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Abstract
Roaming in Wireless LAN (Wi-Fi) is a criti-
cal yet challenging task for maintaining seam-
less connectivity in dynamic mobile environ-
ments. Conventional threshold-based or heuris-
tic schemes often fail, leading to either sticky
or excessive handovers. We introduce the first
cross-layer use of an on-device large language
model (LLM): high-level reasoning in the ap-
plication layer that issues real-time actions ex-
ecuted in the PHY/MAC stack. The LLM ad-
dresses two tasks: (i) context-aware AP selec-
tion, where structured prompts fuse environmen-
tal cues (e.g., location, time) to choose the best
BSSID; and (ii) dynamic threshold adjustment,
where the model adaptively decides when to
roam. To satisfy the tight latency and resource
budgets of edge hardware, we apply a suite
of optimizations—chain-of-thought prompting,
parameter-efficient fine-tuning, and quantization.
Experiments on indoor and outdoor datasets
show that our approach surpasses legacy heuris-
tics and DRL baselines, achieving a strong bal-
ance between roaming stability and signal qual-
ity. These findings underscore the promise of
application-layer LLM reasoning for lower-layer
wireless control in future edge systems.

1. Introduction
Wi-Fi roaming is a critical operation for maintaining seam-
less wireless connectivity as users move through physical
environments. Traditionally, roaming logic has assumed
relatively stable topologies—stationary access points (APs)
and predictable client mobility. However, emerging sce-
narios are rapidly redefining this assumption. Automotive
Wi-Fi and device-to-device (D2D) “mobile-AP” scenarios
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Figure 1. Cross-layer control via on-device LLM: Rule-based
handover (legacy) vs. on-device LLM context-aware handover.

all feature mobility on both the client and AP sides, creat-
ing highly dynamic topologies that demand instantaneous,
context-aware decisions at the wireless edge.

Despite decades of refinement, current roaming mecha-
nisms still rely heavily on threshold-based triggers—such
as scanning when RSSI drops below −70 dBm—and static
handover logic that fails to adapt to varying conditions.
Such strategies often result in either sticky handovers
(where devices cling to weak links) or excessive handovers
(leading to instability and overhead). These issues are ex-
acerbated in modern use cases, where wireless conditions
change rapidly across space and time.

Making intelligent roaming decisions under these con-
straints is inherently difficult. The system must reason
over noisy, high-dimensional signals such as RSSI pat-
terns, user location, time of day, and device state—all un-
der tight latency budgets (typically within 10–100 ms).
Prior approaches based on supervised learning or deep re-
inforcement learning (DRL) have shown promise but suf-
fer from limited generalization, requiring task-specific re-
training and extensive engineering to adapt to new environ-
ments.

In this work, we propose a new paradigm: using large lan-
guage model (LLM) as adaptive roaming agents deployed
directly at the wireless edge. While LLMs have recently
been explored for cloud-level network management (Wu
et al., 2024), this work is the first to deploy an LLM on-
device for real-time control at the lower layers of a wire-
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less system, specifically at the PHY/MAC level. By lever-
aging the LLM’s in-context reasoning capabilities, we en-
able it to interpret structured prompts that encode real-time
situational context—such as RSSI, location, and time—and
make intelligent roaming decisions locally, without exter-
nal coordination or retraining.

Problem scope. We study two concrete tasks:

T1) Context-aware AP selection (§3): choose the optimal
BSSID given current context;

T2) Dynamic threshold adjustment (§4): adaptively decide
when to trigger roaming.

Contributions.

• Cross-layer Wireless Control via On-Device LLM.
We demonstrate the first on-device LLM that reasons
in the application layer while issuing real-time actions
in the PHY/MAC stack.

• Edge-efficient LLM pipeline. Through prompt de-
sign, post-training, and quantization, we trim memory
and compute cost, pushing inference toward real-time
with only marginal accuracy loss.

• Comprehensive evaluation. Indoor and outdoor ex-
periments show our approach outperforms legacy and
DRL baselines, striking a strong trade-off between
roaming stability and link quality.

• Practical insights & Real-world demo. We distill
practical guidelines for deploying LLMs as edge-level
wireless controllers (§5) and validate our approach
through practical demonstrations (§A)1.

We begin in Section 2 by reviewing the fundamentals of
Wi-Fi roaming and describing how LLMs can act as real-
time, context-aware decision-making agents in wireless
systems.

2. Background
2.1. Wi-Fi Roaming and Mobility Management

In Wi-Fi networks, roaming refers to the process by which
a client device (e.g., a smartphone or laptop) switches its
connection from one AP to another as the user moves.
These APs typically belong to the same extended service
set (ESS), providing overlapping coverage areas. For in-
stance, as a user walks through a building, the device must
determine when it should disconnect from the current AP
and connect to another AP to maintain a strong wireless

1A full demonstration video and inference code are available
at github.com/abman23/on-device-llm-wifi-roaming.

connection and avoid dropped connections or degraded sig-
nal quality.

Roaming is a Layer 2 operation governed by the IEEE
802.11 standard, playing a crucial role in ensuring seam-
less connectivity across dynamic environments such as of-
fice buildings, university campuses, and public transit sta-
tions.

Most client devices continuously monitor the received sig-
nal strength indicator (RSSI) of their currently associated
AP. When the RSSI falls below a predefined threshold,
known as scanRSSI (typically set around −70 dBm), the
device initiates a roaming procedure. After crossing this
threshold, the device actively scans for candidate APs, eval-
uating them based on factors such as RSSI, channel conges-
tion, and PHY-layer capabilities. It then selects a new AP
if this AP offers significantly better link quality, commonly
defined by a relative RSSI improvement threshold (e.g., at
least +8 dB during active data transmission or +12 dB dur-
ing idle periods).

(a) Sticky handover. (b) Excessive handover.

Figure 2. Common failure modes of rule-based Wi-Fi roaming.

Despite their simplicity, fixed RSSI thresholds and rule-
based roaming logic frequently lead to suboptimal out-
comes. As shown in Fig. 2, poorly tuned thresholds and
static decision rules often produce two problematic scenar-
ios:

• Sticky handovers: The device remains connected to
a weakening AP, causing deteriorating throughput, in-
creased latency, and poor user experience.

• Excessive handovers: The device frequently initiates
scanning and switches between APs, causing disrup-
tions in the connection, increased signaling overhead,
lowered throughput, and degraded user experience.

Effectively managing roaming thus requires balancing two
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Aspect Conventional ML / DRL LLMs as Agents

Input Format Fixed feature vectors Flexible, multimodal prompts

Adaptability Retraining required for new settings Zero-/few-shot generalization

Reasoning Style Implicit via model weights Explicit, interpretable (e.g., CoT)

Context Integration Hand-crafted, limited scope Natural support for rich context

Deployment Efficient but narrow Powerful, yet compute-heavy

Table 1. Comparison: Conventional AI vs. LLM as Decision-Making Agents

conflicting objectives: maintaining high signal quality
while minimizing handover frequency. To quantitatively
evaluate roaming strategies, we consider two key metrics:

• AvgRSSI: The average RSSI experienced by the client
(Station, STA) throughout the test period, reflecting
the overall connection quality (higher is better).

• #HO: The total number of handovers triggered during
the evaluation period, indicating roaming stability or
the overhead associated with frequent AP switching
(lower is better).

A well-designed roaming policy must intelligently and dy-
namically balance these two metrics based on real-time en-
vironmental context and user requirements.

2.2. LLMs as Decision-Making Agents

LLMs have shown impressive generalization across di-
verse tasks in language, vision, reasoning, and planning.
More recently, they have been explored as decision-making
agents capable of operating in structured environments
such as robotics and human-computer interaction (Huang
et al., 2022; Irpan et al., 2022)—domains that demand not
only prediction but also adaptive control.

In wireless systems, especially at the lower protocol layers
(e.g., PHY/MAC), such adaptive capabilities remain un-
derexplored. Traditional methods in tasks like roaming,
scheduling, and interference management typically rely on
fixed heuristics or conventional machine learning models.
Reinforcement learning approaches (e.g., PPO) have been
applied in wireless contexts; however, these methods often
demand specialized model designs, dense reward signals,
and substantial retraining efforts when deployed in new en-
vironments or tasks (Lacava et al., 2024; Lee et al., 2024;
Wilhelmi et al., 2024).

LLMs offer a fundamentally different paradigm. They en-
able in-context learning, allowing the model to make struc-
tured decisions based on prompt-based inputs without task-
specific retraining. This adaptability makes LLMs well-
suited for dynamic wireless settings, where behavior must
generalize across diverse users, locations, and temporal
conditions. LLMs can naturally process heterogeneous in-

put modalities—such as signal strength, location, time of
day, and battery state—using structured prompts, and can
output decisions accompanied by interpretable reasoning
traces (e.g., via chain-of-thought prompting).

These capabilities position LLMs not simply as prediction
or classification models but as context-aware agents capa-
ble of integrating high-dimensional contextual information
for adaptive wireless control. Although LLM inference
occurs in the application layer, their outputs directly in-
fluence PHY/MAC layer parameters—such as selecting a
target BSSID or adjusting roaming thresholds. This rep-
resents an emerging trend of deploying application-layer
AI for lower-layer wireless control. Table 1 highlights key
differences between conventional AI methods and LLM-
based approaches in this scenario.

Despite their promise, deploying LLMs for real-time wire-
less control introduces practical challenges, particularly on
edge devices. Strict latency constraints (typically within
100 ms) combined with limited computational and mem-
ory resources pose significant hurdles (Xu et al., 2024). In
this work, we overcome these constraints through a com-
bination of model-level optimizations (quantization and
parameter-efficient fine-tuning) and task-level adaptations
designed to minimize inference overhead. These strategies
enable the deployment of adaptive, context-aware LLMs
capable of efficient, real-time operation directly on-device.

3. Task (1): Context-Aware AP Choice by
LLM

Our first objective is to determine whether a LLM can im-
prove Wi-Fi roaming by selecting the optimal basic service
set identifier (BSSID) using real-time context (e.g., device
location and time).

3.1. Problem Statement: Best BSSID Selection

When multiple APs are available, the device must select
BSSID to roam to. The “best” node is typically the one of-
fering the most favorable channel connection (e.g., , strong
RSSI). In dynamic environments, the optimal choice can
depend not only on RSSI, but also other context informa-
tion. For example, site-specific information might hint at
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which AP has better coverage, while time of day and user
mobility might tells the network congestion patterns. Our
task is to predict, at any given moment, which AP the client
should associate with to maximize handover performance.

Challenging Scenarios. As shown in Figure 2, traditional
roaming mechanisms often exhibit two critical shortcom-
ings: sticky handovers, where the device remains con-
nected to a suboptimal AP despite significant signal degra-
dation (left panel, zero handovers), and frequent handovers,
where the device constantly re-associates with different
APs (center panel, multiple handovers), leading to instabil-
ity and increased overhead. These scenarios degrade user
experience via dropped connections, lower throughput, and
higher latency.

3.2. Approach: LLM-based Decision with Contextual
Information

We employ a LLM to evaluate available APs based on rich
situational data. Specifically, the model ingests inputs such
as the current and neighboring AP RSSI, location, time of
day, and historical throughput. These contextual features
may be encoded in a structured prompt or feature vector
that the LLM can interpret. Unlike conventional AI solu-
tions, which often require significant re-training or custom
engineering to handle new context signals, an LLM can
flexibly process additional inputs by extending the prompt
format. The LLM then predicts which BSSID the STA
should join next (or remain connected to, if already op-
timal). By going beyond a simple “highest RSSI wins”
legacy, the model can learn nuanced rules (for instance,
staying on a slightly weaker AP if it provides better back-
haul, or deferring handover if a signal dip is only transient),
thereby adapting more effectively to diverse and evolving
environments.

Prompting Engineering. We adopt chain-of-thought
(CoT) (Wei et al., 2022) prompting and examine how few-
shot examples affect the LLM’s decision-making. Specif-
ically, we provide the model with situational context (cur-
rent RSSI, neighboring AP RSSIs, user location, time of
day, battery state) and a small number of labeled exam-
ples—ranging from zero to five “shots.” In the CoT variant,
each example includes a concise reasoning trace before the
final decision, whereas the non-CoT variant supplies only
the final label or action.

While CoT improves zero-/few-shot reasoning, we still
need domain adaptation via supervised fine-tuning. Then,
to align the model’s decisions with user preferences, we ap-
ply direct preference optimization (DPO) (Rafailov et al.,
2023).

Fine-Tuning. We fine-tune the pre-trained LLM on real
Wi-Fi roaming log data. We adopt LoRA (Hu et al., 2022)
for parameter-efficient fine-tuning (PEFT). Using LoRA,

we inject small adaptation parameters and even fine-tune
on a quantized model to save memory. This adaptation
trains the LLM to understand Wi-Fi-specific cues (e.g.,
what RSSI patterns precede a disconnection) and to out-
put the best AP choice accordingly. The lightweight nature
of LoRA fine-tuning allows us to iterate and improve the
model without needing enormous compute resources.

Preference-Based Learning. We further refine the model
through preference optimization. For instance, logs or user
feedback indicating which handover decisions yield better
outcomes (e.g., higher throughput, fewer drops) are treated
as preferred. The LLM is then optimized to prioritize these
decisions via DPO, which directly tunes the model toward
favored behaviors. During this process, the LLM explores
candidate AP choices, scores them with a learned function,
and iteratively updates its policy to favor those leading to
better results. The end result is an LLM that not only pro-
duces valid AP selections but also aligns with real-world
performance objectives.

3.3. Evaluation

We evaluate the Task (1): Context-Aware AP Choice by
comparing our LLM-based approach against several base-
line roaming strategies in a variety of Wi-Fi roaming sce-
narios. To evaluate roaming behavior, we use two key met-
rics:

AvgRSSI =
1

T

T∑
t=1

RSSIt, (1)

# HO =

T∑
t=2

I[BSSIDt ̸= BSSIDt−1], (2)

Here, T denotes the number of time steps, RSSIt is the
received signal strength at time t, and BSSIDt is the AP
the device is associated with. AvgRSSI reflects connec-
tion quality, while # HO captures roaming stability. These
two objectives often conflict: reducing handovers may hurt
signal quality, and maximizing RSSI may cause unneces-
sary roaming. A well-designed roaming policy must intel-
ligently balance these competing goals based on context.

The baselines for comparison are as follows:

• Heuristic: randomly selects an AP when RSSI falls
below scanRSSI, triggering a roam.

• Legacy: chooses the AP with the highest RSSI when
RSSI is below scanRSSI, thereby triggering a roam.

• opt-HO & opt-RSSI: opt-HO selects the AP that min-
imizes # HO, while opt-RSSI chooses the AP that
maximizes AvgRSSI, over the test sequence. Both
methods achieve global optimality via exhaustive
search.
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• PPO (Schulman et al., 2017): is a DRL agent trained
for AP selection that takes Wi-Fi measurements and
contextual information as input, then outputs the tar-
get AP for roaming.

• LLM: is our proposed LLM-based method, which
leverages context-aware prompting to determine the
optimal AP.

Detailed experimental setups and parameter settings are
provided in Table 7 in Appendix C.

3.4. Experiments

Effect of Prompt Engineering. Figure 3 compares CoT
prompting with a simpler, non-CoT approach across 0-
, 1-, and 5-shot scenarios, highlighting three main find-
ings: i) CoT consistently reduces handover count, indi-
cating fewer unnecessary switches; ii) CoT maintains a
stronger average signal (by about 1–2 dB); and iii) CoT be-
gins with a lower error rate at 0-shot, although non-CoT
catches or surpasses it at 5-shot. Overall, CoT proves es-
pecially beneficial in few-shot contexts, whereas non-CoT
capitalizes more effectively on additional examples.

Figure 3. Impact of prompt engineering.

Effect of Post-Training. To reduce computational over-
head without compromising accuracy, we adopt PEFT via
LoRA. As shown in Table 2, with a suitable configuration
(e.g., a learning rate of 2×10−4, batch size of 2, and LoRA
rank of 128), the model achieves about 85% accuracy to
test set for opt-HO-global optimal (exhaustive) results for
# of roaming, while using only about 20% of VRAM and
30% of the GPU-hours required for full training. This effi-
ciency–accuracy balance makes LoRA an attractive choice
for computational heavy LLM fine-tuning, so that is used
for our post-training.

Table 3 compares different post-training methods. While
supervised fine-tuning (SFT) improves the average RSSI,
it does not reduce handovers or the error rate. By con-
trast, combining SFT with DPO lowers the error rate signif-
icantly (to 12.66%), suggesting a more balanced outcome.
Odds ratio preference optimization (ORPO) (Hong et al.,

Learning Rate Batch Size Rank (LoRA) Quantization Accuracy (%)

1e-5 1 32 ✗ 57.89
2e-4 1 32 ✓ 68.42
2e-4 1 32 ✗ 69.47
2e-4 2 32 ✗ 78.95
2e-4 1 128 ✗ 78.95
2e-4 2 128 ✗ 85.26

Table 2. Performance across various PEFT configurations. Accu-
racy is the percentage of LLM-selected APs matching test labels
generated by opt-HO, which minimizes handovers over the time
sequence (Base model: Llama3.1-8B (Grattafiori et al., 2024)).

2024) further cuts handovers but drives up the error rate to
33%, underscoring a trade-off. Nevertheless, in scenarios
prioritizing fewer roam events over higher error tolerance
(e.g., when a fallback mechanism is available), ORPO may
still be advantageous.

Method # HO AvgRSSI (dBm) ErrorRate (%)

No FT 35.5 -56.48 22.83
SFT 35.5 -55.91 22.83

SFT+DPO 34.5 -56.53 12.66
ORPO 33.0 -55.91 33.00

Table 3. Impact of post-training methods. ErrorRate denotes the
fraction of invalid AP selections (i.e., when the LLM chooses an
AP that is unavailable or has an RSSI below scanRSSI). The
base model used is Llama3.1-8B (Grattafiori et al., 2024).

Comparison: Legacy vs. DRL vs. LLM. We next evalu-
ate our LLM approach against textsfLegacy, an offline DRL
method based on proximal policy optimization (PPO), and
two global optimal results that minimize handovers (opt-
HO) or maximize signal strength (opt-RSSI). Figure 4
illustrates the trade-offs between handover counts (left)
and received signal strength (right) for each strategy. The
LLM (93 handovers) outperforms Heuristic (106), Legacy
(100), and PPO (107) in reducing unnecessary roaming,
though it does not reach the minimal handover level of opt-
HO (57). Meanwhile, it preserves a higher average signal
(−58.58 dBm) than Heuristic (−63.25), PPO (−59.67),
or opt-HO (−63.81), and comes reasonably close to the
Legacy method (−58.28) and opt-RSSI (−55.98).

Overall, these results demonstrate that each extreme heuris-
tic sacrifices one metric to excel at the other: opt-HO dras-
tically lowers handovers but offers weak signal quality,
whereas opt-RSSI achieves excellent signal strength at the
cost of excessive handovers. By contrast, the LLM bal-
ances both goals, achieving fewer handovers than conven-
tional baselines and maintaining a robust connection, high-
lighting the benefits of a context-aware decision-making
framework.

3.5. Limitations

For Task (1) BSSID Selection, the STA must make roaming
decisions within 10–100ms after a scan to meet near-real-
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Figure 4. Comparison of # HO (left) and AvgRSSI (right) for each method for best BSSID selection (Task 1).

time (near-RT) requirements. However, as shown in Fig. 5,
current LLMs exhibit inference times on the order of sec-
onds, far exceeding the required latency. Furthermore, fre-
quent inferences add to computational overhead and power
consumption.

Thus, although LLMs provide powerful in-context learn-
ing, their current latency makes them more suitable for
tasks that require less frequent, non-real-time inference in
practical on-device deployments.

Figure 5. Average LLM inference time (A100 GPU).

4. Task (2): Online Roaming Optimization by
On-Device LLM

Having established that an LLM can effectively choose
APs, we now adapt it to the challenge of deciding when
to roam in on-device setup. Our second objective is to
evaluate whether an on-device LLM can enhance Wi-Fi
roaming by dynamically adjusting the roaming threshold
in on-device setup. This task requires less frequent and
time-critical inference, making it well-suited for practical
on-device deployment.

4.1. Problem Statement: Dynamic Threshold Selection

A major challenge in Wi-Fi roaming is determining when
to initiate handover. This is typically controlled by a fixed
RSSI threshold (scanRSSI), below which STA begins

scanning for alternative APs. However, as previously dis-
cussed, a single static value can lead to two undesirable out-
comes: setting it too high causes overly frequent scans and
roaming (wasting energy and risking ping-pong effects),
whereas setting it too low risks lingering on a deteriorating
link until performance degrades or the connection drops.
Building on the context-aware approach in Section 3, we
now aim to dynamically select the threshold in real time,
leveraging an on-device LLM.

Yet deploying a large LLM directly on mobile or edge
platforms is challenging due to hardware constraints such
as limited memory, battery capacity, and compute power.
Accordingly, one needs to find a way to reduce the
LLM’s computation overhead while preserving strong per-
formance in threshold-selection decisions.

4.2. Approach: Adaptive Threshold via On-Device
LLM

Cross-Layer Operation. On-Device LLM operates within
the application layer but directly controls MAC-layer pa-
rameters, specifically the roaming threshold. This illus-
trates a concrete example of application-layer AI for lower-
layer wireless control, where high-level reasoning guides
low-level network decisions.

Model Selection and Quantization. Deploying large
models on resource-constrained edge devices requires care-
ful consideration of model size and computational re-
sources. To ensure practical lower-layer operation, we se-
lect a model size that optimally balances inference speed
with decision accuracy. We further reduce computational
overhead by employing the Q2 K quantization scheme.
Specifically, Q2 K compresses weights into groups of 16,
encoding each weight with 2-bit precision and using one
shared 4-bit scale and offset per block. This compact
encoding needs only 2.56 bits per parameter—about 8×
fewer bits than FP16—while staying fully compatible with
the GGUF model format supported by llama.cpp.

Task-Oriented Optimization. Since Task (2) is focused
specifically on determining when to initiate roaming, rather
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than choosing a specific AP, our optimization objective is
explicitly designed around dynamic threshold adjustment.
We carefully tune the frequency at which the LLM updates
roaming thresholds, enabling it to react quickly to signif-
icant RSSI fluctuations while minimizing computational
and energy overhead.

4.3. Experiments

Unless otherwise noted, we evaluate this approach under
the same general setup, baselines, and metrics used for
Task (1) in Sec. 3.3. Detailed experimental setups and pa-
rameter settings are provided in Table 7 in Appendix C.

Effect of Quantization. Table 4 compares the impact
of various quantization schemes (e.g., Q2 K, Q3 K M,
Q4 K M) on model size and roaming performance. Quan-
tization significantly reduces the model’s footprint from
8.5,GB (Q8 0) down to as low as 3.2,GB (Q2 K), while
maintaining comparable performance metrics (approxi-
mately ≈ 138–145 handovers and around ≈ −58,dBm
RSSI). Given these results, we select Q2 K quantization for
subsequent experiments, as it provides substantial resource
savings with negligible loss in decision accuracy.

Quant. Method # HO AvgRSSI (dBm) Model Size (GB)

✗ 143 -57.98 16

Q8 0 140 -58.62 8.5
Q6 K 139 -58.63 6.6
Q5 K M 144 -58.26 5.7
Q4 K M 145 -58.80 4.9
Q3 K M 138 -58.89 4.0
Q2 K 138 -58.85 3.2

Table 4. Comparison of quantization schemes for the
Llama3.1-8B model in terms of roaming decision and
memory footprint (Grattafiori et al., 2024).

The adoption of Q2 K reduces the model size by approx-
imately 2.7×, from 8.5 GB with Q8 0 quantization to 3.2
GB, enabling efficient operation within the 16,GB unified
memory capacity of the Apple M-series MacBook used for
our on-device experiments.

LLM Model Comparison. Table 5 further compares mod-
els ranging from 1B to 14B parameters. Larger variants
(e.g., Phi4-14B (Abdin et al., 2024)) provide slightly
higher RSSI (around −57.9 dBm) but yield more han-
dovers (156) and longer inference times (up to 46.9 s).
Smaller models (e.g., 1B) drastically reduce inference de-
lays (4.4 s) and handovers (124) but at the cost of a weaker
average signal (−60.07 dBm). Models in the 3–8B range
often offer a balanced trade-off between speed and roam-
ing performance.

How Often Should the LLM Adjust the Threshold?. We
next vary the frequency of roaming threshold adjustments
(from 10 s to 300 s). Decreasing this interval to 10 s in-

Model # HO AvgRSSI (dBm) Model Size (GB)

Llama3.2-1B 124 -60.07 0.6
Llama3.2-3B 150 -58.47 1.4
Llama3.1-8B 138 -58.85 3.2
Phi4-14B 156 -57.90 5.5

Table 5. Comparing LLMs for dynamic threshold selection
(Task 2).

creases the number of roaming (about 147) while boosting
average RSSI (to −57.86 dBm). Increasing the interval to
300 s cuts roamings (down to 119) but weakens the aver-
age RSSI (to −59.94 dBm). A 30 s interval emerges as a
practical middle ground, balancing roaming stability, sig-
nal quality, and computational overhead.

Figure 6. Frequency of threshold adjustments and its effect on
performance.

Comparison on On-Device: Legacy vs. LLM. Finally,
we compare our on-device LLM against four fixed thresh-
olds (−50,−60,−70,−80 dBm) in on-device setup. As il-
lustrated in Fig. 7, each static threshold performs best un-
der specific conditions yet fails to generalize. For instance,
−50 dBm consistently achieves a strong average RSSI but
induces excessive handovers; −80 dBm cuts handover fre-
quency but suffers from weaker connectivity. Intermediate
thresholds like −60 or −70 dBm offer varied performance
trade-offs, often performing well in outdoor environments
but less consistently indoors.

In contrast, the proposed context-aware on-device LLM
dynamically adjust its threshold to local context informa-
tion, enabling it to maintain balanced RSSI performance
and moderate handover frequency across diverse scenar-
ios. While it does not always achieve the absolute best
performance on every single metric, the LLM notably de-
livers robust, generalized performance without manual tun-
ing. This underscores the practical value and effectiveness
of cross-layer, adaptive threshold optimization using on-
device LLMs for real-world Wi-Fi roaming scenarios.

5. Discussion
In conclusion, this section discusses key insights and prac-
tical considerations for deploying LLMs as edge-level
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Figure 7. Legacy vs. Context-Aware On-Device LLM: Comparison of # HO (top) and AvgRSSI (bottom) for each method for dynamic
threshold selection (Task 2) in various roaming scenarios.

decision-making agents for wireless lower-layer operations
through the following key questions:

Q1: Does context information improve Wi-Fi roaming
decisions?. Incorporating real-time context—such as lo-
cation and time—enables LLMs to make more informed
roaming decisions. However, as indicated in Table 6, using
every available context feature does not necessarily yield
optimal results. Instead, selectively incorporating task-
relevant context can lead to better performance, highlight-
ing the importance of carefully choosing which contextual
inputs are most beneficial.

Combination Location Time Battery # HO AvgRSSI (dBm)

w/o Context ✗ ✗ ✗ 151 -58.03
Time + Battery ✗ ✓ ✓ 142 -58.19
Location + Battery ✓ ✗ ✓ 142 -58.19
Location + Time ✓ ✓ ✗ 143 -57.98
w/ All ✓ ✓ ✓ 146 -58.05

Table 6. Ablation study for context information.

Q2: Why use an On-Device LLM instead of conven-
tional ML models?. On-device LLMs offer in-context
(zero/few-shot) learning, allowing a single model to adapt
to new environments or mobility patterns without full re-
training; updating a short prompt or a handful of LoRA
weights is usually sufficient. Because the prompt can
encode heterogeneous cues—e.g. RSSI trends, location,
time of day, battery state—the same network can reason
over richer context than fixed-feature DRL or supervised
pipelines that depend on task-specific feature engineer-
ing and costly, environment-specific finetuning (see Ta-
ble 1). In short, an LLM trades a modest increase in in-
ference cost for far greater adaptivity and explainability
(via chain-of-thought traces) compared to conventional ML
baselines.

Q3: Is an on-device LLM practical for lower-layer op-
erations?. As discussed in Sec. 3.5, current on-device
LLM implementations exhibit inference latencies on the
order of seconds, posing challenges for strict near-real-
time (RT) operations. Nevertheless, recent advances in
dedicated AI accelerator hardware are expected to signif-
icantly reduce inference times, greatly enhancing the prac-
ticality of on-device LLMs even for near-RT Wi-Fi tasks
such as roaming. Moreover, for scenarios like threshold
adjustment—where decisions are required less frequently
and slightly higher latencies can be tolerated—the exist-
ing on-device LLM deployments already demonstrate sub-
stantial feasibility. Importantly, although inference occurs
at the application layer, the decisions made directly adjust
MAC-layer parameters, clearly illustrating the viability of
application-layer AI enabling adaptive lower-layer wire-
less control. Demonstrations and details are available at
github.com/abman23/on-device-llm-wifi-roaming.

Q4: What are the main challenges and future directions?.
Deploying on-device LLMs presents several critical chal-
lenges, particularly managing computational overhead and
optimizing models for strict hardware constraints inher-
ent to edge devices. Although current on-device LLMs
show promising capabilities, their universal practicality for
all lower-layer wireless operations—especially those de-
manding strict real-time responsiveness—remains limited.
Future research must focus on refining open-source LLM
architectures and techniques, emphasizing efficiency im-
provements in latency, memory usage, and power con-
sumption. Additionally, investigating the broader applica-
bility of on-device LLMs to other essential wireless control
tasks beyond Wi-Fi roaming will be crucial in fully har-
nessing their potential as versatile and practical AI-based
decision makers in wireless communication systems.
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A. Real-World Demonstration
To validate on-device deployment, we ran our LLM-based roaming agent on a MacBook Pro (Apple M-series, 16 GB
RAM, macOS). Figure 8 captures key moments from a live screen-recorded session: the sensing phase (RSSI and context
collection) followed by the LLM’s reasoning and threshold update, shown for both indoor and outdoor walks. Comprehen-
sive performance metrics confirm the feasibility of real-time operation on consumer-grade hardware. A full demonstration
video is available at github.com/abman23/on-device-llm-wifi-roaming.

(a) Indoor — sensing phase (b) Indoor — reasoning & decision

(c) Outdoor — sensing phase (d) Outdoor — reasoning & decision

Figure 8. Real-world demonstration of our on-device LLM for Task 2 (dynamic threshold adjustment). In each setting the laptop
(Macbook Pro) first senses RSSI and context information (left), then the LLM reasons and outputs an adaptive roaming threshold
(right), validating practical operation indoors and outdoors.
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B. Qualitative Assessment of On-Device LLM Reasoning

Figure 9. Reasoning output of the on-device LLM during an indoor roaming scenario. The model assesses AP candidates by eliminating
those with declining RSSI values and prioritizes APs with stable signal strength, ultimately selecting BSSID 34:3A:20:79:C8:B2
for handover.

In the real-world indoor demonstration shown in Fig. 9, the on-device LLM demonstrates reasoning aligned with prac-
tical wireless network management strategies. The inference process reflects logical heuristics such as filtering out APs
exhibiting decreasing signal strength and prioritizing stable or improving RSSI, consistent with best practices for effective
roaming decisions. This reasoning is derived purely from local contextual (e.g., timestamp, location) and Wi-Fi measure-
ment (e.g., RSSI-BSSID pairs) information. The correctness of the LLM’s reasoning is validated through the subsequent
successful handover, evidenced by system logs. This qualitative evaluation complements the quantitative results presented
earlier (§4), reinforcing the capability of on-device LLMs to execute valid, interpretable reasoning suitable for lower-layer
wireless control at edge-device.
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C. Setup
Table 7 details the hardware, dataset statistics, and model-tuning parameters used in Task 1 (AP selection) and Task
2 (threshold adjustment). All real-world experiments ran on a consumer-grade MacBook Pro with an Apple M-series
processor (16 GB RAM, macOS), demonstrating that our on-device LLM pipeline is feasible on typical edge hardware.

HW / SW

Device MacBook Pro (M3, 16GB)
OS macOS
Wi-Fi Specification IEEE 802.11ax (Wi-Fi 6E)
Wi-Fi Library CoreWLAN

Dataset (Wi-Fi Log)

Scenarios Indoor, Outdoor
Time Stamps per Scenario 1944, 5808, 1944
Sampling Interval 1 sec
Training : Test Split 80% : 20%

Task Configuration

scanRSSI Threshold -70 dBm
Contextual Inputs Location + Time
Logs per Handover Decision 10
Threshold Adjustment Interval (Task 2) 30 sec

On-Device LLM Configuration

Base Model Llama-3.1-8B-Instruct
Quantization Scheme Q2 K

Fine-Tuning Configuration

Learning Rate 2× 10−4

Batch Size / Grad. Accumulation 4 / 4
Number of Epochs 1
Weight Decay 0.01
LoRA Rank / Alpha 128 / 128
Optimizer AdamW

Table 7. Experimental setup and parameter settings for Tasks 1 & 2.
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D. Data Collection
We collected Wi-Fi roaming datasets from diverse indoor and outdoor environments, as illustrated in Fig. 10. Each of the
ten sessions recorded approximately ∼ 1,000 consecutive data points, captured at one-second intervals. Each data point
captures detailed information, including:

• AP scan: BSSID, RSSI, etc.

• Device context: timestamp, geographical coordinates (latitude and longitude), battery status, etc.

The resulting dataset underpins both post-training and evaluation of our on-device LLM.

(a) Outdoor scene (campus walkway) (b) Indoor scene (corridor) (c) Data-capture rig (MacBook Pro)

Figure 10. Data-collection environments used for on-device LLM evaluation.
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