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Abstract

Building subject-independent models for electrocardiogram (ECG)-based emotion
recognition is challenging due to substantial inter-subject variability and the high
cost of utilizing large volumes of unlabeled data. While prior domain adaptation
(DA) methods have mitigated distribution shifts, they typically rely on static align-
ment strategies and overlook data efficiency. In this work, we propose dynAmiC
domain adaptation, a semi-supervised framework that dynamically balances Maxi-
mum Mean Discrepancy (MMD) and Local Structure Discriminative (LSD) losses
to achieve effective global-local alignment. Furthermore, we introduce a coreset
selection strategy that leverages only 1% of the unlabeled target data while deliver-
ing performance comparable to using the entire dataset. Extensive experiments on
the DREAMER and WESAD benchmarks, evaluated under leave-one-subject-out
cross-validation, demonstrate that our approach consistently outperforms state-of-
the-art baselines. These findings highlight dyynAmiC domain adaptation as a robust
and data-efficient pathway toward practical, calibration-free affective computing
systems.

1 Introduction

Emotion recognition (ER) is becoming an essential component of human—machine interaction,
particularly in applications that demand real-time responses, such as monitoring a patient’s mental
health status [1]. Emotion recognition from physiological signals like electrocardiogram (ECG) is a
promising yet challenging area of research. A primary obstacle is domain shift, a phenomenon where a
model’s performance degrades when applied to data from different subjects due to individual-specific
physiological variations. This is a critical issue in cross-subject emotion recognition, as models
trained on one population fail to generalize to new, unseen individuals. Traditional domain adaptation
(DA) methods attempt to align marginal distributions, which can be counterproductive as it risks
conflating the discriminative features of different emotion categories. We argue that a more effective
strategy is to align domains at the level of specific emotion categories. By treating each emotion as
a distinct subdomain, we can ensure that feature distributions are aligned for semantically similar
data points, preserving the inter-class boundaries crucial for classification. Motivated by this insight,
we propose a novel Dynamic Domain Adaptation (DDA) framework. Our method dynamically
transitions from a global alignment phase, where it minimizes the Maximum Mean Discrepancy
(MMD), to a fine-grained phase focused on minimizing the Local Subdomain Discrepancy (LSD).
This progressive approach allows the model to first learn a robust, shared representation before fine-
tuning it with a class-conditional alignment objective. As true labels are scarce in the target domain,
our framework leverages pseudo-labels to estimate LSD, while also supporting a semi-supervised
setting by incorporating a small number of true target labels.

A significant challenge in semi-supervised DA is the computational burden associated with processing
large volumes of unlabeled data. To address this, we introduce an innovative coreset selection strategy
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that reduces the amount of unlabeled data used for adaptation. Our method selects a small, highly
informative subset of the target pool prior to the main adaptation stage. We design a hybrid scoring
mechanism to select this coreset, combining three key signals for each data point: a diversity score
(Euclidean distance to the feature-center), a difficulty proxy (negative similarity to the center), and a
local-density term (mean distance to k-nearest neighbors). This approach ensures that the selected
coreset is a representative and challenging subset of the data, maximizing the information gain while
minimizing computational overhead.

The key contributions of this work are as follows: i) We used a dynamic domain adaptation framework
that progressively aligns source and target domains at the subdomain level, which is particularly
suited for cross-subject emotion recognition for ECG. ii) We integrate an efficient coreset selection
strategy based on a novel hybrid scoring function to reduce computational costs and the reliance
on large unlabeled datasets. ii¢) We validate our framework on the two benchmark datasets, i.e.,
DREAMER and WESAD, demonstrating state-of-the-art performance .

2 Related Work

Emotion recognition from physiological signals, particularly EEG and ECG, has attracted growing
interest due to applications in affective computing, healthcare, and human—computer interaction. The
DREAMER database [6]] established an important benchmark with multimodal EEG-ECG recordings
and self-assessed emotion labels, demonstrating that wearable devices can achieve performance
comparable to medical-grade systems. To address inter-subject variability, domain adaptation (DA)
has been widely explored, especially in EEG-based studies [3]. However, most methods focus on
global distribution alignment, overlooking class-specific discrepancies that weaken discriminative
features. Dynamic domain adaptation approaches have since emerged to jointly minimize global and
local shifts for improved cross-subject generalization. Compared with EEG, ECG offers a robust
modality for emotion recognition due to its direct link to autonomic activity. Deep models such as
DFF-STM [13] and ensemble RNNs [17] capture temporal and spatial ECG patterns, while attention
mechanisms further highlight informative regions. Other strategies investigate segmentation [9] and
multimodal fusion [[18} [19] for richer representations. Despite these advances, ECG-based methods
still struggle with data scarcity and poor cross-dataset generalization. Recently, unsupervised domain
adaptation (UDA) and self-supervised learning (SSL) have been proposed to reduce reliance on
labeled data and improve robustness [8, [12]]. Transformer-based architectures and multimodal fusion
have achieved strong results, but often require large-scale unlabeled datasets and lack mechanisms to
efficiently exploit them.

In this work, we address these challenges by proposing dynAmiC domain adaptation, which dynami-
cally balances MMD and LSD losses for effective global-local alignment, and introduces a novel
coreset selection strategy that achieves comparable performance using only 1% of the unlabeled
target data.

3 Methodology

3.1 Framework

We propose a semi-supervised domain adaptation pipeline for subject-independent ECG-based
emotion recognition. The model combines a lightweight 1D-ResNet feature extractor with a shallow
two-layer perceptron classifier. Given an input segment 2 € R'*T the network outputs a 64-
dimensional embedding f = ¢(z) and logits z = 1(f) € R®. The backbone consists of three
residual blocks with convolution, batch normalization, ReLU activations, and shortcut connections,
followed by pooling and a linear projection to the embedding space.

Training couples supervised source-domain classification with an alignment loss to reduce distribution
shift between source and target subjects. To minimize labeling and computation, we introduce a
coreset selection strategy that adapts using only 1% of unlabeled target samples.

Evaluation follows a leave-one-subject-out (LOSO) protocol: in each fold, one subject is treated
as the target and the remaining 22 as sources. Target data is split into 25% few-shot supervision,
25% unlabeled data for adaptation, and 50% held-out for testing. Pseudo-label alignment uses only
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Hyperparameters Values
Optimizer Adam
LR Scheduler Cosine Annealing
Patience (Early stopping) 10
Epochs 100
ECG Segment length 10 sec (50% ovelap)
Learning rate 1074
Weight decay 10°
Sigma for Gaussian kernel (o) 10
Batch-size 128

Table 1: Hyperparameters of the proposed model
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Figure 1: t-SNE plot representing the feature space for baseline (no DDA) and with DDA. (It can be
seen that after applying DDA approach, model is able to clearly distinguish all four clusters for four
emotional states).

confident predictions (7 = 0.9). Performance is reported per subject using accuracy and macro-F1,
and averaged across all 23 folds.

4 Experimental setup

4.1 Dataset and Preprocessing

This work utilizes the DREAMER dataset, a multimodal database comprising EEG and ECG signals
recorded from 23 participants exposed to audio—visual stimuli in the form of film clips. In total,
18 clips were employed, with two clips selected for each of the nine target emotional categories:
amusement, excitement, happiness, calmness, anger, disgust, fear, sadness, and surprise. EEG and
ECG signals were acquired wirelessly using portable devices, namely the Emotiv EPOC EEG headset
and the SHIMMER ECG sensor. The ECG recordings were sampled at 256 Hz, with the sensor
supporting both RA — LL and LA — LL lead configurations. In this work, we considered only the
ECG modality, and specifically utilized the RA — LL lead for feature extraction.

The preprocessing pipeline consisted of three main steps. (a) Filtering: ECG signals were bandpass
filtered between 0.5 and 40 Hz to suppress baseline wander and high-frequency noise. (b) Nor-
malization: Trial-wise z-score normalization was applied to mitigate inter-subject variability. (c)
Segmentation: The normalized signals were divided into 10-second windows with a 50% overlap
to generate fixed-length input segments. For labeling, the three emotional dimensions i.e., valence,
arousal, and dominance - were binarized in accordance with prior literature: scores greater than 3
were categorized as high, whereas scores lower than 3 were categorized as low.

5 Results and Conclusion

This study addresses the challenge of inter-subject variability in ECG-based emotion recognition
by reducing the discrepancy between source and target domains from a subdomain perspective. We
used Dynamic Domain Adaptation (DDA) framework that goes beyond global distribution alignment
and explicitly considers local divergences across emotion categories. By dynamically aligning both
global and category-specific distributions, DDA facilitates more fine-grained knowledge transfer



113
114
115
116

117

118
119
120

121
122
123

124
125

85

80

75

Accuracy (%)
~
o

o
G

|

@® Arousal
B \Valence
A

60 L4 :
° Dominance
] A -~~~ Arousal Avg (73.60)
55 Valence Avg (73.77)
m -~~~ Dominance Avg (72.35)
[ ] 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Subject

Figure 2: Classification accuracy for dominance, arousal and valence across each of the 23 subjects
evaluated in a LOSO fashion. (The average performance for each of the three classes is shown by the
dotted lines).

Table 2: Comparisons of proposed method with existing works in terms of accuracy and F1-score
(mean(std.))on the WESAD dataset for 2-class (stress Vs non-stress), 3-class (Baseline, amuse-
ment and stress), and 4-class (Baseline, amusement, meditation and stress), SD : Subject —
dependent; ST : Subject — independent

Study Method Approach 2-class | 3-class | 4-class
Acc. (%) FL(%) | Acc. (%) FL(%) | Acc. (%) Fl (%)
Sarkar et al. [12 Self- Supervised SD - - - - 99.4(0.004) 98.3(0.007)
Schmidt et al. [14] SI 85.44 81.31 66.29 56.03 - -
Li et al. [13] SI Z - 67.65 (13.48) 43.05 (17.20) - -
Abd et al.[16 MLP SD 90.2 90.00 - -
Our Approach (MMD+LSD) SI 89.12(8.91) 87.10(12.01) | 73.77 (8.51)  69.78 (11.97) 86.5(7.9) 84.64 (9.4)
Our Approach (MMD) SI 90.14 (5.67) 88.35(6.44) | 72.93(8.58) 67.72(12.85) | 72.60 (8.10) 66.99 (10.87)
Our Approach (LSD) SI 86.4(8.95) 8450 (12.42) | 73.14(8.85) 68.72(11.61) | 71.45(7.80)  65.57 (9.85)

between domains. Extensive experiments show that this strategy consistently improves generalization
to unseen subjects, yielding substantial gains over state-of-the-art domain adaptation methods. These
results highlight the importance of fine-grained alignment in mitigating domain shift and demonstrate
the effectiveness of DDA in advancing robust cross-subject emotion recognition.
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