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ABSTRACT

We study conditional prediction under group fairness constraints requiring the
model’s output Y,.eq to be conditionally independent of sensitive attributes Z
given the true label Y;.,.. Existing approaches—kernel penalties, adversarial
debiasing, and mutual-information bounds—often scale poorly in high dimen-
sions, are unstable to train, or lack auditable likelihoods. We propose CI-CFM, a
conditional flow-matching generator coupled with density-based heads that score
(@) the joint p(Ypred, Z, Yirue) and (ii) a factorized reference ¢(Ypred; Z’, Yirue)
together with their marginals p(Z, Yirue) and q(Z', Yirue). Our divergence-
difference objective € := Dk, (p||q) — DKL(PZ, Yirwe |27 Yiene ) €quals the con-
ditional mutual information I(Ypred; Z | Yirue) under mild assumptions, en-
abling single-stage, non-adversarial training with tractable likelihoods for au-
diting conditional independence and efficient single-/few-step sampling at infer-
ence. On synthetic data and EHR benchmarks (MIMIC-III/IV), CI-CFM im-
proves accuracy while substantially reducing dependence on Z given Yj,e; abla-
tions confirm the effectiveness of the fairness weight schedule, variance-reduced
estimator, and few-step ODE integration. Code is anonymously available at
https://anonymous.4open.science/r/CICFM-0B67/.

1 INTRODUCTION

The fairness of modern generative models has been an increasing concern in the machine learning
community. Fairness-aware methods aim to eliminate the bias inherent from the demographic groups
(e.g., race or gender). Generative models, such as large language model chatbots, require not only
high-fidelity samples, but also to comply with the fairness constraint. The fairness can be formulated
as the following conditional independence (CI) constraint

Ypred 1 7 ’ Kruea

where Z denotes sensitive or nuisance attributes. Existing approaches typically (i) use kernel penalties
(e.g., MMD/HSIC) that are bandwidth-sensitive, hard to tune, and scale poorly; (ii) rely on adversarial
debiasing with unstable min—max optimization and brittle hyperparameter trade-offs; or (iii) pursue
latent “disentanglement” with proxy supervision, which lacks principled density estimates and offers
no direct way to measure conditional independence. As a result, auditing is difficult, training can be
unstable, and accuracy often degrades—especially under irregular time series, structured missingness,
and distribution shift common in EHR data. Meanwhile, (conditional) flow matching (FM/CFM)
offers stable, simulation-free training with single-/few-step sampling, but prior work does not provide
explicit CI control with auditable likelihoods. In this paper, we propose a generative framework based
on FM, which enforces the aforementioned conditional independence constraint. Our contributions
can be summarized as follows:

(1) We present a novel fairness-aware generative model based on conditional independence, which
combines conditional flow matching with an explicit density regularizer to remove sensitive-at-
tribute leakage while preserving task signal—using twin density heads and a divergence-differ-
ence loss for stable, non-adversarial training, tractable likelihood auditing, and efficient single-step
sampling. (2) Theoretical analysis validates the appropriacy of our surrogate by proving that the
divergence—difference ¢ is exactly equal to the conditional mutual information I(Y,red; Z | Yirue)
so minimizing & is necessary and sufficient to enforce Ypreq L Z, Yirye (Theorem . (3) Empirical
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experiments on synthetic datasets and real-world datasets demonstrate the superior performance of
our methods over existing competitors. Ablation analysis demonstrates the robustness to potential
variations. (4) Qualitative studies on real-world datasets — MIMIC-III and MIMIC-IV demonstrate
that our method alleviates the bias from sensitive attributes (e.g., ethnicity) when improving clinical
predictions over the strongest non—ours baseline by 0.05-0.50 absolute points, while simultaneously
reducing EDDI by 0.07-0.32.

2 RELATED WORK

Fairness-Aware Generation Post-processing and constrained learning enforce group fairness but
may discard signal and limit test-time control (Hardt et al., [2016; Kleinberg et al.,|2016; Woodworth
et al 2017). Representation approaches remove or obscure sensitive information (Zemel et al.|
2013} Edwards & Storkey| 2015} Beutel et al., 2017} [Zhang et al.l 2018)); adversarial variants align
with domain-invariance (Ganin et al.,[2016) but can be unstable, while variational/disentanglement
methods improve sample efficiency at the cost of stronger latent assumptions and weaker CI guar-
antees (Louizos et al.| 2015} Madras et al.l [2018}; |Creager et al., [2019; |[Locatello et al., [2019). In
healthcare/EHR, recent systems employ contrastive or counterfactual debiasing yet typically optimize
surrogate discrepancies rather than directly enforcing CI (Rajkomar et al.|[2018}; |Obermeyer et al.|
2019; 'Wang et al.,|2024;|Oh et al.| 2022; [Liu et al., 2023).

Enforcing CI. CI can be promoted via kernel criteria (e.g., HSIC, kernel CI tests) but these suffer
from bandwidth sensitivity and scaling challenges in high dimensions (Gretton et al., 2005; |Fukumizu
et al., 2007; Zhang et al.| 2011). Mutual-information penalties are conceptually appealing yet
often rely on high-variance neural estimators and loose bounds (Barber & Agakov,,2004; Belghazi
et al., 2018; |[Hjelm et al.| 2019; [Tschannen et al., [2020; |[Poole et al., |2019; [McAllester & Stratos,
2020). Closer work trains CI regularizers alongside predictors (CIRCE), matches joint vs. factorized
distributions adversarially (CI-GAN), or enforces CI in diffusion latents (CI-DiffAE), but these inherit
kernel sensitivity or adversarial instability and add complexity via multiple losses and discriminators
(Pogodin et al.| [2023; |Ahuja et al., [2021; |[Hwa et al., 2024)). This motivates density-based objectives
that scale and yield auditable likelihoods.

Flows and flow matching. Normalizing flows enable exact likelihoods and efficient sampling
via invertible architectures (Dinh et al., 2017 |Rezende & Mohamed, [2015}; [Papamakarios et al.,
2017} [Kingma & Dhariwall, 2018). Continuous normalizing flows (neural ODEs) generalize flows to
continuous-time dynamics, but require ODE solves during training and inference (Chen et al., 2018}
Grathwohl et al., 2019). Flow matching (FM) replaces expensive integration with direct vector-field
regression, yielding stable training and single-step sampling; rectified/stochastic interpolant variants
further improve efficiency and sample quality (Lipman et al.| 2023} [Liu, [2022; |Albergo et al.| 2023).
Building on this, (Tong et al.l |2024) developed generalized conditional flow matching (CFM) to learn
context-conditional generators. However, standard FM/CFM focuses on sample fidelity and training
stability and does not provide explicit mechanisms for fairness or CI control. Our framework bridges
this gap by pairing conditional flow matching with a density-based CI regularizer that trains joint and
factorized likelihood surrogates in tandem.

Our method’s advantage Relative to adversarial CI enforcement (Zhang et al., 2018;|Madras et al.|
2018; |Ahuja et al., |2021])), our approach avoids discriminator dynamics, supplies explicit likelihood
surrogates for joint and factorized models (enabling auditable CI), and scales to temporal inputs with
a temporal encoder while preserving the stability and efficiency of flow matching (Lipman et al.,
2023} |Tong et al.| 2024)). Compared to kernel-based penalties (Gretton et al., | 2005; [Fukumizu et al.|
2007; Pogodin et al., 2023)), we eliminate bandwidth sensitivity and large-kernel costs via parametric
density surrogates embedded in a divergence-difference objective aligned with conditional mutual
information.

3 METHOD

We present our CI-CFM framework, where Figure[I|presents an overview. Our framework takes multi-
variate time series as input and first encodes them with a temporal encoder (e.g., transformer (Vaswani
et al.L|2017)) to produce a compact context vector. A conditional flow-matching generator then learns
a vector field that transports a simple noise sample to the label space, and an ODE integrator produces
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Figure 1: Our proposed conditional flow matching framework for fairness-aware generation.

the final prediction in one or a few steps. To enforce fairness, we attach a lightweight conditional
independence module with shared backbone density heads that score both the joint distribution of
(prediction, sensitive attributes) given the true label and a factorized counterpart built with an auxiliary
sampler. Their divergence difference serves as an explicit conditional-independence regularizer that
is added to the CFM objective. This design gives a single, non-adversarial training stage, stable
optimization, tractable likelihoods for auditing, and efficient sampling—jointly improving predictive
accuracy and reducing dependence on sensitive attributes. Algorithm [I]presents the detailed workflow
of our method.

3.1 PROBLEM FORMULATION AND THEORETICAL MOTIVATION

Let D = {(X;, Yirue,i» Zi) } Y4 be i.i.d. samples with X; € X € RT*F (multivariate time series),
Yirue € Y (true target labels), and Z € Z (a protected or sensitive attribute). Our objective is to learn
a generator G : X — ) producing predictions Y;ea = Gg(X) subject to the fairness constraint
that, conditioned on the true label, the prediction should be statistically independent of the sensitive
attribute:

Ypred 4 Y;:rue; (1)

This conditional independence criterion ensures that prediction errors are not correlated with protected
attributes within each true label class. It can also be rigorously quantified using conditional mutual
information (CMI):

p(Ypreda Z | Ytrue)
I(Ypred: Z | Yiru ZE[lo }
( pred | t e) gp(ypred | }/true)p(Z | Krue)

which admits the KL-divergence form

I(Ypred; Z | Krue) - DKL (p(Ypredv Z | Krue)”p(ypred | Y;rue)p(z | Y;;rue))'

where Dy, denotes the Kullback-Leibler divergence. Since Dky, > 0 with equality if and only if
the two distributions are identical almost surely, we have I(Ypred; Z | Yirue) > 0 with equality if
and only if the conditional independence holds. Thus, minimizing this quantity directly enforces our
desired fairness constraint. However, estimating CMI in high-dimensional is challenging. Direct
density estimation scales poorly with dimensionality and requires careful regularization to avoid
overfitting.

To address these limitations, we propose a novel surrogate divergence measure that admits efficient
estimation while preserving the theoretical guarantees of CMI. Following the theoretical framework
of (2021}, we introduce an auxiliary "factorized" distribution that decouples the prediction
from the sensitive attribute:

Q(Ypreda Zl, Y;;rue) = p(Ypredv )/true)Q(Z/ ‘ )/true)a )



where Z' denotes the an independent draw from the conditional distribution q(Z’ | Y;yue)- In practice,
7' is sampled from the empirical label-conditional distribution via within-class permutation of Z
(with optional Gaussian), preserving p(Z | Yi;ue) While breaking its dependence on Yprea- The
estimator £ is invariant to the choice of g(see Appendix[A.1.3|for the detail). This ensures the marginal
distribution between predictions and labels is maintained, without spurious correlations to sensitive
attributes. We then define our surrogate divergence measure as:

g = DKL (p(Ypredv Z7 thrue) H q(Ypreda Zlv )/true)) - DKL (p(Z7 Sftrue) ” q(Z/v Krue)) (3)

A large body of work regularizes representations by bounding or estimating mutual information
with variational lower bounds or contrastive estimators (e.g., MINE, Deep InfoMax, and related
contrastive/InfoNCE objectives) (Belghazi et al., 2018; [Hjelm et al.l 2019} [Poole et al.l 2019
Tschannen et al., 2020). These approaches can introduce non-negligible bias/variance trade-offs and
instability in high dimensions. In contrast, our divergence-difference construction couples joint and
marginal KLs built from label-preserving resampled references (2). The following theorem shows
that this surrogate exactly equals the CMI:

Theorem 1 (Equivalence of ¢ and Conditional Mutual Information). Under the mild regularity
conditions in Appendix [A1.T}-namely, absolute continuity and strict positivity of the relevant
densities, a factorized reference constructed via label-wise resampling, and use of the strictly convex,
separable KL divergence—the surrogate & coincides exactly with the CMI:

g = I(Ypred;Z | }/true)~

In particular,
5207 5:0<:>YpredLZ|nrue-

Proof. See Appendix [A.T]

Remark. The identity £ = I(Ypred; Z | Yirue) is invariant to the specific choice of the auxiliary
kernel g(Z’ | Yirue) s long as standard regularity holds: (- | Yiuce) is absolutely continuous on the
support of p( ), and the involved KL terms are finite. Any such Markov kernel yields the
same value of &, hence the same CMI. Our practical instantiation—within-label permutation of Z
with a small Gaussian perturbation to ensure positivity—is merely convenient rather than essential

(see Appendix [A.T.3).

3.2 CONDITIONAL FLOW MATCHING FOR FAIR GENERATION

To implement our fairness-aware generator Gy(X ), we leverage the recently developed conditional
flow matching (CFM) framework (Lipman et al.,|2023), which provides a simulation-free approach
to training continuous normalizing flows (CNFs) (Grathwohl et al.,2019).

CNFs define the diffeomorphisms {¢; };c[o,1] through the ordinary differential equation(ODE):

d¢t($) o -
T v (oe(x)),  ¢o(z) ==

where v, : R — R? is a time-dependent vector field. The flow ¢, transforms a simple base
distribution pq (typically standard Gaussian) into a target distribution p; via the push-forward
operation:

pe = [B)«(po) = po (o7 ( ’det 99, ()|

Traditional training of CNFs via maximum likelihood requires solvmg the flow equations during both
forward and backward passes, leading to significant computational overhead and potential numerical
instabilities (Chen et al., 2018; |Grathwohl et al.| [2019). Flow matching circumvents these issues
by directly regressing the vector field against a known target velocity field u;(x) that generates the
desired probability path {p; }+cj0,1) (Oeps + V- (prug) = 0).

Lon(6) = Equfo,anp [[|00(2:8) — we(@)[|].

However, computing the marginal target field u;(x) is generally intractable. CFM resolves this
tractability issue by exploiting a mixture-of-paths decomposition. Suppose the marginal probability
path admits the representation:

p() = / Pz | 2) g(2) dz,

4



where z is a conditioning variable sampled from ¢(z). If each conditional path p;(z | 2) is generated
by a (tractable) vector field u, (z | z) satisfying ypy(z | 2) + V - (pi(x | 2) ue(z | 2)) = 0, then the

marginal velocity field uy(z) := IEZNq(Z)[ ug(x | 2) p;fzx)] also generates the marginal path p; ().

Direct regression to u; () is intractable since it requires evaluating the integral above. Instead, CFM
minimizes the conditional regression objective

2

)

Lorm(0) = Eoovnito,]|ve(250) — wi(z | 2)]
zrvq(2)
z~pi(-|2)

where vy (z;0) is a neural network approximation of the vector field. Under the mild positivity
condition p;(z) > 0 for all z,¢, one can show (Theorem 3.2) that, up to an additive constant,
Lcorm(0) = Lpm(0) and hence VoLorpm = VoLrym. In practice, CEM thus recovers the same
optimal dynamics as FM while requiring only samples (z, z) ~ ¢(z) p:(« | z) and evaluations of
u¢(x | z), thereby circumventing the need to compute or estimate the intractable marginal velocity
ug(x).

3.3 MODEL ARCHITECTURE

In this work, we utilize I-CFM (Independent Coupling CFM) (Tong et al.,2024), which identifies
the conditioning variable z with a source-target pair (yo, 1) where yo ~ N (0, I) is a source point
and y; = Y;,ue is the target. Use the linear interpolant y; = (1 — t)yo + ty; and constant velocity
ue(Ye | Yo,y1) = y1 — Yo Given covariates X, the generator integrates the learned vector field to
produce the prediction

d¢]

Ypred = G@(X) = d)?(yo,X), W(y()aX) = v@(d)te(yO;X)aXv t)7¢8(y0aX) = Yo-

This construction ensures that the learned flow transports samples from the base distribution directly
to the target predictions along straight-line paths, providing both computational efficiency and
theoretical guarantees.

For inputs X € RT*F we employ a general temporal encoder that captures multi-scale temporal
dependencies,
h = Enc(X) € RY.

Formally, Enc : RT*F — R¥ is a learnable function that maps the time-series X to a fixed-
length contextual representation h. The generator parameterizes a time-dependent vector field by
conditioning on this context:

ve(ye, X,t) = MLP ([y; hs t]),
where h provides the temporal summary of X and [-; -] denotes concatenation.

The final generator produces samples by numerically integrating the learned ODE:

d
%:Ug(yt,X,t), yONN(Ovl)

from ¢t = 0 to ¢t = 1 using integration schemes with S steps (step size At = 1/5). (e.g., Heun/RK2
or Euler).

3.4 FAIRNESS-CONSTRAINED TRAINING FRAMEWORK

The primary training objective follows the CFM paradigm, utilizing the loss given by:

Lemm(0) = Et.x Yirweo (100 (e, X, 1) — we(ye, X))

where the expectation is taken over ¢ ~ Uniform[0, 1], training pairs (X, Y;,4e), and base samples
Yo ~ N(O7 I)



To compute the surrogate divergence ¢ in (B), we estimate both KL terms via four neural
density estimators trained with CFM framework: (i) P, for logp(Ypred, Z, Yirue), (il) Qq for
log ¢(Ypred, Z', Yirue) With Z" L Yired | Yirue, (iil) R, for logp(Z, lee) and (iv) S, for
108 4(Z", Yorue)-

Once trained, each flow provides log-density estimates by the continuous change-of-variables identity:

T
log pr(¢) = log po(Co) — /0 Ve v(or0(Co), t) dt, Co = Po1(Q),

where ( denotes the variables in the respective flow model, and divergence is computed by automatic
differentiation or stochastic trace estimators. This yields log Py, log Qy,log R, log S consistently
across the four heads.

To instantiate the factorized ¢(-), we draw Z’ by label-wise permutation plus small Gaussian noise:

Z/(Z) = Z( Yt(;‘ze @ + G(i), 6( 2 N(07 UnmseI)
where o0, is a random permutation of the sample indices that is specific to the value of the label
Ytgge This operation preserves the conditional marginal p(Z | Yi,ue) while breaking the

dependence on Yjeq.

Given a minibatch {(Yp(j;d, VARNVAION t(rge) i~1, we form the per-sample joint and marginal log-
density differences

63(03nt 1Og P¢(Y( ) Z(Z) Y;(rlZe) 1Og Qw (Y])(Zed7 Z/(t) th(ilie) (4)
80 =1log R,(ZD, Y0 ) —log 5,(2'D, v {1)).

We then apply exponential moving-average (EMA) baselines to reduce variance:
b_]OlIlt <_ﬁbjomt + 1 - Z 5J(oznt’ bmarg <_Bbmarg + 1 - Z 5marga

and define the variance-reduced Monte Carlo estimator

B
~ 1 i ;
E - E Z [(6j(ognt - bj0i1’lt) (6r(n21rg marg)] .

i=1

Only the joint difference depends on the generator output Y,;.q and hence on ¢. The marginal term
involves only (Z, Yirue) or (Z’, Yirue) and carries no path to 6. We therefore backpropagate through
Jioint to update (6, ¢, ©), and stop the gradient from 6yarg to 6 (While using dp,arg to update (p, x)).

The overall training objective combines the CFM loss for the generator with the fairness surrogate:

Etotal(ev ¢,¢,p7 X) = ﬁCFM(e) + )\5(9, ¢,7/1;P7 X)? A>0.

A short warm-up phase for ) is applied to enhance training stability in initial iterations.

This integrated training framework ensures the generator produces accurate predictions while satisfy-
ing conditional independence constraints, offering a principled approach to fairness-aware time series
generation. Complete pseudocode (Algorithm[T) is provided in Appendix [A.2]

Convergence and Complexity Analysis. We conclude the section by summarizing the conver-
gence and complexity properties of the proposed CI-CFM framework. Under standard regular-
ity assumptions (stated in the appendix , the CFM objective Lcpnm(0) converges at rate
O(B‘l/ 2) following standard flow matching analysis, while our fairness regularizer fA achieves
the same convergence rate to the true conditional mutual information I(Ypred; Z|Yirue) via con-
sistent neural density estimation and EMA variance reduction. Compared to vanilla CFM with
complexity O(BS - dim(Y)), our method incurs O(BS - dyax + B - Crair) per-iteration cost, where



Table 1: Synthetic Regression Performance. Meanminmax) over 10 seeds. The CI regularizer
substantially tightens the three CI diagnostics with only marginal changes in RMSE/MAE.

Method | RMSE () MAE (}) EDDLon (1) |plpartiar (1) HSICpariiar (1)

CFM (A=0) L1202, 103 0.92300918,09277  0.04670.0396, 005200  0-136(0.126,0.145)  0.0008590.000673, 0.00102)
CFM+CI (A=0.1) | 1.120.11,1129  0.90000.894,0907)  0.0345(0.0203,0.0403)  0.1210.111,0.135)  0.0004780.000369, 0.000567)

dmax = max{dim(Y") + dim(Z) + dim(Yiue ), dim(Z) + dim(Yirue) } and Ctai,r captures fairness-
specific overhead. This translates to approximately 3—5x computational increase and 2—-3x memory
overhead, primarily due to four density heads and gradient routing operations. The warm-up schedule
with A increasing from 0 to A\j,ax over Fya.m €pochs ensures stable convergence to a stationary
point of the combined objective L) at rate O(T‘l/ 2) for T total iterations under standard SGD
analysis, while the gradient routing strategy prevents conflicting signals between CFM and fairness
objectives. Unlike diffusion-based debiasing methods requiring iterative sampling or adversarial
approaches with min-max instabilities, our framework provides explicit fairness control with sin-
gle forward-pass generation, trading increased training cost for superior inference efficiency and
theoretical interpretability.

4 SIMULATION STUDIES

4.1 EXPERIMENTAL SETUP

We synthesize 7 i.i.d. triples { (X, Y () Z(#))}»_ together with a binary group label G € {0, 1}
(extension to K >2 is straightforward). For each ¢, the raw multivariate time series X (1) e RT*F has
entries
Xt(fj) = (05 +77i,j) Sin(wjt + (bi,j) +0.1 EE?;, M35 NN(O, 0.22), ®ij NN(O, 7'1'2)7 EE?]) NN(O, %%S
with piecewise frequencies

0.240.1(j — 1), 1<j5<|F/3],

wj =< 1.0+0.5( —1—[F/3]), [|F/3] <j<|2F/3],

3.0+ l.O(j —-1- L2F/3J), |2F/3| < j <F.

We compute the discrete Fourier transform along the temporal axis and keep the lowest 7'/4 modes,

X = [FFT(X®, dim=1)], and form x{* = 2 S0/ X1, (™ = L 570 | X{7, and x{*) =

7

\/% 23;1()(15(? — x{™)2_ The final feature vector is h; = [x'*; x{"™);x(?)] € R3F.

K2

Let s(G) € {—1,+1} be the centered encoding of G. Draw Wy ~ N(0,0.3%I37) and define a
baseline ¥,\) = tanh(h;Wy) + €Y, with € ~ A(0,0.052Ix, ). We inject two optional group
effects: 4

YO e (14 my s(G)) @ (V0 + 7y s(GD)), ©)
where 7y controls an additive shift and ky a multiplicative scale. Next draw W ~N(0,0.4%If,)
and generate

Z9 = ay (YOWy) + 72 s(GD)v+eZ,  eZ~N(0,0.08I,), (7
where ary controls the Y — Z coupling, vz tunes inter-group separability in Z, and v € R¥2 is a
random direction.

All random draws are performed with a fixed seed for reproducibility. We report results averaged
over multiple independent replicates. Full simulation settings—including data generation, model
architectures, training/testing protocol, and metric computation—are provided in Appendix

4.2 RESULTS.

We evaluate predictive accuracy (RMSE, MAE) and conditional independence using three
diagnostics—EDDIy, partial correlation, and residual HSIC—whose precise definitions, prepro-
cessing (binning, residualization), and kernel/bandwidth choices are deferred to Appendix



Tablereports mean(min,max) Over 10 seeds: relative to plain CFM (A=0), CFM+CI (A=0.1) reduces
EDDI,,, from 0.0467 to 0.0345 (~ 26%), the average absolute partial correlation from 0.136 to
0.121 (~ 11%), and residual HSIC from 8.59 x 10™% to 4.78 x 10~* (~ 44%), while RMSE/MAE
vary by at most ~1-2%. The tight min—max intervals across seeds indicate that these CI gains are
consistent and robust. Figure [Z] corroborates this trend by plotting the Pareto curve of —RMSE versus
EDDI, oy as A varies: increasing A consistently shifts solutions leftward (smaller EDDI, .y, hence
stronger CI) with only minor vertical movement (RMSE), yielding a smooth frontier with a clear
“elbow” around A=20.1. Together, these results indicate that substantial CI gains—now measured by
EDDI,,,—are attainable with negligible impact on predictive accuracy, and are stable across random
seeds.

5 REAL-DATA EVALUATION
5.1 EXPERIMENT SETUP

Datasets. We evaluate on two large-scale critical-care EHR corpora: MIMIC-III (Johnson et al.,|2016)
and MIMIC-1V (Johnson et al.,[2023)). Both consist of de-identified records from ICU or emergency-
department stays at BIDMC, including multivariate time series (vitals, labs) and demographics.
Following common preprocessing in clinical time-series benchmarks (Harutyunyan et al., 2019
Wang et al.|[2024), we extract hourly measurements from the first 48 hours after ICU admission (26
variables for MIMIC-III and 25 for MIMIC-1V) and use standard train/validation/test splits. Sensitive
attributes used for fairness auditing include insurance, marital status, race, gender, and age (Wang
et al., 2024).

Tasks & Evaluation Metrics.  Consistent

with prior clinical prediction work (Harutyun:

yan et al), 2019} Wang et all 2024), we study ~1.0951
two binary outcomes: (1) In-hospital mortal-
ity (IHM)—whether the patient dies during the
index hospitalization; and (2) 30-day readmis-
sion (READM)—whether the patient is readmit-
ted within 30 days of discharge. We report AU-
ROC, AUPR, and F1 for predictive performance, 1120
and adopt Equalized Odds (EO) and the Error Dis- A
tribution Disparity Index (EDDI) as group-fairness ‘“22 oy v e PR
metrics (Wang et al.} [2024). All metrics are ac- ' ' "¢l ¢ (EDDIcont) '
companied by 95% bootstrap confidence intervals.
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Figure 2: Performance—fairness trade-off.
Comparable Methods. (1) Backbone only  pareto curve of performance (— RMSE, higher is
without constraints on conditional independence:  pegter) versus CI (here EDDl,qy, lower is better)
Transformer (Vaswani et al, [2017), LSTM a5 the regularization weight \ varies. Larger A
(Graves & Graves, 2012), RNN (Elman; [1990), moves solutions leftward (weaker dependence
and CNN (LeCun et al,[1998); (2) Fairness-aware o 7 given Y) with only minor vertical move-

models: Including general fairness models: FF-  ment illustrating that CI can be improved with
VAE (Creager et al., 2019), FarconVAE (Oh et al., {imited impact on predictive accuracy.

2022) and clinical models specifically on EHRs:
FairEHR-CLP (Wang et al., 2024), FLMD (Liu et al., 2023). See Appendix for implementation
details and baseline configurations of all comparable methods.

5.2 EXPERIMENT RESULTS

Quantitative Results. Table |2| reports results on MIMIC-III and MIMIC-IV for in-hospital
mortality (IHM) and readmission (READM) under a single training stage. Our CI-CFM consistently
surpasses traditional EHR predictors (e.g., LSTM, RNN, CNN, Transformer) and fairness-aware
baselines (e.g., FairEHR-CLP, FLMD, FFVAE, FarconVAE) on classification metrics (AUROC,
AUPR, F1) and on fairness metrics (EO, EDDI). Notably, CI-CFM attains the highest AUROC across
all four evaluations, improving over the strongest non—ours baseline by 0.05-0.50 absolute points,
while simultaneously reducing EDDI by 0.07-0.32. These gains come from (i) a flow-matching
generator that captures long-range temporal structure and irregular sampling without adversarial
training, and (ii) an explicit, density-based CI regularizer that suppresses residual dependence on
sensitive attributes yet preserves label-discriminative signal.



Table 2: Performance comparison on MIMIC-IIT and MIMIC-1IV for In-Hospital Mortality and
Readmission tasks. All results(%) are reported with 95% confidence intervals. The best results are
highlighted in bold, and the second-best results are underlined. Avg. Rank indicates the average
ranking of each method across five evaluation metrics.

Model In-Hospital Mortality Readmission
AUROC (1) AUPR (1) FI(D EO (1) EDDI(l)  Avg Rank | AUROC (1) AUPR (1) FI(h EO (1) EDDI(l)  Avg Rank
Dataset 1: MIMIC-III
Transformer| Vaswani et al. 12017| | 8049555 245 38.540305 56 4109604156 10097, 105 413056, 501) 76 70267557249 38.8Tas00,4315  4043@1s1aa30 89755 1351 60567 568 78
LSTM [Graves & Graves§2013] | 8241goss, 3038 4237664700 437605641100 8.77wss 1381 476, 50 723900341 3935asenasn  AL58asssas 8120071205 6056857 60
RNK[Elman {1550 81390315150 4338easason 432600754695  832sos 1356 406647602 44 716041, 735 38.93asis.a20n  4088rosaasn 96277 1429 7.0
CNN [LeCun et al. {1998 82.28010,54.17  MA993m,u0m  44.03uozs,aran  848sx1ne 458061 40 741500107630 42550804679 431804000 946532, 1375 32
FairEHR-CLP {Wang et al.12024] | 79.70¢77.63, 515  35.83G161,4029)  403503670,4375)  8.46330,13.63  4.3203.46,631) 77 73.72141,7508  38.963505,4330)  41.653009,4397  8.5%s2s, 1411 5.4
FLMD (Liu ct al 12023 81.77aom 70 41720715.400n  43Sloosnay  9T3wos sy 43268058 59 7327100549 41.08726,4540) 42180041, 448 26
FFVAE |Creager etal. 12019 82.19027,8006 4106036234585 41.73(38.08,45.26) 33508 4.4 7184048, 7306  37-503383,4171)  40.57(37.02,4295) 54
FarconVAE {Oh ct al.| 2023 822702154100 4080035964581 42930917, 4650 2400150, 405) 44 7370152, 7589 39-560580, 4381 42056801451 34
CI-CFM(Ours) 82735060, 84700 4333604541 44150073, 4757 2.220209,486) L6 74207199, 7641 42.5Ta874,4652) 44150138 4677 Lo
Transformer| Vaswani et al 12017] | 82.35s061,84.16)  40-98650.4571)  42.9439.56.46.23) 70 71966992, 7395) 39873655, 4365 42.05(30.22,45.00) 78
LSTM {Graves & Graves£2012] | 82.93s1 08,5453  45.561089.4995)  43.50140.08.46.60) 5.6 73.097110.7500  43.63(39.04.4685)  42.98(4035,45.39) 6.0
RNNIEIman §1990 82.39s0.46, 8008 43.653037.4806)  44.18(30.52,47.79) 6.0 72.66(7075, 70600 42.323875,4587)  43.20(30.88, 45.65) 62
CNN (LeCun et al. 11998 835651668527 46.65u202,5100)  44.57 1093, 48.03) 4.0 73741807560 42460803 4594 440714129, 4646) 5.1
FairEHR-CLP {Wang et al. 12024] | 834516585140 420707634657 40486635, 44.17) 64 7436m0.763 4162795, 4508  42.600073,45.40) 6.0
FLMD (Liu et al 13023 83.69s1.78, 8550, 43440947, 4733 34 74280005701 424308684629 4287083, 4008) 38
FFVAE (Creager et al.£2019 82.46(s0.54, 84.28) 42.7438.59. 46.48) 54 73.2071.16,75.14) 42.3759561.45.26) 56
FarconVAE {Oh et al.| 2023 8314130, 5459 40.300566, 5100 4254874, 4550 56 73.4201.46,7537) ) 4401 aon 34
CI-CFM(Ours) 83.88s215,85.50)  44.1330.46.4800)  45.33u0.14,4752) 1.6 74.86(73.03, 76.81) 4472 wias, 4165 398a.66.7.13 10

Qualitative Results. Figure [3] visualizes the equalized odds across different sensitive attributes
(Insurance, Marital, Race, Gender, Age). In both tasks the polygon for CI-CFM (Ours) is uniformly
contained within those of all baselines, yielding the smallest enclosed area (i.e., lowest aggregate
EO). The largest gains appear on Gender and Marital, where our method produces visibly shorter
radii—often several points lower than FairEHR-CLP and FLMD—and it remains competitive on
Insurance. Race is the most challenging attribute for every method (all curves peak on the Race
axis), yet our Cl-regularized model consistently attenuates this spike relative to FFVAE/FarconVAE.
The READM panel exhibits the same pattern as

IHM, indicating stability across targets: EO de- 03 o e (i €05 on ReADM (amic-)
creases monotonically for most axes, with partic-
ularly pronounced reductions on Gender and Mar-
ital and moderate but consistent improvements on
Age. The results demonstrate that our proposed
CI-CFM consistently achieves superior fairness
(lower EO values) across all sensitive attributes
compared to baseline methods.

warital

Aoe

FArEHR-CLP —— FLMD —— FFVAE —— FarconVAE —— Ours

6 CONCLUSION Figure 3: The Equalized Odds of CI-CFM on
sensitive attributes on MIMIC-III dataset.

We introduced CI-CFM, a fairness-aware con-

ditional generator that integrates conditional

flow matching with a density-based conditional-

independence regularizer. Under mild assumptions (Theorem I)), our divergence—difference objective
is exactly equal to the conditional mutual information I(Ypred; Z | Yirue), enabling single-stage,
non-adversarial training with auditable likelihoods and efficient few-step sampling. On both synthetic
data and MIMIC-III/TV, CI-CFM improves predictive accuracy while markedly reducing depen-
dence on sensitive attributes (EO/EDDI), achieving state-of-the-art performance in accuracy—fairness
trade-offs.

Limitations & future work. CI-CFM employs learned “density” heads; model misspecification
can bias the CI surrogate. Our factorized reference is instantiated via within-label permutation with
small noise, which may be suboptimal under label imbalance or label shift. The method targets a
specific constraint Yyreq L Z | Yirue and introduces moderate training overhead relative to vanilla
CFM. Future work includes amortized or shared parameterizations for the density heads, alternative
constructions of ¢(Z’ | Yirue), €xtensions to multiple sensitive attributes and structured outputs,
and robustness guarantees for CI under distribution shift, with applications beyond EHR to vision,
language, and tabular modalities.
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A TECHNICAL DETAILS

A.1 PROOF OF THEOREMIII
A.1.1 NOTATION AND ASSUMPTIONS

Let (2, .%,P) be an underlying probability space. We work on standard measurable spaces

(ypr0d7@p)7 (Za D@p)a (ytruca@t),

with product o-algebras and reference (dominating) o-finite measures fip, ., pty. Write p =
Hp @, @y and pizy = 1, @ e Random variables Yired @ Q— Vpreds Z : 2= Z, Yirue : Q= Virue
are measurable.

Denote by Py, ., 2 V... the joint law of (Ypred, Z, Yirue) and by Pzy, . the (Z, Yirye) marginal.
Assume absolute continuity and densities:

APy, cq,Z, Yirue

APz ¥, e (2 9)
d,u sy Yt )

(yjmzvyt)v p(zvyt) = d,uzt

p(ypv Zvyt) =

exist, and p(-) > 0 on its support. By disintegration, there are conditional densities p(y,, z | yt),
P(Yp | ye), p(2 | ye) with p(yp, 2, y) = p(ye) p(Yp, 2 | Y1), etc., for pe-ae. yy.

Let g(- | y:) be a Markov kernel on (Z, &) such that ¢(z | y;) is a density (wi.t. u.), strictly positive
for p-a.e. y;. The auxiliary factorized law is defined as

QYpra.2 Yirwe With density q(yp, 2’ ye) = p(yp. o) a(2' [ ) wrt. p,
and its (Z’, Yirue)-marginal Qz y,,,. with density q(z',y:) = p(ye) ¢(2' | y) wit. p.¢. We also

assume the KL finiteness conditions Py, . 7 Viie < QYpreq, 2’ Yirwe a0 Pz y, .. < Qz' v;,,.» SO
that all KL terms below are well defined.

For any probability measures P < () on the same measurable space, we use the convention

D) = [ log(fl]g) aP € [0,50],

and the information inequality (strict convexity of Dky,): Dk (P||Q) = 0 iff P = @ -a.s. Condi-
tional mutual information is defined as

[(Ypred; Z ‘ Ytrue) = EYm,e {DKL (p(ypred7 4 | )/true) || p(Ypred | }/true)p(Z | }/true)):|-

A.1.2 THEOREM AND PROOF

Theorem [1] (Equivalence of { and Conditional Mutual Information). Under the assumptions
above, the surrogate

£ = DKL(p(Ypredv Z7 Y:crue) H q(Ypreda Zlv Y:crue)) - DKL(p(Zv thrue) H Q(Z’7 )/true))

coincides with the conditional mutual information:

§= I(Yprcd; Z | Y;:ruc)-

In particular, £ > 0, and § = 0 if and only if Yred L Z | Yirue-

Proof. We write y,, for Yj,;cq and y; for Yi,yc to lighten notation.
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By the Radon—Nikodym definitions and q(y,, 2’, y) = p(Yp, +)q(2" | yt),

p(yp7zayt)
Dxr(Py, 2y | Qup.2 e =/ P(Yp, 2, y¢) log ———<—"——d,
( 2y H Y Z'yt) Vp X ZX (p t) p(yp7yt)Q(Z|yt)
(2, y1)
Dxr (P y, || Q2 y, :/ P(2,yt) log ——————— dyi.;. €))
(Pri 1 Q) 23, (2,92) pye)a(z ye)

Using Fubini/Tonelli and the identity p(z,y:) = [ p(yp, 2, yt) dpp(yp), the marginal KL in (§) can
be expressed over the product space (as in the main text):

(2, y) "

D PZ, . QZ’, + :/ p y 7271/ log
K(Peye || Q) (o2, 90) 108 20 S G o)

Wp X ZX Vs

Subtracting the two KL expressions yields

_ 1 P(Yps 2, Yt) 1 p(z 1) d 9
¢ /p(yp’z’yt) {ng(yp,yt)q(zlyt) % bl aCz Ty ] " ®

P(Yp, 2, yt) P(Ye)
= s 2, Yt) log —=——"——Cdy, 10
/p<yp z yt) Og p(yp,yt)p(Z,yt) :U’ ( )

where the factor ¢(z | y;) cancels algebraically.

Using the chain rule p(yp, 2, y:) = () P(Yp: 2 | Ye)s PWp, ) = p(e) p(p | 1) P(2,50) =
p(yt) p(z | yt), we rewrite the logarithm as

PWp 2 | Y1)
P | ye) p(2 | ye)

log

Therefore,

3 ytp(yt) Vypxzp(yp,zwt) ng(yp\yt)p(zlyt) pp i | dppe(ye)

By the disintegration theorem this is precisely

f = EYm,e [DKL (p(Ypreda Z | }/true) Hp(Ypred | )/true) p(Z ‘ Y;;rue))} = I(Ypred; 4 | )/true)~

Each inner KL divergence is nonnegative, hence £ > 0. Moreover, ¢ = 0 iff Dxkr, (p(Ypred, Z |
Yirue) |[P(Ypred | Yirue)P(Z | the)) = 0 almost surely in Yi;ue, which (by strict convexity of
Dy,) is equivalent t0 p(Ypred, Z | Yirue) = P(Ypred | Yirue)P(Z | Yirue) a.8., i.e., the conditional
independence Ypred L Z | Yirye. O

A.1.3 REMARKS

Independence of the choice of ¢ The equality { = I(Yprea; Z | Yirue) does not depend on the
specific conditional kernel ¢(- | y;) (as long as the KLs are finite). The auxiliary law ¢ thus serves
only as a factorized reference to make the two KL terms well defined.

Integrability and supports. If PYpredazvytrue &K QYpred7Z/7Ytrue or Pz v, &K Q2 Yire the
corresponding KL divergence is 400 and the identity holds with the natural convention co — oo =
I(Ypred; Z | Yirue) = 00 whenever the inner conditional KL is infinite.

On “strict convexity and separability.” These assumptions guarantee the information inequality
and equality conditions for a broad class of divergences. For Dk, they are standard and ensure that
& = 0 iff the conditional factorization holds almost surely.
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Algorithm 1 FAIRNESS-AWARE I-CFM

Require: Training set D = {(X Yfﬁue, 0V} | ; fairness weight schedule A € [0, Ayax] With
warm-up Fyarm; EMA decay 3; ODE steps .S
Ensure: Generator Gg; density heads Py, Qq, Ry, Sy
1: Initialize 0, ¢, v, p, x; baselines bjoint = bmarg =
2: for epoche =1to E do

3: A )\max-min(l7 Ewim)

4;  for minibatch B = {(X®, V). Z®©)}B  c Ddo

5: Encode h(") Enc(X(Z))

6: Sample ¢(*) ~ Unif[0, 1], y, NN(O I), set yf) Yt(rlge

. D (14 ))y< i t( ) O 0 y§ D _ 0

8 ECFM%BZ 1[|ve (us )X“t” |

9 Integrate y(() QU Y(rid with step size 1/.5 (e g., Heun/RK?2)

10: For each label ¥, sample a permutation o, on its indices; draw €D N (0, o] )
1 20 702 4w

12: 0l log Py(Y!Ly, 20, ¥0.), 89— log Qu (Yl 2/, Y0)

13 )« log Ry (2, Yirue)s @)« log 8, (2 Yé@

14: 50 a® — b0, 5y o0~ a

15: bJomt — /BbJOint + (1 - ) Zz Jomt

16: bmarg — Bbmarg + (1-p8) % 52 5H_mg

17: § <3 Zz 1 [( joint — bjoint) — (5r(r112“mrg - bmarg)}

18: Etotal <~ ﬁCFM + )‘5

19: Backprop through djoint to (6, ¢, 1); stop-grad of dmarg t0 0; backprop dmarg to (p, X)
20: Update (6, ¢, 1, p, x) with a first-order optimizer (e.g., AdamW)
21: end for
22: end for

A.2 ALGORITHM

This subsection presents the training procedure (Algorithm[I)) used throughout the paper.

Remark Since the marginal term involves only (Z, Yirue) O (Z', Yirue) and carries no computa-
tional path to 6, we backpropagate through d;sint, to update (6, ¢, ¢») while applying stop-gradient to
dmarg With respect to 6 (using dmarg only to update (p, x)). Empirically, we also find that removing
the dedicated marginal density heads (p, x) and reusing (¢, 1) to compute dyarg achieves comparable
fairness—utility trade-offs with reduced computational overhead. This simplified variant is primarily
adopted in our experimental evaluation.

B EXPERIMENT DETAILS: SIMULATION (FOR SECTION [4))

This section provides (i) the precise simulation setup, model architectures, and training protocol
used in Section[z_f]; (ii) formal definitions of the three conditional-independence diagnostics; and (iii)
additional Pareto analyses using residual HSIC and mean absolute partial correlation as fairness axes.

B.1 DIAGNOSTICS OF CONDITIONAL INDEPENDENCE

We formalize the three diagnostics used in the simulation to assess conditional independence between
predictions and sensitive attributes. Throughout, let {(X;,Y, Z;, G;) }7~ denote i.i.d. samples, with
Y; € R, Z; € R?% a sensitive covariate vector, and G; € {0,1} a binary group label. Let l//\; be the
model’s prediction for Y;. We write || - || for the Euclidean norm, med{-} for the median, and #{-}
for the indicator.
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B.1.1 EDDIconr: EQUALIZED DISCREPANCY VIA DISTRIBUTIONAL INVARIANCE

EDDI,,, measures the discrepancy between the distributions of Y across groups conditional on the
outcome Y, approximated via outcome-binning.

Binning. Choose K € N (we use K=5). Let (7,)X_ be empirical k/K-quantiles of {Y;};, and
definebins Z, :={i: 7,1 <Y, <7 }fork=1,... K.

Within-bin MMD?2. For each bin k, split indices by group: I ={i € I} : G; = g}, with sizes
n,(cg). Let ko (a,b) = exp(—|la — b]|2/(202)) be a Gaussian kernel on R (extendable to vector Y).
Set oy, by the (across-group pooled) median heuristic: o := med{ |}Afl — }/}]\ i #£ g, 4,7 € Iy}
The (biased) empirical MMD? between the two groups’ predictive distributions in bin & is

. 9 .
2
MMD;; = (0) 2 Fon (¥ Ye) <1> > kel NONO) 2 ko (Vi 1)),
" 7,7,61(0) ( ) jgrezt M T iez®
JEI(I)

(Q) < 2 for some g, we mark bin k invalid and exclude it.

Aggregation. Let KCyyiq C {1,..., K} be the set of valid bins. We report the averaged score
1

EDDleoy = ——— »_ MMD},
|]Cvalid‘ keyaia

which is lower when Y is (approximately) group-invariant conditional on Y.

B.1.2 PARTIAL CORRELATION AFTER RESIDUALIZATION

This diagnostic estimates the linear association between Y and each component of Z after removing
linear dependence on Y.

Residualization. Fit ordinary least squares (OLS) of Y onY with intercept: 171 =ap+ar1¥;+ rl(y).
Foreach j € {1,...,dz}, fit OLS of Z;; on Y; with intercept: Z;; = bo; + b1;Y; + rng). Collect

residuals r¥) = (#07, r0)Yand rZ) = (7% 7)),

Partial correlation. The sample Pearson partial correlation between Y and Z ; given Y equals the
correlation between residuals:

> (r(f’) _ —(?))( (Zj) _ ?(z,-))

=1

\/Z R G 0y

where bars denote sample means. We summarize by the mean absolute partial correlation

1 ~
|p|partial = @Z |pj‘-

Smaller values indicate weaker linear dependence of predictions on sensitive covariates after account-
ing for Y.

B.1.3 RESIDUAL HSIC

HSIC detects (potentially nonlinear) dependence between Y and Z after residualization with respect
toY.

Residuals. Use the same residuals rl(y) and rgzj ) asin Appendix
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Kernels. For each j, define Gaussian kernels ko (a,b) = exp(—|a — b*/(20%)) on R and
ls,(a,b) = exp(—|a — b*/(207)) on R. Choose bandwidths by the median heuristic: o =

med{|r§?) frg,?)| ci#i'}and oj = med{\rgzj) frg,zj)| R X

Empirical HSIC (biased). Let K € R™" with K = ko (rl),r)), L) € R"™" with

Lv(;f,) =L, (T’(Zj), rE,Zj)), and H = I,, — 111 7. The (biased) HSIC estimate between the residuals is

i toon
1 .
HSIC; = — t(KHLY H).
n

We report the mean residual HSIC across coordinates

1 &
HSIC partial = @JXZ;HSICJ-.

Lower scores indicate weaker (possibly nonlinear) dependence between predictions and sensitive
attributes after conditioning on Y.

B.2 SIMULATION SETUP AND TRAINING PROTOCOL

Synthetic data and splits. We generate n i.i.d. samples {(X ), Y 70 G@)1n_ as described
in Sectiond with
T—48, F—=48, F =1, Fy=5,

and split into ng,;, = 2000 and ney = 3000 with fixed seeds for reproducibility. Group
effects and couplings follow the simulation kernel in Section B} a group strength on Y
(“y_group_strength”= 0.8), a direct group separation in Z (“z_group_strength”= 1.0),
and a mediated Y — Z coupling (“alpha_y2z”= 1.0). All reported curves average across multiple
independent replicates (seeds), as specified below.

Temporal encoder (TemporalU-Net). We encode X € R”*¥ with a 1D U-Net operating along
time (input layout to the conv stack is (batch, F, T')):

* Down path (encoder): four levels with channel widths [Co,2Cq,4Cq,8Cy]
where Co=unet_channels=52. Each level uses two Convld(ker=3, pad=
1)—BatchNorm1d—ReLU blocks, then MaxPool1d(2).

¢ Bottleneck: Convld blocks as above at width 16Cj.

» Up path (decoder): ConvTransposeld(ker=2, stride= 2) upsampling; skip connections are
concatenated channel-wise with encoder features.

* Head and pooling: a 1x1 Convld maps to putpu(t_dim: hidden_dim, followed by global
average pooling over time, yielding h € RFdden—dim - A small alignment utility crops/pads
when upsampled lengths differ by 1 (due to pooling).

Vector field vg(y;, X,t). Given y; € RF1, the encoder feature h € R’?%, and a scalar time input
t €10, 1] (no sinusoidal embedding), we concatenate [y;; h; t] and feed a depth-L=4 MLP:

MLP widths [F} + 128 4 1,128, 128, 1] with ReLU and Dropout(0.1) between hidden layers,

This parameterizes % = vg(ys, X, t) with yo ~N (0, I). ODE integration in simulation uses forward
Euler with S=100 steps by default.

Density heads for fA To instantiate the surrogate CI penalty with normalized densities, we model
each required law by a continuous-time flow trained via CFM. Concretely, we learn two heads

qu : (ypreda Z, ytrue) — 1ng¢7 Qw : (ypred7 Zla ytrue) — 10g Qv s
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where each head parameterizes a time-dependent vector field ve (¢, t) that transports a simple base
po(Cp) (e.g., standard Gaussian) to the target density at t=1. The log-density is obtained by the
continuous change-of-variables identity

T
log pr(¢) = logpo(Co) — /0 V- ve(Preo(Co), t) dt, Co = do1(C),

with the divergence V.- v, estimated by Hutchinson probes (typically m € {1,2}). Each v, is
implemented as a small MLP (two hidden layers, width 256, ReLU; dropout 0.1) that consumes ¢
concatenated time and (when applicable) context y;,,.. We train the two flows with the standard
CFM regression loss on linear interpolants, which avoids inner ODE solves during training while
yielding calibrated log-densities at evaluation time.

At training time, 2 is computed from the normalized log-densities
log P, [o3) log Q )

in the KL—difference estimator. This CFM instantiation enables likelihood auditing and removes any
reliance on unnormalized energy surrogates.

CI surrogate and factorized samples. We form 2'(*) = 2(?(?)) 4 ¢ with a within-minibatch random
permutation o and € ~N (0, 02, 1) (0noise=0.05), and use an EMA baseline (3=0.99) for variance

reduction in E The total objective is Liotal = LorMm + A fA, with a linear warm-up of A over the first
20% of epochs.

Training and evaluation. We optimize with AdamW (Ir 10~3, weight decay 10~%), batch size 64,
and 50 epochs. We sweep A € {0,0.01,0.05, 0.1}, average over multiple random seeds, and report
—RMSE (higher is better) versus CI metrics (lower is better: EDDI oy, HSIC aria1, and | ,O\pamal)-
Data are provided to the U-Net as (batch, F', T'); if arrays are (batch, T, F') we transpose before
encoding

B.3 ADDITIONAL RESULTS: PARETO FRONTS WITH HSIC AND PARTIAL CORRELATION

We complement the main-text Pareto analysis with two figures that sweep the fairness weight A and
plot performance against (i) residual HSIC and (ii) mean absolute partial correlation. Curves show
the mean across 10 random seeds. All other hyperparameters match Section 4]

Findings. Inboth figures, increasing A produces monotone leftward movement (stronger conditional
independence) with minimal vertical drift (near-constant RMSE), yielding smooth Pareto fronts.
Improvements saturate beyond A = 0.1, mirroring the EDDI, curves in the main text. The HSIC-
and | p|pariar-based fronts are qualitatively consistent, supporting that the fairness regularizer reduces
both nonlinear (HSIC) and linear (partial correlation) residual dependencies with negligible accuracy
loss.

C EXPERIMENT DETAILS: REAL-DATA (FOR SECTION 3))

Summary of datasets. We evaluate on two large-scale, real-world EHR datasets: MIMIC-III (John{
son et al., [2016) and MIMIC-IV (Johnson et al., [2023)). Both datasets contain de-identified health
records of patients admitted to intensive care units (ICUs) or emergency departments at Beth Israel
Deaconess Medical Center (BIDMC), comprising multivariate time-series data (e.g., vital signs, lab
tests) and demographic information.

Following established preprocessing protocols (Harutyunyan et al., 2019; /Wang et al., [2024), we
extract 26 continuous-valued clinical variables from MIMIC-III and 25 from MIMIC-IV, sampled
hourly during the first 48 hours of ICU admission. Table[3]summarizes dataset statistics: we obtain
18,143 ICU stays from MIMIC-III and 21,773 from MIMIC-1V, and randomly split each dataset into
training, validation, and test sets using a 7:1:2 ratio.

We extract five categories of continuous-valued clinical predictors from the MIMIC-IIT and MIMIC-
IV datasets: vital signs, blood gases, renal function, metabolic panel, and hematology. We focus
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Figure 4: Pareto frontiers for independence metrics. (a) Performance (—RMSE; higher is better)
versus HSICaia (lower is better) across A. Larger A shifts solutions leftward (stronger CI) with
minor vertical change, exhibiting a clear “elbow” near A = 0.1. (b) Performance (—RMSE; higher is
better) versus |P|pama1 (lower is better) across A. Trends closely match (a), indicating consistent CI
gains under linear and nonlinear diagnostics.

Table 3: Summary statistics of the datasets used.

Dataset MIMIC-III MIMIC-IV

Split Training  Validation Test Training  Validation Test
Total 12,672 1,833 3,638 15,112 2,188 4,473
Missing rate 72.81% 7271%  72.73% | 71.16% 71.17%  71.23%
Positive (IHM) 1,481 237 446 1,702 243 511
Positive (READM) | 2,268 364 647 2,648 390 814

exclusively on the first 48 hours of patient data recorded after [ICU admission, sampling observations
at hourly intervals. Admissions with fewer than 48 hours of recorded data are excluded. Detailed
predictor information is summarized in Table d] We preprocess the raw data using the pipeline
proposed by |[Harutyunyan et al.| (2019). Notably, due to the extreme sparsity of arterial oxygen
pressure data in MIMIC-IV, we include this predictor only for the MIMIC-III dataset. Consequently,
the total number of predictors is 26 for MIMIC-III and 25 for MIMIC-IV.

Table 4: Summary of clinical predictors in longitudinal data for MIMIC-III/IV datasets, * indicates
the predictor is only available in MIMIC-III.

Category ‘ Predictors
Vital Siens Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Blood Pressure,
£ Respiratory Rate, Body Temperature, Oxygen Saturation
Arterial Base Excess, Arterial Carbon Dioxide Pressure,
Blood Gases . .
Arterial Oxygen Pressure®, Arterial pH
Renal Function Blood Urea Nitrogen, Creatinine

Ionized Calcium, Serum Chloride, Serum Glucose, Fingerstick Glucose, Anion Gap,

Metabolic Panel . . . .
Serum Bicarbonate, Magnesium, Serum Potassium, Serum Sodium

Serum Hematocrit, Hemoglobin,

Hematol
ematology Platelet Count, White Blood Cell Count

We also extract five sensitive attributes from the MIMIC-III and MIMIC-IV datasets: insurance type,
marital status, race, gender, and age. Each attribute contains several subgroups, whose compositions
vary between the two datasets. For instance, the insurance attribute comprises five subgroups
(Medicare, Medicaid, Government, Self Pay, and Private) in MIMIC-III, whereas it includes only
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three subgroups (Medicare, Medicaid, and Other) in MIMIC-IV due to differences in recording
standards.

Implementation Details and Hyperparameters. Our method is implemented in Python 3.11 using
PyTorch 2.0. All models are trained for a maximum of 100 epochs, and the best-performing model is
selected based on AUROC on the validation set. The final performance is reported on the test set. To
calculate the F1 score and fairness metrics, we select thresholds corresponding to the best F1 score
obtained on the validation set. We utilize the Adam optimizer and implement early stopping if no
improvement in validation AUROC is observed for 10 consecutive epochs to prevent overfitting. For
adversarial fine-tuning, we initiate advesarial low-rank fine-tuning after training the MINE module
for 30 epochs. For all baselines, we concatenate time series data and its missing mask(e.g., O for
observed data and 1 for missing data) as the input. All experiments are conducted using a single
NVIDIA RTX-4090 GPU with a batch size of 128. Hyperparameter tuning is performed using grid
search on the validation set, with the following search spaces:

* Dropout ratio: {0,0.1,0.2,0.3}
s Learning rate: {1 x 10745 x 107°,1 x 107°}
* Mutual information regularization coefficient A\yy: {0.1,0.2,0.5}

We report results from the optimal hyperparameter settings identified through validation.

Detailed Descriptions of Baseline Methods.

¢ CNN (LeCun et al., |1998)): Convolutional Neural Networks utilize convolutional layers to
automatically extract hierarchical representations, enabling the learning of complex decision
boundaries for predictive tasks.

* RNN (Elman, |1990): Recurrent Neural Networks process sequential data by recursively
passing hidden states through time steps, making them effective for modeling temporal
dependencies.

* LSTM (Graves & Graves, [2012)): Long Short-Term Memory networks are specialized
recurrent architectures designed to effectively capture long-term dependencies and mitigate
the vanishing gradient problem inherent in standard RNNs.

* Transformer (Vaswani et al., [2017)): Transformer architectures leverage self-attention
mechanisms, allowing models to efficiently capture global dependencies without recurrent
connections, thus demonstrating excellent generalization across multiple domains.

* FFVAE (Creager et al., 2019): It employs adversarial decorrelation within a variational au-
toencoder framework to disentangle sensitive attributes from latent representations, ensuring
fairness in downstream predictions.

e FarconVAE (Oh et al., 2022): It combines variational autoencoder techniques with con-
trastive learning objectives to achieve fair representation learning through disentanglement.

e FairEHR-CLP (Wang et al., [2024): This model integrates generative adversarial networks
for synthesizing counterfactual patient data, followed by contrastive learning to explicitly
reduce prediction biases across demographic groups.

* FLMD (L1u et al.,|2023): It employs deconfounder theory to infer and incorporate latent
confounders, improving fairness by addressing unobserved biases within the dataset.
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