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Figure 1: Overview of our method and representative results. (Left) We adaptively omit redundant
source tokens to accelerate transformer-based image editing. To mitigate information loss from drop,
we introduce a source consistency regularization to flow ODE that restores the influence of dropped
tokens. (Right) Our approach yields more efficient and consistent editing and is applicable to various
transformer-based image editing models. The number in the gray area indicates the inference time.
Image size: 1024×1024.

ABSTRACT

Text-based image editing has recently been reinterpreted in large multimodal
transformers as conditional generation, where source image tokens are concate-
nated with text and noise tokens as conditioning inputs. While effective, this
design introduces substantial computational overhead in attention layers. To miti-
gate this drawback, we present an efficient text-based image editing method called
TokenDrop by dropping source tokens partially, where the selection of tokens to
drop is adaptively guided by difference between the source and the clean estimate.
Importantly, by reformulating the flow ODE as a latent optimization problem, we
can reflect information of dropped tokens to the solution of regularized optimiza-
tion. Thanks to the closed form solution, this optimization does not introduce
additional computational cost. Across FluxKontext and Qwen-Image-Edit, our
training-free method achieves an average 22.4% improvement in inference speed
on PIEBench, while better preserving non-edited regions. The method delivers up
to 1.8× speedup at 10242 resolution and 2× speedup at 20482 resolution.

1 INTRODUCTION

Inspired by the recent advances in flow and diffusion models for text-driven image generation from
Gaussian noise to complex images, here we focus on text-guided image editing that modifies a
source image according to a textual instruction while preserving irrelevant regions. We distinguish
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our focus from “generative editing”, which generates a new image preserving an object’s identity in
a new context (Batifol et al., 2025). Our work centers on direct image-to-image transformation.

Existing image editing approaches fall into inversion-based and inversion-free methods. Inversion-
based methods reconstruct a latent noise from the source image before re-generating under the target
prompt (Song et al., 2021; Su et al., 2023; Park et al., 2024; Kim et al., 2024; Rout et al., 2025), or
exploit cached features during the inversion process (Tumanyan et al., 2023). These methods suffer
from ODE step-size sensitivity because errors from approximating the inversion ODE accumulate
when the step size is not sufficiently small. Consequently, they cannot easily reduce the number
of ODE steps without sacrificing accuracy, which requires finer integration for more precise inver-
sion (Mokady et al., 2023; Wallace et al., 2023; Meiri et al., 2023; Ju et al., 2024). In addition,
they incur roughly double the computational cost, since both inversion and re-generation must be
performed. Inversion-free methods avoid this doubled computation by applying a forward diffusion
process to obtain an intermediate sample (Meng et al., 2021), by directly guiding the source image
during editing (Hertz et al., 2023; Nam et al., 2024), or by simulating an ODE trajectory between
the source and target images (Kulikov et al., 2024; Kim et al., 2025a).

More recently, large-scale multimodal transformers have unified generation and editing by pro-
cessing text and source image tokens jointly (Xiao et al., 2025; Tan et al., 2024; Deng et al.,
2025; Wu et al., 2025; Batifol et al., 2025). This paradigm builds on the idea introduced by In-
structPix2Pix (Brooks et al., 2023), which first demonstrated conditioning a diffusion model on
both the source image and editing instruction through supervised training. Although highly effec-
tive, this design introduces substantial computational overhead because the quadratic complexity of
self-attention makes prepending thousands of source tokens prohibitively expensive. For instance,
FluxKontext (Batifol et al., 2025) requires 29 seconds per editing of 1024×1024 image on an A100
GPU, compared to 13 seconds for standard noise to image generation.

Our work begins from the observation that not all source tokens are required for editing. In non-edit
regions that are irrelevant to editing instruction and should be unmodified, source tokens primarily
serve to enforce consistency with the original image, yet processing them still incurs substantial
computational cost. To address this inefficiency, we reformulate the flow ODE as a latent optimiza-
tion problem. In this formulation, computation on redundant tokens is replaced with a regularized
ODE that enforces consistency of non-edit region, while only tokens that carry essential editing in-
formation are preserved in input token sequence. We also show that token selection should be guided
by difference between the source and clean estimate, which gives rise to adaptive masking. Random
token dropping under regularization collapses the process to the source image, eliminating edits,
whereas residual-based selection preserves editing capability while regularizing unedited regions.

To our knowledge, our method is the first token pruning framework designed for conditional diffu-
sion sampling in image editing. Our method is training-free and transfers the information of pruned
tokens into the ODE dynamics without introducing additional neural networks for compression.
Empirically, for PIEBench dataset, the proposed method increases inference throughput by average
22.4% over the vanilla model with 1024×1024 resolution (comparable in pixel count to HD), while
maintaining the editing quality and providing more consistent editing with source context. Impor-
tantly, the efficiency gains grow larger at higher resolutions, demonstrating the scalability of this
method. For instance, we can achieve 2× faster editing for 2048×2048 resolution image (compara-
ble in pixel count to 4K UHD) when edited region is relatively small.

2 BACKGROUND

2.1 LINEAR FLOW MODELS

Suppose we have access to samples from the source distribution q(x1) and the target distribution
p(x0), which consists of the independent coupling π0,1(x0,x1) = q(x1)p(x0). In this paper, we
assume that q(x1) := N (0, I) and that p(x0) represents an image distribution.

The flow model (Lipman et al., 2023) defines a flow ψt(x1) := xt and the corresponding velocity at
xt as v(xt) = ψ̇t(x1), where ψ̇ denotes the derivative of ψ with respect to t. To explicitly express
the velocity, we can define the conditional flow ψt(x1|x0) and the corresponding velocity v(xt|x0).
Among various conditional flows, the linear flow (Karras et al., 2022; Liu et al., 2023) is widely used

2
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and is defined as ψt(x1|x0) := (1− t)x0 + tx1 with corresponding velocity v(xt|x0) = x1 − x0.
We can parameterize the conditional velocity using a neural network θ, and the training objective,
referred to as the conditional flow matching loss (Lipman et al., 2023), is given by

min
θ

Et,(x0,x1)∼π0,1
∥vθ(xt, t)− (x1 − x0)∥2 (1)

where the gradient is equivalent to flow matching loss. Consequently, we can generate x0 from x1

by solving the ordinary differential equation (ODE) with the trained velocity model:
dx = vθ(xt, t)dt (2)

where dt < 0. Importantly, this ODE can be decomposed into a clean estimate and a noise estimate
using Tweedie’s formula (Kim et al., 2025b):

dx = (1− t− dt)x̂0|t + (t+ dt)x̂1|t (3)
where

x̂0|t := xt − tvθ(xt, t) = E[x0|xt] (4)

x̂1|t := xt + (1− t)vθ(xt, t) = E[x1|xt] (5)
denote the clean estimates and the noise estimates relatively. Although the flow model is defined in
latent space with an encoder E and a decoder D, which consists of an auto-encoder z = E(x) =
E(D(z)), we can use the same decomposition without loss of generality.

2.2 TRANSFORMER-BASED IMAGE EDITING METHODS

Recently, image generation and editing have been unified under a single or mixture of transform-
ers (Xiao et al., 2025; Batifol et al., 2025; Wu et al., 2025; Deng et al., 2025). These models extend
transformer diffusion frameworks (Peebles & Xie, 2023; Esser et al., 2024), where text embeddings
and noise tokens are concatenated to predict the velocity field of the flow ODE. Unified editing
methods further incorporate source image tokens as conditioning inputs, enabling strong multi-
modal alignment but substantially increasing sequence length. Transformer-based editing models
are commonly trained with conditional flow matching (Lipman et al., 2023), where the objective is
defined as

min
θ

E∥vθ(zt, t,zsrc, c)− (zsrc − ztgt)∥2 (6)

where zsrc := E(xsrc), ztgt := E(xtgt), and c denotes editing instruction embedding. While
effective, this design requires multi-modal attention over very long sequences, making inference
slow and computationally expensive. This scalability issue highlights a key limitation of existing
unified approaches and motivates more efficient alternatives.

3 TOKENDROP: SOURCE TOKEN DROP WITH REGULARIZATION

In this paper, we consider image editing models using Multimodal diffusion transformers
(MMDiT) (Esser et al., 2024) that incorporate text embeddings, noise tokens and source image
tokens in the input sequence. Suppose the noise tokens at time t are denoted by zt ∈ RL×d, and the
source image tokens are represented as zsrc ∈ RL×d, where L is the number of tokens and d is the
token embedding dimension. We will not alter text or time embedding. Let Mt ∈ RL denotes the
binary mask at time t, indicating the source tokens to drop. In other words, if the i-th elements of
Mt is 0, we will omit the i-th source token when computing velocity at time t. Finally, 0 ≤ λt < 1
denotes the source token drop ratio where N := ⌈λtL⌉ elements of Mt are zeros. When dropping
source tokens, we apply the same index slicing to their positional embeddings, so the preserved
tokens retain their original positional information without reindexing.

3.1 ANALYSIS ON RANDOM TOKEN DROP

A key observation in this paper is that the complete set of source image tokens is not always neces-
sary for effective editing. To examine this, we analyze the effect of randomly drop tokens for Flux
Kontext and Qwen-Image-Edit. Specifically, we set λt as a constant for all t and randomly select N
indices for Mt to be zero for each t. We use the PIEBench dataset (Ju et al., 2024), which contains
700 natural and synthetic images, accompanied by editing instructions and pairs of source and target
prompts.

3
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Figure 2: Effect of random token drop. (Left) Token dropping preserves text alignment but rapidly
degrades consistency of non-editing area. (Right) Quantitative metrics is aligned with qualitative
results. Shaded regions indicate 0.1 × standard deviation across samples.

0.1 0.3 0.5 0.7 0.9Drop Ratio 1.0

Figure 3: Relative runtime across resolutions and
drop ratios. Token dropping provides greater sav-
ings at higher resolutions, where attention domi-
nates the computation.

Figure 2 shows editing results under difference
values of λt. The qualitative results indicate that
the edited image remain aligned with the editing
instruction even when up to 90% of the source
tokens are dropped. However, higher drop ra-
tios cause over-smoothing in unedited regions,
which are not intended to be changed by instruc-
tion, leading to a loss of consistency and fine de-
tails. The quantitative results on the right panel
of Figure 2 confirm this trend. CLIP similar-
ity with the target prompt remains largely stable
across drop ratios, but PSNR between unedited
region and the source image decreases sharply
as more tokens are omitted. Without dedicated
mechanisms, the results show a clear source-
efficiency trade-off under token dropping, which
in turn motivates compensating for the discarded source information during flow-ODE sampling.

Another important observation is that the efficiency gains from source token dropping becomes
larger at higher image resolutions. When applied to larger images, the same drop ratio yields greater
runtime reductions. Figure 3 illustrates this effect. At lower resolutions, components such as feed-
forward layers, and embeddings account for a larger share of the runtime, so dropping tokens pro-
vides only moderate efficiency gain. At higher resolutions, attention dominates the computation,
and token dropping directly reduces this bottleneck. As a result, the measured relative runtime com-
pared to full-token editing decreases steadily with increasing image size. This feature makes our
approach increasingly advantageous for high-resolution image editing, where computational cost is
the primary bottleneck.

3.2 MITIGATING THE SOURCE INFORMATION LOSS

Building on the findings of the previous section, we propose a training-free method to adaptively
maintain source information when dropping source image tokens. Inspired by the success of Dream-
Sampler (Kim et al., 2024), which reformulated the reverse sampling process as a regularized op-
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timization problem, here we propose a method to explicitly enhances consistency of non-edit area
using a proper regularization term. Specifically, the decomposed flow ODE in Eq. (3) can be ex-
pressed as the following optimization problem:

z∗ = argmin
z

∥z − ẑ0|t∥2 + ηtR(z) (7)

zt−1 = (1− t− dt)z∗ + (t+ dt)ẑ1|t (8)
where ẑ0|t and ẑ1|t are obtained from Eq. (4) and ηt > 0 controls the strength of regularization. No-
tably, when ηt = 0, the procedure reduces to the standard sampling process without any additional
regularization.

Since image editing models are trained as conditional flow models that predict conditional velocity
for source image, the absence of conditioning leads to inaccurate velocity estimation. This, as
observed in the previous section, causes unintended deviation from the source image in regions that
should be preserved. To address this issue, we introduce a source consistency regularization term:

R(z) := ∥z − zsrc∥2, (9)
which penalizes deviations of the sampling trajectory from source image. Importantly, because the
source image latent zsrc remains accessible regardless of token drop, incorporating this regulariza-
tion term does not incur additional computation overhead. This leads to the following closed-form
solution of Eq. (7)

z∗ =
1

1 + ηt
ẑ0|t +

ηt
1 + ηt

zsrc, (10)

which corresponds to a linear interpolation between ẑ0|t and zsrc.

This regularization term should exert a stronger influence during the early stages of sampling and
gradually diminish over time, since excessive penalization from the source image can otherwise
suppress meaningful edits. Accordingly, we set the weight ηt = σt, which monotonically decreases
from 1 to 0 throughout the sampling process. When t = 1, z∗ reduces to the average of ẑ0|t and
zsrc, while as t → 0, ẑ0|t dominates. This guarantees that the final output remains only marginally
influenced by zsrc, thereby allowing meaningful edits to be preserved. Importantly, we compute z∗

only to the positions of dropped source tokens, where insufficient source information is available.
If source consistency regularization is indiscriminately applied to all tokens, including those that
already contain adequate source information, the editing model would suppress meaningful modifi-
cations and instead bias the output toward reproducing the original source image. Accordingly, the
updated estimate is defined as

z̃0|t =Mt ⊙ ẑ0|t + (1−Mt)⊙ z∗ (11)
where ⊙ denotes a Hadamard product. Finally, the sampling step proceeds by adding deterministic
noise according to Eq. (3):

zt−1 = (1− t− dt)z̃0|t + (t+ dt)ẑ1|t. (12)

3.3 ADAPTIVE MASK GENERATION

While we introduce a novel approach to regulate the sampling trajectory and enhance source con-
sistency, the design of the mask is also critical for ensuring that the proposed regularization remains
compatible with editing models. In particular, the following proposition demonstrates that random
masking is not suitable in combination with our regularization.
Proposition 1 (Pathwise Convergence with Random Mask). Let v(z) : RL×d → RL×d be locally
Lipschitz. With random binary mask Mt ∈ {0, 1}L×d, a fixed source image latent zsrc ∈ RL×d and
time t ∈ (0, 1], the solution of expected-mask ODE in Eq. (12) zt satisfies

lim
t→0

zt = zsrc (13)

This result shows that random masking with source consistency regularization tends to collapse the
editing process back toward the source image, thereby reducing editing fidelity.

To address this, we require a more principled rule for constructing the drop mask Mt. A desirable
mask should preserve the sampling trajectory with full source tokens as closely as possible. Thus,
we analyze the difference between the reference sampling trajectory in Eq. (2) and the regularized
sampling trajectory in Eq. (12), leading to the following error bound.
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Proposition 2 (Error bound between two trajectories). Let v(z) : RL×d → RL×d be locally Lips-
chitz. For any t ∈ [t0, t1] with 0 < t0 < t1 ≤ 1, the error between trajectory zt0 (Eq. (12)) and zref

t0
(Eq. (2)) satisfies

∥et0∥2 ≤ C(t1, t0)∥et1∥2 +
∫ t1

t0

C(t, t0)

t2
∥rt∥2dt. (14)

where et0 = zt0 − zref
t0 , C(t, t0) is a time-dependent variable and rt =

ηt(1−Mt)⊙(ẑ0|t−zsrc)

1+ηt
.

The proof is deferred to the Appendix. The upper bound consists of the initial discrepancy and
the cumulative error caused by deviations of the clean estimates ẑ0|t from the source image zsrc.
To make the bound smaller, the mask should suppress tokens with large deviations. In practice,
instead of integrating over time, we adopt a greedy strategy based only on the current difference
rt. Concretely, the mask is defined as Mt = 1(Dt > τλt

) where 1 denotes the indicator function,
Dt := |ẑ0|t − zsrc|, and the threshold τλt

is chosen so that exactly N := ⌈λtL⌉ source tokens with
the smallest Dt values are dropped.

Algorithm 1 Regularized Sampling

Require: Editing model vθ, Source Image xsrc,
Encoder E and Decoder D, Regularization
weight ηt, Instruction embedding c
zsrc ← E(xsrc), zt ← N (0, I)
Mt ← 1 ∈ RL

for t : 1→ 0 do
v(zt)← vθ(zt, c,Mt ⊙ zsrc)

1

ẑ0|t ← zt − tv(zt)
ẑ1|t ← zt + (1− t)v(zt)
Mt ← AdaptiveMask(ẑ0|t, zsrc, t)
z∗ ←Mt ⊙ ẑ0|t + (1−Mt)⊙ zsrc
z̃0|t ← 1

1+ηt
ẑ0|t +

ηt

1+ηt
z∗

zt ← (1− t− dt)z̃0|t + (t+ dt)ẑ1|t
end for
x0 ← D(z0)

Intuitively, this threshold separates edited re-
gion, which involves larger change from source
image, from non-edit region, that should be the
same as source image. Then, the adaptive mask
drops non-edit region from input token sequence
and replace it by source consistency regulariza-
tion, which reduces the computational cost. As
in the random mask case, one could use a fixed
token drop ratio λt, but this is not always appro-
priate because area of non-edit region depends
on images and the type of editing. For example,
setting λt = 0.9 for a background change may
fail to reduce the bound sufficiently, since tokens
with large deviations could still be dropped.

To address this, we determine the drop ratio
adaptively for each sample. We use triangle
thresholding (Zack et al., 1977), which can ef-
fectively separate edited and non-edited regions
in Dt even when the histogram of difference is
not clearly multi-modal. Unlike Otsu’s variance-based method (Otsu et al., 1975), triangle thresh-
olding is particularly effective for skewed or unimodal histograms where the object peak is weak or
elongated. Moreover, it is computationally inexpensive, so the additional cost of applying it during
diffusion sampling is negligible compared to velocity prediction. To control the trade-off between
efficiency and performance, we add a bias term and define the threshold as

τλt(ω) = TriangleThreshold(Dt)− ωσDt (15)

where ω ∈ R controls the performance-efficiency trade-off and σD denotes the standard deviation
of Dt. This bias lowers the threshold more when the difference map is relatively flat, ensuring
that fewer tokens are dropped under high uncertainty, while in sharper, peaked maps the adjustment
is small and the behavior stays close to the baseline. For 1024×1024 images on an A100 GPU,
masking takes 0.24s on average, compared with 0.57s for velocity prediction.2 Finally, since ẑ0|t is
unreliable in early steps of the ODE, we use all tokens during the first few iterations to get a better
initial mask estimation. The Algorithm for the proposed method is described in Algorithm 1 and 2.

4 EXPERIMENT

The proposed method is applicable to flow-based models that use transformers and leverage source
image tokens as conditioning for image editing as depicted in Figure 1. We demonstrate its effec-
tiveness on Flux Kontext and Qwen-Image-Edit, two recently introduced transformer-based editing

1We omit tokens of zsrc where the elements of Mt are zeros.
2Measured during adaptive masking; both runtimes vary across ODE steps, and we report averages.
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Source Image Full Tokens Random Token Drop Adaptive Token Drop

“Make the person in the photo dance.”

“Replace the person in the image with Spider-Man.”

“Generate an image of the character smiling based on this photo”

“Add leaves to the bee illustration”

“There is only a plant”

“Remove the glasses”

Figure 4: Qualitative comparison for Flux Kontext on PIEBench and GEdit-Bench. Editing instruc-
tions are shown below each sample. Compared with vanilla editing, the proposed method produces
equivalent or more consistent results. Enlarged boxes emphasize the consistency with source image.

models with two image editing benchmarks, PIEBench (Ju et al., 2023) and GEdit-Bench (Liu et al.,
2025). Additional details are provided in the Appendix B. Experiments were run on A100 GPUs.

4.1 EFFECTIVENESS OF ADAPTIVE MASKING

The proposed method selects tokens to drop adaptively based on difference between the clean esti-
mate and the source image. To test its effectiveness, we compare adaptive masking with a random
masking without regularization under matched drop ratios and full-token image editing. For fair-
ness, the random strategy reuses the per-sample pruning budgets produced by adaptive masking.
For Flux Kontext, we set ω = 0.4 and use all source tokens for two initial ODE steps among 28
NFEs. For Qwen-Image-Edit, we set ω = 0.1 for PIEBench and ω = 0.3 for GEdit-Bench. We
use all tokens for four initial steps among 50 NFEs. All other settings, including the classifier-free
guidance scale, follow the default configurations. Input images are resized to 1024 × 1024 using
bicubic interpolation, as required by Flux Kontext.

Table 1 presents quantitative results on PIEBench and GEdit-Bench. Definitions of each metric is
described in Appendix B. With the same token drop ratios, adaptive masking consistently outper-
forms random masking in source consistency while maintaining text–image alignment comparable
to the vanilla model. Using Qwen-Image-Edit, for instance, adaptive masking drops an average of
65% of source tokens yet reduces background PSNR by only 0.3% and CLIP similarity by 0.6%
relative to full-token editing. In contrast, random masking leads to a substantial 23% drop in back-
ground PSNR. The runtime in Table 1 is averaged over all samples. Depending on the image and
editing task, reductions can be larger, as shown in Figure 1, where our method achieves 1.5× faster
editing. At 2048×2048 resolution, we can achieves 2× faster editing as shown in Section D.2.
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PIEBench GEdit-Bench

Model Strategy Runtime PSNR ↑ LPIPS ↓ DINO ↓ MSE ↓ SSIM ↑ CLIP ↑ CLIP-edit ↑ Runtime DINO ↓ Q SC↑ Q PQ ↑ Overall↑
Source Image - ∞ 0.000 0.000 0.000 1.000 23.19 20.09 - 0.000 0.276 7.488 0.244

Flux Kontext

Random w/o reg
23.72

23.79 0.120 0.063 0.011 0.820 25.89 22.78
23.72

0.054 7.033 7.056 6.630
Adaptive w/o reg 23.26 0.135 0.065 0.012 0.798 25.73 22.74 0.056 6.856 7.175 6.554
Adaptive w/ reg 26.75 0.066 0.042 0.007 0.912 25.57 22.47 0.032 6.100 7.143 5.842

Full Tokens 29.01 27.76 0.063 0.050 0.009 0.912 25.86 22.79 29.01 0.039 6.291 7.142 5.909

Qwen-Image-Edit

Random w/o reg
71.12

19.98 0.160 0.066 0.019 0.732 25.50 22.56
97.02

0.075 7.917 7.403 7.586
Adaptive w/o reg 18.50 0.192 0.075 0.024 0.696 25.31 22.65 0.087 7.904 7.434 7.585
Adaptive w/ reg 26.00 0.067 0.039 0.008 0.912 25.19 22.11 0.053 7.415 7.043 7.004

Full Tokens 116.1 26.07 0.088 0.052 0.013 0.872 25.35 22.48 116.1 0.075 7.876 7.440 7.536

Table 1: Quantitative results of Flux Kontext and Qwen-Image-Edit on PIEBench and GEdit-Bench.
Average runtime (seconds) and metrics are reported. For GEdit-Bench, Qwen2.5-VL is used for
evaluation. Bold indicates the best and underline indicates the second best except source image.

Baseline Preferred No Preference (similar) Proposed method Preferred

Source Consistency Text Alignment

Random
w/o reg

Adaptive
w/o reg

Full 
Token

Random
w/o reg

Adaptive
w/o reg

Full 
Token

Ours

Ours

Ours

Ours

Ours

Ours

Figure 5: Human preference study results. The proposed method was consistently preferred over all
baselines in terms of source consistency and was comparably preferred in terms of text alignment.

Figure 4 shows qualitative comparisons on PIEBench and GEdit-Bench. Our method achieves ed-
its similar to the vanilla model while better preserving non-edit regions, as seen in the first two
rows. Random masking, despite yielding the highest CLIP similarity on PIEBench and the best
semantic alignment score on GEdit-Bench, often produces inconsistent results with over-smoothing
or identity mismatches. Also, note that the semantic score of the proposed method is far from the
those of source image, which indicates that the our approach effectively edits images. Categorical
quantitative result and more qualitative examples are provided in the Appendix D.4 and D.5.

We conducted a human preference study to further assess the effectiveness of the proposed method
for image editing (see protocol and details in Appendix C). The results in Figure 5 demonstrate that
our approach substantially outperforms both random masking and adaptive masking without source
regularization in terms of source consistency, with clear statistical significance, consistent with the
qualitative comparisons. Importantly, for editing instruction alignment, our method achieves compa-
rable or superior performance relative to each baseline, indicating that it preserves editing capability
while improving efficiency. Overall, the proposed method delivers editing quality on par with the
full-token vanilla model and, in many cases, provides better consistency in preserving non-edit re-
gions and identity, with reduced computational cost.

4.2 IMPORTANCE OF SOURCE-CONSISTENCY REGULARIZATION

We next examine the role of source-consistency regularization by removing it from the flow ODE
in Figure 6. When adaptive masking is applied without regularization (ηt = 0), source tokens are
dropped without explicit compensation in subsequent flow ODE steps. This results in source in-
formation loss and degraded editing performance, manifested as reduced consistency and missing
details in both quantitative and qualitative evaluations. Conversely, when source-consistency regu-
larization is applied with random masking, the model tends to reproduce the source image instead
of performing the intended edit, as explained by Proposition 1. Taken together, these results demon-
strate that neither adaptive masking nor source-consistency regularization alone is sufficient; both
components are necessary to achieve high-fidelity and instruction-consistent editing.

4.3 BEHAVIOR OF ADAPTIVE MASKING

Proposition 2 suggests that adaptive masks be determined by the residual between the clean estimate
and the source image. In practice, however, the threshold must adapt to size and type of the edited
region. On PIEBench, which provides ground-truth masks of non-edit regions, we observe a negative

8
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Source Image Full tokens Adaptive w/ reg Adaptive w/o reg Random w/ reg

“Remove the mushrooms from the branch” “Add a boy sitting on the bridge”

Source Image Full tokens Adaptive w/ reg Adaptive w/o reg Random w/ reg

Figure 6: Ablation study on source consistency regularization. Only when adaptive token drop is
applied with source consistency regularization, we obtain editing results similar to the vanilla model.

So
ur

ce
 Im

ag
e

𝜔 = 0.0 𝜔 = 0.2𝜔 = − 0.2

Fu
ll 

To
ke

n

“Make the parrots kiss each other”

Figure 7: Effect of ω on the efficiency-performance trade-off. Larger ω retains more tokens, yield-
ing performance closer to vanilla model but lowering efficiency. Left: qualitative examples with
preserved tokens in green. Right: LPIPS (↓) and CLIP similarity (↑) versus ω; dotted line denotes
the full-token baseline. Reported are averages with error bars at 0.1× standard deviation.

correlation between the drop ratio and edited area size (see Appendix D.1), indicating that triangle
thresholding discards more tokens when edits are small and retains more when edits are large.

We further introduce a hyper-parameter ω to control the efficiency–performance trade-off by ad-
justing the threshold. Figure 7 illustrates its effect: the left subfigure highlights preserved tokens
(in green), while the right plot reports LPIPS and CLIP similarity as functions of ω. Increasing ω
preserves more source tokens, yielding CLIP similarity close to the vanilla model but at reduced
efficiency. In the shown example, preserved regions often align with edited areas such as the head
or body of birds.

With small ω, the mask concentrates on high-residual regions that are most critical for edits, while
larger ω expands coverage to secondary areas, improving alignment with editing instructions. The
right plot further indicates that smaller ω favors source consistency, whereas larger ω improves CLIP
similarity at the cost of background LPIPS. Based on this trade-off, we set ω = 0.4 for FluxKontext
and ω = 0.1, 0.3 for Qwen-Image-Edit. Notably, at matched CLIP similarity, our method attains
higher source consistency than full-token editing, consistent with the additional qualitative results
in Appendix D.5.

5 CONCLUSION

We propose a regularized flow ODE that replaces the computational burden of source image to-
kens, enabling partial token omission and yielding efficiency gains that scale with image resolution.
The explicit regularization further ensures more consistent edits, supported by both quantitative and
qualitative improvements. Our difference-based adaptive masking with triangle thresholding and
standard deviation–based bias provides controllable trade-offs between efficiency and performance.
As the method applies broadly to transformer-based flow models with conditioning tokens, it can be
extended to higher-dimensional tasks such as image-to-video generation.

Limitation A limitation of the proposed approach is that it may discard tokens when the entire
image is edited (e.g., in style transfer), where the vanilla model or random masking can be more
effective. Nevertheless, the method is particularly well suited for localized edits and provides a
principled framework for adaptive token pruning. More discussions are provided in Appendix D.4.

9
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Ethics Statement TokenDrop is proposed for efficient image editing, reducing computational cost
while preserving editing capability and improving consistency in non-edited regions. As a result,
the method may inherit potential negative impacts from the underlying editing model. There is a
possibility that editing outcomes may deviate from the safe editing considerations learned during
training, even though our approach modifies the sampling trajectory to enforce consistency with the
source image.

Reproducibility statement For reproducibility, we provide the complete proofs of the proposi-
tions in Appendix A, detailed information on the editing models, benchmarks, and evaluation met-
rics in Appendix B, and the full algorithms in Appendix 1 and Appendix 2. The code will also be
released publicly.
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A PROOF OF PROPOSITION 1 AND 2

Proposition 1 (Pathwise Convergence with Random Mask). Let v(z) : RL×d → RL×d be locally
Lipschitz. With random binary mask Mt ∈ {0, 1}L×d, a fixed source image latent zsrc ∈ RL×d and
time t ∈ (0, 1], the solution of expected-mask ODE in Eq. (12) zt satisfies

lim
t→0

zt = zsrc (13)

Proof. Let mt ∈ {0, 1}L be an i.i.d random mask with
P[(mt)i = 1] = 1− λ, λt ∈ (0, 1] (16)

which is independent across t and coordinates.

With the mask Mt := mt1
⊤
d ∈ {0, 1}L×d,

E[Mt|zt] = E[Mt] = (1− λ)1L×d (17)
and

EMt [z̃0|t|zt] = (1− λ)ẑ0|t + λz∗ (18)

= (1− λ′)ẑ0|t + λ′zsrc (19)

where we use Eq. (10) for the last equality and λ′ = ηtλ
1+ηt

∈ (0, λ] for ηt > 0.

Replacing the random mask with its expectation in Eq. (12) gives the ODE

dzt
dt

=
zt −

(
(1− λ′)z0|t + λ′zsrc

)
t

= (1− λ′)v(zt) +
λ′

t
(zt − zsrc) (20)

By setting kt = zt − zsrc, we get

dkt

dt
= (1− λ′)v(zt) +

λ′

t
kt (21)

Multiplying the integrating factor µ(t) = t−λ′
and computing integral from 1 to t ∈ (0, 1] yields

kt = tλ
′
k1 + (1− λ′)tλ

′
∫ t

1

τ−λ′
v(zτ )dτ (22)

where k1 = z1 − zsrc and z1 ∼ N (0, I).

Suppose a radius R > ∥k1∥+ 1, and let
BR := {z : ∥z − zsrc∥ ≤ R}, τR := inf{t ∈ (0, 1] : ∥kt∥ = R}. (23)

For t < τR, the trajectory stays inside BR, so ∥v(zτ )∥ ≤ MR = supz∈BR
∥v(z)∥ <∞. From the

integral representation we then obtain

∥kt∥ ≤ tλ
′
∥k1∥+ (1− λ′)tλ

′
∫ t

1

τ−λ′
∥v(zτ )∥dτ (24)

≤ tλ
′
∥k1∥+ (1− λ′)tλ

′
MR

∫ t

1

τ−λ′
dτ (25)

where the first inequality holds as triangle inequality and the second inequality holds due to local
Lipschitzness of v, which implies boundedness on BR.

Therefore,

∥kt∥ ≤ tλ
′
∥k1∥+ C(t, λ′) (26)

where

C(t, λ′) =

{
tλ

′∥k1∥+MRt
λ′ 1−t1−λ′

1−λ′ , λ′ ∈ (0, 1)

t∥k1∥+MRt log(1/t), λ′ = 1.
(27)

From Eq. (26), since Eq. (27)→ 0 as t→ 0, we conclude that
lim
t→0

zt = zsrc. (28)
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For the proof of the Proposition 2, we state preliminary results.

Lemma 1 (Generalized Gronwall’s Inequality (Teschl, 2012)). Suppose ψ(t) satisfies

ψ(t) ≤ α(t) +
∫ T

0

β(s)ψ(s)ds, ∀t ∈ [0, T ], (29)

with α(t) ∈ R and β(t) ≥ 0. Then,

ψ(t) ≤ α(t) +
∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds, ∀t ∈ [0, T ] (30)

Corollary 1.1. Suppose ψ(t) satisfies

ψ(t)

dt
≤ γψ(t) + δ(t), ∀t ∈ [0, 1] (31)

where γ ≥ 0 denotes a constant, δ(t) ≥ 0 is integrable. Then, for 0 < τ < t ≤ 1,

ψ(t) ≤ exp(γ(t− τ))ψ(τ) +
∫ t

τ

exp(γ(t− s))δ(s)ds (32)

Proof. Integrate both sides from τ to t yields

ψ(t)− ψ(τ) ≤ γ
∫ t

τ

ψ(r)dr +

∫ t

τ

δ(r)dr. (33)

By plugging the following definitions to Lemma 1,

α(t) := ψ(τ) +

∫ t

τ

δ(r)dr and β(t) = γ ≥ 0, (34)

we get

ψ(t) ≤ α(t) + γ

∫ t

τ

α(s) exp(γ(t− s))ds. (35)

Using integration by parts,∫ t

τ

α(s) exp(γ(t− s))ds = [−α(s) exp(γ(t− s))]tτ +

∫ t

τ

α′(s) exp(γ(t− s))ds (36)

= −α(t) + ψ(τ) exp(γ(t− τ))
∫ t

τ

δ(s) exp(γ(t− s))ds (37)

where α(τ) = ψ(τ) and α′(s) = dα(s)/ds = δ(s) due to the first fundamental theorem of calculus.
Therefore,

ψ(t) ≤ ψ(τ) exp(γ(t− τ)) +
∫ t

τ

δ(s) exp(γ(t− s))ds (38)

Time convention. We solve the flow ODE backward in time from 1 to 0. Accordingly, we use t1 for
the initial time and t0 < t1 for a later (smaller) time. Applying Corollary 1.1 with (τ, t) = (t0, t1)
yields the reverse-time bound

ψ(t0) ≤ eγ(t1−t0)ψ(t1) +

∫ t1

t0

eγ(s−t0)δ(s) ds, (39)

Now, we can prove the Proposition 2 using Corollary 1.1.
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Proposition 2 (Error bound between two trajectories). Let v(z) : RL×d → RL×d be locally Lips-
chitz. For any t ∈ [t0, t1] with 0 < t0 < t1 ≤ 1, the error between trajectory zt0 (Eq. (12)) and zref

t0
(Eq. (2)) satisfies

∥et0∥2 ≤ C(t1, t0)∥et1∥2 +
∫ t1

t0

C(t, t0)

t2
∥rt∥2dt. (14)

where et0 = zt0 − zref
t0 , C(t, t0) is a time-dependent variable and rt =

ηt(1−Mt)⊙(ẑ0|t−zsrc)

1+ηt
.

Proof.

Let the original flow ODE be

dzref
t = v(zref

t )dt. (40)

Our regularized flow ODE is defined as

dzt
dt

=
zt − z̃0|t

t
dt = v(zt) +

ηt
1 + ηt

(1−Mt)⊙ (ẑ0|t − zsrc)

t
(41)

= v(zt) +
rt
t
. (42)

Let the error between two trajectory be et0 := zt0 − zref
t0 . Take derivatives by t0 yields

det0
dt0

=
dzt0
dt0
−
dzref

t0

dt0
=

[
v(zt0)− v(zref

t0 )
]
+

rt0
t0
. (43)

Suppose a common ball for two trajectories

BR(c) := {x ∈ RL×d : ∥x− c∥ ≤ R} (44)

such that zref
t , zt ∈ BR(c) for all t ∈ [t0, t1]. Since v is locally Lipschitz, there exists a constant

KR <∞ such that ∥v(x)− v(y)∥ ≤ KR∥x− y∥, ∀x,y ∈ BR.

Then,

d

dt0
∥et0∥2 = 2e⊤t0

det0
dt0

(45)

= 2∥et0∥∥v(zt0)− v(zref
t0 )∥+ 2

t0
e⊤t0rt0 (46)

≤ 2KR∥et0∥2 +
2

t0
e⊤t0rt0 (47)

≤ (2KR + 1)∥et0∥2 +
∥rt0∥2

t0
2 (48)

where the first inequality holds due to local Lipschitzness of v(z) in BR and the second inequality
holds because 2∥a∥∥b∥ ≤ ∥a∥2 + ∥b∥2.

By applying Corollary 1.1 with backward time, we get

∥et0∥2 ≤ C(t1, t0)∥et1∥2 +
∫ t1

t0

C(t, t0)
∥rt∥2

t2
dt (49)

where C(t, t0) = exp((2KR + 1)(t− t0))
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B IMPLEMENTATION DETAILS

In this section, we provide detailed information on the editing models and benchmarks used, along
with further details on the adaptive mask.

Editing Models We evaluate the proposed method using two editing models that employ Trans-
formers as their backbone and incorporate source image tokens together with text and noise tokens
in the input sequence. For both models, computations are performed with bfloat16 precision.

1. Flux Kontext (Batifol et al., 2025): We use the pre-trained checkpoint available at
https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev .
The classifier-free guidance scale is set to 3.5 and passed to the Transformer. Since the
model is trained with guidance distillation, it predicts velocity once per timestep. We use
28 NFEs in our experiments.

2. Qwen-Image-Edit (Wu et al., 2025): We use the pre-trained checkpoint provided at
https://huggingface.co/Qwen/Qwen-Image-Edit . The classifier-free guid-
ance scale is set to 4.0 with 50 NFEs. This model uses Qwen-VL as a text encoder, which
also takes the source image as input. We do not drop source image tokens from the encoder
input, as they are used to incorporate source context and obtain a stronger representation of
the editing instruction, rather than to provide explicit guidance for non-edit regions.

Benchmarks We evaluate the proposed method on two image editing benchmarks:

1. PIEBench (Ju et al., 2023): We use the dataset provided at https://github.com/
cure-lab/PnPInversion , which contains 700 synthetic and real images with corre-
sponding source and target descriptions, editing instructions, and masks indicating non-edit
regions.

2. GEdit-Bench-EN (Liu et al., 2025): We use the dataset available at https://
huggingface.co/datasets/stepfun-ai/GEdit-Bench , which contains 600
synthetic and real images paired with editing instructions. For evaluation, we employ the
pretrained Qwen2.5-VL 72B model (Bai et al., 2025) with prompts provided by (Liu et al.,
2025), using only the English instructions.

Definition of Metrics We use pre-defined metrics provided by each benchmark as following.

1. (Background) PSNR: we compute PSNR for non-edit region indicated by mask data.

2. (Background) LPIPS: we compute LPIPS for non-edit region indicated by mask data.

3. Structural Distance (i.e. DINO): we compute distance between features of entire image
extracted by DINO vitb8 variant.

4. (Background) MSE: we compute pixel-level mean-squared-error for non-edit region indi-
cated by mask data.

5. (Background) SSIM: we compute SSIM for non-edit region indicated by mask data.

6. CLIP: we compute clip similarity between editing result and target prompt given by bench-
mark using clip-vit-large-patch14 variant.

7. CLIP-edit: we compute clip similarity for non-edit region indicated by mask data.

8. Q SC: Semantic Consistency score between 0 to 10 is evaluated by Qwen2.5-VL 72B
model to assess the degree to which the edited image is aligned to the given editing in-
struction.

9. Q PQ: Perceptual Quality score between 0 to 10 is evaluated by Qwen2.5-VL 72B model
to assess the naturalness of the edited image and the presence of artifacts.

10. Overall: The overall score is computed as the square root of the product of Q SC and Q PQ.
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Source Image No Gaussian Blur Kernel Size 3 Kernel Size 5 Kernel Size 7 Kernel Size 11

Figure 8: Effect of Gaussian blur to adaptive mask. Editing result with averaged mask along ODE
timestep is displayed. Editing instruction: “Make the frame of the bike rusty”.

Adaptive Mask In Algorithm 2, we outline the process of adaptive mask generation. Empirically,
applying a Gaussian blur to the difference map Dt reduces noise and produces more stable masks
that entirely cover edited region, as illustrated in Figure 8. We use a kernel size of 11 with a standard
deviation of 1.0, followed by normalization ofDt to the range [0, 1]. While these preprocessing steps
may slightly alter the resulting mask, the fundamental principle of dropping source tokens with small
deviations from the source image remains unchanged and plays a critical role in our method.

Algorithm 2 AdaptiveMask

Require: Clean estimate ẑ0|t, Source image latent zsrc, ODE time t. Drop start time td
if t < td then

Dt ← |ẑ0|t − zsrc|
Dt ← GaussianBlur(Dt)
Dt = (Dt −min(Dt))/(max(Dt)−min(Dt))
σ2
Dt
← E[∥Dt∥2]− E[Dt]

2

τω ← TriangleThreshold(Dt)− ωσDt

Mt ← 1(Dt > τω)
else if t > td then

Mt = 1 ∈ RL

end if
Return Mt

C HUMAN PREFERENCE TEST

Protocol To evaluate human preference on editing results, we conducted a user study. As illus-
trated in Figure 9, each participant was asked to choose either A or B to indicate their preference
with respect to two criteria: alignment with the editing instruction and consistency with the source
image. When participants could not identify a meaningful difference, they were allowed to select the
“similar / not sure” option. Each participant completed 12 rounds. In each round, we provided the
source image, the editing instruction, and two edited results: one produced by the proposed method
and the other by a baseline. The baseline was randomly selected from the vanilla model, random
drop with the same drop ratio, or adaptive drop without source consistency. The positions of our
method and the baseline were randomized for each round. The preference survey was implemented
using Google Apps Script. We recruited 23 participants, resulting in 276 total responses.

Further Analysis In Figure 10, we present the human preference results for each editing model,
FluxKontext and Qwen-Image-Edit, to provide further discussion. In terms of consistency, the
proposed method outperforms alternative masking strategies for both models. Compared with the
vanilla model, it significantly improves consistency in the case of Qwen-Image-Edit, while achiev-
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Figure 9: Human preference study interface.
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Figure 10: Human preference study result for each editing model.

ing comparable results with FluxKontext. This suggests that FluxKontext is inherently more ro-
bust in preserving consistency with the source image, whereas Qwen-Image-Edit leaves greater
room for improvement. For text alignment, the results indicate that the proposed method pre-
serves the behavior of the vanilla models while reducing computation cost. In both FluxKontext
and Qwen-Image-Edit, the majority of responses fell into the “similar / not sure” category, showing
that instruction-following remains largely unaffected. Where preferences were expressed, they were
relatively balanced, with a slight edge toward our method in FluxKontext. These findings confirm
that TokenDrop achieves efficiency gains without compromising the ability of the models to follow
editing instructions.

D ADDITIONAL RESULTS

D.1 CORRELATION BETWEEN EDIT AREA AND MASK SIZE

We use triangle thresholding to adaptively determine the drop ratio from the difference between
the clean estimate and the source image at each time step. Figure 11 shows a hexagonal heatmap
of adaptive drop ratio versus editing mask size, where a larger mask corresponds to edits affecting
larger regions. If the adaptive thresholding works correctly, it should assign smaller drop ratios when
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the editing mask is large. The red trend line indeed shows a negative correlation, confirming that the
proposed method effectively identifies appropriate thresholds.

Qwen-Image-EditFlux Kontext
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Figure 11: Hexagonal heatmap showing the correlation between editing mask size and average drop
ratio. The red trend line indicates a negative correlation.

D.2 HIGHER RESOLUTION IMAGE EDITING

To demonstrate the efficiency gains at higher resolutions, we evaluate image editing on 2048×2048
images from the DIV2K dataset (Ignatov et al., 2019) in Figure 12. Using the FluxKontext model,
editing a 2K-resolution image requires 184 seconds. With the proposed method, the runtime is
reduced to 91.69 seconds by dropping 89.5% of source tokens on average along sampling time.
While accelerating the editing process, our method achieves results comparable to the vanilla model.
Minor blurring is observed in the edited samples, which we attribute to the fact that FluxKontext was
trained only at a fixed resolution of 1024×1024.

D.3 EFFICIENT SAMPLING WITH LOW NFES

If the proposed method is combined with editing models that support fast sampling with only a
few NFEs, efficiency can be further improved and editing time reduced to just a few seconds. To
demonstrate this, we apply the method to FluxKontext with 8 NFEs, which is capable of robust
image editing. We set ω = 0 and use full-token sampling for the first two ODE steps. Table 2
reports the performance of the vanilla model and the proposed method on PIEBench. The proposed
method improves consistency in non-edited regions, which is degraded when using a small number
of NFEs, and reduces runtime by 21% with 65% drop ratio on average, while maintaining alignment
with the target description. These results demonstrate that the method can also be applied to fast
editing models that employ distillation to reduce NFEs.

Model Strategy Runtime PSNR ↑ LPIPS ↓ DINO ↓ MSE ↓ SSIM ↑ CLIP ↑ CLIP-edit ↑
Source Image - ∞ 0.000 0.000 0.000 1.000 23.19 20.09

Flux Kontext Ours 6.47 25.34 0.093 0.049 0.008 0.878 25.58 22.49
Full Tokens 8.12 24.27 0.080 0.065 0.011 0.876 25.79 22.74

Table 2: Quantitative results of Flux Kontext on PIEbench. Even with 8 NFEs.

D.4 PER-CATEGORY QUANTITATIVE RESULTS

To further analyze the performance of the proposed method, we report per-category quantitative
results on GEdit-Bench in Figure 13. For most categories, our method (blue) achieves scores com-
parable to the vanilla model (orange) while significantly reducing runtime. However, in categories
that require global changes, such as tone transformation or style transfer, performance decreases.
As discussed in the limitation section, this stems from the thresholding mechanism, where certain
tokens are consistently discarded.
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Source Image Adaptive Drop Full Tokens

184.3 secs91.69 secs“Remove the wooden statue”

“Add a lemon” 184.3 secs110.7 secs

184.3 secs126.3 secs“Change the color of clothes to white”

Figure 12: Image editing with 2k resolution using FluxKontext. The enlarged view corresponds to
the red rectangle and highlights the consistency of the non-edit region with the source image.

Flux Kontext Qwen-Image-Edit

Full Tokens Proposed method

Figure 13: Quantitative result for each editing category of GEdit-Bench. Scores are evaluated by
Qwen2.5-VL.

Localized editing, however, can still produce the intended results while reducing computational cost.
For example, in the left column of Figure 14, our method edits only the woman and background
partially, yet the output still reflects the editing instruction. Although these results are reasonable,
the vanilla model achieves higher semantic scores such as CLIP similarity because it produces more
extensive changes and aligns more closely with the instruction.
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Source Image Full Tokens Proposed Source Image Full Tokens Proposed

“Modify this image in a Ghibli style" “Restore and colorize the image”

“Simulate the texture of clay stop-motion animation“ “Generate a monochrome-style animation"

Figure 14: Localized editing with the proposed method. When a task requires full-image modi-
fication, threshold-based mask generation may lead to only partial edits. (Left) Localized editing
achieves the intended result with improved efficiency. (Right) Localized editing fails to complete
the edit.

There are also clear failure cases, as shown in the right column of Figure 14. For instance, the pro-
posed method successfully colorizes the source image, but the effect remains confined to a limited
region rather than the whole image.

For consistency in evaluation, we apply adaptive masking with regularization across all categories.
In practice, however, the choice of dropping strategy can be adapted to the editing type. For example,
random token dropping without source regularization performs well in this scenario, providing a
simple and inexpensive alternative.

D.5 ADDITIONAL QUALITATIVE RESULTS

In Figures 15-22, we present additional qualitative results obtained with FluxKontext and Qwen-
Image-Edit on PIEBench and GEdit-Bench. Consistent with the main paper, the proposed method
produces edits comparable to the vanilla model, and in some cases achieves higher fidelity in non-
edited regions, while random token dropping with the same budget fails to preserve identity or
consistency.

The right-most column shows the averaged adaptive masks over the flow ODE. Regions highlighted
in blue denote preserved source tokens, while the remaining tokens are dropped and their infor-
mation is compensated through the proposed regularized flow ODE. Notably, the adaptive mask
concentrates on edited regions that exhibit large residuals relative to the source image. As the blue
area decreases, computation becomes more efficient, yet the editing results remain nearly equivalent
to those of the full-token baseline. Note that although the blue mask appears to cover almost every
region, it represents an averaged mask and does not imply that most tokens are always preserved.

The editing instructions shown below each sample are taken directly from the dataset. Any typos
originate from the dataset itself, and the editing model receives the instructions with these typos as
input.

E USAGE OF LLM

The LLM was used solely for grammar correction and improving the readability of the text. All
conceptual contributions, analyses, and results were entirely developed by the authors.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Change the black and white cat to a pink yarn ball”

“Replace the cup with a candle”

“Add a graffiti to the girl’s face”

“Add a car in front of these two people”

“Change the expression on Santa’s face from laughing to angry”

“Remove balloons in the field”

“Remove boats”

Figure 15: Qualitative results of FluxKontext on PIEBench. Image size: 1024×1024. The blue
region denotes the averaged mask over sampling, while the actual masked region changes across
steps.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Replace silhouette image of man with clear image”

“Change the woman to a golden sculpture”

“Make the painting an upside down one”

“Change the bird’s color to green”

“Make the camera a wooden toy”

“Change the painting from planets and starts to cats and dogs”

“Change the buddha statue from gold to stone”

Figure 16: Qualitative results of FluxKontext on PIEBench. Image size: 1024×1024. The blue
region denotes the averaged mask over sampling, while the actual masked region changes across
steps.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Generate a Pixar-style animation”

“change the color of man to pink”

“Change the text ‘500’ to ‘250’”

“Upgrade the necklace’s materials to 999 pure gold”

“Replace the cat with a fish”

“Make him look sad”

“Replace the text “SNACK” to “TREAT”

Figure 17: Qualitative results of FluxKontext on GEdit-Bench. Image size: 1024×1024. The blue
region denotes the averaged mask over sampling, while the actual masked region changes across
steps.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Replace the face in the picture with a blonde beauty”

“Make him laugh heartily”

“Include a candle on top of the cake”

“Change the text 'ESTATE TACHEN' to 'Timeless Fashion'”

“Transform the donut’s material into aluminum foil”

“Light the candle to enhance the candlelight”

“Remove the music stand and sheet music from the stage”

Figure 18: Qualitative results of FluxKontext on GEdit-Bench. Image size: 1024×1024. The blue
region denotes the averaged mask over sampling, while the actual masked region changes across
steps.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Make the frame of the bike rusty”

“Change the woman's holding object from a pink flower to a teddy bear”

“Add the age of the woman”

“Change the book to a laptop”

“Add flowers around the sheep”

“Add a pen to the table”

“Remove the dog”

Figure 19: Qualitative results of Qwen-Image-Edit on PIEBench. Image size: 1024×1024. The
blue region denotes the averaged mask over sampling, while the actual masked region changes
across steps.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Make the carpet floral”

“Change the color of the lilas to orange”

“Change the position of the cartoon bear from sitting to standing”

“Change to an anime illustration”

“Change the greyhound's movement from running to jumping”

“Transform the deer into an iron sculpture”

“Add a cave to the owl illustration”

Figure 20: Qualitative results of Qwen-Image-Edit on PIEBench. Image size: 1024×1024. The
blue region denotes the averaged mask over sampling, while the actual masked region changes
across steps.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Replace the text 'TRAIN' with 'PLANE'”

“Add more hair to the front, making it long and soft for a gentle look”

“Replace the text 'FERMENT' with 'delicious treats’”

“Change the text '23' to '45'”

“Build the horse using red bricks”

“Based on this image, change the hidden ‘New York’ text to ‘ALEX’”

“Generate a Pixar-style animation with a cheerful spring background”

Figure 21: Qualitative results of Qwen-Image-Edit on GEdit-Bench. Image size: 1024×1024. The
blue region denotes the averaged mask over sampling, while the actual masked region changes across
steps.
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Source Image Full Tokens Random Adaptive MaskAdaptive

“Change the background to high mountains”

“Change the background to Mount Everest”

“Make the person in the image smile”

“Add a painting to the easel”

“Turn the baby’s balloon into an ice cream cone”

“Convert the young man and woman …  into chibi-style characters ...”

“Add a book in her hand”

Figure 22: Qualitative results of Qwen-Image-Edit on GEdit-Bench. Image size: 1024×1024. The
blue region denotes the averaged mask over sampling, while the actual masked region changes across
steps.
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