
Extremely Simple Multimodal Outlier Synthesis for
Out-of-Distribution Detection and Segmentation

Moru Liu1∗ Hao Dong2∗ Jessica Kelly3 Olga Fink4 Mario Trapp1,3

1Technical University of Munich 2ETH Zürich 3Fraunhofer IKS 4EPFL

Abstract

Out-of-distribution (OOD) detection and segmentation are crucial for deploying
machine learning models in safety-critical applications such as autonomous driving
and robot-assisted surgery. While prior research has primarily focused on unimodal
image data, real-world applications are inherently multimodal, requiring the in-
tegration of multiple modalities for improved OOD detection. A key challenge
is the lack of supervision signals from unknown data, leading to overconfident
predictions on OOD samples. To address this challenge, we propose Feature
Mixing, an extremely simple and fast method for multimodal outlier synthesis
with theoretical support, which can be further optimized to help the model bet-
ter distinguish between in-distribution (ID) and OOD data. Feature Mixing is
modality-agnostic and applicable to various modality combinations. Additionally,
we introduce CARLA-OOD, a novel multimodal dataset for OOD segmentation,
featuring synthetic OOD objects across diverse scenes and weather conditions. Ex-
tensive experiments on SemanticKITTI, nuScenes, CARLA-OOD datasets, and the
MultiOOD benchmark demonstrate that Feature Mixing achieves state-of-the-art
performance with a 10× to 370× speedup. Our source code and dataset will be
available at https://github.com/mona4399/FeatureMixing.

1 Introduction

Classification and segmentation are fundamental computer vision tasks that have seen significant
advancements with deep neural networks [22, 40]. However, most models operate under a closed-set
assumption, expecting identical class distributions in training and testing. In real-world applications,
this assumption often fails, as out-of-distribution (OOD) objects frequently appear. Ignoring OOD
instances poses critical safety risks in domains like autonomous driving and robot-assisted surgery,
motivating research on OOD detection [36] and segmentation [7] to identify unknown objects that are
unseen during training.

Most existing OOD detection and segmentation methods focus on unimodal inputs, such as im-
ages [36] or point clouds [7], despite the inherently multimodal nature of real-world applica-
tions. Leveraging multiple modalities can provide complementary information to improve per-
formance [15, 14]. Recent work by Dong et al. [17] introduced the first multimodal OOD detection
benchmark and framework and also extended the framework to the multimodal OOD segmentation
task. A key challenge in OOD detection and segmentation is the tendency of neural networks to assign
high confidence scores to OOD inputs [44] due to the lack of explicit supervision for unknowns during
training. While real outlier datasets [25] can help mitigate this, they are often costly and impractical to
obtain. Alternatively, synthetic outliers [19, 48, 43] have been proven effective for regularization, but
existing methods are designed for unimodal scenarios and struggle in multimodal settings [17]. Dong
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et al. [17] proposed a multimodal outlier synthesis technique using nearest-neighbor information, but
its computational cost remains prohibitive for segmentation tasks.

To address this, we propose Feature Mixing, an extremely simple and efficient multimodal outlier
synthesis method with theoretical support. Given in-distribution (ID) features from two modalities,
Feature Mixing randomly swaps a subset of N feature dimensions between them to generate new
multimodal outliers. By maximizing the entropy of these outliers during training, our method
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370×

Figure 1: Mixup [52] is efficient for outlier synthe-
sis but performs poorly in OOD segmentation. In
contrast, NP-Mix [17] achieves strong OOD seg-
mentation but is computationally expensive. Our
Feature Mixing combines both speed and perfor-
mance, benefiting from its simple yet effective de-
sign. Results are on SemanticKITTI dataset.

effectively reduces overconfidence and enhances
the model’s ability to distinguish OOD from ID
samples. Feature Mixing is modality-agnostic
and applicable to various modality combina-
tions, such as images and point clouds or video
and optical flow. Moreover, its lightweight de-
sign enables a 10× speedup for multimodal
OOD detection and a 370× speedup for seg-
mentation compared to [17] (Fig. 1).

We conduct extensive evaluations across eight
datasets and four modalities to validate the ef-
fectiveness of Feature Mixing. For multimodal
OOD detection, we use five datasets from the
MultiOOD benchmark [17] with video and op-
tical flow modalities. For multimodal OOD
segmentation, we evaluate on large-scale real-
world datasets, including SemanticKITTI [3]
and nuScenes [6], with image and point cloud
modalities. To address the lack of multi-
modal OOD segmentation datasets, we intro-
duce CARLA-OOD, a synthetic dataset gener-
ated using CARLA simulator [18], featuring di-
verse OOD objects in various challenging scenes and weather conditions (Fig. 6). Our experiments on
both synthetic and real-world datasets demonstrate that Feature Mixing outperforms existing outlier
synthesis methods in most cases with a significant speedup. In summary, the main contributions of
this paper are:

1. We introduce Feature Mixing, an extremely simple and fast method for multimodal outlier
synthesis, applicable to diverse modality combinations.

2. We provide theoretical insights in support of the efficacy of Feature Mixing.

3. We present the challenging CARLA-OOD dataset with diverse scenes and weather condi-
tions, addressing the scarcity of multimodal OOD segmentation datasets.

4. We conduct extensive experiments across eight datasets and four modalities to demonstrate
the effectiveness of our proposed approach.

2 Related Work

2.1 Out-of-Distribution Detection

OOD detection aims to detect test samples with semantic shift without losing the ID classification
accuracy. Numerous OOD detection algorithms have been developed. Post hoc methods [24, 23, 36]
aim to design OOD scores based on the classification output of neural networks, offering the
advantage of being easy to use without modifying the training procedure and objective. Methods
like Mahalanobis [32] and k-nearest neighbor [47] use distance metrics in feature space for OOD
detection, while virtual-logit matching [50] integrates information from both feature and logit spaces
to define the OOD score. Additionally, some approaches propose to synthesize outliers [19, 48] or
normalize logits [51] to address prediction overconfidence by training-time regularization. However,
all these approaches are designed for unimodal scenarios without accounting for the complementary
nature of multiple modalities.
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2.2 Out-of-Distribution Segmentation

OOD segmentation focuses on pixel- or point-level segmentation of OOD objects and has been
widely studied in medical images [1], industrial inspection [46], and autonomous driving [5] in
recent years. Approaches to pixel-level segmentation are generally categorized into uncertainty-
based [27, 49], outlier exposure [38, 31], and reconstruction-based methods [2, 42]. Point-level
segmentation has gained attention in recent years due to its practical applications in real-world
environments. For example, Cen et al. [7] address OOD segmentation on LiDAR point cloud and
train redundancy classifiers to segment unknown object points by simulating outliers through the
random resizing of known classes. Li et al. [33] separate ID and OOD features using a prototype-
based clustering approach and employing a generative adversarial network [21] to synthesize outlier
features. Similarly, these techniques are exclusively focused on unimodal contexts, neglecting the
inherent complementarity among different modalities.

2.3 Multimodal OOD Detection and Segmentation

Multimodal OOD detection and segmentation are emerging research areas with limited prior work.
Dong et al. [17] introduced the first multimodal OOD detection benchmark, identifying modality
prediction discrepancy as a key indicator of OOD performance. They proposed the agree-to-disagree
algorithm to amplify this discrepancy during training and developed a multimodal outlier synthesis
method that expands the feature space using nearest-neighbor class information. Their approach
was later extended to multimodal OOD segmentation on SemanticKITTI [3]. More recently, Li et
al. [34] introduced dynamic prototype updating, which adjusts class centers to account for intra-class
variability in multimodal OOD detection. In this work, we propose a novel multimodal outlier
synthesis method applicable to both OOD detection and segmentation tasks.

3 Methodology

3.1 Problem Setup

In this work, we focus on multimodal OOD detection and segmentation, where multiple modalities
are involved to help the model better identify unknown objects. We define the problem setups for
each task below.

Multimodal OOD Segmentation aims to accurately segment both ID and OOD objects in a point
cloud using LiDAR and image data. Given a training set with classes Y = {1, 2, ..., C}, unlike
traditional closed-set segmentation where test classes match training classes, OOD segmentation
introduces unknown classes U = {C + 1} in the test set. A paired LiDAR point cloud and RGB
image can be represented as D = {P,X,y}, where P = {p1,p2, ...,pM} denotes the LiDAR
point cloud consisting of M points, with each point p represented by three coordinates and intensity
p = (x, y, z, i). Let X ∈ R3×H×W represent the RGB image, where H and W denote height and
width. The label y = {y1, y2, ..., yM} provides semantic labels for each point, where y ∈ Y for the
training data and y ∈ Y ∪ U for the test data.

Given a model M trained under the closed-set assumption, with its outputs O = M(P,X) ∈ RM×C

within the domain of Y . During deployment, M should accurately classify known samples in Y as
ID and identify unknown samples in U as OOD. A separate score function S(p) is typically used as
an OOD module to decide whether a sample point p ∈ P is from ID or OOD:

Gη(p) =

{
ID S(p) ≥ η

OOD S(p) < η
, (1)

where samples with higher scores S(p) are classified as ID and vice versa, and η is the threshold.

Multimodal OOD Detection aims to identify samples with semantic shifts in the test set using
video and optical flow, where unknown classes are introduced. The setup is similar to segmentation
but differs in input and output types. The input consists of a paired video V and optical flow F,
represented as D = {V,F, y}, where y is the sample-level label rather than point-level label in
segmentation. Similarly, the model produces sample-level outputs O = M(V,F) ∈ RC instead of
point-level. The remaining setup follows that of segmentation, and we refer the reader to [17] for a
detailed definition.
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(a) Without Outlier Optimization (b) With Outlier Optimization
Figure 2: (a) Uncertainty-based OOD methods face overconfidence issues, resulting in significant
overlap between the score distributions of ID and OOD samples. (b) After training with outlier
optimization, the confidence scores for ID and OOD samples become more distinct, enabling the
model to better differentiate them. Results are on CARLA-OOD dataset.

3.2 Motivation for Outlier Synthesis

Uncertainty-based OOD detection and segmentation methods [24, 36, 37] are computationally
efficient but suffer from overconfidence issues, as illustrated in Fig. 2 (a). Outlier exposure-based
methods [25, 38, 31] mitigate this issue by training models using auxiliary OOD datasets to calibrate
the confidences of both ID and OOD samples. However, such datasets are often unavailable, especially
in multimodal settings. To address this challenge, we introduce Feature Mixing, an extremely simple
and efficient multimodal outlier synthesis method that operates in the feature space with negligible
computational overhead (Sec. 3.3). These synthesized outliers are further optimized via entropy
maximization, enhancing the model’s ability to distinguish ID from OOD data (Sec. 3.4). As shown
in Fig. 2 (b), training with outlier optimization results in well-separated confidence scores, leading to
improved OOD detection and segmentation.

3.3 Feature Mixing for Multimodal Outlier Synthesis

Existing Methods. Some prior works [49, 8] generate outliers in the pixel space by extracting OOD
objects from external datasets and pasting them into inlier images. However, such methods are
impractical for multimodal scenarios, where we need to generate outliers for paired multimodal data.
Instead, generating outliers in the feature space is more effective and scalable. Mixup [52] interpolates
features of randomly selected samples to generate outliers but inadvertently introduces noise samples
within the ID distribution (Fig. 4 (a)). VOS [19] samples outliers from low-likelihood regions

1 2 3 4 5 6 7 Feature 
Mixing

1 2 3 4 5 6 7

Feature of Modality 1

Feature of Modality 2

✔ ✔ ✔
✔ ✔ ✔

1 3 6 7

2 4 5 62 4 5

1 3 7
Outlier Feature of Modality 1

Outlier Feature of Modality 2
：randomly selected feature for mixing ✔

Figure 3: Illustration of Feature Mixing.

of the class-conditional feature dis-
tribution but is designed for uni-
modal settings and struggles with mul-
timodal data. Moreover, it gener-
ates outliers too close to ID sam-
ples (Fig. 4 (b)) and is slow for high-
dimensional features. NP-Mix [17]
explores broader embedding spaces
using nearest-neighbor class informa-
tion but remains computationally ex-
pensive for segmentation tasks and in-
troduces unwanted noise (Fig. 4 (c)).

Our Solution. To overcome these limitations, we propose Feature Mixing, an extremely simple
yet effective approach that generates multimodal outliers directly in the feature space. Our method
ensures that the synthesized features remain distinct from ID features (Theorem 1) while preserving
semantic consistency (Theorem 2). Given ID features F = [Fc;Fl], where Fc is from modality 1 and
Fl is from modality 2, Feature Mixing randomly selects a subset of N feature dimensions from each
modality and swaps them to obtain new features F̃c and F̃l, which are then concatenated to form the
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(a) Mixup (b) VOS (d) Feature Mixing (ours)(c) NP-Mix

Figure 4: t-SNE Visualization of multimodal outlier synthesis results on the HMDB51 dataset. Our
Feature Mixing excels at generating outlier samples by spanning wider embedding spaces without
injecting noise at an extremely fast speed.
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Figure 5: Overview of the proposed framework that integrates Feature Mixing for multimodal OOD
detection and segmentation.

multimodal outlier features Fo = [F̃c; F̃l]. Fig. 3 and Algorithm 1 provide detailed illustrations of
the outlier synthesis process.

Algorithm 1 Feature Mixing

Input: ID feature F = [Fc;Fl], where Fc is from
modality 1 with Nc channels, Fl is from modality 2
with Nl channels; number of selected feature dimen-
sions for mixing N .
Python-like Code:

selectc = random.sample(range(Nc), N)
selectl = random.sample(range(Nl), N)

F̃c = Fc.clone()

F̃l = Fl.clone()

F̃c[selectc, :, :] = Fl[selectl, :, :]

F̃l[selectl, :, :] = Fc[selectc, :, :]

Fo = torch.cat([F̃c, F̃l], dim = 0)
Output: Multimodal outlier feature Fo.

As shown in Fig. 4 (d), Feature Mixing excels
at generating multimodal outliers by covering a
broader embedding space without introducing
noisy samples. The generated outliers exhibit
two key properties: (1) These outliers share the
same embedding space with the ID features but
lie in low-likelihood regions (Theorem 1). (2)
Their deviation from ID features is bounded,
preventing excessive shifts while maintaining
diversity (Theorem 2). These properties ensure
that the outliers align with real OOD charac-
teristics and can be supported by the following
theorems. Due to space limits, the proofs are
provided in the Appendix.
Theorem 1. Outliers Fo synthesized by Feature Mixing lie in low-likelihood regions of the distribution
of the ID features F, complying with the criterion for real outliers.
Theorem 2. Outliers Fo are bounded in their deviation from F, such that |Fo − F|2 ≤

√
2N · δ,

where δ = maxi,j

∣∣∣F(i)
c − F

(j)
l

∣∣∣.
Feature Mixing enables the online generation of multimodal outlier features and can be seamlessly
integrated into existing training pipelines (Sec. 3.4). Besides, its simplicity makes it modality-agnostic,
allowing application to diverse multimodal setups, such as images and point clouds or video and
optical flow.

3.4 Framework for Outlier Optimization

Multimodal outlier features generated by Feature Mixing can be optimized using entropy maximiza-
tion to help the model better distinguish between ID and OOD data, similar to outlier exposure-based
methods [25, 38, 31]. Fig. 5 illustrates our framework, which integrates Feature Mixing into multi-
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modal OOD detection and segmentation, comprising two key components: Basic Multimodal Fusion
and Multimodal Outlier Synthesis and Optimization.

Basic Multimodal Fusion. Our framework employs a dual-stream network to extract features from
different modalities using separate backbones. For example, for multimodal OOD segmentation,
features extracted from the image and point cloud backbones, denoted as Fc ∈ RNc×H×W and
Fl ∈ RNl×H×W respectively, are concatenated to form the fused representation Ff . Ff contains both
2D and 3D scene information, which is then passed to a segmentation head for ID class segmentation.
To enable efficient OOD segmentation at inference, we append an uncertainty-based OOD detection
module to compute confidence scores for each prediction. This module supports various post-hoc
OOD scoring methods [27, 24, 36], offering flexibility in design choices. Furthermore, the simple
late-fusion design facilitates the integration of advanced cross-modal training strategies [26, 17] and
generalizes easily to other modalities and tasks.

Multimodal Outlier Synthesis and Optimization. To mitigate overconfidence in uncertainty-based
OOD detection, we incorporate outlier samples during training. These can be generated using existing
methods such as Mixup [52], VOS [19], NP-Mix [17], or our proposed Feature Mixing. We then
apply entropy-based optimization in Eq. (5) to maximize the entropy of outlier features. In this
way, we can better separate the confidence scores between ID and OOD samples (Fig. 2), thereby
improving the model’s ability to distinguish OOD samples.

3.5 Training Strategy

Our training objective is to enhance OOD detection and segmentation while maintaining strong ID
classification and segmentation performance.

Multimodal OOD Segmentation. Since accurate ID segmentation is crucial for the effectiveness
of post-hoc OOD detection methods, optimizing ID segmentation is a priority. We employ focal
loss [35] and Lovász-softmax loss [4], which are widely used in existing segmentation work [10, 53].
The focal loss Lfoc addresses class imbalance by focusing on hard examples and is defined as:

Lfoc =
1

M

M∑
m=1

C∑
c=1

αc1{ym = c}FL(Om,c), (2)

where FL(p) = −(1− p)λ log(p) denotes the focal loss function and αc is the weight w.r.t the c-th
class. 1{·} is the indicator function. The Lovász-Softmax loss Llov directly optimizes the mean IoU
and is expressed as:

Llov =
1

C

C∑
c=1

∆Jc(m(c)), (3)

where

mm(c) =

{
1−Om,c if c = ym,
Om,c otherwise. (4)

∆Jc indicates the Lovász extension of the Jaccard index for class c. m(c) ∈ [0, 1]M indicates the
vector of errors. For the generated multimodal outlier feature Fo, we obtain a prediction output
Õ ∈ RM×C using the segmentation head and aim to maximize the prediction entropy of the outlier
features:

Lent =
1

M

M∑
m=1

C∑
c=1

Õm,c log Õm,c. (5)

The final loss is defined as:
L = Lfoc + Llov + γ1Lent, (6)

where γ1 is a weighting factor that balances the contributions of each loss term.

Multimodal OOD Detection. The OOD detection loss combines classification loss with entropy
regularization, which is defined as:

L = Lcls + γ1Lent, (7)

where the cross-entropy loss is used for Lcls.
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4 Experiments

We evaluate Feature Mixing across eight datasets and four modalities to demonstrate its versatility.
Specifically, we use nuScenes, SemanticKITTI, and our CARLA-OOD dataset for Multimodal OOD
Segmentation using image and point cloud data. Additionally, we utilize five action recognition
datasets from MultiOOD benchmark [17] for Multimodal OOD Detection, employing video and
optical flow modalities.

4.1 Experimental Setup

Datasets and Settings. For multimodal OOD segmentation, we follow [17] to treat all ve-
hicle classes as OOD on the SemanticKITTI [3] and nuScenes [6] datasets. During training,
the labels of OOD classes are set to void and ignored. During inference, we aim to segment
ID classes with high Intersection over Union (IoU) while detecting OOD classes as unknown.

Figure 6: The proposed CARLA-OOD dataset for
multimodal OOD segmentation. Points with red
color are OOD objects.

We also introduce the CARLA-OOD dataset,
created using the CARLA simulator [18], which
includes RGB images, LiDAR point clouds,
and 3D semantic segmentation ground truth,
comprising a total of 245 samples. We select
34 anomalous objects as OOD, which are ran-
domly positioned in front of the ego-vehicle
across varied scenes and weather conditions, as
shown in Fig. 6. Further details on CARLA-
OOD are provided in the Appendix. The model
is trained on the KITTI-CARLA [12] dataset
with the same sensor setup and evaluated on
CARLA-OOD with OOD objects. For multi-
modal OOD detection, we use HMDB51 [30],
UCF101 [45], Kinetics-600 [28], HAC [16], and
EPIC-Kitchens [11] datasets from the Multi-
OOD [17] benchmark. We evaluate using video
and optical flow, where we train the model on
one ID dataset and treat other datasets as OOD
during testing.

Implementation Details. For multimodal OOD segmentation, our implementation follows [17] to
build upon the fusion framework proposed in PMF [53], utilizing ResNet-34 [22] as the camera
backbone and SalsaNext [10] as the LiDAR backbone. After feature extraction and fusion, we employ
two 2D convolution layers as the segmentation head for ID segmentation. The OOD detection module
uses MaxLogit [23] as the default scoring function. For multimodal OOD detection, we adopt the
framework proposed in MultiOOD [17] and replace the multimodal outlier generation method with
our Feature Mixing. Additional implementation details are provided in the Appendix.

Evaluation Metrics. For OOD segmentation, we evaluate both closed-set and OOD segmentation
performance at the point level. For closed-set evaluation, we use the mean Intersection over Union
for known classes (mIoUc). For OOD performance, we report the area under the receiver operating
characteristic curve (AUROC), the area under the precision-recall curve (AUPR), and the false
positive rate at 95% true positive rate (FPR@95). For multimodal OOD detection, we report average
accuracy (ACC) instead of mIoUc for closed-set evaluation, as well as AUROC and FPR@95 for
OOD performance.

4.2 Main Results

4.2.1 Evaluation on Multimodal OOD Segmentation

We first evaluate our method on multimodal OOD segmentation. For baselines without outlier
optimization, we consider basic Late Fusion, A2D [17] and xMUDA [26], with A2D being the
state-of-the-art method. For baselines incorporating outlier optimization, we integrate Mixup [52],
NP-Mix [17], and our Feature Mixing into the framework. Due to its inefficiency, VOS [19] is
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Method SemanticKITTI nuScenes CARLA-OOD
FPR@95↓ AUROC↑ AUPR↑ mIoUc↑ FPR@95↓ AUROC↑ AUPR↑ mIoUc↑ FPR@95↓ AUROC↑ AUPR↑ mIoUc↑

w/o Outlier Optimization
Late Fusion 53.43 86.98 46.02 61.43 47.55 82.60 26.42 76.79 98.83 57.24 20.56 61.84
xMUDA [26] 55.37 89.67 51.41 60.61 44.32 83.47 20.20 78.79 97.00 57.86 10.35 65.15
A2D [17] 49.02 91.12 55.44 61.98 44.27 83.43 23.55 77.69 97.98 64.21 22.45 63.79

w/ Outlier Optimization
Mixup [52] 52.04 86.81 48.05 61.36 42.94 83.82 27.89 75.67 99.23 57.94 9.02 62.07
NP-Mix [17] 48.57 90.93 56.85 60.37 41.69 84.88 28.54 76.16 41.81 88.45 29.68 62.56
Feature Mixing (ours) 38.10 91.47 58.74 61.18 40.48 86.83 38.80 77.61 25.85 92.98 33.37 63.38
xMUDA + FM (ours) 36.63 91.54 53.89 60.43 39.49 85.29 28.74 77.69 30.35 92.45 33.44 65.92
A2D + FM (ours) 31.76 92.83 61.99 60.41 32.92 87.55 29.39 76.47 25.95 93.37 37.28 66.41

Table 1: Evaluation results on multimodal OOD segmentation datasets. FM: Feature Mixing.

Methods

OOD Datasets

ID ACC ↑Kinetics-600 UCF101 EPIC-Kitchens HAC Average

FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑
Baseline 32.95 92.48 44.93 87.95 8.10 97.70 32.95 92.28 29.73 92.60 87.23

Mixup [52] 25.31 94.10 36.37 90.49 14.37 96.40 22.57 94.85 24.67 93.96 86.89
VOS [19] 31.70 93.22 38.77 89.93 15.39 96.82 31.58 93.03 29.36 93.25 87.34

NPOS [48] 25.31 93.94 37.17 89.71 13.00 96.50 24.17 93.94 24.91 93.52 87.12
NP-Mix [17] 24.52 93.96 36.49 89.67 6.96 97.53 22.92 94.41 22.72 93.89 86.89

Feature Mixing (ours) 19.61 94.72 34.32 90.06 10.15 96.34 15.96 95.54 20.01 94.17 87.00

Table 2: Multimodal OOD Detection using video and optical flow, with HMDB51 as ID. Energy is
used as the OOD score.

excluded from the segmentation task. Additionally, we combine A2D and xMUDA with Feature
Mixing to demonstrate its versatility.

As shown in Tab. 1, Late Fusion without outlier optimization suffers from overconfidence, leading to
high FPR@95 values, indicating poor ID-OOD separation. While A2D improves performance in most
cases, it remains suboptimal. Integrating outlier optimization yields significant improvements for both
NP-Mix and Feature Mixing, underscoring the importance of outlier synthesis. On SemanticKITTI,
Feature Mixing improves Late Fusion by 15.33% on FPR@95, 4.49% on AUROC, and 12.72% on
AUPR. On nuScenes, Feature Mixing improves the Late Fusion baseline by 7.07% on FPR@95,
4.23% on AUROC, and 12.38% on AUPR. At the same time, Feature Mixing introduces a negligible
negative impact on mIoUc value.

Notably, all baselines without outlier optimization perform poorly on CARLA-OOD, with FPR@95
exceeding 97%, highlighting the dataset’s difficulty and the overconfidence issue in uncertainty-
based OOD methods. Feature Mixing significantly enhances Late Fusion on CARLA-OOD, reducing
FPR@95 by 72.98%, improving AUROC by 35.74%, and increasing AUPR by 12.81%. Furthermore,
A2D + Feature Mixing achieves the best results in most cases, demonstrating our framework’s
adaptability to advanced cross-modal training strategies.

4.2.2 Evaluation on Multimodal OOD Detection

To assess the generalizability of Feature Mixing across tasks and modalities, we evaluate it on
MultiOOD for multimodal OOD detection in action recognition, where video and optical flow serve
as distinct modalities. We replace the outlier generation method in MultiOOD framework with
Feature Mixing and compare it against Mixup [52], VOS [19], NPOS [48], and NP-Mix [17]. Models
are trained on HMDB51 [30] or Kinetics-600 [39], and other datasets are treated as OOD during
testing. As shown in Tab. 2, our Feature Mixing outperforms other outlier generation methods in most
cases, achieving the lowest FPR@95 of 20.01% and the highest AUROC of 94.17% on average when
using HMDB51 as ID. Due to space limits, we put the results on Kinetics-600 in the Appendix. These
results highlight the effectiveness of Feature Mixing in improving OOD detection across various
tasks and modalities. Similarly, Feature Mixing introduces a negligible impact on ID ACC.

4.3 Ablation Studies

Computational Cost. Tab. 3 compares the computational cost of different outlier synthesis methods.
For OOD detection, the reported time corresponds to generating 2048 multimodal outlier samples of
shape 4352. For OOD segmentation, it represents the time to synthesize 256×352 samples of shape 48.
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RGB Image Ground Truth A2D + FM (ours)A2D

Figure 7: Visualization results on different datasets. From top to down: SemanticKITTI, nuScenes,
and CARLA-OOD. Points with red color are OOD objects. Our method can segment OOD objects
accurately. More visualization results are in the Appendix.

OOD Detection OOD Segmentation

Mixup [52] 0.038 0.019

VOS [19] 152.05 61.49

NP-Mix [17] 0.545 4.81

Feature Mixing (ours) 0.058 0.013

Table 3: Computational cost of outlier synthe-
sis methods (s).

While Mixup [52] is efficient, it performs poorly in
OOD detection. In contrast, NP-Mix [17] achieves
strong performance but is computationally expensive.
Feature Mixing, benefiting from its simple design, is
both highly efficient and effective. Compared to NP-
Mix, Feature Mixing provides a 10× speedup for
multimodal OOD detection and a 370× speedup for
segmentation, making it well-suited for real-world
applications.

Visualization. Fig. 7 presents the visualization of OOD segmentation results across different datasets,
showcasing the RGB image, 3D semantic ground truth, and predictions from A2D and our best-
performing A2D+FM model. The baseline method A2D struggles to identify OOD objects, whereas
our method accurately segments OOD with minimal noise, demonstrating the effectiveness of the
proposed framework. Additional visualizations can be found in the Appendix.

Hyperparameter Sensitivity. We evaluate the sensitivity of Feature Mixing to the hyperparameter N ,

Figure 8: Ablation on the number N in Feature Mixing.

using HMDB51 as ID dataset and
Kinetics-600 as OOD dataset. Our
findings, as illustrated in Fig. 8,
demonstrate that Feature Mixing is ro-
bust and consistently outperforms the
baseline across all parameter settings.

Feature Mixing in Tri- and Uni-
modal Settings. To further demon-
strate the generality of our method,
we conduct additional experiments us-
ing Feature Mixing (FM) in both tri-
modal and unimodal settings.

Tri-Modal Setting (Video + Optical Flow + Audio). We extend FM to a tri-modal setting on the
EPIC-Kitchens dataset, where modalities include video, optical flow, and audio. FM is applied by
randomly selecting a subset of N feature dimensions from each modality and performing a cyclic
swap: video → audio, audio → optical flow, and optical flow → video. This procedure synthesizes
outlier features for all three modalities. As shown in Tab. 4a, FM consistently outperforms NP-
Mix across all evaluation metrics, demonstrating robustness and versatility in complex multimodal
scenarios.

Unimodal Setting (Video Only). FM is inherently modality-agnostic, operating purely in feature
space without relying on input-specific assumptions. This makes it naturally extendable to unimodal
scenarios. We implement a unimodal variant by splitting the video feature embedding into two halves
and randomly swapping N dimensions between them, effectively synthesizing outliers within a single
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Method FPR@95↓ AUROC↑ ACC↑
Baseline 69.22 72.39 73.13
NP-Mix 62.69 74.95 71.46
Feature Mixing 61.38 77.23 73.69

(a) EPIC-Kitchens (Tri-modal)

Method FPR@95↓ AUROC↑ ACC↑
Baseline 64.05 83.14 86.93
NP-Mix 62.53 83.62 87.15
Feature Mixing 57.30 84.41 88.89

(b) HMDB51 (Unimodal)
Table 4: OOD detection results with Feature Mixing in tri-modal and unimodal settings.

modality. Evaluated on the HMDB51 dataset, this approach outperforms the NP-Mix baseline across
all metrics, confirming FM’s applicability even in the absence of multiple modalities (Tab. 4b).

Method FPR@95↓ AUROC↑ AUPR↑ mIoUc↑
"ground" classes as OOD
A2D [17] 71.15 74.92 69.13 66.57
A2D + NP-Mix 53.60 94.71 95.30 65.07
A2D + FM (ours) 36.30 95.89 96.04 65.88

"structure" classes as OOD
A2D [17] 23.50 95.20 75.23 61.38
A2D + NP-Mix 22.14 95.41 76.36 60.54
A2D + FM (ours) 18.05 96.09 79.85 61.79

"nature" classes as OOD
A2D [17] 37.97 92.74 90.22 62.76
A2D + NP-Mix 30.88 95.18 92.51 61.21
A2D + FM (ours) 20.60 96.13 94.08 62.67

Table 5: Ablation on different classes as OOD on
SemanticKITTI.

Different Classes as OOD. For multimodal
OOD segmentation, we follow [17] and desig-
nate all vehicle classes as OOD. Here, we ex-
periment with different OOD category assign-
ments: "ground" (road, sidewalk, parking, other-
ground), "structure" (building, other-structure),
and "nature" (vegetation, trunk, terrain). As
shown in Tab. 5, Feature Mixing remains robust
across all splits, consistently outperforming the
baseline by a significant margin.

5 Conclusion

In this work, we introduce Feature Mixing, an extremely simple and fast method for multimodal
outlier synthesis with theoretical support. Feature Mixing is modality-agnostic and applicable to
various modality combinations. Moreover, its lightweight design achieves a 10× to 370× speedup
over existing methods while maintaining strong OOD performance. To mitigate overconfidence,
outlier features are optimized via entropy maximization within our framework. Additionally, we
present CARLA-OOD, a challenging multimodal dataset featuring synthetic OOD objects captured
under diverse scenes and weather conditions. Extensive experiments across eight datasets and four
modalities validate the versatility and effectiveness of Feature Mixing and our proposed framework.

Limitations and future work. Feature Mixing uses a random selection of feature dimensions to swap
between modalities. While this is highly efficient and theoretically grounded, it may not always target
the most informative feature regions for outlier synthesis. Future work could explore adaptive or
learnable selection mechanisms that dynamically identify features that maximize OOD separability.

Societal impact. In our work, Feature Mixing advances multimodal OOD detection and segmentation
by enabling more effective and efficient outlier exposure during training. This contributes directly
to the reliability and safety of autonomous systems, including self-driving cars, by helping models
handle unfamiliar or unexpected scenarios in open-world environments. Beyond autonomous driving,
the method also has broader societal impacts in other safety-critical domains such as healthcare and
security, where robustness to unknown or anomalous data is crucial. By improving model reliability
in the presence of distribution shifts, our approach supports the deployment of AI systems in dynamic,
high-stakes environments where failure could have significant consequences.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly state the claims made.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the Appendix, we discussed limitations and future work.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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For example, a facial recognition algorithm may perform poorly when image resolution
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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14



Justification: The paper provides the full set of assumptions and a complete proof in the
Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper discloses all the information needed to reproduce the main experi-
mental results. Our source code and benchmark datasets will also be made publicly available
upon acceptance.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our source code and benchmark datasets will also be made publicly available
upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run all experiments three times and report the average value.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details in implementation details part.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are properly credited in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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N = 96 N = 128

N = 256 N = 512
Figure 9: Feature Mixing introduces bias that shifts Fo away from the ID distribution F, which is
proportional to N . A large N promotes outliers to lie in low-likelihood regions of the ID feature
distribution. Therefore, N can be adjusted to generate targeted outliers.

A Theoretical Insights for Feature Mixing

Problem Setup. Let F =

[
Fc

Fl

]
∈ R2d be the concatenated in-distribution (ID) features from two

modalities, where Fc ∼ P with mean µc and covariance Σc, Fl ∼ Q with mean µl and covariance

Σl, µc ̸= µl. The joint distribution of F has mean µ =

[
µc
µl

]
and covariance Σ =

[
Σc Σcl

ΣT
cl Σl

]
,

where Σcl encodes cross-modal dependencies.

Feature Mixing swaps N features between Fc and Fl to generate perturbed features F̃c and F̃l, then

concatenates them to form Fo =

[
F̃c

F̃l

]
, which can be written as:

F̃c = Fc ⊙ (1−M1) + Fl ⊙M1, (8)

F̃l = Fl ⊙ (1−M2) + Fc ⊙M2, (9)

where M1,M2 ∈ {0, 1}d is a binary mask with N ones.

Theorem 1 Outliers Fo synthesized by Feature Mixing lie in low-likelihood regions of the distribution
of the ID features F, complying with the criterion for real outliers.

Proof 1: After swapping N features, the feature of each modality has a N
d probability of being

swapped from the other modality. Therefore, the mean of F̃c is a weighted average of µc and µl, and
similarly for F̃l:

E[F̃c] =

(
1− N

d

)
µc +

N

d
µl, (10)

E[F̃l] =

(
1− N

d

)
µl +

N

d
µc. (11)
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The perturbed mean µo of Fo becomes a weighted combination of the original modality means:

µo = E[Fo] =

[
E[F̃c]

E[F̃l]

]
=

[(
1− N

d

)
µc +

N
d µl(

1− N
d

)
µl +

N
d µc

]
. (12)

The deviation from the original mean µ becomes:

∆µ = µo − µ =
N

d

[
µl − µc
µc − µl

]
. (13)

Since µc ̸= µl, ∆µ ̸= 0, introducing a bias that shifts Fo away from the ID distribution proportional
to N (Fig. 9) and |µc − µl|. The Mahalanobis distance measures how far Fo deviates from the mean
µ of the original joint distribution F, weighted by the inverse covariance Σ−1:

D2(Fo) = (Fo − µ)TΣ−1(Fo − µ). (14)

By defining Fo − µ as (Fo − µo) + (µo − µ), we get:

D2(Fo) = (Fo − µo +∆µ)TΣ−1(Fo − µo +∆µ). (15)

After expanding the quadratic form, we get:

D2(Fo) = (Fo − µo)
TΣ−1(Fo − µo) + (∆µ)TΣ−1∆µ+

2(∆µ)TΣ−1(Fo − µo).
(16)

The first term captures the deviation of Fo from its perturbed mean µo, weighted by Σ−1. The
second term is the bias from the mean shift ∆µ, which grows with N and |µc −µl|. The last term is
the cross-term that involves both perturbation noise and mean shift.

The original covariance Σ encodes intra- and cross-modal correlations. After swapping, Cov(F̃c)

becomes a mix of Σc and Σl, similarly for Cov(F̃l). Besides, swapped features disrupt dependencies
between Fc and Fl, invalidating Σcl. Therefore, the perturbed features Fo have a new covariance
structure Σo ̸= Σ and this mismatch inflates the first term in Eq. (16). Fo −µo represents deviations
under the perturbed distribution Σo, which are not aligned with the original covariance structure
Σ. This misalignment causes Σ−1 to assign incorrect weights to the deviations, leading to larger
values in the quadratic form. Besides, the mean shift ∆µ in the second term and the last cross-term
can also lead to large values for D2(Fo). For Gaussian-distributed F, the likelihood of Fo decays
exponentially with D2(Fo):

p(Fo) ∝ exp

(
−1

2
D2(Fo)

)
. (17)

Therefore, the inflated D2(Fo) from covariance mismatch, mean shift, and cross-term forces p(Fo)
to be small, satisfying the low-likelihood criterion for outliers.

Here, we show mathematically that the expected Mahalanobis distance of Fo exceeds that of ID
samples F:

E[D2(Fo)] > E[D2(F)], (18)
where D2(x) = (x−µ)TΣ−1(x−µ). For ID samples F, the squared Mahalanobis distance follows
a chi-squared distribution with 2d degrees of freedom with expectation:

E[D2(F)] = E
[
Tr

(
Σ−1(F− µ)(F− µ)T

)]
= Tr(Σ−1Σ) = Tr(I2d) = 2d,

(19)

where Tr(·) is the trace of a matrix. For outliers Fo, from Eq. (16) we know E[D2(Fo)] is the sum of
the expectation of three terms. Since E[Fo − µo] = 0, the expectation of the last term is 0 and:

E[D2(Fo)] = Tr(Σ−1Σo) + (µo − µ)TΣ−1(µo − µ). (20)

Let ∆Σ = Σo −Σ, the trace term becomes:

Tr(Σ−1Σo) = Tr(Σ−1(Σ+∆Σ)) = 2d+ Tr(Σ−1∆Σ). (21)

Now we prove that Feature Mixing ensures Tr(Σ−1∆Σ) ≥ 0. Assume Σ is diagonal (without loss of
generality via eigendecomposition) with Σ = diag(σ2

1 , . . . , σ
2
2d). Feature Mixing increases variances

in dimensions with low σ2
i and decreases them in dimensions with high σ2

i . Let:

∆Σ = diag(∆1, . . . ,∆2d), ∆i = σ2
o,i − σ2

i . (22)
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• For σ2
i ≤ σ2

o,i: ∆i ≥ 0, and ∆i

σ2
i

is large.

• For σ2
i > σ2

o,i: ∆i ≤ 0, and ∆i

σ2
i

is small in magnitude.

The trace becomes:

Tr(Σ−1∆Σ) =

2d∑
i=1

∆i

σ2
i

. (23)

The positive terms dominate because Σ−1 weights low-variance dimensions more heavily. Thus,
Tr(Σ−1∆Σ) ≥ 0. For example, if σ2

i = a increases to σ2
o,i = b and σ2

j = b decreases to σ2
o,j = a,

where 0 < a ≤ b:

∆i

σ2
i

=
b− a

a
,

∆j

σ2
j

=
a− b

b

⇒ ∆i

σ2
i

+
∆j

σ2
j

=
(b− a)2

ab
≥ 0.

(24)

Since Feature Mixing randomly swaps features from two modalities, the probability of increasing or
decreasing σ2

i is the same, and therefore Tr(Σ−1∆Σ) ≥ 0. The second term in Eq. (20) is strictly
positive for µo ̸= µ:

(µo − µ)TΣ−1(µo − µ) > 0. (25)
Combining all terms:

E[D2(Fo)] = 2d+ Tr(Σ−1∆Σ)︸ ︷︷ ︸
≥0

+(µo − µ)TΣ−1(µo − µ)︸ ︷︷ ︸
>0

> 2d = E[D2(F)].

(26)

Since for Gaussian-distributed F, the likelihood of Fo decays exponentially with D2(Fo), p(Fo) is
much smaller than p(F) and therefore Fo lie in low-likelihood regions.

Theorem 2 Outliers Fo are bounded in their deviation from F, such that |Fo − F|2 ≤
√
2N · δ,

where δ = maxi,j

∣∣∣F(i)
c − F

(j)
l

∣∣∣.
Proof 2: While Fo is statistically anomalous, it remains geometrically proximate to F and is bounded
in their deviation from F. The Euclidean distance between Fo and F is:

|Fo − F|2 =

√
|F̃c − Fc|22 + |F̃l − Fl|22. (27)

For each modality, the deviation is bounded by the maximum feature difference δ =

maxi,j

∣∣∣F(i)
c − F

(j)
l

∣∣∣:
|F̃c − Fc|2 = |M⊙ (Fl − Fc)|2 ≤

√
N · δ, (28)

|F̃l − Fl|2 = |M⊙ (Fc − Fl)|2 ≤
√
N · δ. (29)

Therefore:

|Fo − F|2 ≤
√
(
√
N · δ)2 + (

√
N · δ)2 =

√
2N · δ. (30)

Since N ≪ d,
√
2N · δ remains small, ensuring Fo stays near F and preserves semantic consistency.

In conclusion, both Fo and F share the same embedding space, but Fo lies in low-likelihood regions
of the distribution of F.

B Additional Visualization Results

Fig. 10 to Fig. 12 present visualizations of multimodal OOD segmentation results across different
datasets, showcasing the RGB image, 3D semantic ground truth, and predictions from various
baselines. The baseline method struggles to identify OOD objects, whereas our method accurately
segments OOD objects with minimal noise.
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RGB Image Ground Truth A2D + FM (ours)A2D

Figure 10: More visualizations on SemanticKITTI dataset. Points with red color are OOD objects.
Our method accurately segments OOD objects, outperforming the baseline method.

RGB Image Ground Truth A2D + FM (ours)A2D

Figure 11: More visualizations on nuScenes dataset. Points with red color are OOD objects. Our
method accurately segments OOD objects, outperforming the baseline method.

C More Details on Datasets

C.1 Realistic Datasets

We evaluate our approach on two widely-used autonomous driving datasets, including nuScenes [6]
and SemanticKITTI [3]. Both datasets provide paired LiDAR point cloud and RGB image, along with
point-level semantic annotations. The nuScenes dataset contains 28, 130 training frames and 6, 019
validation frames, annotated with 16 semantic classes. SemanticKITTI consists of 21, 000 frames
from sequences 00-10 for training and validation, annotated with 19 semantic classes. Following [53,
7], we use sequence 08 for validation. The remaining sequences (00-07 and 09-10) are used for
training. In our OOD segmentation setting, we follow [17] to map all vehicle categories to a single
unknown class to represent out-of-distribution (OOD) objects in both datasets. Specifically, in

24



RGB Image Ground Truth A2D + FM (ours)A2D

Figure 12: More visualizations on CARLA-OOD dataset. Points with red color are OOD objects.
Our method accurately segments OOD objects, outperforming the baseline method.

SemanticKITTI, the categories {car, bicycle, motorcycle, truck, and other-vehicle} are remapped,
while in nuScenes, the remapped categories include {bicycle, bus, car, construction_vehicle, trailer,
truck, and motorcycle}. All other categories are retained as in-distribution (ID) classes and follow the
standard segmentation settings. During training, we set the labels of OOD classes to void and ignore
them. During inference, we aim to segment the ID classes with high Intersection over Union (IoU)
and detect OOD classes as unknown.

C.2 Synthetic Dataset

Limitations of the realistic datasets. The evaluation of multimodal OOD segmentation on datasets
like nuScenes [6] and SemanticKITTI [3] often relies on manually remapping existing categories to
simulate OOD classes. This methodology, while prevalent, suffers from two significant drawbacks.
Firstly, the categories designated as OOD are often common objects (e.g., vehicles, ground, structures)
that may not faithfully represent the characteristics of genuine, unseen anomalies encountered in
real-world scenarios. Secondly, despite these designated OOD classes being nominally ignored
during training (e.g., by excluding them from loss computation for known classes), the model is
nevertheless exposed to these objects within the training data. This creates a substantial risk of data
leakage, as the model may implicitly learn characteristics of these supposedly ’unseen’ OOD classes.

Inspired by the development of existing 2D OOD segmentation benchmarks, where models are
trained on Cityscapes [9] and tested on Fishyscapes [5] with the same class setup but additional
synthetic OOD objects, we create the CARLA-OOD dataset for multimodal OOD segmentation
task. We use the KITTI-CARLA dataset [12] to train the base model, which is generated using the
CARLA simulator [18] with paired LiDAR and camera data. The CARLA-OOD dataset aligns with
the KITTI-CARLA sensor configurations but incorporates randomly placed OOD objects in diverse
scenes and weather conditions for testing. The KITTI-CARLA dataset consists of 7 sequences, each
containing 5, 000 frames captured from distinct CARLA maps and annotated with 22 classes for
the LiDAR point cloud. We select 1,000 evenly sampled frames from each sequence, resulting in
a total of 7, 000 frames for training and validation. The dataset is split into a training set (Town01,
Town03–Town07) and a validation set (Town02), with testing performed on our CARLA-OOD
dataset. The CARLA-OOD dataset consists of 245 paired LiDAR and camera samples captured
across 5 CARLA maps and 6 weather conditions, each sample containing at least one OOD object.
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Figure 13: Example of OOD objects in our CARLA-OOD dataset.

Sensor Position (x, y, z) [meters] Configurations
LiDAR (0, 0, 1.80) Channels: 64

Range: 80.0 meters
Upper FOV: 2 degrees
Lower FOV: -24.8 degrees

RGB Camera (0.30, 0, 1.70) FOV: 72 degrees
Semantic Camera (0.30, 0, 1.70) FOV: 72 degrees

Table 6: Sensor configurations for CARLA-OOD dataset.

To avoid class overlap with KITTI-CARLA, 34 OOD objects are selected and randomly placed
within the scenes during dataset generation. The dataset is annotated with 22 classes aligned with
KITTI-CARLA, along with an additional unknown class for OOD objects.

C.3 Generation of CARLA-OOD Dataset

The CARLA-OOD dataset is created using the CARLA simulator, with a sensor setup aligned to the
KITTI-CARLA dataset, consisting of a camera and a LiDAR on the ego-vehicle. Detailed sensor
configurations are provided in Tab. 6, with positions defined relative to the ego-vehicle. Thirty-four
obstacles from CARLA’s dynamic and static classes are randomly placed in front of the ego-vehicle at
varying distances as OOD objects (Fig. 13). The simulation spans diverse scenes (Town01, Town02,
Town04, Town05, Town10) and weather conditions (e.g., clear, wet, foggy, sunshine, overcast),
capturing both semantic and covariate shifts. The dataset includes RGB images with a resolution
of 1392 ∗ 1024 pixels, LiDAR point cloud, point-level semantic labels, and transformation matrices
between sensors.

C.4 MultiOOD benchmark

Figure 14: Multimodal Far-OOD setup in
MultiOOD, where Kinetics-600 is the ID
dataset and the other four datasets are OOD.

MultiOOD [17] is the first benchmark designed for
Multimodal OOD Detection, comprising five action
recognition datasets (EPIC-Kitchens [11], HAC [16],
HMDB51 [30], UCF101 [45], and Kinetics-600 [28])
with over 85, 000 video clips, where video, optical
flow, and audio are used as different types of modali-
ties. Fig. 14 shows an example of the Far-OOD setup
in MultiOOD. This setup considers an entire dataset
as in-distribution (ID) and further collects datasets,
which comprise similar tasks but are disconnected
from any ID categories, as OOD datasets. In this
scenario, both semantic and domain shifts are present
between the ID and OOD samples. We follow the
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same setup and framework as proposed in MultiOOD for experiments. More details on the MultiOOD
benchmark are in [17].

D Implementation Details

For the Multimodal OOD Segmentation task, we follow [17] to adopt the fusion framework from
PMF [53], modifying it by adding an additional segmentation head to the combined features from
the camera and LiDAR streams. We use ResNet-34 [22] as the backbone for the camera stream
and SalsaNext [10] for the LiDAR stream. For optimization, we use SGD with Nesterov [41] for
the camera stream and Adam [29] for the LiDAR stream. The networks are trained for 50 epochs
with a batch size of 4, starting with a learning rate of 0.0005 and with a cosine schedule. To prevent
overfitting, we apply various data augmentation techniques, including random horizontal flipping,
random scaling, color jitter, 2D random rotation, and random cropping. For hyperparameters, we
set N in Feature Mixing to 10 and γ1 in loss to 3.0. For A2D, we set γ2 to 1.0. For xMUDA, we
set γ2 to 0.5. For the Multimodal OOD Detection task, we conduct experiments across video and
optical flow modalities using the MultiOOD benchmark [17]. We use the SlowFast network [20] to
encode video data and the SlowFast network’s slow-only pathway for optical flow. The models are
pre-trained on each dataset’s training set using standard cross-entropy loss. The Adam optimizer [29]
is employed with a learning rate of 0.0001 and a batch size of 16. For hyperparameters, we set N in
Feature Mixing to 512.

E Compatible with Cross-modal Training Techniques

Our proposed framework not only supports the basic late-fusion strategy, but is also compatible with
advanced cross-modal training techniques that promote interaction across modalities. To demonstrate
its versatility, we show how to integrate A2D [17] and xMUDA [26] into the framework.

Agree-to-Disagree (A2D), designed for multimodal OOD detection, aims to amplify the modality
prediction discrepancy during training. It assumes additional outputs Oc and Ol from each modality.
By removing the c-th value from Oc and Ol, A2D derives new prediction probabilities without
ground-truth classes, denoted as Ōc and Ōl ∈ RM×(C−1). A2D then seeks to maximize the
discrepancy between Ōc and Ōl, which is defined as:

LA2D = − 1

M

M∑
m=1

D(Ōc
m, Ōl

m), (31)

where D(·) is a distance metric quantifying the similarity between two probability distributions. By
integrating A2D into the framework, the final loss function becomes:

L = Lfoc + Llov + γ1Lent + γ2LA2D. (32)

xMUDA facilitates cross-modal learning by encouraging information exchange between modalities,
allowing them to learn from each other. xMUDA also assumes additional outputs Oc and Ol from
each modality and define cross-modal loss as:

LxM = DKL(O
c||O) +DKL(O

l||O), (33)

where DKL is the Kullback–Leibler divergence and the final loss function in this case is:

L = Lfoc + Llov + γ1Lent + γ2LxM. (34)

F More Ablation Studies

Hyperparameter Sensitivity. We evaluate the sensitivity of γ1 in the loss function on the Se-
manticKITTI dataset. Our findings, as illustrated in Fig. 15, demonstrate that training with multi-
modal outlier generation and optimization consistently outperforms the baseline across all parameter
settings. These ablations suggest that our approach is robust and exhibits minimal sensitivity to
variations in hyperparameter choices.
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Figure 15: Ablation of γ1 in the loss function on SemanticKITTI.

OOD Scores FPR@95↓ AUROC↑ AUPR↑
MaxLogit [23] 31.76 92.83 61.99
MSP [24] 32.93 91.57 51.68
Energy [36] 32.05 92.87 64.87
Entropy [13] 33.00 92.50 59.11
GEN [37] 32.63 93.00 64.43

Table 7: Ablation of OOD Scores on SemanticKITTI.

Impact of Various OOD Scores. We evaluate the impact of different commonly used OOD scores by
replacing the OOD detection module in our framework with MaxLogit [23] (our default), MSP [24],
Energy [36], Entropy [13], and GEN [37]. As shown in Appendix F, the FPR@95 and AUROC
show minimal fluctuation (less than 2%) across different OOD scores, further demonstrating the
adaptability of our framework to various design choices.

Multimodal OOD Detection Results on Kinetics-600. Tab. 8 presents the multimodal OOD
detection results using Kinetics-600 as the ID dataset. Feature Mixing outperforms other outlier
generation methods in most cases, achieving the lowest FPR@95 of 54.75% and the highest AUROC
of 79.23% on average when using HMDB51 as ID. These results further demonstrate the effectiveness
of Feature Mixing in improving OOD detection across diverse tasks and modalities, while maintaining
negligible impact on ID accuracy.

Feature Mixing in Unimodal Settings for OOD Segmentation. We further extend the unimodal
FM variant to the OOD segmentation task using LiDAR-only input. The same strategy used for
unimodal classification is directly applied to LiDAR point cloud features. As shown in Tab. 9a, our
method achieves competitive performance compared to NP-Mix and baseline methods, demonstrating
the scalability of FM to segmentation tasks in unimodal settings with minimal modification.

Sensitivity of Parameter N on SemanticKITTI. We further investigate the sensitivity of FM to the
mixing parameter N (i.e., the number of swapped feature dimensions) on the SemanticKITTI dataset.
As shown in Tab. 9b, FM achieves stable performance across different values of N , supporting the
robustness of the method. We use N=10 by default in our main experiments.

G Further Discussions on Feature Mixing

Challenges of extending existing solutions to multimodal setting. While methods such as Mixup
and VOS have shown success in unimodal tasks, directly applying them to multimodal data is
non-trivial due to the following key challenges:

(1) Modality heterogeneity: Multimodal data often involves inputs with fundamentally different
structures and distributions—e.g., dense 2D images, sparse 3D point clouds, temporal audio signals,
etc. Pixel-level interpolation techniques like Mixup are inherently incompatible across heterogeneous
modalities, making it difficult to define meaningful cross-modal augmentations. Moreover, Mixup’s
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Methods

OOD Datasets

ID ACC ↑HMDB51 UCF101 EPIC-Kitchens HAC Average

FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑ FPR@95↓ AUROC↑
Baseline 72.64 71.75 70.12 71.49 43.66 82.05 61.50 74.99 61.98 75.07 73.14

Mixup [52] 66.53 70.33 68.36 69.53 39.68 86.62 56.35 77.95 57.73 76.11 73.40
VOS [19] 65.23 71.48 68.29 73.97 38.12 86.05 56.11 79.02 56.94 77.63 73.07

NPOS [48] 65.72 70.93 68.29 73.97 35.13 86.78 55.89 80.49 56.26 78.04 73.49
NP-Mix [17] 63.27 74.17 67.20 74.50 34.07 87.49 56.69 80.20 55.31 79.09 73.67

Feature Mixing (ours) 62.86 74.32 67.74 74.38 33.51 87.64 54.89 80.58 54.75 79.23 73.67

Table 8: Multimodal OOD Detection using video and optical flow, with Kinetics-600 as ID. Energy
is used as the OOD score.

Method FPR@95↓ AUROC↑ AUPR↑ mIoU↑
Baseline 47.03 85.82 36.06 59.81
NP-Mix 48.26 86.79 45.73 59.52
Feature Mixing 46.40 88.81 47.67 60.04

(a) Unimodal feature mixing for OOD segmentation on Se-
manticKITTI (LiDAR only).

N FPR@95↓ AUROC↑ AUPR↑ mIoU↑
8 38.58 91.14 53.45 61.59

10 38.10 91.47 58.74 61.18
12 37.17 90.90 55.19 60.75

(b) Ablation of N for OOD segmentation on
SemanticKITTI.

Table 9: More ablations on the OOD segmentation task.

random linear blending can produce ambiguous or noisy samples that may lie near or within the
in-distribution (ID) manifold, reducing its effectiveness for OOD detection.

(2) Computational inefficiency: Methods like VOS and NP-Mix rely on distribution estimation,
sampling, or searching in high-dimensional feature spaces, which becomes computationally expensive
when extended to multimodal settings—especially for dense prediction tasks such as segmentation,
where per-pixel or per-point processing is required.

Our Feature Mixing addresses these challenges by (i) operating entirely in the feature space, where
modality-specific structures have already been abstracted, (ii) introducing a lightweight, swap-based
perturbation strategy to synthesize outliers efficiently, avoiding costly sampling or searching, (iii)
being theoretically grounded (Theorems 1 and 2) and empirically validated to maintain ID-OOD
separation while improving efficiency and scalability.

Clarification on the properties of Feature Mixing and their benefit to OOD detection. Theoretical
results in Theorems 1 and 2 establish two key properties of Feature Mixing: (1) the synthesized
outliers have low likelihood under the ID distribution, and (2) their deviation from the ID distribution
is bounded. These properties are important for OOD detection and segmentation, as they ensure
that FM produces challenging but plausible outliers that populate the low-density regions near
the boundary of the ID distribution. This supports effective decision boundary regularization and
reduces model overconfidence on unseen data. As shown in Fig. 4, the FM-generated outliers are
well-separated from the ID features in the embedding space. This separation helps the model to better
distinguish between in-distribution and out-of-distribution regions. These visualizations provide
intuitive, empirical evidence that our method generates meaningful and bounded outliers, as predicted
by our theoretical analysis.

More details on outlier optimization. The core idea is that the feature mixing branch generates
pseudo-OOD features. We apply an entropy maximization loss in Eq. (5) on these features to explicitly
encourage the model to produce uncertain (i.e., high-entropy) predictions for them. This discourages
the model from making overconfident predictions on ambiguous or unfamiliar inputs—behavior
that is characteristic of OOD samples. In contrast, the classification loss encourages low-entropy
(i.e., high-confidence) predictions on in-distribution (ID) samples. Together, these complementary
objectives train the model to develop a confidence-based decision boundary: ID samples are associated
with confident predictions, while pseudo-OOD samples—introduced through feature mixing—are
explicitly pushed toward uncertain predictions. As shown in Fig. 2, this training objective increases
the separation in predictive confidence between ID and OOD inputs, which is crucial for effective
OOD detection.
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