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ABSTRACT

Covariate shift occurs when the distribution of input features differs between the
training and testing phases. In covariate shift, estimating an unknown function’s
moment is a classical problem that remains under-explored, despite its common
occurrence in real-world scenarios. In this paper, we investigate the minimax
lower bound of the problem when the source and target distributions are known.
To achieve the minimax optimal bound (up to a logarithmic factor), we propose a
two-stage algorithm. Specifically, it first trains an optimal estimator for the func-
tion under the source distribution, and then uses a likelihood ratio reweighting
procedure to calibrate the moment estimator. In practice, the source and target
distributions are typically unknown, and estimating the likelihood ratio may be
unstable. To solve this problem, we propose a truncated version of the estimator
that ensures double robustness and provide the corresponding upper bound. Ex-
tensive numerical studies on synthetic examples confirm our theoretical findings
and further illustrate the effectiveness of our proposed method.

1 INTRODUCTION

Covariate shift occurs when the marginal distribution of the input covariates differs between the
training and test data, but the conditional distribution of the response given the covariates remains
consistent. It is prevalent and crucial in real-world applications, such as natural language processing
(Wang et al., 2017), computer vision (Tzeng et al., 2017), reinforcement learning (Chang et al.,
2021), finance (Timper, 2021) and medical care (Guan & Liu, 2021). In addition to its practical
significance, covariate shift has been extensively studied theoretically, particularly in the context
of function estimation. For example, the linear function in linear regression (Ryan & Culp, 2015),
the classifier in nonparametric classification (Kpotufe & Martinet, 2021), and the conditional mean
function in nonparametric regression (Feng et al., 2024b).

However, in modern machine learning tasks, we are often more interested in the functionals of these
estimated functions, such as the average treatment effect in causal inference or accuracy in classifi-
cation problems. To address these issues, practitioners commonly use a two-stage approach: first,
they estimate the functions, and then they use these estimators to calculate the desired functional
(Oates et al., 2017; Lei & Candès, 2021; Blanchet et al., 2024). Yet, there are few theoretical works
that analyze the efficiency of these two stages from a unified perspective. Consequently, this paper
aims to explore the following question:

Under covariate shift, can we calibrate an optimal function estimator under source distribution to
maintain the optimality for the functional under target distribution, and if so, how?

To this end, we consider the problem of estimating the moment of an unknown function under
covariate shift. This is a common scenario in many fields, such as counterfactual inference in causal
inference1. Specifically, we aim to estimate the q-th moment Iqf := EX∼P∗ [fq(X)] of f under target
distribution P∗ with p.d.f. p∗(x), based on values f(x1), . . . , f(xn) observed on n random samples

∗Correspond to {liu.xin,tengjiaye}@mail.shufe.edu.cn.
1For a more detailed discussion, please refer to Appendix B.1.
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Figure 1: The top figure in the left box shows the source and target distributions along with the
corresponding likelihood ratio. The bottom figure in the left box illustrates the underlying function
and the sampled data. The middle and right boxes show the first and second stages, respectively.
More details can be found in Section 4.2.

x1, . . . ,xn ∈ Ω drawn from source distribution P◦ with p.d.f. p◦(x). Here, the unknown function
f belongs to the Sobolev space Ws,p(Ω) with Ω ⊂ Rd, where s indicates the degree of smoothness
and p specifies the integrability condition of these derivatives. To understand the complexity of
this nonparametric functional estimation problem under covariate shift, we restrict our problem in
certain class defined as V :=

{
(f, p◦, p∗) : f ∈ Ws,p(Ω), b ≤ p◦ ≤ b̄, supx∈Ω w(x) ≤ B

}
, where

w(x) := p∗(x)
p◦(x) represents the likelihood ratio. The constants b, b̄ and B are used to quantitatively

compare the quality of different source distribution and the intensity of covariate shift. The problem
we consider extends the work of Blanchet et al. (2024) to scenarios involving covariate shift.

Our contributions in this paper can be summarized as follows:

Contribution I: The impact of covariate shift on the minimax lower bound when p◦ and p∗ are
known. We establish the minimax lower bound for any given target p.d.f. p∗ over V as follow2:

inf
Ĥq∈H

sup
(f,p◦)∈Vp∗

E
∣∣∣Ĥq − Iqf

∣∣∣ ≳ B · b̄ · nmax{−q( s
d−

1
p )−1,− 1

2−
s
d},

where H := {Ĥq : Ωn×Rn → R} denotes the class that contains all estimators of the q-th moment
Iqf . The value B ≥ supx∈Ω w(x) measures the cost we need when doing estimations under covariate
shift. A larger B indicates a greater extent of covariate shift, which leads to a more challenging
estimation task. When there is no covariate shift, B = 1. The value b̄ indicates the influence of the
sampling strategy to the problem, a larger b̄ implies a more irregular source distribution. When P◦

is taken as uniform distribution, b̄ = 1. The term nmax{−q( s
d−

1
p )−1,− 1

2−
s
d} describes the difficulty

caused by the combination of function class Ws,p(Ω) and the order of the moment q.

Contribution II: A two-stage algorithm that achieves the lower bound. We then propose a two-
stage algorithm which attains the minimax lower bound up to a logarithmic factor. Specifically, we
split the data S = {(xi, yi = f(xi))}ni=1 into two parts with equal size, S1 and S2. We use S1 to
fit an optimal nonparametric estimator f̂S1

of f , and then use S2 to do calibration. Our estimator is
formulated as follows, and the framework is illustrated in Figure 1:

Ĥq
B(S) := EX∼P∗ [f̂q

S1
(X)] +

∑
(xi,yi)∈S2

w(xi) · (yqi − f̂q
S1
(xi)). (1)

Since p∗(x) is known, we use a sampling method to estimate the first term. This estimator can be
seen as importance sampling using f̂S1 as the control variate. The f̂S1 introduced in the first stage
is used to reduce variance, while w(x) in the second stage is used to debias residual. Furthermore,
if f̂S1

is chosen to be optimal (Assumption 1) then it matches the minimax lower bound up to a

2We use the notations ≳ and ≲ to hide log factors and define Vp∗ := {(f, p◦) : (f, p◦, p∗) ∈ V}.
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logarithmic factor, as follows:

ES

[∣∣∣Ĥq
B(S)− Iqf

∣∣∣] ≲ B · b̄ · nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}.

Contribution III: Stabilized algorithm with double robustness when p◦ and p∗ are unknown. In
practice, the source and target distributions are typically unknown. Therefore, we need to replace
w(x) in equation 1 with the estimator ŵ(x). To estimate w(x), it is necessary to have m (≫ n)3

unlabelled data points drawn from P∗, denoted as S ′ = {x′
1, . . . , x

′
m}. Although there is extensive

literature (Yu & Szepesvári, 2012; Bickel et al., 2007; Kpotufe, 2017) on methods for estimating
w(x), ŵ(x) becomes unstable when we lack prior information about P∗ and P◦. To address this, we
introduce the truncated version of equation 1 as follows:

H̃q
T (S ∪ S ′) :=

1

m

m∑
i=1

f̂q
S1
(x′

i) +
∑

(xi,yi)∈S2

τT (ŵ(xi)) · (yqi − f̂q
S1
(xi)),

where τT (·) := min{·, T}. To understand how this affects the convergence rate, we assume that
g(T ) := P

({
x : p∗(x)

p◦(x) > T
})

≤ T−α and denote r(n) = nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}. By selecting

T to balance the trade-off between bias and variance, the convergence rate of the truncated version
of the estimator is:

ES

[∣∣∣H̃q
T (S ∪ S ′)− Iqf

∣∣∣] ≲ b̄ · r(n)
α

α+1 +m− 1
2 .

Note that our estimator involves two models: one for estimating f and the other for estimating w(x).
We demonstrate that our estimator possesses the double robust property, meaning it be consistent if
at least one of the two estimates is consistent.

The paper is organized as follows. Section 2 provides a review of the relevant literature. Section
3 introduces the notation and problem setup. In Section 4, we establish the minimax rate of con-
vergence for the moment estimation problem under covariate shift and demonstrate its attainability
where p◦ and p∗ are known. In Section 5, we introduce a stabilized algorithm with double robustness
for cases where p◦ and p∗ are unknown. In Section 6, we provide the simulation results to illustrate
our theoretical findings. Finally, we conclude in Section 7 and leave most of proofs to the appendix.

2 RELATED WORK

Covariate shift. Extensive work has been done on covariate shift (Sugiyama & Kawanabe, 2012).
The primary tool to address covariate shift is the reweighting method, as discussed by Shimodaira
(2000). This method utilizes the likelihood ratio to reweight the loss function or estimator, thereby
correcting for bias. Numerous studies have examined the statistical efficiency of this method in var-
ious contexts, such as nonparametric classification (Kpotufe & Martinet, 2021) and nonparametric
regression (Ma et al., 2023; Feng et al., 2024a). Among them, Ma et al. (2023) is closely related
to ours which studies the covariate shift problem in the context of nonparametric regression over a
reproducing kernel Hilbert space and introduces the truncation trick on the reweighted loss for the
case of unbounded likelihood ratios. However, while their focus is on estimating the unknown func-
tion itself, our work is concerned with the moments of the unknown function, thereby advancing
one step beyond previous studies. The likelihood ratio is the key component of this method, but it is
often unknown in practice. Many studies focus on estimating the likelihood ratio in covariate shift
using techniques such as histogram-based methods (Kpotufe, 2017), kernel mean matching (Yu &
Szepesvári, 2012; Li et al., 2020), and discriminative learning (Bickel et al., 2007; 2009).

There are also other methods that do not require estimating the likelihood ratio. For example,
transformation-based methods (Flamary et al., 2016; Wang et al., 2024) involve learning a transfor-
mation from the source feature domain to the target feature domain and then using the transformed
data to train the model. Domain-invariant methods (Robey et al., 2021; Blanchard et al., 2021)
aim to learn transformations that map data between domains and subsequently enforce invariance to
these transformations.

3The condition m (≫ n) is not necessary in this paper but it is a common scenario in practice, as unlabeled
data is generally more easily available than labeled data.
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Two-stage algorithm is a class of method that divides the problem-solving process into two distinct
phases, each with a specific purpose. These methods have numerous applications across various
fields. For example, in the deep learning community, the training regime typically involves repre-
sentation learning followed by downstream task fine-tuning (Devlin et al., 2018; Du et al., 2020; He
et al., 2022). In computational statistics, regression-adjusted control variates are introduced in the
first stage to reduce the variance for the estimation of the quantity of interest (Oates et al., 2017;
Holzmüller & Bach, 2023). In uncertainty quantification, conformal inference uses a calibration
set in the second stage to construct confidence intervals for any point estimator from the first stage
(Romano et al., 2019; Tibshirani et al., 2019; Teng et al., 2021; Lei & Candès, 2021).

Recently, Blanchet et al. (2024) found that using optimal nonparametric machine learning algorithms
to construct control variates is the best way to enhance Monte Carlo methods, but it remains under-
explored how to adapt such a two-stage algorithm to ensure it remains optimal under covariate shift.

3 NOTATION AND SETUP

Notation. Let ∥ · ∥ denote the standard Euclidian norm, and let Ω = [0, 1]d denote the unit cube in
Rd for any fixed d ∈ N. Define N0 := N∪ {0} as the set of all non-negative integers. For any given
s ∈ N0 and 1 ≤ p ≤ ∞, the Sobolev space Ws,p(Ω) is defined as follows:

Ws,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω),∀α ∈ N0 satisfying |α| ≤ s} .

Problem Setup. Consider the problem of estimating a function’s q-th moment under covariate shift.
For any fixed q ∈ N and f ∈ Ws,p(Ω), we want to estimate the q-th moment Iqf := EX∼P∗ [fq(X)]
under target distribution P∗ where p∗ is the p.d.f. of P∗. However, we only access to n observations
S = {(xi, yi)}ni=1 ⊂ Ωn × Rn, where {xi}ni=1 are i.i.d. samples from source distribution P◦ with
p.d.f. p◦ and yi = f(xi). Our goal is to find an estimator Ĥq : Ωn × Rn → R to tackle with this
nonparametric functional estimation problem under covariate shift.

Notably, under covariate shift, transferring knowledge from the source to the target is not straightfor-
ward without additional assumptions on P◦ and P∗. For example, consider the extreme case where
P◦ is a uniform distribution on [0, 1

2 ]
d and P∗ is a uniform distribution on [ 12 , 1]

d. In this scenario,
anything learned on [0, 1

2 ]
d is independent of the information on [ 12 , 1]

d. Therefore, the difficulty of
this problem hinges on the notion of discrepancy between the source and target distributions. By
imposing various conditions on this discrepancy, we can define different families of source-target
pairs (Definition 1), denoted as (P◦,P∗). In this paper, we focus on pairs defined on the likelihood
ratio, a common choice under covariate shift (Ma et al., 2023; Feng et al., 2024b), as outlined below.

Definition 1 (Uniformly B-bounded). For any source-target pairs (P◦,P∗) with p.d.f. (p◦, p∗) and
constant B ≥ 1, we say that the pair is uniformly B-bounded if:

sup
x∈Ω

w(x) :=
p∗(x)

p◦(x)
≤ B.

It is worth noting that B = 1 recovers the case without covariate shift, i.e., P◦ = P∗. At the
same time, the source distribution also affects the difficulty of the problem. A well-shaped source
distribution provides comprehensive information about the function f . To exclude extreme cases,
we assume that p◦ is bounded below by b and above by b̄, an assumption commonly used in transfer
learning (Audibert & Tsybakov, 2007; Cai & Wei, 2021).

Putting the above together, we consider the following class in the rest of this paper:

V(b, b̄, B, s, p) :=

{
(f, p◦, p∗) : f ∈ Ws,p(Ω), b ≤ p◦ ≤ b̄, sup

x∈Ω
w(x) ≤ B

}
,

and investigate how the parameters within this family influence the difficulty of the estimation prob-
lem. We use the shorthand V when the context is clear.

4 MINIMAX LOWER BOUND AND ITS ATTAINABILITY

In this section, we establish the minimax rate of convergence for the moment estimation problem
under covariate shift in Section 4.1, assuming that p◦ and p∗ are known. We then propose a two-
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stage algorithm that achieves this bound up to a logarithmic factor in Section 4.2. Additionally, since
a large covariate shift intensity B leads to high variance, we introduce a biased estimator in Section
4.3 to achieve a variance-bias trade-off. This allows us to obtain a bound that is independent of B.

4.1 MINIMAX LOWER BOUND

In this subsection, we study the minimax lower bound for the problem above via the method of two
fuzzy hypotheses (Tsybakov, 2009). We have the following minimax lower bound on the class Hf,q

n

that contains all estimators Ĥq : Ωn × Rn → R of the q-th moment Iqf .

Theorem 1 (Minimax Lower Bound on Estimating the Moment under Covariate Shift). Let Hf,q
n

denote the class of all the estimators using S = {(xi, yi = f(xi))}ni=1 to estimate the q-th moment
of f under P∗. For any given target p.d.f. p∗ ∈ {p∗ : (·, ·, p∗) ∈ V}, when p ≥ 2, q ≤ p ≤ 2q and
(f, p◦) ∈ Vp∗ := {(f, p◦) : (f, p◦, p∗) ∈ V}, it holds that

inf
Ĥq∈Hf,q

n

sup
(f,p◦)∈Vp∗

ES

[∣∣∣Ĥq(S)− Iqf

∣∣∣] ≳ B · b̄ · nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}. (2)

Theorem 1 indicates that the complexity of this problem is determined by three factors: covariate
shift, sampling strategy, and the interplay between the function class and the moment order. We will
provide a simulation study to illustrate these three factors in Section 6.

Covariate Shift: The value B ≥ supx∈Ω w(x) represents the additional cost associated with mak-
ing accurate estimations in the presence of covariate shift. A larger B signifies a more pronounced
covariate shift, which inherently complicates the estimation process due to the increased divergence
between the source and target distributions. When there is no covariate shift, B = 1, meaning the
distributions are aligned, and estimation is straightforward.

Sampling Strategy: The parameter b̄ quantifies the impact of the sampling strategy on the problem.
A larger b̄ suggests a more irregular source distribution, which introduces complexities in the esti-
mation process. For example, when P◦ is a uniform distribution, b̄ = 1, indicating that the source
distribution is regular and well-behaved.

Function Class and Moment Order: The term nmax{−q( s
d−

1
p )−1,− 1

2−
s
d} encapsulates the com-

plexity arising from the interplay between the function class Ws,p(Ω) and the order of the moment
q. It delineates the function class into two distinct regimes based on error decomposition: (fq − f̂q)

can be broken down into the semi-parametric influence part f2q−2(f − f̂)2 and the propagated es-
timation error (f − f̂)2q (Blanchet et al., 2024). When s > d(2q−p)

p(2q−2) , the smoothness parameter
s is sufficiently large to make the semi-parametric influence part the dominant term. Conversely,
s < d(2q−p)

p(2q−2) , the semi-parametric influence no longer dominates, and the final convergence rate

shifts from n− 1
2−

s
d to n−q( s

d−
1
p )−1.

4.2 ATTAINABILITY

This subsection focuses on constructing minimax optimal estimators for the q-th moment under
covariate shift. It addresses the question posed in Section 1: under covariate shift, if we can obtain
an optimal function estimator f̂S1 that satisfies Assumption 1, then we can calibrate it as follows to
derive the moment estimator Ĥq

B , which preserves the optimality in functional estimation:

Ĥq
B(S) := EX∼P∗ [f̂q

S1
(X)] +

2

n

∑
(xi,yi)∈S2

w(xi) · (yqi − f̂q
S1
(xi)), (3)

where S1 = {(xi, yi)}
n
2
i=1 and S2 = {(xi, yi)}ni=n

2 +1 are two subsets of the sample S.

Assumption 1 (Optimal Function Estimator as an Oracle). Given any function f ∈ Ws,p(Ω) and
n ∈ N, let {xi}ni=1 be n data points sampled independently and identically from the source distri-
bution P◦, whose p.d.f. p◦ is bounded bellow by b and above by b̄ on Ω. Assume that for s

d > 1
p −

1
2q ,

there exists an oracle Kn : Ωn × Rn → Ws,p(Ω) that estimates f based on the n points {xi}ni=1

5
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Algorithm 1 Minimax Optimal Algorithm for Known Source and Target Distributions
1: Input: labeled data: S = {(xi, yi = f(xi))}ni=1.
2: Randomly split S into two parts S1 = {(xi, yi)}

n
2
i=1 and S2 = {(xi, yi)}ni=n

2 +1.

3: Train a machine learning model on S1 to obtain f̂S1
(x).

4: Choose a sampling method based on p∗(x) to compute EX∼P∗ [f̂q
S1
(X)].

5: Use S2 to estimate the Iqf based on equation 3.
6: Output: q-th moment under target: Iqf .

along with the n observed function values {f(xi)}ni=1 and satisfies the following bound for any r

satisfying 1
r ∈

(
max{d−sp

pd , 0},max{ 1
p , I{s >

d
p}}
]
:(

E{xi}n
i=1

[
∥Kn({xi}ni=1, {f(xi)}ni=1)− f∥rLr(Ω)

]) 1
r

≲ b̄ · n− s
d+( 1

p−
1
r )+ . (4)

Assumption 1 illustrates that when the function is smooth enough, i.e., s
d > 1

p − 1
2q , it becomes

possible to construct an optimal function estimator, provided the source distribution is well-shaped.
This assumption is also used in Blanchet et al. (2024), and many works (Wendland, 2004; Krieg &
Sonnleitner, 2024; Blanchet et al., 2024) focus on constructing such estimators, notably through the
moving least squares method, which achieves the convergence rate in equation 4. A construction of
the desired oracle is deferred to Appendix B.3.

Theorem 2 (Upper Bound on Moment Estimation with Smoothness). Assume that p ≥ 2, q ≤
p ≤ 2q and s

d > 1
p − 1

2q . Let (f, p◦, p∗) ∈ V(b, b̄, B, s, p) and we have sample S = {(xi, yi =

f(xi))}ni=1. If f̂S1
satisfies the Assumption 1, then the estimator Ĥq

B constructed in equation 3
above satisfies

ES

[∣∣∣Ĥq
B(S)− Iqf

∣∣∣] ≲ B · b̄ · nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}. (5)

Construction Procedure. We construct our moment estimator in a two-stage manner. First, we
divide the sample S into two parts S1 = {(xi, yi)}

n
2
i=1 and S2 = {(xi, yi)}ni=n

2 +1. Using a machine

learning algorithm, we compute a nonparametric estimation f̂S1 of f based on S1. In the second
stage, we use S2 for calibration based on the following equation:

EX∼P∗ [fq(X)] = EX∼P∗ [f̂q
S1
(X)] + EX∼P∗ [fq(X)− f̂q

S1
(X)]

= EX∼P∗ [f̂q
S1
(X)] + EX∼P◦ [w(X) · (fq(X)− f̂q

S1
(X))]. (6)

Specifically, we estimate residual EX∼P∗ [fq(X)]−EX∼P∗ [f̂q
S1
(X)], i.e., the second term in equa-

tion 6 using samples from S2. This is given by 2
n

∑
(xi,yi)∈S2

w(xi) · (yqi − f̂q
S1
(xi)). Since we

assume that p∗ is known, the first term in equation 6 can be easily estimated. Finally, by combining
these steps, we obtain our moment estimator, as summarized in Algorithm 1:

Ĥq
B(S) := EX∼P∗ [f̂q

S1
(X)] +

2

n

∑
(xi,yi)∈S2

w(xi) · (yqi − f̂q
S1
(xi)).

Note that the f̂S1
in equation 3 can be constructed using various method in practice (Künzel et al.,

2019; Wager & Athey, 2018). Theorem 2 shows that if f̂S1 is optimal, i.e., it satisfies Assumption 1
above, then the estimator Ĥq

B achieves the minimax lower bound up to a logarithmic factor.

4.3 B-INDEPENDENT BOUND

The bound derived in Theorem 2 depends on the intensity of the covariate shift. In some scenarios,
the term B ≥ supx∈Ω w(x), which measures this shift, can become exceedingly large even when the
actual difference between p∗ and p◦ is relatively minor. This situation leads to the issue where large

6
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values of the weighting function w(x) in the estimator Ĥq
B introduce significant variance, despite the

estimator maintaining its unbiased nature. High variance is problematic because it overshadows the
benefits of unbiasedness, resulting in less reliable estimations. Consequently, it becomes crucial to
balance bias and variance to achieve more stable estimators. To address this challenge, we propose
using a truncated version of the estimator Ĥq

B . The truncated estimator is defined as follows:

Ĥq
T (S) := EX∼P∗ [f̂q

S1
(X)] +

2

n

∑
(xi,yi)∈S2

τT (w(xi)) · (yqi − f̂q
S1
(xi)), (7)

where τT (·) := min{·, T} is the truncation function, which limits the influence of large likelihood
ratios by truncating values of w(x) that exceed a predefined threshold T > 0.

Theorem 3 (B-independent Bound). Denote Ω−
T := {x : w(x) > T} as the area where the like-

lihood ratio exceeds the threshold T , and let P(Ω−
T ) = g(T ) denote the probability of this event.

Under the conditions in Theorem 2, the upper bound for the variance and bias of the truncated
estimator 7 are given as follows:

Bias =
∣∣∣E(Ĥq

T )− Iqf

∣∣∣ ≤ b̄ · P(Ω−
T ),

V ariance = E
[
Ĥq

T − E(Ĥq
T )
]2

≤ b̄2 · T 2 · r(n)2 + b̄2 · P(Ω−
T )

2.

If we further assume that g(T ) ≤ T−α, and pick T = O(r(n)−
1

α+1 )4, then we obtain the following
B-independent bound:

ES

[∣∣∣Ĥq
T (S)− Iqf

∣∣∣] ≲ b̄ · r(n)
α

α+1 , (8)

where r(n) = nmax{−q( s
d−

1
p )−1,− 1

2−
s
d} is the same order in Theorem 2.

Compared to the unbiased estimator Ĥq
B in Theorem 2, introducing the threshold T adds a bias

term when T < B. The threshold T controls the trade-off between bias and variance: increasing
T reduces bias, while decreasing T reduces variance. By carefully selecting the threshold T , we
can mitigate the variance introduced by extreme likelihood ratios, thus achieving an optimal B-
independent bound. However, eliminating the influence of B comes at the cost of changing r(n)

to r(n)
α

α+1 . This result is especially beneficial when B is large, as it helps mitigate high variance,
improving the stability of the algorithm. Even when B is not large, the estimator ŵ(x) may still be
large, potentially introducing additional variance. To address this, we apply the truncated estimator
Ĥq

T , which we will discuss in Section 5.
Remark. The additional assumption g(T ) ≤ T−α reduces the size of the class V , potentially
making the minimax lower bound in 2 less tight. Consequently, the upper bound in 8 may be better
than the minimax lower bound 2 when B is large. A more detailed discussion of this assumption is
provided in Appendix B.2.

5 STABILIZED ALGORITHM FOR UNKNOWN LIKELIHOOD RATIOS

In Section 4, we discuss the importance of the likelihood ratio w(x) in debiasing estimators. How-
ever, the related discussion is limited to the ideal scenario where both the source p.d.f. p◦(x) and the
target p.d.f. p∗(x) are known, allowing direct computation of w(x). In practice, these distributions
are usually unknown, making the calculation of the likelihood ratio challenging.

Fortunately, we can still gather a series of unlabeled data from the target domain when both p◦(x)
and p∗(x) are unknown. Specifically, we have access to n labeled samples from the source distri-
bution, denoted as S = {(xi, yi = f(xi))}ni=1. Additionally, we have m (≫ n) unlabeled samples
from the target distribution, represented by S ′ = {x′

i}mi=1.

There are various methods available for estimating the likelihood ratio w(x) (Yu & Szepesvári,
2012; Bickel et al., 2007; Kpotufe, 2017). For example, we employ a classification-based approach

4The term depends on the parameters defining the class V , which brings insight about the relation between
the choice of T and the smoothness of function, intensity of covariate shift. Unfortunately, they are unknown
in practice, we can only determine the appropriate truncation point through a grid search method.
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to obtain the estimator ŵ(x), with further details provided in Appendix A.7. However, it is inevitable
that the estimation procedure introduces large values of ŵ(x), even when the true value w(x) is
relatively small. To address this issue, we adopt the truncated version of the moment estimator from
Section 4.3. Specifically, we replace the unknown weight function w(x) in the estimator 7 with
ŵ(x). Furthermore, since the target distribution p∗(x) is unknown, we cannot directly compute the
first term EX∼P∗ [f̂q

S1
(X)]. To address this, we use unlabeled data to approximate it. The modified

estimator is given by equation 9 and the entire procedure is summarized in Algorithm 2:

H̃q
T (S ∪ S ′) :=

1

m

m∑
i=1

f̂q
S1
(x′

i) +
2

n

∑
(xi,yi)∈S2

τT (ŵ(xi)) · (yqi − f̂q
S1
(xi)). (9)

5.1 CONVERGENCE RATE AND DOUBLE ROBUSTNESS

In this subsection, we first examine the convergence rate of the estimator 9 under the same assump-
tions in Theorem 3. Additionally, we demonstrate the double robustness of the estimator 9.

The difference between estimators 7 and 9 lies in the need to estimate additional quantities when
p◦(x) and p∗(x) are unknown. The following theorem shows how these unknown quantities affect
the convergence rate of the estimator 9.
Theorem 4 (Convergence Rate of Plug-in Truncated Estimator). Under the same assumptions in
Theorem 3, the convergence rate of the plug-in truncated estimator H̃q

T is:

E
[∣∣∣H̃q

T (S ∪ S ′)− Iqf

∣∣∣] ≲ E
[∣∣∣Ĥq

T (S)− Iqf

∣∣∣]+m− 1
2 . (10)

Theorem 4 indicates that the only additional cost to the convergence rate for the unknown source
and target distributions is m− 1

2 . This term represent the Monte Carlo simulation error for estimating
EX∼P∗ [f̂q

S1
(X)] using m unlabeled data points S ′. The additional error from estimating w(x) is

bounded above by the error of the estimator Ĥq
T , due to the truncation applied to the estimator ŵ(x).

Proof Sketch. The relationship between the convergence rate of Ĥq
T and H̃q

T is established through
the following error decomposition:

E
[∣∣∣H̃q

T − Iqf

∣∣∣] ≤ES∪S′

∣∣∣∣∣∣ 2n
∑

(xi,yi)∈S2

(τT (ŵ(xi))− τT (w(xi))) · (yqi − f̂q
S1
(xi))

∣∣∣∣∣∣


︸ ︷︷ ︸
additional error for estimating w(x)

+

ES∪S′

[∣∣∣∣∣ 1m
m∑
i=1

f̂q
S1
(x′

i)− EX∼P∗ [f̂q
S1
(X)]

∣∣∣∣∣
]

︸ ︷︷ ︸
Monte Carlo simulation error

+ ES∪S′

[∣∣∣Ĥq
T − Iqf

∣∣∣]︸ ︷︷ ︸
error of the case when w(x) is known

.

The first term represents the additional error due to estimating the likelihood ratio w(x). Due to
truncation, this term is bounded above by T and the estimation error of f̂q

S1
(x), which is further

bounded by the third term. The second term accounts for the Monte Carlo simulation error in
estimating EX∼P∗ [f̂q

S1
(X)] using m unlabeled data S ′ form target domain, with a convergence rate

O(m− 1
2 ). The third term corresponds to the estimation error of Ĥq

T as discussed in Theorem 3.

In our approach, two models play a crucial role: one for estimating the likelihood ratio w(x) and
another for estimating the function f(x) itself. So far, assumptions have been made about f̂S1(x)
but not about ŵ(x). If assumptions are instead made only about ŵ(x), the conclusion is as follows.

Corollary 1 (Double Robustness of Plug-in Truncated Estimator). If P(Ω−
T ) → 0 as n → ∞, then

the estimator H̃q
T exhibits double robustness. Specifically, this means that as long as either ŵ(x) or

f̂S1
(x) is consistent, the moment estimator H̃q

T is also consistent.

Corollary 1 provides guidance on selecting ŵ(x) and f̂S1
(x) to maintain consistency when achiev-

ing the optimal estimator of f that satisfies Assumption 1 is not feasible in practice. The assumption

8
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(a) Effect of covariate shift. (b) Effect of sampling strategy. (c) Effect of function class.

Figure 2: Impact of covariate shift, sampling strategy, and function class on the error of the estimator,
measured by the L1 norm between the true and estimated values. (a) Boxplot of the error across
different levels of covariate shift intensity B, which is adjusted by fixing P◦ as truncated normal
distribution with a mean of 0.2 and altering P∗ be the same truncated normal with a shifted mean
µ to vary B while keeping b̄ constant. As B increases, the error increases and the stability of the
algorithm decreases. (b) Boxplot of the error across different levels of the upper bound b̄ of the P◦,
with fixed P∗ as uniform distribution and modifying P◦ with a hyperparameter a that vary b̄ while
keeping B constant. As b̄ increases, the error increases and the stability of the algorithm decreases.
(c) Required sample size to achieve a specified error for different smoothness levels, controlled by
hyperparameter k. A larger k indicates less smoothness, resulting in a slower convergence rate.

P(Ω−
T ) → 0 as n → ∞ indicates that the probability of the truncated region Ω−

T , diminishes as the
sample size increases, thus ensuring that the influence of extreme values becomes negligible in large
samples. It can be achieved if we follow the rule in Theorem 3.

6 NUMERICAL EXPERIMENTS

In this section, we generate synthetic data to illustrate three key factors that influence the problem
discussed in Section 4.1 , as well as the effect of truncation covered in Section 4.3. We set q = 2

and the machine learning algorithm employed to learn f̂S1
is the random forest. Each experiment is

repeated 100 times. To highlight the advantages of our proposed two-stage estimator under covariate
shift, we compare it against the Monte Carlo estimator and the one-stage estimator on both synthetic
data (Figure 3) and real-world data (Figure 5) with detailed explanations provided in Appendix C.

Covariate Shift. We set P◦ as a truncated normal distribution on [0, 1] with a mean of 0.2 and
a standard deviation of 0.3, denoted by tnorm([0, 1], 0.2, 0.3). To vary the intensity of covariate
shift, we consider the target distributions tnorm([0, 1], µ, 0.3), adjusting the mean parameter µ. We
set f(x) = 1 + x2 + 1

5 sin(16x) and select µ = 0.2, 0.4, 0.6, 0.8, with the corresponding B values
being 1.00, 3.98, 12.08, 23.03, respectively.

Sampling Strategy. We set P∗ as uniform distribution over [0, 1]. To maintain the covariate shift,
we consider source distributions with the following probability density functions:

p(x; a) = ax3 + (−24

5
− 3

2
a)x2 + (

1

2
a+

24

5
)x+

1

5
.

which ensures that B = 5. We set f(x) = 1 + x2 + 1
5 sin(16x) and select a = 0, 3, 7, 10, with the

corresponding b̄ values 1.40, 1.43, 1.53, 1.64, respectively.

Function Class. We set P∗ as tnorm([0, 1], 0.6, 0.6) and P◦ as uniform distribution over [0, 1]. To
examine the impact of the function class, we select functions f from the following class:

f(x; k) = 1 + x2 +
1

5
sin(k · x),

where increasing k leads to a less smooth function. In our analysis, we use k = 4, 16, 32, 64. To
determine the required sample size to achieve specified error levels of 0.1, 0.05, 0.01, 0.001, we start
with a sample size of 10 and increment it by 10 until the error falls below 0.001. For each specified
error level, we select the sample size for which the error is closest to the desired value.

The numerical experiments reveal that the error rates increase with the intensity of covariate shift, as
illustrated in Figure 2(a). When varying the hyperparameter B, which controls the mean shift in the

9
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Figure 3: Comparison of the Monte Carlo estimator, one-stage estimator and two-stage estimator on
synthetic data, with performance measured by the L1 norm between true and estimated values. Each
subfigure presents boxplots of the errors for different methods across varying levels of covariate shift
B. The Monte Carlo estimator performs better than the two-stage methods when there is no covariate
shift (B = 1). However, as B increases, the two-stage estimator demonstrates greater accuracy and
improved stability, highlighting its necessity under significant covariate shift.

Figure 4: Effect of truncation. Each subfigure presents boxplots of errors for both untruncated and
truncated estimators across different levels of covariate shift B. Truncation improves stability while
preserving accuracy, with its impact becoming more pronounced as B increases.

source distribution, we observe that larger shifts lead to higher error rates. This pattern is consistent
across different settings of the function class and sampling strategies, as depicted in Figures 2(b)
and (c). These findings underscore the importance of both the degree of covariate shift and the
smoothness of the function in determining model performance.

Effect of truncation.To illustrate how truncation enhances the stability of the two-stage method,
we compare the untruncated estimator from equation 1 with the truncated estimator from equation 7
using T = 1

2B. The source distribution P◦ is defined as a truncated normal distribution on [0, 1] with
mean 0.2 and standard deviation 0.3, denoted by tnorm([0, 1], 0.2, 0.3). To vary the intensity of
covariate shift, we consider the target distributions tnorm([0, 1], µ, 0.3), adjusting the mean param-
eter µ. We set f(x) = 1 + x2 + 1

5 sin(16x) and select µ = 0.4, 0.6, 0.8, resulting in corresponding
B values of 3.98, 12.08, and 23.03, respectively.
The results are presented in Figure 4, showing that truncation enhances stability while preserving
accuracy, with its effect becoming more significant as B increases.

7 CONCLUSION

In this paper, we explore how to calibrate an optimal function estimator to maintain its optimality
for moment estimation under covariate shift. Firstly, we establish the minimax lower bound for this
problem and develop an optimal two-stage algorithm when both the source and target distributions
are known. Our findings indicate that the convergence rate is influenced by three factors: the inten-
sity of covariate shift, the sampling strategy, and the properties of the function class. Furthermore,
we propose a truncated version of the estimator that ensures double robustness and provide the cor-
responding upper bound when the source and target distributions are unknown. This is important in
practice because estimating the likelihood ratio can often be unstable.

Nonetheless, several potential extensions warrant exploration. This paper utilizes the uniformly B-
bounded class; however, alternative choices, such as the moment-bounded class, are also feasible.
Additionally, our assumptions, including the constraints on the parameters p and q and the bounded
source p.d.f., may be extremely restrictive for some application scenarios. We leave the relaxation
of these assumptions for future work. Furthermore, our analysis focuses on moment functionals. A
potential direction for future research is to explore more complex functionals to investigate whether
the optimality still holds given the optimal function estimator under covariate shift.
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Rémi Flamary, Nicholas Courty, Davis Tuia, and Alain Rakotomamonjy. Optimal transport for
domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell, 1(1-40):2, 2016.

Hao Guan and Mingxia Liu. Domain adaptation for medical image analysis: a survey. IEEE Trans-
actions on Biomedical Engineering, 69(3):1173–1185, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

David Holzmüller and Francis Bach. Convergence rates for non-log-concave sampling and log-
partition estimation. arXiv preprint arXiv:2303.03237, 2023.

11



Published as a conference paper at ICLR 2025

Samory Kpotufe. Lipschitz density-ratios, structured data, and data-driven tuning. In Artificial
Intelligence and Statistics, pp. 1320–1328. PMLR, 2017.

Samory Kpotufe and Guillaume Martinet. Marginal singularity and the benefits of labels in
covariate-shift. The Annals of Statistics, 49(6):3299–3323, 2021.

David Krieg and Mathias Sonnleitner. Random points are optimal for the approximation of sobolev
functions. IMA Journal of Numerical Analysis, 44(3):1346–1371, 2024.
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A APPENDIX

A.1 PROOF OF THEOREM 1

Theorem 1 (Minimax Lower Bound on Estimating the Moment under Covariate Shift). Let Hf,q
n

denote the class of all the estimators using S = {(xi, yi = f(xi))}ni=1 to estimate the q-th moment
of f under P∗. For any given target p.d.f. p∗ ∈ {p∗ : (·, ·, p∗) ∈ V}, when p ≥ 2, q ≤ p ≤ 2q and
(f, p◦) ∈ Vp∗ := {(f, p◦) : (f, p◦, p∗) ∈ V}, it holds that

inf
Ĥq∈Hf,q

n

sup
(f,p◦)∈Vp∗

ES

[∣∣∣Ĥq(S)− Iqf

∣∣∣] ≳ B · b̄ · nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}. (2)

Proof Sketch. The primary strategy for deriving minimax lower bounds involves creating instances
from V that are similar enough to be statistically indistinguishable, while ensuring that the cor-
responding q-th moments are as distinct as possible. In this problem, we encounter two extreme
cases. The first is the rare event case, characterized by a function that has a sharp peak confined
to a specific small region and is otherwise constant. Moreover, the covariate shift accentuates this
peak’s prominence; specifically, the target distribution assigns greater probability mass to the peak
region than the source distribution. The second case involves a function that continuously oscillates
around a constant. Utilizing the construction method outlined above, we derive the result based on
the method of two fuzzy hypotheses.
Lemma 1 (Method of Two Fuzzy Hypotheses (Tsybakov, 2009)). Let F : Θ → R be some con-
tinuous functional defined on the measurable space (Θ,U) and taking values in (R,B(R)), where
B(R) denotes the Borel σ-algebra on R. Suppose that each parameter θ ∈ Θ is associated with a
distribution Pθ, which together form a collection {Pθ : θ ∈ Θ} of distributions.

For any fixed θ ∈ Θ, assume that our observation X is distributed as Pθ. Let F̂ be an arbitrary
estimator of F (θ) based on X . Let µ0, µ1 be two prior measures on Θ. Assume that there exist
constants c ∈ R, ∆ ∈ (0,∞) and β0, β1 ∈ [0, 1], such that:

µ0(θ ∈ Θ : F (θ) ≤ c−∆) ≥ 1− β0,

µ1(θ ∈ Θ : F (θ) ≥ c+∆) ≥ 1− β1.

For j ∈ {0, 1}, we use Pj(·) :=
∫
Pθ(·)µj(dθ) to denote the marginal distribution Pj associated

with the prior distribution µj . Then we have the following lower bound:

inf
F̂

sup
θ∈Θ

Pθ(|F̂ − F (θ)| ≥ ∆) ≥ 1− TV (P0||P1)− β0 − β1

2
,

where TV (· | ·) denotes the total variation (TV) distance.

Proof. We derive the minimax lower bounds established in Theorem 1 using the method of two
fuzzy hypotheses outlined above. Firstly, we introduce some notations used in our proof. Let C(Ω)
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denote the space of all continuous function f : Ω → R and ⌊·⌋ be the rounding function. For any
s > 0 and f ∈ C(Ω), we define the Hölder norm ∥ · ∥Cs(Ω) by:

∥f∥Cs(Ω) := max
|k|≤⌊s⌋

∥Dkf∥L∞(Ω) + max
|k|=⌊s⌋

sup
x,y∈Ω,x ̸=y

|Dkf(x)−Dkf(y)|
∥x− y∥s−⌊s⌋ .

The corresponding Hölder space is defined as Cs(Ω) :=
{
f ∈ C(Ω) : ∥f∥Cs(Ω) < ∞

}
. Consider

the function K0 defined as follows:

K0(x) :=

d∏
i=1

exp
(
− 1

1− x2
i

)
I(|xi| ≤ 1),∀x = (x1, x2, · · · , xd) ∈ Rd,

then we define function K(x) := K0(2x),∀x ∈ Rd. From the construction of K0 and K above,
we have that K ∈ C∞(Rd) and compactly supported on [− 1

2 ,
1
2 ]

d. The function K is used to
model the small bump. Furthermore, we partition the domain Ω into md small cubes Ω1, . . . ,Ωmd ,
each with a side length of m−1, where m = (200n)

1
d . Moreover, we use x⃗ := (x1, . . . ,xn) and

y⃗ := (y1, . . . , yn) to denote the two n-dimensional vectors formed by the sample S. With the
preliminaries established, we now present the main proof below, addressing the two different cases:

(Case I) Construct the lower bound instance: let p◦(x) be any p.d.f. that is bounded bellow by
b and above by b̄. Since

∫
Ω
p◦(x)dx =

∑md

j=1

∫
Ωj

p◦(x)dx = 1, there exists an i∗ such that
P(x : x ∈ Ωi∗) =

∫
Ωi∗

p◦(x)dx ≤ 1
md . Let p∗(x) be the p.d.f. of the uniform distribution over

[ i
∗

m , i∗

m + ( 1
B )

1
d ]d. Consider the following two functions g0 and g1:

g0(x) ≡ 0 (∀x ∈ Ω),

g1(x) =

{
b̄

1
q ·m−s+ d

pK(m(x− ci∗)) (x ∈ Ωi∗),

0 (otherwise).

This construction is commonly used in the proof of nonparametric statistics, see Chapter 15 in
Wainwright (2019). The choice of i∗ models the worst-case scenario of covariate shift. The functions
g0 and g1 are in the Ws,p(Ω), as proven in Theorem 2.1 of Blanchet et al. (2024).

Next, we compute the q-th moment under the target distribution P∗. Obviously, Iqg0 = 0, so we only
need to compute Iqg1 :

Iqg1 =

∫
Ω

B · gq1(x)dx = B · b̄ ·
∫
Ωi∗

[
m−s+ d

pK(m(x− c1))
]q

dx

= B · b̄ ·m−q(s− d
p ) ·
∫
Ωi∗

(K(y))q
1

md
dy ≳ B · b̄ ·m−q(s− d

p )−d. (11)

Construct two discrete measures µ0, µ1 supported on {g0, g1} ⊂ Ws,p(Ω) as bellow:

µ0({g0}) =
1 + ϵ

2
, µ0({g1}) =

1− ϵ

2
,

µ1({g0}) =
1− ϵ

2
, µ1({g1}) =

1 + ϵ

2
.

Take ϵ = 1
2 , c = ∆ = 1

2I
q
g1 and β0 = β1 = 1−ϵ

2 , we obtain that:

µ0(f ∈ W s,p(Ω) : Iqf ≤ c−∆) = µ0(I
q
f ≤ 0) ≥ 1 + ϵ

2
= 1− β0,

µ1(f ∈ W s,p(Ω) : Iqf ≥ c+∆) = µ1(I
q
f ≥ Iqg1) ≥

1 + ϵ

2
= 1− β1.
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We proceed to compute the mixture distribution under µ0 and µ1:

P0(x⃗, y⃗) = P(x⃗) · P0(y⃗ | x⃗) = P(x⃗) ·
∫

P(y⃗ | x⃗, θ)µ0(dθ)

=

(
n∏

i=1

p◦(xi)

)
·

1 + ϵ

2

∏
i:xi∈Ωi∗

δ0(yi) +
1− ϵ

2

∏
i:xi∈Ωi∗

δg1(xi)(yi)

 ·
∏
j ̸=i∗

 ∏
i:xi∈Ωj

δ0(yi)

 ,

P1(x⃗, y⃗) = P(x⃗) · P1(y⃗ | x⃗) = P(x⃗) ·
∫

P(y⃗ | x⃗, θ)µ1(dθ)

=

(
n∏

i=1

p◦(xi)

)
·

1− ϵ

2

∏
i:xi∈Ωi∗

δ0(yi) +
1 + ϵ

2

∏
i:xi∈Ωi∗

δg1(xi)(yi)

 ·
∏
j ̸=i∗

 ∏
i:xi∈Ωj

δ0(yi)

 ,

where δa(·) denotes the Dirac delta distribution at point a, i.e.,
∫∞
−∞ f(x)δa(x)dx = f(a) for any

function f : R → R.

Then we may compute KL divergence between P0 and P1 as bellow:

KL(P0∥P1) = E
[
log(

P0(x⃗, y⃗)

P1(x⃗, y⃗)
)P0(x⃗, y⃗)

]
= Ex⃗Ey⃗|x⃗

[
log(

P0(x⃗, y⃗)

P1(x⃗, y⃗)
)P0(x⃗, y⃗)

]
=Ex⃗

[∫ ∞

−∞
· · ·
∫ ∞

−∞
log
( 1+ϵ

2

∏
i:xi∈Ωi∗

δ0(yi) +
1−ϵ
2

∏
i:xi∈Ωi∗

δg1(xi)(yi)
1−ϵ
2

∏
i:xi∈Ωi∗

δ0(yi) +
1+ϵ
2

∏
i:xi∈Ωi∗

δg1(xi)(yi)

)

·

1 + ϵ

2

∏
i:xi∈Ωi∗

δ0(yi) +
1− ϵ

2

∏
i:xi∈Ωi∗

δg1(xi)(yi)

 ·

∏
j ̸=i∗

∏
i:xi∈Ωj

δ0(yi)

 n∏
i=1

dyi


=Ex⃗

[∫ ∞

−∞
· · ·
∫ ∞

−∞
log
( 1+ϵ

2

∏
i:xi∈Ωi∗

δ0(yi) +
1−ϵ
2

∏
i:xi∈Ωi∗

δg1(xi)(yi)
1−ϵ
2

∏
i:xi∈Ωi∗

δ0(yi) +
1+ϵ
2

∏
i:xi∈Ωi∗

δg1(xi)(yi)

)

·

1 + ϵ

2

∏
i:xi∈Ωi∗

δ0(yi) +
1− ϵ

2

∏
i:xi∈Ωi∗

δg1(xi)(yi)

 ∏
i:xi∈Ωi∗

dyi


=
(
log
(1 + ϵ

1− ϵ

)1 + ϵ

2
+ log

(1− ϵ

1 + ϵ

)1− ϵ

2

)
P
(
{i : xi ∈ Ωi∗} ≠ ∅

)
5

=ϵ log

(
1 + ϵ

1− ϵ

)
P
(
{i : xi ∈ Ωi∗} ≠ ∅

)
.

Since P(x : x ∈ Ωi∗) ≤ 1
md , it follows that:

P
(
{i : xi ∈ Ωi∗} ≠ ∅

)
= 1− P

(
{i : xi ∈ Ωi∗} = ∅

)
= 1− (1− P(x ∈ Ωi∗))

n ≤ 1− (1− 1

md
)n

≤ 1−
(
1

e
(1− 1

md
)

) 1
200

≤ 1− (2e)−
1

200 .

Then, use the Pinkser’s inequality to upper bound the TV distance between P0 and P1 as bellow:

TV (P0∥P1) ≤
√

1

2
KL(P0∥P1) ≤

√
1− (2e)−

1
200

2
ϵ log

(
1 + ϵ

1− ϵ

)
≤
√

3

100
ϵ =

√
3

10
ϵ. (12)

5Using the property of Dirac measure:
∫∞
−∞ f(x)δa(x)dx = f(a).
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Finally, combining 11 and 12, we obtain:

inf
Ĥq∈Hf,q

n

sup
(f,p◦,p∗)∈V

ES

[∣∣∣Ĥq(S)− Iqf

∣∣∣]
≥ ∆ inf

Ĥq∈Hf,q
n

sup
(f,p◦,p∗)∈V

PS

[∣∣∣Ĥq(S)− Iqf

∣∣∣ ≥ ∆
]

≥ 1

2
Iqg1

1− TV (P0||P1)− β0 − β1

2
≥ 1

4

(
1−

√
3

10

)
ϵIqg1

≳ B · b̄ · n−q( s
d−

1
p )−1, (13)

which is the first term in the RHS of equation 2.

(Case II) We proceed to construct the second lower bound instance: let p◦(x) and p∗(x) be the p.d.f.
of the uniform distribution over [0, 1]d. For any 1 ≤ j ≤ md, consider fj defined as follows:

fj(x) =

{
m−sK(m(x− cj)) (x ∈ Ωj),
0 (otherwise),

we further pick two constants α,M satisfying α := ∥K∥L∞([− 1
2 ,

1
2 ]

d) and M = 3α. Now consider

the following finite set of 2m
d

functions:

F :=
{
(Bb̄)

1
q · (M +

md∑
j=1

ηjfj) : ηj ∈ {±1}, ∀1 ≤ j ≤ md
}
.

Any function in F belongs to Ws,p(Ω) as proven in Theorem 2.1 of Blanchet et al. (2024).

Next, construct two discrete measure µ0, µ1 supported on F whose p.m.f. has the following form:

µk

({
(Bb̄)

1
q · (M +

md∑
j=1

ηjfj)
})

=

md∏
j=1

P(w(k)
j = ηj), k ∈ {0, 1}.

Where {w(0)
j }md

j=1 and {w(1)
j }md

j=1 are independent and identical copies of w 1+κ
2

and w 1−κ
2

respec-

tively, we take κ = 1
3

√
2
3n . Here wp denote Radmacher random variable satisfying P(wp = −1) =

p and P(wp = 1) = 1− p.

In order to determine the separation between two priors µ0 and µ1, we need to derive the con-
centration inequality of each prior first. Define A :=

∫
Ωj

Bb̄ · (M + fj(x))
qdx and C :=∫

Ωj
Bb̄ · (M − fj(x))

qdx, we may derive the lower bound on the quantity ∆′ := A− C > 0:

∆′ =

∫
Ωj

Bb̄ · (M + fj(x))
qdx−

∫
Ωj

Bb̄ · (M − fj(x))
qdx

= Bb̄ ·
∫
Ωj

(∫ fj(x)

−fj(x)

q(M + y)q−1dy
)
dx ≥ Bb̄ ·

∫
Ωj

(∫ fj(x)

−fj(x)

q(
1

2
M)q−1dy

)
dx

= Bb̄ · q

2q−1
Mq−1

∫
Ωj

(
2fj(x)

)
dx ≳ Bb̄ ·

∫
Ωj

fj(x)dx

= Bb̄ ·
∫
Ωj

m−sK(m(x− cj))dx = Bb̄ ·m−s−d∥K∥L1([− 1
2 ,

1
2 ]

d). (14)

Moreover, let’s set λ = 1
2 and apply Hoeffding’s Inequality to the bounded random variables

{w(0)
j }md

j=1 and {w(1)
j }md

j=1 to deduce that:

P
( md∑

j=1

w
(0)
j ≥ −(1− λ)mdκ

)
≤ exp

(
− 2(λmdκ)2

4md

)
= exp

(
− 1

2
λ2κ2md

)
,

P
( md∑

j=1

w
(1)
j ≤ (1− λ)mdκ

)
≤ exp

(
− 2(λmdκ)2

4md

)
= exp

(
− 1

2
λ2κ2md

)
.

16
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By picking c := md

2 (A + C), ∆ := (1 − λ)κmd∆′ and β0 = β1 = exp(− 1
2λ

2κ2md), we may
deduce that:

µ0(f ∈ Ws,p(Ω) : Iqf ≤ c−∆)

=P
( md∑

j=1

Iq

(Bb̄)
1
q (M+w

(0)
j fj)

≤ 1− (1− λ)κ

2
mdA+

1 + (1− λ)κ

2
mdC

)

≥P
( md∑

j=1

w
(0)
j ≤ −(1− λ)mdκ

)
= 1− P

( md∑
j=1

w
(0)
j ≥ −(1− λ)mdκ

)
≥1− exp

(
−1

2
λ2κ2md

)
= 1− β0,

µ1(f ∈ Ws,p(Ω) : Iqf ≥ c+∆)

=P
( md∑

j=1

Iq

(Bb̄)
1
q (M+w

(1)
j fj)

≥ 1 + (1− λ)κ

2
mdA+

1− (1− λ)κ

2
mdC

)

≥P
( md∑

j=1

w
(1)
j ≥ (1− λ)mdκ

)
= 1− P

( md∑
j=1

w
(0)
j ≤ (1− λ)mdκ

)
≥1− exp

(
−1

2
λ2κ2md

)
= 1− β1,

We proceed to compute the mixture distribution under µ0 and µ1:

P0(x⃗, y⃗) = P(x⃗) · P0(y⃗ | x⃗) = P(x⃗) ·
∫

P(y⃗ | x⃗, θ)µ0(dθ)

=

(
n∏

i=1

p◦(xi)

)
·
md∏
j=1

(1 + κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1− κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M+fj(xi))

(yi)
)
,

P1(x⃗, y⃗) = P(x⃗) · P1(y⃗ | x⃗) = P(x⃗) ·
∫

P(y⃗ | x⃗, θ)µ1(dθ)

=

(
n∏

i=1

p◦(xi)

)
·
md∏
j=1

(1− κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1 + κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M+fj(xi))

(yi)
)
.

Denote Jn as the set of all indices j satisfying that Ωj contains at least one of the points in {xi}ni=1:

Jn := Jn(x1, · · · ,xn) =
{
j : 1 ≤ j ≤ md and Ωj ∩ {x1, · · · ,xn} ≠ ∅

}
.
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Since md = 200n > n, we have |Jn| ≤ n. Thus, KL divergence can be upper bounded by:

KL(P0∥P1) = E
[
log(

P0(x⃗, y⃗)

P1(x⃗, y⃗)
)P0(x⃗, y⃗)

]
= Ex⃗Ey⃗|x⃗

[
log(

P0(x⃗, y⃗)

P1(x⃗, y⃗)
)P0(x⃗, y⃗)

]

= Ex⃗

[ ∫ ∞

−∞
· · ·
∫ ∞

−∞
log
( md∏

j=1

1+κ
2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1−κ
2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M+fj(xi))

(yi)

1−κ
2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1+κ
2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M+fj(xi))

(yi)

)

·
md∏
j=1

1 + κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1− κ

2

∏
i:xi∈Ωj

δM+fj(xi))(yi)

 n∏
i=1

dyi

]

= Ex⃗

[ ∑
j∈Jn

∫ ∞

−∞
· · ·
∫ ∞

−∞
log
( 1+κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1−κ
2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M+fj(xi))

(yi)

1−κ
2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1+κ
2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q )(M+fj(xi))

(yi)

)

·

1 + κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M−fj(xi))

(yi) +
1− κ

2

∏
i:xi∈Ωj

δ
(Bb̄)

1
q (M+fj(xi))

(yi)

 ∏
i:xi∈Ωj

dyi

]
= Ex⃗

[
|Jn|

(
log

(
1 + κ

1− κ

)
1 + κ

2
+ log

(
1− κ

1 + κ

)
1− κ

2

)]
≤ nκ log

(
1 + κ

1− κ

)
.

Use the Pinkser’s inequality to upper bound TV distance between P0 and P1 further:

TV (P0∥P1) ≤
√

1

2
KL(P0∥P1) ≤

√
nκ

2
log

(
1 + κ

1− κ

)
≤
√

3n

2
κ =

1

3
. (15)

Finally, let ∆ = (1 − λ)κmd∆′ and β0 = β1 = exp(− 1
2λ

2κ2md) = exp(− 50
27 ) <

1
6 . Combining

14 and 15, we obtain the final lower bound:

inf
Ĥq∈Hf,q

n

sup
(f,p◦,p∗)∈V

E{xi}n
i=1,{yi}n

i=1

[∣∣∣Ĥq
(
{xi}ni=1, {yi}ni=1

)
− Iqf

∣∣∣]
≥ ∆ inf

Ĥq∈Hf,q
n

sup
(f,p◦,p∗)∈V

P{xi}n
i=1,{yi}n

i=1

[∣∣∣Ĥq
(
{xi}ni=1, {yi}ni=1

)
− Iqf

∣∣∣ ≥ ∆
]

≥ (1− λ)κmd∆′Iqg1
1− TV (P0||P1)− β0 − β1

2

≳ B · b̄ · n− s
d−

1
2 . (16)

Combing the two lower bounds established in 13 and 16 completes the proof of Theorem 1.

A.2 PROOF OF THEOREM 2

Theorem 2 (Upper Bound on Moment Estimation with Smoothness). Assume that p ≥ 2, q ≤
p ≤ 2q and s

d > 1
p − 1

2q . Let (f, p◦, p∗) ∈ V(b, b̄, B, s, p) and we have sample S = {(xi, yi =

f(xi))}ni=1. If f̂S1 satisfies the Assumption 1, then the estimator Ĥq
B constructed in equation 3

above satisfies
ES

[∣∣∣Ĥq
B(S)− Iqf

∣∣∣] ≲ B · b̄ · nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}. (5)

We begin with the key lemma used in the proof.
Lemma 2 (Sobolev Embedding Theorem). For some fixed dimension d ∈ N, we have that:

(I) For any s, t ∈ N0 and p, q ∈ R satisfying s > t, p < d and 1 ≤ p < q ≤ ∞, we have
Ws,p(Rd) ⊆ Wt,q(Rd) when the relation 1

p −
s
d = 1

q −
t
d holds. In the special case when t = 0, we

have Wt,q(Rd) ⊆ Lq(Rd) for any s ∈ N and p, q ∈ R satisfying 1 ≤ p < q ≤ ∞ and 1
p − s

d ≤ 1
q .

(II) For any α ∈ (0, 1), let β = d
1−α ∈ (d,∞]. Then we have C1(Rd) ∩W1,β(Rd) ⊆ Cα(Rd).

18



Published as a conference paper at ICLR 2025

Proof. Firstly, decompose the mean square error ES

[∣∣∣Ĥq
B(S)− Iqf

∣∣∣2] into bias part∣∣∣ES [Ĥ
q
B(S)]− Iqf

∣∣∣2 and variance part ES

[∣∣∣Ĥq
B(S)− ES [Ĥ

q
B(S)]

∣∣∣2].

Estimator Ĥq
B(S) is unbias for Iqf , so the bias part is zero:

ES

[
Ĥq

B(S)
]
= EX∼P∗

[
f̂q
S1
(X)

]
+

2

n

∑
(xi,yi)∈S2

E
[
w(xi) · (yqi − f̂q

S1
(xi))

]
= EX∼P∗

[
f̂q
S1
(X)

]
+

∫
Ω

p∗(x)

p◦(x)
·
[
f(x)q − f̂q

S1
(x)
]
· p◦(x)dx

= EX∼P∗

[
f̂q
S1
(X)

]
+ EX∼P∗

[
fq(X)− f̂q

S1
(X)

]
= EX∼P∗ [fq(X)] = Iqf .

Using the law of total variance to decompose the variance part further:

Var
[
Ĥq

B(S)
]
= E

[
Var
(
Ĥq

B(S) | S1

)]
+ Var

[
E
(
Ĥq

B(S) | S1

)]
.

Since E
(
Ĥq

B(S) | S1

)
= Iqf , the second part is zero. So we only need to compute the first part.

E
[
Var
(
Ĥq

B(S) | S1

)]
= E

Var

 2

n

∑
(xi,yi)∈S2

w(xi) · (yqi − f̂q
S1
(xi)) | S1


=

2

n
E
[
Var
(
w(X) · (fq(X)− f̂q

S1
(X)) | S1

)]
≤ 2

n
ES1

[
ES2|S1

(
w(X) · (fq(X)− f̂q

S1
(X))

)2]
≤ 2

n
B2 · ES1

[
ES2|S1

(
fq(X)− f̂q

S1
(X)

)2]
. (17)

Following the proof in Blanchet et al. (2024), we further upper bound the expression

ES1

[
ES2|S1

(
fq(X)− f̂q

S1
(X)

)2]
. Let gS1

:= f̂S1
− f represent the difference between the

estimator f̂S1 and underlying function f .

ES1

[
ES2|S1

(
fq(X)− f̂q

S1
(X)

)2]
≤ b̄ · ES1

[∫
Ω

(
fq(x)− f̂q

S1
(x)
)2

dx

]
=b̄ · ES1

[∫
Ω

((f(x) + gS1(x))
q − fq(x)q)

2
dx

]

=b̄ · ES1

∫
Ω

(∫ gS1
(x)

0

q(f(x) + y)q−1dy

)2

dx


≤b̄ · ES1

[∫
Ω

∣∣∣∣∣
∫ gS1

(x)

0

1dy

∣∣∣∣∣ ·
∣∣∣∣∣
∫ gS1

(x)

0

q2(f(x) + y)2q−2dy

∣∣∣∣∣ dx
]

(Hölder’s Inequality)

≲b̄ · ES1

[∫
Ω

|gS1(x)| · |gS1(x)|max
{∣∣f2q−2(x)

∣∣ , ∣∣∣g2q−2
S1

(x)
∣∣∣} dx

]
≲b̄ · ES1

[∫
Ω

∣∣∣g2qS1
(x)
∣∣∣ dx]+ b̄ · ES1

[∫
Ω

∣∣g2S1
(x)f2q−2(x)

∣∣ dx] . (18)
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Let’s further upper bound the two terms in 18. For the first term, since s
d > 1

p − 1
2q , we may apply

equation 4 from Assumption 1 by choosing r = 2q. This leads to the following deduction:

ES1

[∫
Ω

∣∣∣g2qS1
(x)
∣∣∣ dx] = ES1

[
∥f̂S1

− f∥2qL2q(Ω)

]
≲ b̄ · ((n

2
)−

s
d+( 1

p−
1
2q )+)2q ≲ b̄ · n2q(− s

d+
1
p−

1
2q ) = b̄ · n2q( 1

p−
s
d )−1 (since p ≤ 2q). (19)

Now, we proceed to upper bound the second term in equation 18. Here we define p⋄ := (max{ 1
p −

s
d , 0})

−1, that is, p⋄ = pd
d−sp when s < d

p and p⋄ = ∞ otherwise. By the Sobolev Embedding
Theorem, we have Ws,p(Ω) ⊆ Lp⋄(Ω). There are three distinct cases to consider based on the
smoothness parameter s.

(Case I) When s ∈ (dp ,∞), we have p⋄ = ∞ which implies that f ∈ Ws,p(Ω) ⊆ L∞(Ω). Similarly,

by Assumption 1, f̂S1 is also in the Sobolev space Ws,p(Ω) ⊆ L∞(Ω). Therefore, the difference
gS1

= f̂S1
− f ∈ Ws,p(Ω) ⊆ L∞(Ω) ⊆ L2(Ω). By picking r = 2 in 4 of Assumption 1, and

utilizing the facts that p ≥ 2 and f ∈ L∞(Ω), we can deduce that:

ES1

[∫
Ω

∣∣g2S1
(x)f2q−2(x)

∣∣ dx] ≲ ES1

[∫
Ω

∣∣g2S1
(x)
∣∣ dx] (Hölder’s Inequality)

=ES1

[
∥f̂S1 − f∥2L2(Ω)

]
≲ b̄ ·

(
n− s

d+( 1
p−

1
2 )+
)2

= b̄ · n− 2s
d . (20)

(Case II) When s ∈ (d(2q−p)
p(2q−2) ,

d
p ), it follows that

p⋄ =
pd

d− sp
>

pd

d− pd(2q−p)
p(2q−2)

=
p(2q − 2)

p− 2
,

which implies f ∈ Ws,p(Ω) ⊆ Lp⋄(Ω) ⊆ L
p(2q−2)

p−2 (Ω) ⊆ Lp(Ω). Since p
p−2 > 1, it follows that

f2q−2 ∈ L
p

p−2 (Ω). Moreover, since f̂S1
∈ Ws,p(Ω) ⊆ Lp(Ω), we obtain gS1

= f̂S1
− f ∈ Lp(Ω).

Given that p ≥ 2, we can further deduce that g2S1
∈ L

p
2 (Ω). We may then apply Hölder’s Inequality

to obtain:

ES1

[∫
Ω

∣∣g2S1
(x)f2q−2(x)

∣∣ dx] = ES1

[
∥g2S1

(x)f2q−2(x)∥L1(Ω)

]
≤ES1

[
∥g2S1

(x)∥L p
2 (Ω)

∥f2q−2(x)∥
L

p
p−2 (Ω)

]
(Hölder’s Inequality)

≤∥f(x)∥2q−2

L
p(2q−2)

p−2 (Ω)

· ES1

[
∥gS1

(x)∥2Lp(Ω)

]
.

Note that the function h(t) = t
2
p is concave and 1

p ∈ (d−sp
pd , 1] when p ≥ 2. Thus, by applying

Jensen’s inequality and choosing r = p in 4 of Assumption 1, we can upper bound the last term as
follows:

ES1

[
∥gS1(x)∥2Lp(Ω)

]
= ES1

[(
∥gS1(x)∥L p

2 (Ω)

) 2
p

]
≤ES1

[
∥gS1

(x)∥pLp(Ω)

] 2
p

= ES1

[
∥f̂S1

x− f(x)∥pLp(Ω)

] 2
p

(Jensen’s inequality)

≲b̄ ·
(
(
n

2
)−

s
d+( 1

p−
1
p )+
)2

≲ b̄ · n− 2s
d .

This gives us the final upper bound under the assumption that s ∈ (d(2q−p)
p(2q−2) ,

d
p ) as follows:

ES1

[∫
Ω

∣∣g2S1
(x)f2q−2(x)

∣∣ dx] ≲ b̄ · n− 2s
d . (21)
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(Case III) When s ∈ (d(2q−p)
2pq , d(2q−p)

p(2q−2) ), we have s < d
p , which implies that p⋄ = pd

d−sp satisfies

2q < p⋄ < p(2q−2)
p−2 . Given that p⋄ > 2q > 2q − 2 and f ∈ Ws,p(Ω) ⊆ Lp⋄(Ω), it follows that

f2q−2 ∈ L
p⋄

2q−2 (Ω). Moreover, since p⋄ > 2q, we have 2p⋄
p⋄+2−2q < p⋄. Additionally, because

p⋄ < p(2q−2)
p−2 , it follows that 2p⋄

p⋄+2−2q > p.

Given that both f̂S1
and f are in the Sobolev space Ws,p(Ω) ⊆ Lp⋄(Ω), it follows that gS1

=

f̂S1
− f ∈ Ws,p(Ω) ⊆ Lp⋄(Ω) ⊆ L

2p⋄
p⋄+2−2q (Ω). Since q ≥ 1 ⇒ p⋄

p⋄+2−2q ≥ 1, we have g2S1
∈

L
p⋄

p⋄+2−2q (Ω). We can then apply Hölder’s Inequality to obtain:

ES1

[∫
Ω

∣∣g2S1
(x)f2q−2(x)

∣∣ dx] = ES1

[
∥g2S1

(x)f2q−2(x)∥L1(Ω)

]
≤ES1

[
∥g2S1

(x)∥
L

2p⋄
p⋄+2−2q (Ω)

∥f2q−2(x)∥
L

p⋄
2q−2 (Ω)

]
(Hölder’s Inequality)

≤∥f(x)∥2q−2
Lp⋄ (Ω) · ES1

[
∥gS1

(x)∥2
L

2p⋄
p⋄+2−2q (Ω)

]
.

Note that the function h(t) = t
p⋄+2−2q

p⋄ is concave since q ≥ 1. Furthermore, given the assumption
s ∈ (d(2q−p)

2pq , d(2q−p)
p(2q−2) ) we have pd

d−sp > 2q. This implies:

p⋄ + 2− 2q

2p⋄
=

pd
d−sp + 2− 2q

2 pd
d−sp

>
2

2 pd
d−sp

=
d− sp

pd
,

i.e., p⋄+2−2q
p[⋄]

∈ (d−sp
pd , 1]. Hence, we may apply Jensen’s inequality and 4 in Assumption 1 to upper

bound the last term:

ES1

[
∥gS1

(x)∥2
L

2p⋄
p⋄+2−2q (Ω)

]
= ES1

[(
∥gS1

(x)∥
2p⋄

p⋄+2−2q

L
2p⋄

p⋄+2−2q (Ω)

) p⋄+2−2q
p⋄

]

≤ ES1

[(
∥gS1

(x)∥
2p⋄

p⋄+2−2q

L
2p⋄

p⋄+2−2q (Ω)

)] p⋄+2−2q
p⋄

= ES1

[(
∥f̂S1

(x)− f(x)∥
2p⋄

p⋄+2−2q

L
2p⋄

p⋄+2−2q (Ω)

)] p⋄+2−2q
p⋄

≲ b̄ ·
(
(
n

2
)−

s
d+( 1

p−
p⋄+2−2q

2p⋄ )+
)2

≲ b̄ · n− 2s
d +2( 1

p−
p⋄+2−2q

2p⋄ )+ .

Recalled that we have proved that p⋄ ∈ (2q, p(2q−2)
p−2 ), this implies that p⋄(p − 2) < p(2q − 2) ⇒

2p⋄ > p(p⋄ + 2− 2q), i.e., 1
p > p⋄+2−2q

2p⋄
. Then we may simplify the last term above as follows:

−2s

d
+ 2

(
1

p
− p⋄ + 2− 2q

2p⋄

)
+

= −2s

d
+

2

p
−
(
1 +

2

p⋄
− 2q

p⋄

)
=

2q

p⋄
− 1 = 2q

(
1

p
− s

d

)
− 1.

This gives us the final upper bound under the assumption that s ∈ (d(2q−p)
2pq , d(2q−p)

p(2q−2) ) as follows:

ES1

[∫
Ω

∣∣g2S1
(x)f2q−2(x)

∣∣ dx] ≲ b̄ · n2q( 1
p−

s
d )−1. (22)

Combining the upper bounds derived in 19 20, 21 and 22 we may deduce that:

ES1

[
ES2|S1

(
fq(X)− f̂q

S1
(X)

)2]
≲ b̄2 ·

[
n2q( 1

p−
s
d )−1 +max{n− 2s

d , n2q( 1
p−

s
d )−1}

]
. (23)

Finally, substituting 23 into 17 gives us the final upper bound:

ES

[∣∣∣Ĥq
B(S)− Iqf

∣∣∣]
≤

√
ES

[∣∣∣Ĥq
B(S)− Iqf

∣∣∣2] =√E
[
Var
(
Ĥq

B(S) | S1

)]
≲ B · b̄ · nmax{−q( s

d−
1
p )−1,− 1

2−
s
d}
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A.3 PROOF OF THEOREM 3

Theorem 3 (B-independent Bound). Denote Ω−
T := {x : w(x) > T} as the area where the like-

lihood ratio exceeds the threshold T , and let P(Ω−
T ) = g(T ) denote the probability of this event.

Under the conditions in Theorem 2, the upper bound for the variance and bias of the truncated
estimator 7 are given as follows:

Bias =
∣∣∣E(Ĥq

T )− Iqf

∣∣∣ ≤ b̄ · P(Ω−
T ),

V ariance = E
[
Ĥq

T − E(Ĥq
T )
]2

≤ b̄2 · T 2 · r(n)2 + b̄2 · P(Ω−
T )

2.

If we further assume that g(T ) ≤ T−α, and pick T = O(r(n)−
1

α+1 )6, then we obtain the following
B-independent bound:

ES

[∣∣∣Ĥq
T (S)− Iqf

∣∣∣] ≲ b̄ · r(n)
α

α+1 , (8)

where r(n) = nmax{−q( s
d−

1
p )−1,− 1

2−
s
d} is the same order in Theorem 2.

Proof. Decompose the mean square error ES

[∣∣∣Ĥq
T (S)− Iqf

∣∣∣2] into bias part
∣∣∣ES [Ĥ

q
T (S)]− Iqf

∣∣∣2
and variance part ES

[∣∣∣Ĥq
T (S)− ES [Ĥ

q
T (S)]

∣∣∣2].

We first compute E
[
Ĥq

T (S) | S1

]
. Recall that Ω+

T := {x : w(x) ≤ T} and Ω−
T = Ω/Ω+

T , then we
may deduce that:

E
[
Ĥq

T (S) | S1

]
= EX∼P∗

[
f̂q
S1
(X)

]
+

∫
Ω

τT (w(x)) · (fq(x)− f̂q
S1
(x)) · p◦(x)dx

=EX∼P∗

[
f̂q
S1
(X)

]
+

∫
Ω+

T

p∗(x) · (fq(x)− f̂q
S1
(x))dx+

∫
Ω−

T

T · p◦(x) · (fq(x)− f̂q
S1
(x))dx

=

∫
Ω+

T

p∗(x) · fq(x)dx+

∫
Ω−

T

p∗(x) · f̂q
S1
(x)dx+

∫
Ω−

T

T · p◦(x) · (fq(x)− f̂q
S1
(x))dx. (24)

We proceed to compute the bias term:

Bias =
∣∣∣E [E[Ĥq

T | S1]
]
− Iqf

∣∣∣
=

∣∣∣∣∣ES1

[∫
Ω−

T

p∗(x)f̂q
S1
(x)dx+

∫
Ω−

T

Tp◦(x) · (fq(x)− f̂q
S1
(x))dx−

∫
Ω−

T

p∗(x)fq(x)dx

]∣∣∣∣∣
=ES1

[∫
Ω−

T

(p∗(x)− T · p◦(x)) · (fq(x)− f̂q
S1
(x))dx

]
(Since w(x) > T in Ω−

T )

=ES1

[∫
Ω−

T

p◦(x) · (w(x))− T ) · (fq(x)− f̂q
S1
(x))dx

]

≤ES1

[∫
Ω−

T

p◦(x) · w(x) · (fq(x)− f̂q
S1
(x))dx

]

=ES1

[∫
Ω−

T

p∗(x) · (fq(x)− f̂q
S1
(x))dx

]
≲ES1

[
P(Ω−

T )
]

(Since f̂S1 and f are in Lq(P∗))

≤b̄ · P(Ω−
T ). (25)

Using the law of total variance to decompose the variance part further:

Var
[
Ĥq

T (S)
]
= E

[
Var
(
Ĥq

T (S) | S1

)]
+ Var

[
E
(
Ĥq

T (S) | S1

)]
.
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The first term can be upper bound by:

E
[
Var
(
Ĥq

T (S) | S1

)]
=

2

n
E
[
Var
(
τT (w(X)) · (fq(X)− f̂q

S1
(X)) | S1

)]
≤ 2

n
ES1

[
ES2|S1

(
τT (w(X)) · (fq(X)− f̂q

S1
(X))

)2]
≤ 2

n
T 2 · ES1

[
ES2|S1

(
fq(X)− f̂q

S1
(X)

)2]
≲
[
T · b̄ · r(n)

]2
. (26)

Substitute equation 24 in the second term:

Var
[
E
(
Ĥq

T (S) | S1

)]
=Var

[∫
Ω−

T

(p∗(x)− T · p◦(x)) · f̂q
S1
(x)dx

]

≤ES1

[∫
Ω−

T

(p∗(x)− T · p◦(x)) · f̂q
S1
(x)dx

]2
≲ES1

[
P(Ω−

T )
2
]

≤
[
b̄ · P◦(Ω−

T )
]2

. (27)

The last term follows from the proof of Theorem 2, where r(n) = nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}.

Finally, combining the results 25, 26 and 27 above, we obtain the final upper bound:

ES

[∣∣∣Ĥq
T (S)− Iqf

∣∣∣] ≤√ES

[∣∣∣Ĥq
T (S)− Iqf

∣∣∣2] =√∣∣∣ES [Ĥ
q
T (S)]− Iqf

∣∣∣2 + Var
(
Ĥq

T (S)
)

≲
√[

b̄ · P(Ω−
T )
]2

+
[
T · b̄ · r(n)

]2
+
[
b̄ · P(Ω−

T )
]2

Furthermore, if P(Ω−
T ) ≤ T−α, by taking T = O(r(n)−

1
α+1 ), we obtain the following result:

ES

[∣∣∣Ĥq
T (S)− Iqf

∣∣∣] ≲ b̄ · r(n)
α

α+1 .

A.4 PROOF OF THEOREM 4

Theorem 4 (Convergence Rate of Plug-in Truncated Estimator). Under the same assumptions in
Theorem 3, the convergence rate of the plug-in truncated estimator H̃q

T is:

E
[∣∣∣H̃q

T (S ∪ S ′)− Iqf

∣∣∣] ≲ E
[∣∣∣Ĥq

T (S)− Iqf

∣∣∣]+m− 1
2 . (10)
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Proof. Decompose the error of H̃q
T via the intermediate estimator Ĥq

T :

ES∪S′

[∣∣∣H̃q
T − Iqf

∣∣∣] = ES∪S′

[∣∣∣H̃q
T − Ĥq

T + Ĥq
T − Iqf

∣∣∣]
≤ES∪S′

[∣∣∣H̃q
T − Ĥq

T

∣∣∣]+ ES∪S′

[∣∣∣Ĥq
T − Iqf

∣∣∣]
≤ES∪S′

∣∣∣∣∣∣ 2n
∑

(xi,yi)∈S2

(τT (ŵ(xi))− τT (w(xi))) · (yqi − f̂q
S1
(xi))

∣∣∣∣∣∣


︸ ︷︷ ︸
additional error for estimating w(x)

+

ES∪S′

[∣∣∣∣∣ 1m
m∑
i=1

f̂q
S1
(x′

i)− EX∼P∗ [f̂q
S1
(X)]

∣∣∣∣∣
]

︸ ︷︷ ︸
Monte Carlo simulation error

+ ES∪S′

[∣∣∣Ĥq
T − Iqf

∣∣∣]︸ ︷︷ ︸
error of the case when w(x) is known

.

The first term represents the additional error due to estimating the likelihood ratio w(x). The second
term accounts for the Monte Carlo simulation error in estimating EX∼P∗ [f̂q

S1
(X)] using m unla-

beled data S ′ form target domain, with a convergence rate O(m− 1
2 ). The third term corresponds to

the estimation error of Ĥq
T as discussed in Theorem 3.

The convergence rates of the second and third terms have been previously addressed; thus, we only
need to focus on the first term. Note that the first term can be upper bounded by:

ES∪S′

∣∣∣∣∣∣ 2n
∑

(xi,yi)∈S2

(τT (ŵ(xi))− τT (w(xi))) · (yqi − f̂q
S1
(xi))

∣∣∣∣∣∣


≤2T · ES∪S′

[∣∣∣fq(x)− f̂q
S1
(x)
∣∣∣]

≤2T ·

√
ES∪S′

[(
fq(x)− f̂q

S1
(x)
)2]

,

which is upper bound by the variance term in Theorem 3. Thus, the convergence rate of H̃q
T is:

E
[∣∣∣H̃q

T (S ∪ S ′)− Iqf

∣∣∣] ≲ E
[∣∣∣Ĥq

T (S)− Iqf

∣∣∣]+m− 1
2 .

A.5 PROOF OF COROLLARY 1

Corollary 1 (Double Robustness of Plug-in Truncated Estimator). If P(Ω−
T ) → 0 as n → ∞, then

the estimator H̃q
T exhibits double robustness. Specifically, this means that as long as either ŵ(x) or

f̂S1
(x) is consistent, the moment estimator H̃q

T is also consistent.

Proof. The case when f̂S1
(x) is consistent has been discussed in Theorem 3, so we only need to

consider the case when ŵ(x) is consistent. Decompose the error as follows:

ES∪S′

[∣∣∣H̃q
T − Iqf

∣∣∣] =E

∣∣∣∣∣∣ 1m
m∑
i=1

f̂q
S1
(x′

i) +
2

n

∑
(xi,yi)∈S2

τT (ŵ(xi)) · (yi − f̂q
S1
(xi))− Iqf

∣∣∣∣∣∣


≤ES∪S′

∣∣∣∣∣∣ 2n
∑

(xi,yi)∈S2

τT (ŵ(xi)) · fq(xi)− Iqf

∣∣∣∣∣∣
+

ES∪S′

∣∣∣∣∣∣ 1m
m∑
i=1

f̂q
S1
(x′

i)−
2

n

∑
(xi,yi)∈S2

τT (ŵ(xi)) · f̂q
S1
(xi)

∣∣∣∣∣∣
 .
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Algorithm 2 Stabilized Algorithm for Unknown Likelihood Ratios
1: Input: labeled data: S = {(xi, yi = f(xi))}ni=1, unlabeled data: S ′ = {x′

i}mi=1.
2: Use S and S ′ to construct ancillary sample SC = {(xi, 0)}ni=1 ∪ {(x′

i, 1)}mi=1.
3: Use ancillary sample SC to train a classifier, and then compute the likelihood ratio estimator

ŵ(x) as given in equation 29.
4: Randomly split S into two parts S1 = {(xi, yi)}

n
2
i=1 and S2 = {(xi, yi)}ni=n

2 +1.

5: Train a machine learning model on S1 to obtain f̂S1
(x).

6: Use S ′ and S2 to estimate the Iqf based on equation 9.
7: Output: q-th moment under target: Iqf .

If ŵ(x) is consistent and P(Ω−
T ) → 0 as n → ∞, then τT (ŵ(x)) is a consistent estimator of w(x).

Let →p denote convergence in probability. It holds that:

2

n

∑
(xi,yi)∈S2

τT (ŵ(xi)) · fq(xi) →p EX∼P∗ [fq(X)],

1

m

m∑
i=1

f̂q
S1
(x′

i) →p EX∼P∗ [f̂q
S1
(X)],

2

n

∑
(xi,yi)∈S2

τT (ŵ(xi)) · f̂q
S1
(xi) →p EX∼P∗ [f̂q

S1
(X)].

Therefore,

H̃q
T (S ∪ S ′) →p Iqf .

A.6 STABILIZED ALGORITHM FOR UNKNOWN LIKELIHOOD RATIOS

The stabilized algorithm for unknown likelihood ratios proposed in Section 5 is summarised in
Algorithm 1.

A.7 ESTIMATE OF THE LIKELIHOOD RATIO

The most straightforward approach is to use the unlabeled source and target data to estimate p̂◦

and p̂∗, respectively, and then compute the likelihood ratio ŵ = p̂∗

p̂◦ . But the intermediate step of
estimating p̂◦ and p̂∗ may introduce additional errors and affect the robustness of the estimation
process. Therefore, it is crucial to develop methods that allow us to estimate w(x) directly from the
data without relying on these intermediate density estimators. To achieve this, we introduce a latent
label Z ∈ {0, 1} to indicate whether a sample is from the target distribution (Z = 1) or the source
distribution (Z = 0). This formulation allows us to express the likelihood ratio as:

w(X) =
p∗(X)

p◦(X)
=

P(X | Z = 1)

P(X | Z = 0)
=

P(Z = 1 | X)

P(Z = 0 | X)
· P(Z = 0)

P(Z = 1)
, (28)

where e(x) = P(Z = 1 | X = x) is known as the propensity score. With data {(xi, zi))}ni=1 and
{(x′

i, zi))}mi=1, we can estimate P(Z = 1) and P(Z = 0) with m
m+n and n

m+n , respectively. To
estimate the propensity score, we can apply a classification model that distinguishes between source
and target samples. The propensity score estimator, denoted as ŵ(x), represents the estimated
probability that a sample with feature x belongs to the target distribution. Using the estimated
propensity score, we can derive the plug in estimator of the likelihood ratio as follows:

ŵ(x) =
ê(x)

1− ê(x)
· n

m
. (29)

25



Published as a conference paper at ICLR 2025

B APPENDIX

B.1 DISCUSSION ABOUT THE MOTIVATION

Generally speaking, many high-stakes areas are interested in estimating the q-th moment of an un-
known function, as higher-order moments are often essential for capturing risk-related characteris-
tics in real-world applications beyond the first-order moment. For example,

• in finance, investors are interested in the shape of the asset’s return (which is an unknown
function of the factors) distribution, especially its skewness and kurtosis. These higher-
order moments help investors assess the risk characteristics of an asset, particularly extreme
risks (tail risks) and asymmetric risks. Moreover, covariate shift is commonly observed
among factors across different industries.

• in medical fields, we need to monitor the volatility (variance) of certain patient metrics to
identify high-risk patients, which requires multiple measurements. However, measuring
these indicators for rare diseases (e.g. Alzheimer’s disease) is very costly. Fortunately,
this metric is a function of other, more easily accessible indicators, so we can estimate
this function by collecting data on those indicators. Moreover, covariate shift is commonly
observed across different population.

• In classical causal inference (Ding, 2024), The average treatment effect on the treated
(ATT) is defined as E [Y (1)− Y (0) | T = 1], where Y (1) and Y (0) represent the potential
outcomes under treatment (T = 1) and control (T = 0). These potential outcomes are un-
known functions of the covariate X . The difficulty is to estimate E [Y (0) | T = 1] which
can be written as:

E [Y (0) | T = 1] =EX|T=1

{
EY |X,T=1 [Y (0) | T = 1]

}
=EX|T=1 [m0(X)] .

But we only have sample
{(

y
(0)
i ,xi

)}n0

i=1
, where xi ∼ PX|T=0.

Due to the broad applicability of these scenarios, we have unified these questions within the frame-
work of estimating the q-th moment of an unknown function under covariate shift.

B.2 DISCUSSION ABOUT THE ADDITIONAL ASSUMPTION IN THEOREM 3

Insights into source/target distribution pairs that satisfy g(T ) ≤ T−α:

• Indeed, a sufficient condition for g(T ) ≤ T−α is that the likelihood ratio w(x) = p∗(x)
p◦(x)

exhibits a polynomial order in x. Therefore, any distribution with a polynomial order p.d.f.
satisfies this condition, such as the Beta and Pareto distributions.

• Additionally, we can also consider p◦(x) with any p.d.f. that has faster rate than a polyno-
mial, such as the truncated Gaussian on Ω, provided that w(x) still exhibits a polynomial
order (e.g., by taking p∗ as a Beta distribution).

• Moreover, the benefits of truncation were also observed in certain distribution pairs that do
not satisfy this condition in our experiments, such as when both the source and target dis-
tributions are truncated Gaussian. Therefore, this condition is used solely for convenience
in deriving the upper bound of the truncated estimator and provides insight into changes in
the convergence rate.

The estimator Ĥq
T in Theorem 3 may not be minimax optimal:

• The minimax lower bound B ·b̄·r(n) established in Theorem 1 applies to the case where the
distributions are known. Therefore, we can only assess whether an estimator is minimax
optimal under the assumption that the distributions are known and belong to the same
distribution class V . However, the upper bound b̄ · r(n)

α
1+α in Eq. (8) is derived under this

known distribution case but within a more restrictive distribution class, as we impose an
additional assumption on V , specifically g(T ) < T−α. Consequently, the corresponding
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minimax lower bound will be less than or equal to the bound in Theorem 1. In fact, the
upper bound b̄ · r(n)

α
1+α in Eq. (8) may outperform the minimax lower bound B · b̄ · r(n)

when B is large.
• When the distributions are unknown, we do not have the minimax lower bound, and there-

fore cannot determine whether the estimator is minimax-optimal. However, the minimax
lower bound derived in the known case serves as a lower bound, which may be loose, but
still provides valuable insight.

• The truncation will bring benefits when B is large, as it reduces variance by introducing
some bias. This is especially useful in practice because, when the likelihood ratio w(x) is
unknown, the estimator ŵ(x) often involves some excessively large values. Specifically,
the upper bound after truncation is b̄ · r(n)

α
1+α , compared to B · b̄ · r(n), which is the

upper bound before truncation. Note that, the new bound dose not depend on the B > 1,
which characterize the intensity of covariate shift, but the rate in r(n) decreases. This is
especially beneficial when B is large, as it helps mitigate high variance, thereby improving
the stability of the algorithm.

When α = ∞, the upper bound 8 matches the bound in Theorem 2 for the case of no covariate shift:

• when α = ∞, P({x : w(x) > T}) = 0 for any T > 1, it holds that p∗(x) > p◦(x)
almost surely. However, since both are p.d.f.s on the Ω, so p∗(x) = p◦(x) almost surely.
Thus there is no covariate shift, and the convergence rate reduce to b̄r(n), which matches
the bound in Theorem 2 when B = 1 (i.e., no covariate shift).

B.3 CONSTRUCTION OF THE ORACLE IN ASSUMPTION 1

When {xi}ni=1 are independent and uniformly distributed over Ω, the optimal function estimator is
constructed using the moving least squares method, as demonstrated by Krieg & Sonnleitner (2024)
(when s > d

p ) and Blanchet et al. (2024) (when s ∈ ( 2dq−dp
2pq , d

p )). Thus, we only need to verify that
these results hold when the sample is drawn from a distribution with a p.d.f. that is both upper and
lower bounded. We need to introduce some notations first.
Definition 2 (Covering radius). For any compact region R ⊂ Rd, the diameter R is defined as
diam(R) := supx,y∈R ∥x−y∥. Moreover, for any two compact regions R1, R2 ⊂ Rd, the distance
dist(R1, R2) between them is defined as dist(R1, R2) := ∥cR1

− cR2
∥∞, where ∥ · ∥∞ denotes the

l∞ norm in Rd and cR1
, cR2

are the centroids of R1, R2 respectively. For any collection of n data
points P := {x1, . . . ,xn}, the covering radius of P in Ω = [0, 1]d is defined as follows:

ρ(P,Ω) := sup
y∈Ω

inf
1≤i≤n

∥y − xi∥. (30)

The properties of the moving least squares estimator is summarized in the following Lemma.
Lemma 3 (Properties of the moving least squares estimator (Theorem 4.7 in Reznikov & Saff
(2016))). For any given collection of n points P = {x1, . . . ,xn} with covering radius ρ(P,Ω),
there exist constants a1, a2 independent of n and continuous functions uxi

: Ω → R(1 ≤ i ≤ n),
such that

• π(y) =
∑n

i=1 π(xi)uxi
(y) for any y ∈ Ω and any polynomial π with deg(π) ≤ s− 1.

•
∑n

i=1 |uxi
(y)| ≤ a1 for any y ∈ Ω.

• ux(y) = 0 for any y ∈ Ω and x ∈ P with ∥x− y∥ ≥ a2ρ(P,Ω).

Based on the function uxi
(1 ≤ i ≤ n) given in Lemma 3, we define a function estimator Kn =

Kn({xi}ni=1, {f(xi)}ni=1) for f as

Kn({xi}ni=1, {f(xi)}ni=1) :=

n∑
i=1

f(xi)uxi .

This estimator is derived using the moving least squares approximation, originally introduced by
Wendland (2001). For further details, see Wendland (2004).
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To demonstrate that the function estimator Kn defined above satisfies the upper bound in Assump-
tion 1, we need to control the covering radius ρ(P,Ω) when P is drawn from a distribution with a
p.d.f. that is both lower and upper bounded.
Lemma 4 (Bound on the covering radius (Theorem 2.1 in Reznikov & Saff (2016))). Given P :=
{x1, . . . ,xn} sampled independently and identically from a distribution with a p.d.f. that is both
lower and upper bounded on Ω = [0, 1]d, we have that there exist constants c1, c2 > 0 and α0 > 0,
which are all independent of n, such that the following inequality holds for any α > α0:

P

(
ρ(P,Ω) ≥ c1

(
α log n

n

) 1
d

)
≲ n1−c2α.

Building on the Lemma 3 and Lemma 4, we can use the result from Appendix E.3 in Blanchet
et al. (2024) to demonstrate that the function estimator Kn satisfies the upper bound specified in
Assumption 1.

C APPENDIX

C.1 COMPARISON OF DIFFERENT METHODS

In this subsection, we conduct experiments on both synthetic and real datasets to compare the per-
formance of various methods, highlighting the necessity and advantages of the two-stage approach
under covariate shift.
Synthetic dataset. In our experiment, the source distribution P◦ is defined as a truncated normal
distribution on [0, 1] with mean 0.2 and standard deviation 0.3, denoted by tnorm([0, 1], 0.2, 0.3).
To vary the intensity of covariate shift, we consider the target distributions tnorm([0, 1], µ, 0.3),
adjusting the mean parameter µ. We set f(x) = 1 + x2 + 1

5 sin(16x) and select µ = 0.2, 0.4, 0.6,
resulting in corresponding B values of 1.00, 3.98, and 12.08, respectively.
We set q = 2 and train f̂S1

using linear regression. Each experiment is repeated 100 times. The
performance of the following three estimators is compared:

• Monte Carlo estimator (MC): estimate Iqf using 1
|S|
∑

i∈S w(xi)y
q
i .

• One-stage estimator (One-stage): train f̂S using the entire dataset S, and then estimate
Iqf by EX∼P∗

[
f̂q
S(X)

]
.

• Two-stage estimator (Two-stage): estimate Iqf using the truncated estimator from equa-
tion 7, with T set to 3

4B.

The results are presented in Figure 3. It indicates that the Monte Carlo estimator outperforms the
two-stage methods in the absence of covariate shift (B = 1). However, as B increases, the two-stage
estimator demonstrates greater accuracy and improved stability, highlighting its necessity under
significant covariate shift.

Real dataset. We illustrate the application of the proposed two-stage estimator under covariate
shift with an empirical example. Specifically, we use the airfoil dataset S from the UCI Machine
Learning Repository, which comprises N = 1503 observations of a response variable Y (scaled
sound pressure level of NASA airfoils) and a covariate X with d = 5 dimensions: log frequency,
angle of attack, chord length, free-stream velocity, and suction side log displacement thickness.
We conducted an experiment over 100 trials, where in each trial, we randomly partitioned the dataset
S into three subsets: Strain, Scls, and Stest.

• Strain, containing 50% of the data, is used to construct an estimator of Iqf .

• Stest, containing 30% of the data, is used to create the covariate shift and establish a ground
truth for Iqf . The covariate shift is introduced by sampling points from Stest with replace-
ment, using probabilities proportional to h(x) = exp

(
x⊤β

)
, where β = (−1, 0, 0, 0, 1)⊤.

We denote the resulting sample as Sshift, which is used to compute the ground truth by
1

|Sshift|
∑

(xi,yi)∈Sshift
yqi .
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Figure 5: Boxplots of errors for the Monte Carlo estimator, one-stage estimator, and two-stage
estimator on the airfoil dataset. The proposed two-stage method outperforms both the Monte Carlo
estimator and the one-stage estimator under the covariate shift setting.

• Scls, comprising 20% of the data, is combined with Sshift to train a classifier for estimating
the likelihood ratio and obtaining the estimator ŵ(x).

We compare the three different estimators as follows:

• Monte Carlo estimator (MC): estimate Iqf using 1
|Strain|

∑
(xi,yi)∈Strain

ŵ(xi)y
q
i .

• One-stage estimator (One-stage): train f̂Strain using the entire dataset Strain, and then
estimate Iqf by 1

|Sshift|
∑

(xi,yi)∈Sshift
f̂q
Strain

(xi).

• Two-stage estimator (Two-stage): estimate Iqf using the truncated estimator from equa-
tion 7.

The results in Figure 5 demonstrate that the proposed two-stage method outperforms both the Monte
Carlo estimator and the one-stage estimator under the covariate shift setting.
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