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Abstract

Building subject-independent models for electrocardiogram (ECG)-based emotion1

recognition is challenging due to substantial inter-subject variability and the high2

cost of utilizing large volumes of unlabeled data. While prior domain adaptation3

(DA) methods have mitigated distribution shifts, they typically rely on static align-4

ment strategies and overlook data efficiency. In this work, we propose dynAmiC5

domain adaptation, a semi-supervised framework that dynamically balances Maxi-6

mum Mean Discrepancy (MMD) and Local Structure Discriminative (LSD) losses7

to achieve effective global–local alignment. Furthermore, we introduce a coreset8

selection strategy that leverages only 1% of the unlabeled target data while deliver-9

ing performance comparable to using the entire dataset. Extensive experiments on10

the DREAMER and WESAD benchmarks, evaluated under leave-one-subject-out11

cross-validation, demonstrate that our approach consistently outperforms state-of-12

the-art baselines. These findings highlight dynAmiC domain adaptation as a robust13

and data-efficient pathway toward practical, calibration-free affective computing14

systems.15

1 Introduction16

Emotion recognition (ER) is becoming an essential component of human–machine interaction,17

particularly in applications that demand real-time responses, such as monitoring a patient’s mental18

health status [1]. Emotion recognition from physiological signals like electrocardiogram (ECG) is a19

promising yet challenging area of research. A primary obstacle is domain shift, a phenomenon where a20

model’s performance degrades when applied to data from different subjects due to individual-specific21

physiological variations. This is a critical issue in cross-subject emotion recognition, as models22

trained on one population fail to generalize to new, unseen individuals. Traditional domain adaptation23

(DA) methods attempt to align marginal distributions, which can be counterproductive as it risks24

conflating the discriminative features of different emotion categories. We argue that a more effective25

strategy is to align domains at the level of specific emotion categories. By treating each emotion as26

a distinct subdomain, we can ensure that feature distributions are aligned for semantically similar27

data points, preserving the inter-class boundaries crucial for classification. Motivated by this insight,28

we propose a novel Dynamic Domain Adaptation (DDA) framework. Our method dynamically29

transitions from a global alignment phase, where it minimizes the Maximum Mean Discrepancy30

(MMD), to a fine-grained phase focused on minimizing the Local Subdomain Discrepancy (LSD).31

This progressive approach allows the model to first learn a robust, shared representation before fine-32

tuning it with a class-conditional alignment objective. As true labels are scarce in the target domain,33

our framework leverages pseudo-labels to estimate LSD, while also supporting a semi-supervised34

setting by incorporating a small number of true target labels.35

A significant challenge in semi-supervised DA is the computational burden associated with processing36

large volumes of unlabeled data. To address this, we introduce an innovative coreset selection strategy37
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that reduces the amount of unlabeled data used for adaptation. Our method selects a small, highly38

informative subset of the target pool prior to the main adaptation stage. We design a hybrid scoring39

mechanism to select this coreset, combining three key signals for each data point: a diversity score40

(Euclidean distance to the feature-center), a difficulty proxy (negative similarity to the center), and a41

local-density term (mean distance to k-nearest neighbors). This approach ensures that the selected42

coreset is a representative and challenging subset of the data, maximizing the information gain while43

minimizing computational overhead.44

The key contributions of this work are as follows: i) We used a dynamic domain adaptation framework45

that progressively aligns source and target domains at the subdomain level, which is particularly46

suited for cross-subject emotion recognition for ECG. ii) We integrate an efficient coreset selection47

strategy based on a novel hybrid scoring function to reduce computational costs and the reliance48

on large unlabeled datasets. iii) We validate our framework on the two benchmark datasets, i.e.,49

DREAMER and WESAD, demonstrating state-of-the-art performance .50

2 Related Work51

Emotion recognition from physiological signals, particularly EEG and ECG, has attracted growing52

interest due to applications in affective computing, healthcare, and human–computer interaction. The53

DREAMER database [6] established an important benchmark with multimodal EEG–ECG recordings54

and self-assessed emotion labels, demonstrating that wearable devices can achieve performance55

comparable to medical-grade systems. To address inter-subject variability, domain adaptation (DA)56

has been widely explored, especially in EEG-based studies [3]. However, most methods focus on57

global distribution alignment, overlooking class-specific discrepancies that weaken discriminative58

features. Dynamic domain adaptation approaches have since emerged to jointly minimize global and59

local shifts for improved cross-subject generalization. Compared with EEG, ECG offers a robust60

modality for emotion recognition due to its direct link to autonomic activity. Deep models such as61

DFF-STM [13] and ensemble RNNs [17] capture temporal and spatial ECG patterns, while attention62

mechanisms further highlight informative regions. Other strategies investigate segmentation [9] and63

multimodal fusion [18, 19] for richer representations. Despite these advances, ECG-based methods64

still struggle with data scarcity and poor cross-dataset generalization. Recently, unsupervised domain65

adaptation (UDA) and self-supervised learning (SSL) have been proposed to reduce reliance on66

labeled data and improve robustness [8, 12]. Transformer-based architectures and multimodal fusion67

have achieved strong results, but often require large-scale unlabeled datasets and lack mechanisms to68

efficiently exploit them.69

In this work, we address these challenges by proposing dynAmiC domain adaptation, which dynami-70

cally balances MMD and LSD losses for effective global–local alignment, and introduces a novel71

coreset selection strategy that achieves comparable performance using only 1% of the unlabeled72

target data.73

3 Methodology74

3.1 Framework75

We propose a semi-supervised domain adaptation pipeline for subject-independent ECG-based76

emotion recognition. The model combines a lightweight 1D-ResNet feature extractor with a shallow77

two-layer perceptron classifier. Given an input segment x ∈ R1×T , the network outputs a 64-78

dimensional embedding f = ϕ(x) and logits z = ψ(f) ∈ RC . The backbone consists of three79

residual blocks with convolution, batch normalization, ReLU activations, and shortcut connections,80

followed by pooling and a linear projection to the embedding space.81

Training couples supervised source-domain classification with an alignment loss to reduce distribution82

shift between source and target subjects. To minimize labeling and computation, we introduce a83

coreset selection strategy that adapts using only 1% of unlabeled target samples.84

Evaluation follows a leave-one-subject-out (LOSO) protocol: in each fold, one subject is treated85

as the target and the remaining 22 as sources. Target data is split into 25% few-shot supervision,86

25% unlabeled data for adaptation, and 50% held-out for testing. Pseudo-label alignment uses only87
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Hyperparameters Values
Optimizer Adam

LR Scheduler Cosine Annealing
Patience (Early stopping) 10

Epochs 100
ECG Segment length 10 sec (50% ovelap)

Learning rate 10−4

Weight decay 105

Sigma for Gaussian kernel (σ) 10
Batch-size 128

Table 1: Hyperparameters of the proposed model

Figure 1: t-SNE plot representing the feature space for baseline (no DDA) and with DDA. (It can be
seen that after applying DDA approach, model is able to clearly distinguish all four clusters for four
emotional states).

confident predictions (τ = 0.9). Performance is reported per subject using accuracy and macro-F1,88

and averaged across all 23 folds.89

4 Experimental setup90

4.1 Dataset and Preprocessing91

This work utilizes the DREAMER dataset, a multimodal database comprising EEG and ECG signals92

recorded from 23 participants exposed to audio–visual stimuli in the form of film clips. In total,93

18 clips were employed, with two clips selected for each of the nine target emotional categories:94

amusement, excitement, happiness, calmness, anger, disgust, fear, sadness, and surprise. EEG and95

ECG signals were acquired wirelessly using portable devices, namely the Emotiv EPOC EEG headset96

and the SHIMMER ECG sensor. The ECG recordings were sampled at 256 Hz, with the sensor97

supporting both RA→ LL and LA→ LL lead configurations. In this work, we considered only the98

ECG modality, and specifically utilized the RA→ LL lead for feature extraction.99

The preprocessing pipeline consisted of three main steps. (a) Filtering: ECG signals were bandpass100

filtered between 0.5 and 40 Hz to suppress baseline wander and high-frequency noise. (b) Nor-101

malization: Trial-wise z-score normalization was applied to mitigate inter-subject variability. (c)102

Segmentation: The normalized signals were divided into 10-second windows with a 50% overlap103

to generate fixed-length input segments. For labeling, the three emotional dimensions i.e., valence,104

arousal, and dominance - were binarized in accordance with prior literature: scores greater than 3105

were categorized as high, whereas scores lower than 3 were categorized as low.106

5 Results and Conclusion107

This study addresses the challenge of inter-subject variability in ECG-based emotion recognition108

by reducing the discrepancy between source and target domains from a subdomain perspective. We109

used Dynamic Domain Adaptation (DDA) framework that goes beyond global distribution alignment110

and explicitly considers local divergences across emotion categories. By dynamically aligning both111

global and category-specific distributions, DDA facilitates more fine-grained knowledge transfer112
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Figure 2: Classification accuracy for dominance, arousal and valence across each of the 23 subjects
evaluated in a LOSO fashion. (The average performance for each of the three classes is shown by the
dotted lines).

Table 2: Comparisons of proposed method with existing works in terms of accuracy and F1-score
(mean(std.))on the WESAD dataset for 2-class (stress Vs non-stress), 3-class (Baseline, amuse-
ment and stress), and 4-class (Baseline, amusement, meditation and stress); SD : Subject −
dependent;SI : Subject− independent

Study Method Approach 2-class 3-class 4-class

Acc. (%) F1 (%) Acc. (%) F1 (%) Acc. (%) F1 (%)

Sarkar et al. [12] Self- Supervised SD – – – – 99.4(0.004) 98.3(0.007)
Schmidt et al. [14] LDA SI 85.44 81.31 66.29 56.03 – –

Li et al. [15] SI – – 67.65 (13.48) 43.05 (17.20) – –
Abd et al.[16] MLP SD 90.2 90.00 – –

Our Approach (MMD+LSD) SI 89.12 (8.91) 87.10 (12.01) 73.77 (8.51) 69.78 (11.97) 86.5 (7.9) 84.64 (9.4)
Our Approach (MMD) SI 90.14 (5.67) 88.35 (6.44) 72.93 (8.58) 67.72 (12.85) 72.60 (8.10) 66.99 (10.87)
Our Approach (LSD) SI 86.4 (8.95) 84.50 (12.42) 73.14 (8.85) 68.72 (11.61) 71.45 (7.80) 65.57 (9.85)

between domains. Extensive experiments show that this strategy consistently improves generalization113

to unseen subjects, yielding substantial gains over state-of-the-art domain adaptation methods. These114

results highlight the importance of fine-grained alignment in mitigating domain shift and demonstrate115

the effectiveness of DDA in advancing robust cross-subject emotion recognition.116
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