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Abstract

Autoformalization is the task of automatically001
translating mathematical content written in nat-002
ural language to a formal language expression.003
The growing language interpretation capabil-004
ities of Large Language Models (LLMs), in-005
cluding in formal languages, are lowering the006
barriers for autoformalization. However, LLMs007
alone are not capable of consistently and reli-008
ably delivering autoformalization, in particular009
as the complexity and specialization of the tar-010
get domain grows. As the field evolves into011
the direction of systematically applying auto-012
formalization towards large mathematical li-013
braries, the need to improve syntactic, termino-014
logical and semantic control increases. This pa-015
per proposes the coordinated use of three mech-016
anisms, most-similar retrieval augmented gen-017
eration (MS-RAG), denoising steps and auto-018
correction with syntax error feedback (Auto-019
SEF) to improve autoformalization quality. The020
empirical analysis, across different models,021
demonstrates that these mechanisms can de-022
liver autoformalizaton results which are syn-023
tactically, terminologically and semantically024
more consistent. These mechanisms can be ap-025
plied across different LLMs and have shown to026
deliver improve results across different model027
types.1028

1 Introduction029

Mathematical reasoning constitutes an essential as-030

pect of human intelligence (Saxton et al., 2019;031

Lu et al., 2023). It centers on symbolic-level rea-032

soning, as manifested through systematic, abstract033

and and step-wise logical inference. Mathematical034

reasoning has been clustered under two types of035

models: deep learning models (Hendrycks et al.,036

2021; Wei et al., 2022; Meadows and Freitas, 2023;037

Liu et al., 2023) and formal models (Polu and038

Sutskever, 2020; Wang and Deng, 2020; Han et al.,039

1Code and datasets are available at anonimyzed_link

2022; Jiang et al., 2022, 2023b). Mathematical rea- 040

soning in Large Language Models (LLMs) predom- 041

inantly utilizes statements expressed in informal 042

mathematical statements. More recent models have 043

aimed towards bridging both informal and formal 044

mathematical reasoning (Wu et al., 2022; First 045

et al., 2023b; Azerbayev et al., 2023; Quan et al., 046

2024a), where the material (content-based) infer- 047

ence strengths of LLMs are complemented by ex- 048

ternal formal/symbolic reasoning methods such as 049

automated theorem provers (e.g. Isabelle (Paulson, 050

2000) and Lean (de Moura et al., 2015)), which can 051

systematically assess the logical validity of the rea- 052

soning process (Wu et al., 2022), facilitating LLMs 053

to perform controlled and consistent inference. 054

However, formal and verifiable mathematical 055

reasoning with theorem provers requires the man- 056

ual formalization of logical formulae from informal 057

statements, in order to build the supporting math- 058

ematical libraries, knowledge bases (KBs) which 059

express previous axioms, definitions, theorems and 060

proofs, a process that demands considerable ef- 061

fort and domain-specific knowledge. A prototyp- 062

ical case in point is the liquid tensor experiment 063

(Scholze, 2022), an initiative aimed at formaliz- 064

ing analytical geometry results from Scholze & 065

Clausen, requiring a community coordinated effort 066

of experts. 067

Contemporary LLMs have demonstrated consid- 068

erable efficacy (Wu et al., 2022; Xin et al., 2023; 069

First et al., 2023b) for supporting autoformaliza- 070

tion efforts within an in-context learning paradigm, 071

being largely evaluated in less specialized domains 072

and tasks. Existing methods are still limited in 073

delivering a method for systematically and consis- 074

tently building large formal and specialized mathe- 075

matical libraries. The essence of the challenge is 076

twofold: (i) specialization and out-of-distribution 077

(OOD) drifts: as one moves towards more spe- 078

cialized and newer domains to be autoformalized, 079

models are progressively exposed to more chal- 080
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Figure 1: The overall framework consists of three stages: Stage 1 contains one round for retrieval augmented
autoformalization; Stage 2 contains one round for denoising; Stage 3 is composed of several iterative rounds
to refine the code based on syntax errors. For better illustration, we change \<in>, \<nat>, \<lsq>, $+$ to their
LaTeX version ∈, N, ≤, +. The ground truth code is lemma (in int0) Int_ZF_1_5_L7A: assumes "a\<in>\<int>"
"b \<in>\<int>\<ˆsub>+"shows "a \<lsq>a\<ra>b" "a \<noteq>a\<ra>b" "a\<ra>b \<in>\<int>" (assumes
"a ∈ Z" "b ∈ Z+" shows "a ≤ a+ b" "a ̸= a+ b" "a+ b ∈ Z").

lenging OOD cases, and (ii) library consistency081

and coherence: new formalized need to be consis-082

tently built-up on previously statements, cohering083

terminologically, syntactically and semantically.084

This work targets this overarching research ques-085

tion, namely: ‘how to systematically support the086

creation of consistent and coherent formal mathe-087

matical libraries from informal mathematical state-088

ments?’. In order to address this task, we decom-089

pose this broader aim into the following research090

questions: RQ1: ‘To what extent contemporary091

LLMs are capable of formalizing specialized math-092

ematical statements into formal representations for093

mathematical libraries?’; RQ2: ‘Which metrics094

can be used to assess the quality of this formaliza-095

tion?’; RQ3: ‘Which mechanisms can be used to096

extend the autoformalization properties of LLMs097

to achieve better generative control and enhance098

terminological, syntactic and semantic consistency099

and coherence?’. To address these research ques-100

tions, we propose a novel framework (See Figure101

1) that leverages LLMs with most-similar retrieval102

augmented generation (MS-RAG), denoising steps103

and iterative feedback-guided syntax error refine-104

ment cycles (Auto-SEF) to deliver a syntactically105

consistent and semantically coherent autoformal-106

ization.107

To assess the effectiveness of our proposed108

framework, we construct a supporting dataset for109

the task of mathematical library autoformalization110

(MathLibForm) and build a supporting empirical111

analysis methodology guided by a critical selection112

of a set of automated metrics. We conduct a sys- 113

tematic empirical analysis with a diverse sample 114

of state-of-the-art LLMs, in order to compare and 115

contrast their autoformalization properties and the 116

impact of the proposed library autoformalization 117

mechanisms. Our results demonstrate that leverag- 118

ing LLMs with MS-RAG and Auto-SEF, combined 119

with denoising strategies, can significantly enhance 120

the syntactic correctness of formalization results, 121

reaching improvements from 5.47% to 33.58%. In 122

summary, the contributions of the paper are: 123

1. Proposal of a novel neuro-symbolic frame- 124

work targeting the autoformalization of math- 125

ematical libraries, which employs LLMs with 126

MS-RAG, denoising and Auto-SEF to consis- 127

tently and iteratively enhance and refine the 128

formalization results; 129

2. Definition of a new task (formalization of 130

mathematical libraries) and creation of a sup- 131

porting dataset (MathLibForm); 132

3. Proposal of an evaluation methodology. 133

2 Proposed Approach 134

In this section, we start by defining the target task 135

and then describe the proposed mechanisms for 136

improving autoformalization. 137

Autoformalization: An autoformalization is a 138

transformation function which maps an informal 139

mathematical statement s in the domain of natural 140
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language and LaTeX symbols S into a formal math-141

ematical statement ϕ, under a formal language F ,142

f : S → F , such that for every s ∈ S , there exists143

a ϕ ∈ F where f(s) = ϕ.144

Semantic correctness: A transformation f(s) =145

ϕ is semantically correct if there exists a model M146

such that:147

∃M : M |= s and M |= ϕ,148

where |= denotes that the former item satisfies or149

correctly interprets the latter.150

Library-based autoformalization: Given a151

Knowledge Base (KB) of formalised mathematical152

statements under a formal language F , a library-153

based autoformalization transformation function154

fΦ is defined such that the generated statement ϕ is155

semantically consistent with the set of statements156

Φ ∈ KB.157

Semantic consistency: A statement ϕ is seman-158

tically consistent with respect to KB if all terms159

in ϕ that have references in KB are used consis-160

tently with the terms in KB. Formally, let ϕ be161

a statement and KB be a knowledge base. ϕ is162

semantically consistent with respect to KB if:163

∀t ∈ terms(ϕ) ∩ references(KB), tϕ = tKB,164

where terms(ϕ) denotes the set of terms in ϕ and165

references(KB) denotes the set of referenced terms166

in KB.167

2.1 Most-Similar Retrieval Augmented168

Generation (MS-RAG)169

Under the aforementioned formal notations, auto-170

formalization with LLMs defines the transforma-171

tion function as:172

f(s) = LLM(pauto, {(si, ϕi)}, s),173

where pauto is a prompt for autoformalization and174

{(si, ϕi)} is a set of exemplars. The initial at-175

tempt (Wu et al., 2022) defined subcategories SCj176

in math and chose fixed examples {(si, ϕi)}j ∈177

SCj for each subcategory, where the transforma-178

tion function becomes:179

f(s) = LLM(pauto, {(si, ϕi)}j , s), if s ∈ SCj .180

However, fixed examples cannot reflect the us-181

age of various novel definitions and notions in each182

subcategory. Therefore, with the assumption of the183

existence of KB, we propose to first retrieve a set184

of samples based on a similarity relevance function185

MS(s) ∈ KB and then define the transformation 186

function as: 187

fϕ(s) = LLM(pauto, {(si, ϕi)}s, s), 188

where (si, ϕi) ∈ MS(s). 189

2.2 Denoising Formalization Results 190

Bias inherited from instruction fine-tuning (Ouyang 191

et al., 2022) causes LLMs during autoformalization 192

to occasionally generate redundant texts not inte- 193

gral to the formal statement, thereby infusing the 194

final output with noisy information. Consequently, 195

the direct output of LLMs frequently fails to meet 196

the criteria for a valid formal code. Please note 197

that despite the fact that output conditions can be 198

communicated on the initial prompt, typically the 199

output behaviour of the models can be less con- 200

trolled and nor fully enforceable. To alleviate this 201

issue, we propose two types of denoising: 202

Code-Based Denoising (CBD). Definition of a set 203

of post-processing rules R to remove irrelevant 204

outputs such as extra explanations and unsolicited 205

proofs , where a new formal statement is obtained: 206

d(s) = R(fϕ(s)). 207

Prompt-Based Denoising (PBD). The rigidity 208

of a CBD method can be contrasted to a post- 209

hoc prompt-based approach for the same pur- 210

pose. Hence, we propose to design a prompt 211

pden for LLMs to do the denoising of the aut- 212

oformalization results. Denoising with only a 213

prompt raises the risk of losing semantic con- 214

sistency because of the bias in the training data 215

of LLMs. Therefore, the set of retrieved items 216

MS(s) from MS-RAG could be used to main- 217

tain semantic consistency. The denoising becomes: 218

d(s) = LLM(pden, {(si, ϕi)}s, fϕ(s)). 219

Using reported syntax errors as a feedback have 220

been established as a systematic mechanism for 221

guiding the correction of formal models (Quan 222

et al., 2024a,b) for LLMs potentially automatically 223

correct the formalization results. 224

2.3 Auto-correction with Syntax Error 225

Feedback (Auto-SEF) 226

The validity of any formal code ϕ can be checked 227

by a theorem prover T P that supports its written 228

formal language F . If the formal code is not valid, 229

the theorem prover can output a set of syntax er- 230

rors {ek} = T P(ϕ). Using reported syntax errors 231

as feedback has been established as a systematic 232

mechanism for guiding the correction of formal 233
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models (Quan et al., 2024a,b), potentially allow-234

ing LLMs to automatically correcting the results235

of formalization. Hence, we design a prompt perr236

to add an auto-correction component to let LLMs237

recognize previously produced errors and correct238

mistakes. To maintain semantic consistency, re-239

trieved examples are also used and the generation240

becomes:241

g(s) = LLM(perr, {(si, ϕi)}s, {ek}, d(s)).242

where {ek} = T P(d(s)). Within this setting we243

propose an iterative process:244

gk+1(s) = LLM(perr, {(si, ϕi)}s, ek,1, gk(s))245

with initial state g0(s) = d(s) and ek,1 is the first246

item in T P(gk(s)).247

3 Evaluation Benchmark248

3.1 MathLibForm249

Formal mathematical datasets, such as miniF2F250

(Zheng et al., 2022), predominantly concentrate on251

distinct mathematical problems representing sim-252

pler mathematical solving tasks. In contrast, the253

creation of mathematical libraries demands the aut-254

oformalization fo statements which can be more255

specialized, conceptually more complex and po-256

tentially out-of-distribution. In this work we use257

IsarMathLib2, as a reference setting within the en-258

vironment of the Isabelle/ZF theorem prover frame-259

work. Formal statements in IsarMathLib are fre-260

quently accompanied by textual comments, which261

can serve as the natural language statements of the262

formal expressions. Mathematical items: lemma,263

definition, corollary, theorem, along with textual264

comments and proofs, were extracted with a script265

first. This leads to a total of 2,744 items, which266

were then randomly split into training and test sets267

in a 90% to 10% proportion, resulting in 2,470268

training samples and 274 test samples for construct-269

ing the MathLibForm dataset. To enrich the infor-270

mation contained in MathLibForm, we also infor-271

malize formal statements with Mistral and add the272

generated textual descriptions. The training and273

testing sets are utilized to build the knowledge base274

KB and to evaluate methods, respectively.275

3.2 Evaluation Metrics276

The correctness of generated formal statements277

serves as the most crucial and direct metric for278
2https://github.com/SKolodynski/IsarMathLib

evaluating the performance of autoformalization. 279

However, assessing correctness requires human 280

evaluation, which is a time-consuming process 281

and cannot be seamlessly integrated into an au- 282

tonomous evaluation system. In this work, we 283

proposed two distinct components to access code 284

correctness: semantic similarity and syntactic cor- 285

rectness. Utilizing the ground truth as a reference, 286

we measure semantic similarity using pairwise 287

metrics, including BLEU (Papineni et al., 2002), 288

ChrF (Popović, 2015), RUBY (Tran et al., 2019), 289

and CodeBERTScore (CBS) (Zhou et al., 2023). 290

The implementation details of these metrics are pro- 291

vided in Appendix. To assess syntactic correctness, 292

we use Isabelle theorem prover to detect syntax 293

errors in formal statements and use the Pass metric 294

which represents the success rate at which the gen- 295

erated formal statement does not exhibit any syntax 296

errors, as verified by the theorem prover. The in- 297

tegration between the transofrmer and Isabelle is 298

done on a ToolFormer setting with the support of 299

an Isabelle client3 (Shminke, 2022). 300

4 Experiments and Analysis 301

4.1 Retrieval Augmented Autoformalization 302

We establish baselines in zero-shot and 3-shot 303

settings on several state-of-the-art LLMs: Mis- 304

tral (Jiang et al., 2023a), Llemma 7B (Azerbayev 305

et al., 2024), Mixtral (Jiang et al., 2024a), GPT- 306

3.5-Turbo (descriptions of the models can be found 307

in Appendix). For MS-RAG, BM25 (Robertson 308

et al., 1994) is used as the primary ranking func- 309

tion to retrieve Top-k (k=3) most similar samples 310

for exemplars (BM25 will concentrate a termino- 311

logical similarity function). Different settings are 312

contrasted for querying and indexing the reference 313

KB. There are two choices for query: 1. natural 314

language textual description; 2. description along 315

with zero-shot autoformalization result from Mis- 316

tral. The choices for indexing KB elements com- 317

bine three content sources: 1. natural language 318

textual description; 2. informalization of formal 319

statements; 3. formal statements. For this specific 320

analysis, we constraint the foundation model to 321

Mistral. All results are reported in Table 1. 322

MS-RAG can improve autoformalization in 323

mathematical libraries settings. As shown in 324

Table 1, for the same type of LLMs, using retrieved 325

examples rather than fixed examples leads to an 326

3https://github.com/inpefess/isabelle-client
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LLM Method BLEU-2 ChrF RUBY CBS Pass
Baselines
Mistral Zero-Shot 0.30 17.14 16.13 51.13 0.0
Mistral 3-Shot 1.77 27.30 24.02 62.73 5.47
Llemma 7B Zero-Shot 0.91 16.67 14.77 47.74 9.12
Llemma 7B 3-Shot 2.43 28.81 21.93 66.68 8.76
Mixtral Zero-Shot 0.65 16.33 17.97 51.07 0.36
Mixtral 3-Shot 5.37 30.53 28.51 62.86 1.09
GPT-3.5-Turbo Zero-Shot 2.15 17.81 21.93 51.69 40.51
GPT-3.5-Turbo 3-Shot 14.23 37.95 39.13 67.26 38.69
Retrieval Augmented Autoformalization
Mistral Query: T Index: T 10.05 51.38 44.82 76.93 21.53
Mistral Query: T Index: T+S 9.96 50.79 43.92 76.21 19.71
Mistral Query: T Index: I+S 5.65 36.92 32.23 67.47 8.76
Mistral Query: T Index: T+I+S 10.53 49.61 43.28 75.17 22.26
Mistral Query: T+ZS Index: T 10.14 46.89 40.76 73.69 12.77
Mistral Query: T+ZS Index: T+S 8.40 46.26 39.91 73.40 14.96
Mistral Query: T+ZS Index: I+S 5.51 36.71 31.94 66.91 10.95
Mistral Query: T+ZS Index: T+I+S 8.85 45.14 39.27 72.47 16.06
Llemma 7B Query: T Index: T 4.18 36.93 28.68 69.93 12.77
Llemma 7B Query: T Index: T+S 4.61 37.48 29.39 69.56 14.23
GPT-3.5-Turbo Query: T Index: T 36.32 59.63 58.51 79.14 64.60
GPT-3.5-Turbo Query: T Index: T+S 37.11 58.56 57.71 78.89 62.77

Table 1: Autoformalization results for different settings. BM25 retriever is used to retrieve Top-3 most similar
samples for retrieval augmented autoformalization. Greedy decoding is used in generation for reproducibility.
Code-based denoising is applied to all outputs. The query used to retrieve relevant exemplars includes: (T): natural
language textual description; (ZS): zero-shot autoformalization result from Mistral. The index used for knowledge
base has the following options: (T): natural language textual description; (I): informalization of formal statement
generated from Mistral; (S): formal statement. The setting with highest scores is highlighted in bold.

improvement in both semantic similarity and syn-327

tactic correctness of the generated formal state-328

ments. This mechanism can lift the performance329

of smaller models: e.g. as a smaller model, Mis-330

tral (7B) with MS-RAG can outperform Mixtral331

(8×7B) with standard prompting across all metrics332

and is comparable to GPT-3.5 (175B) without MS-333

RAG according to some metrics such as RUBY.334

Similarity-based few-shot outperforms zero-335

shot learning. For all LLMs, autoformalization336

results with 3-shot exemplars are generally better337

than those from the zero-shot setting in terms of338

semantic similarity metrics. For syntactic correct-339

ness, Llemma 7B and GPT-3.5 in the zero-shot340

setting have slightly higher pass rates compared to341

the 3-shot setting.342

MS-RAG levels the playing field across models343

of different scales. As the largest LLM in our344

experiments, GPT-3.5 with MS-RAG significantly345

outperforms all other models. However, comparing346

its best performance with MS-RAG to its perfor- 347

mance in the 3-shot setting, its relative change in 348

syntactic correctness (67%) is much lower than 349

that with Mistral (307%). The relative change for 350

Llemma 7B is the smallest (62%). We attribute 351

this to the fact that Llemma was not finetuned with 352

instructions. These differences suggest that smaller 353

LLM with instruction tuning benefits more from 354

RAG. 355

Augmenting the index with auto-informalization 356

or the query with zero-shot auto-formalization 357

does not lead to better retrieval. Among all re- 358

sults in Table 1, GPT-3.5 with textual description 359

query and textual description index achieves high- 360

est scores in four metrics except BLEU-2. Com- 361

pared to other choices with Mistral, this choice also 362

leads to highest scores in ChrF, RUBY and CBS 363

and second highest scores in Pass, which suggests 364

that it is the best choice. Incorporating zero-shot re- 365

sults from Mistral as queries generally yields worse 366
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Metric MS-RAG PBD 1A PBD 1B PBD 1C PBD 1D
BLEU-2 6.33 (+3.72) 8.88 (+1.61) 11.30 (+1.99) 15.21 (+1.49) 14.90 (+2.42)
ChrF 48.45 (+2.93) 38.27 (-0.35) 43.25 (-0.06) 44.52 (-0.23) 48.51 (+0.11)
RUBY 28.99 (+15.83) 38.23 (+2.12) 42.08 (+1.91) 44.59 (+0.79) 46.43 (+0.98)
CBS 76.40 (+0.53) 68.04 (-0.03) 70.51 (-0.07) 71.92 (+0.01) 74.07 (+0.03)
Pass 17.15 (+4.38) 6.57 (+0.00) 9.12 (+0.00) 13.50 (+0.37) 28.10 (+0.00)

Table 2: The effect of denoising on Mistral. The change of scores after applying CBD is recorded in round brackets.
The setting with highest final scores is marked as bold.

NL Statement The next lemma shows that open sets are members of (what we will prove later
to be) the natural neighborhood system on X =

⋃
T .

Ground Truth lemma open_are_neighs: assumes "U\<in>T" "x\<in>U"
shows "x \<in> \<Union>T" and "U \<in> {V\<in>Pow(\<Union>T)
.\<exists>U\<in>T. (x\<in>U \<and> U\<subseteq>V)}"

3-shot lemma open_set_in_nhs: assumes "X = \<bigcup> T" "T \<in>
Covers(X)" "U \<in> Open(X)"shows "U \<in> NHS(X)"

where NHS(X) is a predicate representing the natural
neighborhood system on X. Note: The definition of NHS(X)
should be provided before using this lemma.

MS-RAG lemma open_is_neighbors: assumes "U \<in> T" and "x \<in> U"
shows "U \<in> ({neighborhood system of} T)`(x)"

(* Note: This lemma assumes that T is a topology, but it is
not explicitly stated in the natural language version.*)

PBD 1A lemma open_is_neighbors: assumes "U :: set T" and "x :: T"
shows "U :: ({neighborhood system of} T) x"

PBD 1B lemma open_is_neighbors: assumes "U \<in> T" and "x \<in> U"
shows "U \<in> ({neighborhood\_system} T)`(x)"

PBD 1C lemma open_is_neighbors: assumes "U \<in> T" "x \<in> U"
shows "U \<in> ({neighborhood system of} T) x"

PBD 1D lemma open_is_neighbors: assumes "U \<in> T" and "x \<in> U"
shows "U \<in> ({neighborhood system of} T)`(x)"

Table 3: An example using Mistral shows that only MS-RAG and PBD 1D have no syntax errors of formalization.

results compared to its counterpart. This is proba-367

bly caused by the low quality of zero-shot formal-368

ization results. Choosing informalized description369

for index also does not have a better performance.370

4.2 Output Denoising371

In this section, we investigate the impact of denois-372

ing. We select the result of MS-RAG (Query: T,373

Index: T) to apply PBD with four prompts: (1A)374

The prompt only contains instructions to remove ex-375

planations and proofs; (1B) 1A adds an additional376

instruction for stylistic alignment to declare that the377

final output after refinement should maintain the378

same syntactic style; (1C) Includes some fixed for-379

mal statement examples for the stylistic alignment380

instruction in 1B; (1D) Changes the fixed examples 381

in 1C to retrieved examples from MS-RAG. We 382

record the results of Mistral in Table 2. 383

Denoising significantly impacts the quality of the 384

formal statements. Compared to results without 385

denoising, using either denoising method can sig- 386

nificantly improve BLEU and RUBY scores. Ap- 387

plying CBD to the original MS-RAG results can 388

lead to an improvement across metrics. However, 389

the effect of CBD decreases after we apply PBD to 390

the results. For the Pass metric, performing CBD 391

after PBD had no observable impact. This demon- 392

strates the impact of PBD as a syntactic control 393

mechanism. Our results suggest that a composition 394

of PBD and CBD can yield the best performance in 395
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syntactic correctness while maintaining semantic396

similarity at the same or higher level.397

Denoising can reduce the performance gap be-398

tween smaller LLM and larger LLM. We also399

conducted similar experiments on GPT-3.5 (results400

in Appendix). Denoising methods have a com-401

paratively lower effect on the results of GPT-3.5,402

serving more as a function of control for smaller403

models, approaching their performance to larger404

models.405

Stylistic alignment is necessary when applying406

PBD. Without the explicit declaration of stylistic407

alignment (1A), the syntactic correctness drops408

10.58% compared to the results of MS-RAG. The409

reason is that when we only ask Mistral to remove410

redundant strings, it tends to neglect the original411

syntactic style of the formal statements and rewrites412

them in a new style that it was trained on. However,413

merely specifying that the model should maintain414

such a style without giving explicit examples (1B)415

does not effectively communicate the intent to pre-416

serve the style. This is demonstrated by the higher417

performance of 1C compared to 1B. In addition,418

using retrieved examples (1D) rather than fixed419

examples (1C) can increase scores further.420

Case Study We use an example in Table 3 to con-421

duct a case study on the necessity of denoising. As422

shown in Table 3, both 3-shot and MS-RAG results423

include an additional textual description in the fi-424

nal output which does not form a formal statement.425

PBD 1A changes “\<in>” into “::” which is another426

way of expressing “∈” but this expression is not427

provided in its prompt, so this behaviour is highly428

likely to be the bias of Mistral. PBD 1B and 1C429

mitigate this behaviour but they also make other430

syntax errors, such as the missing word “of” or the431

special character “`”. Only PBD 1D maintains432

the validity of the formal statement because the433

retrieved examples have a similar usage of these434

elements and hence they are emphasized during435

generation.436

4.3 Iterative Symbolic Refinement437

In this section, we mainly focus on answering the438

question on whether syntax errors can be corrected439

by LLMs in coordination with symbolic solvers.440

This process is iteratively run for up to nine cycles.441

To better illustrate the changes, we plot the scores442

of each iteration on the Pass metric in Figure 2.443

Iterative Auto-SEF improves syntactic correct-444

ness of the formalization results. As shown in445
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Figure 2: Pass rate of each iteration with Auto-SEF.
Iteration 0 is the start point before applying Auto-SEF.
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Figure 3: BLEU-2 scores of each Auto-SEF iteration.

Figure 2, both GPT-3.5 and Mistral can receive im- 446

provements from the iterative Auto-SEF method. 447

This result demonstrates that Auto-SEF can indeed 448

enable LLMs to fix some syntactic errors. The 449

first iteration brings the largest increase (2.56% for 450

Mistral, 4.38% for GPT-3.5) in pass rate. After 451

that, the change becomes smoother and iterative 452

improvements are limited to a small number of 453

cycles. 454

Smaller LLM tends to trade-off semantic sim- 455

ilarity for syntactic correctness when applying 456

Auto-SEF. We select BLEU-2 as a proxy for seman- 457

tic similarity and illustrate the scores of each itera- 458

tion in Figure 3. The BLEU-2 scores for GPT-3.5 459

remain steady across different iterations, whereas 460

for Mistral, the scores decrease in the first few itera- 461

tions. Combining this result with the improvement 462

in pass rate, we hypothesize that a trade-off occurs 463

due to the comparatively lower capacity of Mistral 464

to perform syntactic correction while controlling 465

for semantic drifting during Auto-SEF prompting. 466

4.4 A Critique of the Metrics 467

Metrics for the evaluation of code generation can 468

disagree with each other (Evtikhiev et al., 2023). 469

We use all results with CBD to calculate the Pear- 470

son product-moment correlation coefficients be- 471

tween metrics, illustrating these coefficients with a 472

heatmap in Figure 4. 473
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Figure 4: Correlation coefficients between metrics.

RUBY can serve as an initial metric when eval-474

uating formalization results. All correlation co-475

efficients are larger than 0.6. This suggests that all476

metrics are positively related to each other and that477

any one of them is a reasonable indicator for evalu-478

ating formalization results. Among these metrics,479

RUBY has the strongest correlation (> 0.85) with480

the other metrics.481

Pass and BLEU metrics should be jointly used to482

prevent evaluation bias. Some zero-shot results in483

Table 1 lead to a high score on the Pass metric but484

lower scores on other metrics due toi internal LLM485

style biases. Syntactic correctness is one significant486

criteria in evaluation, but the aforementioned situ-487

ation suggests that using Pass metric alone might488

include biases during evaluation. According to489

Figure 4, among metrics for semantic similarity,490

BLEU-2 has the strongest correlation with the Pass491

metric and hence can indicate syntactic correctness492

to some extent. We suggest considering both BLEU493

scores and Pass rate when comparing results.494

5 Related Work495

Automated Theorem Proving Automated The-496

orem Proving refers to the task of automatically497

generating a formal proof for a given mathematical498

statement (Wang and Deng, 2020). The typical ap-499

proach to this task involves decomposing it into a500

multi-step generation problem, where at each step501

the model generates the next part of the proof given502

the current proof state (Polu and Sutskever, 2020;503

Wang and Deng, 2020; Han et al., 2022; Jiang et al.,504

2022). Our work on autoformalization supports505

such automated theorem proving efforts (Wu et al., 506

2022) by delivering a coherent formal representa- 507

tion that maintains the semantic integrity necessary 508

for mathematical reasoning over mathematical li- 509

braries. 510

Retrieval Augmented Generation (Lewis et al., 511

2020) RAG has demonstrated improvements for 512

code (Lu et al., 2022; Zhang et al., 2023). For for- 513

mal language, Yang et al. (2023) trained a retrieval- 514

augmented language model for formal premise se- 515

lection and theorem proving. Meanwhile, our work 516

focuses on utilizing RAG for the task of improving 517

autoformalization performance and coherence with 518

respect to mathematical libraries. 519

LLMs Refinement Through feedback-guided re- 520

finement strategies LLMs can self-correct (Pan 521

et al., 2024). Recent studies (Madaan et al., 2023; 522

Quan et al., 2024a) evaluate strategies using iter- 523

ative feedback to refine LLM-generated answers 524

for downstream tasks. Some work has utilized 525

error messages generated by theorem provers for 526

LLMs (Pan et al., 2023; Quan et al., 2024a; Jiang 527

et al., 2024b; Quan et al., 2024b) or repair mod- 528

els (First et al., 2023a) to address syntactic or 529

proof errors using these messages. Similarly, our 530

work applies prompt-based refinement from ex- 531

ternal feedback error messages generated by Is- 532

abelle/ZF to iteratively refine the formalized logical 533

forms with specific error code locations. 534

6 Conclusion 535

This paper examined the effects of using RAG for 536

autoformalization with LLMs and explored meth- 537

ods to refine formalization results. Our experiments 538

demonstrated the effectiveness of incorporating a 539

retrieval process for autoformalization. Further re- 540

finement experiments indicated that denoising and 541

iteratively refining syntax errors can enhance the 542

formalization quality. We evaluated results on dif- 543

ferent LLMs and found that smaller LLMs with 544

instruction fine-tuning benefited more from the pro- 545

posed methods, pointing in the direction of serving 546

as a mechanism for reducing the formal perfor- 547

mance gaps between larger commercial models 548

and smaller models. We also constructed a dataset 549

and assessed metrics to evaluate autoformalization, 550

which could serve as resources for formal mathe- 551

matical reasoning tasks. We aim to develop more 552

advanced prompting strategy and automated met- 553

rics for autoformalization as future directions. 554
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Limitations555

Some natural language statements in our dataset556

are too general or informal, failing to provide mean-557

ingful information for automated mathematics the-558

orem proving. Although our proposed framework,559

Auto-SEF, enhances syntactic control in autofor-560

malization, increasing iterations do not yield sig-561

nificant improvements in the Pass metric. This lim-562

itation is due to the inability of LLMs to generate563

syntactically correct complex formal representa-564

tions.565
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A Large Language Models819

We describe large language models used in our820

experiments in this section.821

Mistral (Jiang et al., 2023a) Mistral is a large822

language model with 7 billion parameters and fine-823

tuned on instruction datasets which are publicly824

available on the HuggingFace repository. It bal-825

ances the trade-off of performance and efficiency826

and has the strongest performance among LLMs827

which have the similar scale with it. Mistral has828

shown strong performance in code, mathematics,829

and reasoning benchmark.830

Llemma (Azerbayev et al., 2024) Llemma is an 831

open large language model finetuned specifically 832

for mathematics. It is pretrained on Proof-Pile-2 833

which is a diverse mixture of math-related text and 834

code. However, it has not been trained to follow 835

instructions. Llemma has two scales in 7B and 34B. 836

We only use the 7B model in our experiments. 837

Mixtral (Jiang et al., 2024a) Mixtral is a large lan- 838

guage model with sparse mixture of experts method 839

and instruction finetuning. It has the same architec- 840

ture as Mistral 7B but each layer of it consists of 841

8 feed-forward blocks. This makes it a 8×7B size. 842

However, during inference, only 13B parameters 843

are activated. 844

GPT-3.5-Turbo GPT-3.5-Turbo is one large lan- 845

guage models of OpenAI GPT-3.5 series. It shares 846

the same architecture as GPT-3 (Brown et al., 2020) 847

and is finetuned with instructions. The number of 848

parameters in GPT-3.5-Turbo is 175 billions. 849

B Evaluation Metrics 850

We describe the implementation of metrics to mea- 851

sure semantic similarity in this section. 852

BLEU (Papineni et al., 2002) The autoformaliza- 853

tion task is a translation task so the most common 854

metric in translation tasks, BLEU, is used as one 855

evaluation metric for autoformalization. This met- 856

ric is also used in (Wu et al., 2022). We use the im- 857

plementation from NLTK (Bird and Loper, 2004). 858

ChrF (Popović, 2015) ChrF is another n-gram met- 859

ric in translation task that focuses on characters 860

instead of words in BLEU. We leverage this char- 861

acter level metric in NLTK to take character-level 862

aspect into account. 863

RUBY (Tran et al., 2019) The autoformalization 864

task is also a code generation task. RUBY is a met- 865

ric designed specific for code generation evaluation 866

that uses edit distance to calculate the score. If pro- 867

gram dependence graph (PDG) or abstract syntax 868

tree (AST) is provided, it calculates graph similar- 869

ity based on graph edit distance or tree similarity 870

based on tree edit distance. Otherwise, it calculates 871

string edit distance to determine the string simi- 872

larity between reference code and candidate code 873

as the score. In our experiments, because of the 874

difficulty of obtaining PDG or AST of formal state- 875

ments, we use string edit distance from NLTK to 876

calculate string similarity as the score. This imple- 877

mentation focuses on characters rather than tokens 878

as in the original paper but it still makes the score 879

a reasonable indicator of performance. 880
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Translate the following Isabelle/ZF code:
{statement}
into a natural language version statement as
brief as possible:

Table 4: Prompt for informalization.

Natural language version: {Natural Language
Text}
Translate the natural language version to an Is-
abelle/ZF version without any additional text
and do not give any proof: {Formal Statement}

Table 5: Prompt for autoformalization.

CodeBERTScore (Zhou et al., 2023) Code-881

BERTScore is a model-based metric to evaluate882

performance on code generation. It uses token883

representations of reference code and candidate884

code to determine a final score. The original paper885

trained different models for different programming886

languages to get representations but Isabelle is not887

one of them. Therefore, we use a mathematical spe-888

cific model Llemma 7B (Azerbayev et al., 2024)889

as the model to obtain representations. Although890

this model is not a BERT-based model, it can still891

generate meaningful representations for score cal-892

culation.893

C Prompts894

We provide prompts for informalization, autofor-895

malization, denoising, and Auto-SEF in Table 4, 5,896

6, 7, respectively.897

D Detailed Results898

We provide the exact number of scores of denoising899

in Table 8 and Auto-SEF in Table 9.900
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Prompt
PBD 1A You are an expert in Isabelle theorem prover. You will be provided with an Isabelle/ZF code generated

by a language model. Your task is to clean the provided Isabelle/ZF code with following instructions.
Instructions:
1. The provided code might contain several lemmas or definitions or theorems. The cleaned code must
only keep the best one lemma or definition or theorem.
2. Do not write any proof and if there is a proof in the provided code, remove it from the cleaned code.
3. You should only output tokens that compose the cleaned code. Anything else, including but not limited
to note, description, explanation and comment, must be removed from the final answer. Giving any
additional text is prohibited.
Strictly follow the instructions that I have claimed.
Provided Isabelle/ZF Code: {isabelle code}
Cleaned Code:

PBD 1B 1A + An additional instruction:
4. The cleaned code must have the same style and usage of operators as the original provided code.
Operators usually start with “\” such as “\<in>”, “\<cdot>”.

PBD 1C 1A + An additional instruction:
4. The cleaned code must have the same style and usage of operators as the original provided code.
Operators usually start with “\” such as “\<in>”, “\<cdot>”. Here are some additional Isabelle/ZF code
examples which have the same style as the original provided code:
{fixed 3-shot formal statements}

PBD 1D 1A + An additional instruction:
4. The cleaned code must have the same style and usage of operators as the original provided code.
Operators usually start with “\” such as “\<in>”, “\<cdot>”. Here are some additional Isabelle/ZF code
examples which have the same style as the original provided code:
{retrieved 3-shot formal statements}

Table 6: Prompts for informalization.

You are an expert in Isabelle theorem prover. You will be provided with an Isabelle/ZF code generated by a language
model. The provided code has some Isabelle/ZF syntax errors according to the Isabelle prover. You will also be
provided with the error details and where the error code is located in the code. Your task is to fix related errors in the
provided Isabelle/ZF code with following instructions. Instructions:
1. Only refine the code part which is related to provided error details. You must keep other code parts unchanged.
2. The syntax errors might cause by the mismatch of brackets, incorrect using of operators or invalid representation
of Isabelle/ZF code. You should only refine the error codes based on the error details by rewriting, fixing or removing
error codes.
3. You should only output tokens that compose the cleaned code. Anything else, including but not limited to
note, description, explanation and comment, must be removed from the final answer. Giving any additional text is
prohibited.
4. The cleaned code must have the same style and usage of operators as the original provided code. Operators
usually start with “\” such as “\<in>”, “\<cdot>”. Here are some additional Isabelle/ZF code examples which have
the same style as the original provided code:
{retrieved 3-shot formal statements}
Strictly follow the instructions that I have claimed.
Provided Isabelle/ZF Code:
{isabelle code}
{first syntax error details}
Refined Code:

Table 7: Auto-SEF prompt.
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LLM Method BLEU-2 ChrF RUBY CBS Pass
Mistral Retrieval 3-shot 6.33 48.45 28.99 76.40 17.15
Mistral Retrieval 3-shot+CBD 10.05 51.38 44.82 76.93 21.53
Mistral PBD 1A 8.88 38.27 38.23 68.04 6.57
Mistral PBD 1A+CBD 10.49 37.92 40.35 68.01 6.57
Mistral PBD 1B 11.30 43.25 42.08 70.51 9.12
Mistral PBD 1B+CBD 13.29 43.19 43.99 70.44 9.12
Mistral PBD 1C 15.21 44.52 44.59 71.92 13.50
Mistral PBD 1C+CBD 16.70 44.29 45.38 71.93 13.87
Mistral PBD 1D 14.90 48.51 46.43 74.07 28.10
Mistral PBD 1D+CBD 17.32 48.62 47.41 74.10 28.10
GPT-3.5-Turbo Retrieval 3-shot 36.06 59.70 58.56 79.34 64.96
GPT-3.5-Turbo Retrieval 3-shot+CBD 36.32 59.63 58.51 79.14 64.60
GPT-3.5-Turbo PBD 1A 38.60 57.90 58.16 78.79 63.87
GPT-3.5-Turbo PBD 1A+CBD 38.59 57.86 58.12 78.63 63.87
GPT-3.5-Turbo PBD 1B 36.49 57.08 57.79 78.27 62.04
GPT-3.5-Turbo PBD 1B+CBD 36.49 57.08 57.79 78.27 62.04
GPT-3.5-Turbo PBD 1C 37.10 57.28 57.83 78.62 63.50
GPT-3.5-Turbo PBD 1C+CBD 37.10 57.28 57.83 78.62 63.50
GPT-3.5-Turbo PBD 1D 38.50 58.09 58.17 78.99 64.60
GPT-3.5-Turbo PBD 1D+CBD 38.50 58.09 58.17 78.99 64.60

Table 8: The effect of denoising.

LLM Method BLEU-2 ChrF RUBY CBS Pass
Mistral Iteration1 14.91 45.69 44.16 72.22 30.66
Mistral Iteration2 13.23 44.84 43.72 72.04 32.12
Mistral Iteration3 12.69 44.10 42.19 71.63 32.48
Mistral Iteration4 11.29 44.18 42.30 71.53 32.85
Mistral Iteration5 11.91 43.57 41.72 71.06 33.58
Mistral Iteration6 11.87 43.48 41.69 71.09 33.58
Mistral Iteration7 11.72 43.64 41.26 70.91 33.58
Mistral Iteration8 11.10 43.24 41.55 71.00 33.58
Mistral Iteration9 11.17 43.09 40.85 70.80 33.58
GPT-3.5-Turbo Iteration1 38.11 57.66 57.45 78.71 68.98
GPT-3.5-Turbo Iteration2 38.10 57.55 57.55 78.47 69.71
GPT-3.5-Turbo Iteration3 38.09 57.55 57.57 78.48 70.07
GPT-3.5-Turbo Iteration4 37.99 57.54 57.50 78.45 70.44
GPT-3.5-Turbo Iteration5 38.08 57.58 57.62 78.51 70.44
GPT-3.5-Turbo Iteration6 38.05 57.57 57.46 78.47 70.44
GPT-3.5-Turbo Iteration7 38.00 57.53 57.39 78.49 70.44
GPT-3.5-Turbo Iteration8 37.99 57.57 57.37 78.50 70.80
GPT-3.5-Turbo Iteration9 38.01 57.55 57.42 78.48 70.80

Table 9: Auto-SEF results with CBD applied.
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