specific transformations on
features relevant to out-of-domain generalization might also
prove powerful; however, knowing how to usefully define
probabilistic distribution over activations, activations’ prop-
agations and circuit mechanisms for anomaly detection are,
to the best of our knowledge, open questions. For possible
approaches, see Carranza et al. (2023).

3. Outlook

The human-model interpretability quest can be modeled as
an adversarial game, whereby deceptively aligned models
subvert interpretability tools in favor of capabilities. More
capable models are increasingly threatening, and to maintain
scalable oversight we advocate development of novel tools
for deceptive alignment monitoring.
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