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Abstract

Existing research often posits spurious features as easier to learn than core features
in neural network optimization, but the nuanced impact of their relative simplicity
remains under-explored. In this paper, we propose a theoretical framework and
associated synthetic dataset grounded in boolean function analysis. Our framework
allows for fine-grained control on both the relative complexity (compared to core
features) and correlation strength (with respect to the label) of spurious features.
Experimentally, we observe that the presence of stronger spurious correlations or
simpler spurious features leads to a slower rate of learning for the core features
in networks when trained with (stochastic) gradient descent. Perhaps surprisingly,
we also observe that spurious features are not forgotten even when the network
has perfectly learned the core features. We give theoretical justifications for
these observations for the special case of learning with parity features on a one-
layer hidden network. Our findings justify the success of retraining the last layer
for accelerating core feature convergence and identify limitations of debiasing
algorithms that exploit early learning of spurious features. We corroborate our
findings through experiments on real-world vision datasets, thereby validating the
practical relevance of our framework.

1 Introduction

There is increasing evidence [10, 49, 11, 43, 23] indicating that neural networks inherently tend to
learn spurious features in classification tasks. These features, while correlated with the data label,
are non-causal and lead to enhanced training and in-distribution performance. However, this inherent
tendency overlooks core or invariant features that are crucial for robustness against distribution shifts.
This phenomenon is attributed to the relative simplicity of spurious features compared to core features,
reflecting a simplicity bias in neural network training [10, 37, 32, 27, 45], where networks inherently
prefer simpler features over more complex, yet essential ones. Interestingly, recent empirical work
[18, 14] has shown that despite this bias and the compromised predictive performance, standard
neural network training does in fact learn the harder core features in its representation, as long as the
spurious correlation is not perfect. However, a fine-grained understanding of the impact of “simplicity“
of the spurious features on the learning of the robust features has remained unexplored. Moreover,
a precise definition of simplicity that accounts for computational aspects of learning is lacking.

In our work, we characterize the impact of the relative complexity of spurious features and their
correlation strength with the true label on the dynamics of core feature learning in neural networks
trained with (stochastic) gradient descent. To ground our exploration, we introduce a versatile
framework and corresponding synthetic datasets based on the rich theory of boolean functions (see
Appendix A.2 for a quick review). We quantify simplicity/complexity using the computational time
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of learning the different features (represented as boolean functions) by gradient-based training, and
subsequently study the dynamics of gradient-based learning on these datasets. We focus on two types
of boolean functions: parity and staircase functions [1]. Our key findings are:

• Simpler spurious features lead to slower core feature convergence. We find that the presence
of spurious features slows down the convergence rate of core feature learning. Moreover, easier
spurious features often lead to slower convergence compared to more complex spurious features.
However, even a spurious feature with similar or slightly lower complexity than the core feature can
significantly impair the convergence rate. This slower convergence leads to diminished performance
in scenarios with limited data.

• Core features are also partly learned with spurious features. We find that for staircase functions,
which most closely mimic how real-world data behaves, at the stage when spurious features are
fully learned, the network has also learned part of the core features. The extent to which the
core features are learned depends on their relative complexity. This observation challenges the
effectiveness of widely adopted machine learning algorithms that heavily depend on early learning
of shortcut features and make an assumption of a clear-cut separation between the learning phases
of core and spurious features [20, 21, 39, 28, 46].

• Spurious features are memorized. We observe that even when the network learns the core
features, the spurious features, particularly those with lower complexity compared to the core
features, tend to stay memorized in the representation. This addresses a question posed in [12].

2 Boolean Features Dataset

We encapsulate features by boolean functions of the input variables and the hardness of the feature
by the computational complexity of the corresponding boolean feature, that is, time taken to learn
using gradient-based approaches. We create two boolean features on a set of variables: the core
feature which completely predicts the label, and a spurious feature which predicts the label for λ
fraction of the samples, but with smaller complexity. More formally, consider two boolean functions
fc : {+1,−1}c → {+1,−1}, fs : {+1,−1}s → {+1,−1}, which we call core and spurious
function respectively. Here c, s ∈ N. We also have a constant λ ∈ [0, 1] that represents the confounder
strength of the dataset, and u ∈ N which specify the number of random or independent variables.
We first form two distributions, and then combine them to form the distribution Dλ as follows:
• Dsame: Uniformly select two vectors xc, xu from the set {+1,−1}c and {+1,−1}u respec-

tively, and set the label y = fc(xc). Now, select vector xs randomly from the set {xs ∈
{+1,−1}s|fs(xs) = fc(xc)} such that it shares the same label as xc under the function fs.
([xc, xs, xu], y) then gives us one sample from Dsame.

• Ddiff : Sample xc, xu, y as in Dsame. Now, sample xs uniformly from {xs ∈ {+1,−1}s|fs(xs) =
−fc(xc)} such that it disagrees with y under the function fs.

• Dλ: With probability λ draw a sample from Dsame and with 1− λ draw a sample from Ddiff .1

Note that the above framework allows us to control both strength of spurious features using λ and the
complexity in comparison with core features with the choice of the boolean features. See Appendix
A.1 for a comparison to other datasets created to investigate learning with spurious features.

Boolean functions: Parity and Staircase. We focus on two specific scenarios: one where both core
and spurious functions are parity functions i.e f(x) = x1x2x3...xd, and another where both take the
form of leap 1 threshold staircase functions f(x) = sign(x1 + x1x2 + x1x2x3 + ...+ x1x2...xd).It
is noteworthy that threshold staircase functions under classification settings shows a similar learning
trajectory to the regression case in [1] (Figure 2), illustrating the function is fitted from lower to
higher degree. For parity functions, it is well-understood that the computational complexity of
gradient descent training [6] depends exponentially on the degree. In contrast, for staircase functions,
the exponential dependence is on the leap complexity (which is 1 for our setting) and the dependence
on degree is only linear. We make this selection with strategic intent: (1) despite having the same
degree, both have very different training dynamics, (2) the parity case facilitates theoretical analysis,
and (3) the learning process on a staircase function exhibits a loss curve that closely mirrors that

1When either of the feature is unbiased, for λ > 0.5, the distribution is equivalent to a mixture of 2(1 −
λ)Dunif(x) + (2λ − 1)Dsame(x) where Dunif is the uniform distribution on xs, xc, xu and y = fc(xc). See
Appendix A.3 for the proof.
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Figure 1: Influence of confounder strength and complexity of spurious correlation on learning of core
features. The y-axis shows the number of epochs required to reach 0.95 core correlation.

of real-world datasets. This similarity likely stems from the inherent hierarchical nature observed
in real-world data, which is effectively captured by the staircase function model [46, 44].

Related work: Spurious Datasets. Numerous works have proposed different theoretical and
experimental setups to study spurious correlation. It is noteworthy that spurious features are often
used interchangeably with ’shortcut’ or ’easier’ features. However, different works have drastically
different notions to encapsulate the easiness of a feature. For example, [37] examines features along
different dimensions, quantifying simplicity by the number of linear segments needed for perfectly
separating the data. [41, 47, 35] encapsulate both spurious and core features as 1-bit vectors, gauging
simplicity by the amount or variance of noise applied to each feature. Despite our framework bearing
resemblance to previously proposed notions of simplicity, we distinguish ourselves by: (1) using
non-linear features for spurious and core features, (2) focusing on the computational aspects of
learning to characterize complexity rather than representational properties, and (3) capturing the
hierarchical learning aspect of neural networks. See Appendix A.1 for more detail on the background.

3 Empirical Evaluation

Here, we provide a thorough evaluation of a two-layer neural network (width 100) optimized using
Stochastic Gradient Descent with the cross entropy loss on the boolean features dataset. The exact
experimental setup can be found in the Appendix C.1. We mainly focus on two metrics to measure
feature learning: (1) Core and spurious correlation: correlation between the model and core or
spurious feature measured by Ex∼Dunif

[f(x)fm(x)] where fm is the model and f is either fs or fc,
(2) Decoded core and spurious correlation [18, 12, 33, 3]: we first retrain the last layer to fit either
the spurious or core function. Then measure the corresponding correlation as (1). The latter captures
the information the representation has about the core/spurious features.

Table 1: Trained model’s core correla-
tion/decoded core correlation on Domino
datasets of varying complexity. Core feature
is CIFAR truck/automobile.

Pretrained Random

MNIST 01 0.71/0.86 0.47/0.69
MNIST 79 0.72/0.88 0.59/0.82
Fashion MNIST 0.75/0.86 0.70/0.85

(R1) Simpler spurious features and higher corre-
lation strength slow down the convergence rate
of core feature learning (Figure 1). We observe an
upside U-shaped phenomenon for the dependence on
complexity of spurious feature and convergence time,
with lower complexity features slowing down conver-
gence. Even when the spurious feature is nearly as
hard as the core feature, the model’s performance still
suffers from the presence of the spurious feature. In
addition, the slower convergence of learning core fea-
ture implies worse end performance on limited size
datasets (see table 1). The learning process appears
to be relatively insensitive to the confounder strength until a certain point, beyond which there is a
sudden and substantial increase in the computational time required to learn the core feature 2.

(R2) Spurious correlation increases first and then decreases once core features catch up. How-
ever, decoded spurious correlation remains high throughout (Figure 2). We observe that once
the spurious features are learned, they are memorized in the last layer. Feature learning for spurious

2Note that our experiments show that even when confounder strength is as high as 0.99, the model still fits
the core function perfectly eventually. Refer to Appendix C.2.2 for more details
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Figure 2: Core/spurious correlation and decoded correlation dynamics of different datasets. Leftmost
figure shows the fourier coefficients of both the spurious and core function are fitted from low (light
color) to high (deep color) for the staircase function. All of the experiments have λ = 0.9

Figure 3: Weights on spurious and core coordinates in "spurious" and "core" neurons throughout
training. Spurious neuron remain spurious while core neurons eventually emerge.

features ends roughly at the point when the spurious correlation starts to decrease. In addition, we
see that the last layer retraining boosts core feature correlation and the boost is most significant in
the early stage of training when either the correlation strength is higher or the spurious features are
simpler. The benefit of retraining the last layer diminishes as we train the model further (see Figure
11 in the Appendix).

(R3) Spurious and core features are learned by two separate sub-networks (Figure 3). There
exists a classification of neurons into two groups, “spurious neurons” which have larger weights
on the spurious index and “core neurons” which have larger weights on the core index in the late
stage of learning. For both parity and staircase tasks, almost all spurious neurons remain focused
on spurious coordinates, while core neurons, at the start, do not focus on spurious coordinates and
gradually develop an emphasis on core coordinates. A similar trend was observed by [24] in the
context of grokking. See Appendix C.3 for more detail. We have also noticed that the number of
spurious neurons depends on both the confounder strength and complexity of the spurious feature.
See Appendix 2 for the statistics of the number of spurious neuron. An interesting finding is that the
number of spurious neurons seems to be correlated with the time required to learn the core feature.

(R4) Popular debiasing algorithms fail in more general settings. In popular spurious datasets e.g.
image Domino dataset[37], waterbirds[34], Color-MNIST [4], the spurious feature is much easier to
learn than the core feature. Various debiasing algorithms [20, 21, 39, 28, 46] heavily rely on the early
learning of the easy spurious features to identify and up-weight the minority group when the spurious
attribute is not provided. They inherently assume a clear demarcation between the learning phases
of spurious features and core features caused by heavy confounder strength and simplicity of the
spurious feature, in particular, they implicitly assume that there should be a distinct temporal point at
which the model is correlated much more with the spurious features than the core features. However,
our findings indicate that this demarcation may remain ambiguous throughout training, especially
for our spurious staircase dataset. Consequently, these debiasing algorithms will have a hard time
correctly distinguishing minority groups from other groups and potentially introduce unwanted bias
in the model. To quantitatively establish this, we use Jaccard score J(A,B) = A∩B

A∪B to measure the
quality of the inferred minority group from the true minority group throughout training (see the right
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Figure 4: The left two figures demonstrate the learning dynamics of widely-used spurious datasets
(under λ = 0.95), highlighting an early spike in spurious correlation. The third figure reveals that
JTT [20] and Spare [47] algorithms effectively infer the minority group for parity case. While
for the spurious staircase experiment conducted with limited dataset shown in the fourth plot (λ =
0.9, deg(fs) = 10, deg(fc) = 14), the highest Jaccard score remains below 0.5, indicating a complete
breakdown of the algorithms. See C.2.2 for more detail.

two plots in Figure 4). It should be noted that these algorithms would improve the performance of
the model only if at some point the Jaccard score is significantly higher than 0.5 because this is a
necessary condition for the minority group to be up-weighted in the second stage of training. Our
experiment detail and a quick summary of these algorithms are listed in Appendix C.4.

4 Theoretical Explanations

We do not attempt to provide an end-to-end result of the observed dynamics of feature learning on
the spurious parity case, which seems very challenging given the unresolved Fourier-gap conjecture
[6]. We instead give an insightful, but non-rigorous, theoretical justification based on Fourier-gaps of
spurious and core features relative to the independent variables at initialization, and subsequently,
after the spurious feature has been learned. See Appendix B for the calculations.

Lemma 1 (informal). Let ξk = M̂aj([k]) be the k-th Fourier coefficient of the Majority function.
At initialization, there is a set of neurons such that the population gradient gap on the variables
compared to the independent variables3 is:

1. Spurious Variable: −(λ− 1
2 )(ξs−1 − ξs+1),

2. Core Variable: − 1
2 (ξc−1 − ξc+1).

We know that |ξk| ≈ Θ
(
n−(k−1)/2

)
(where n = c+ s+ u) is monotonically decreasing with k, and

thus we see the population gradient gap is higher for the spurious feature than the core feature. This
suggests that the spurious feature would be learned first, as is true from our observations.
Lemma 2 (informal). Suppose the function has become fully correlated with the spurious feature,
that is, the model is only making error on Ddiff , then there is a set of neurons (that are still close to
initialization) for which the gap in population gradient compared to the independent variables is:

1. Spurious Variable: − 1
2 (1− λ)(ξs+1 − ξs−1),

2. Core Variable: − 1
2 (1− λ)(ξc−1 − ξc+1).

Once the spurious feature is learned, the gradient on the spurious coordinates is going to reduce. In
contrast, the core feature will continue to increase. Note that in this second phase, the gradient signal
on the core is scaled down by 1− λ, which implies slower convergence with increasing correlation
strength. Furthermore, the second phase will start after the spurious feature is learned, hence simpler
spurious features would lead to a longer phase with lower gradient signal, and slower convergence.

5 Acknowledgements

We thank Ben L. Edelman for insightful discussions and the anonymous reviewers for their feedback.
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A Appendix

A.1 Related Work

Our work touches upon several general aspects of deep learning and machine learning. However, the
following is by no means an exhaustive list.

Learning with Spurious Features. Learning under spurious correlation can be interpreted as an
Out-Of-Distribution (OOD) or group imbalance task, as spurious features divide the dataset into
imbalanced groups. Two cases arise: (1) when the spurious attribute is given, popular methods like
[34, 13] can be applied, (2) when the spurious label is unknown during training, various algorithms
have been proposed to exploit the phenomenon of simplicity bias [40, 37, 27], which posits that
spurious features are learned by the model in the early stages of learning, to upweight underrepresented
groups. A representative method of this type is the “Just Train Twice Algorithm”[20], where a model
is first trained to upweight “easy” samples. Another line of work focuses on underspecified tasks
where the spurious features are fully correlated with the label [38, 19].

Simplicity of Spurious Features. The terms “spurious” and “shortcut” features, which are “easier”
to learn than core features, [10] are often used interchangeably in deep learning literature. However,
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Figure 5: Comparison between our dataset Dsame and the corresponding part of MNIST-CIFAR
dataset. We use fs = χ as an example.

the constructs of “simplicity” and “features” differ considerably across studies. For example, [37]
examine features along different dimensions, quantifying simplicity by the number of linear segments
needed for perfectly separating the data. [41, 47, 35] encapsulate both spurious and core features
as 1-bit vectors, gauging simplicity by the amount or variance of noise applied to each feature. In
a similar manner, [45] use different strength or magnitude of feature vector to encapsulate feature
with different simplicity. [25] represent features as equally-sized vectors and assess simplicity
through a model’s predictive accuracy when relying on spurious features in a low-rank subspace.
[31] focus on features as principal components of a model’s neural tangent random feature and
show an inclination for features with higher strength. [36] study the loss landscape in the presence
of spurious features revealing that models randomly select features with varying likelihoods. [26]
conjecture that prediction depth [5] is a suitable measure of feature difficulty. The closest setup to
ours is binary feature dataset by [12] that consider binary linear spurious features with parity-like core
features. Despite our framework bearing resemblance to previously proposed notions of simplicity,
we distinguish ourselves by: (1) using non-linear features for spurious and core features, (2) focusing
on the computational aspects of learning to characterize complexity rather than representational
properties. (3) providing a closer resemblance to real data set through capturing the hierarchical
learning aspect of neural network.

Datasets for Studying Spurious Correlations. Numerous datasets have been employed to study
learning under spurious correlation. These include synthetic datasets such as WaterBird [34], Domino
Image dataset [37], Color-MNIST [48], and a series of datasets proposed in [12]. It’s important to
note that these datasets are constructed in an ad-hoc manner, making it challenging to justify the
complexity of the spurious features. Real datasets known to contain spurious correlations, such as
CivilComments [8], MultiNLI[42], CelebA [22], and CXR [17], are also used to evaluate algorithms
designed to mitigate shortcut features. A recent work [15] points out several problems of existing
datasets that has been used to study spurious correlation and evaluating algorithm performances. Our
observation provide further support for their claims (see C.2.2).

It is worth noting that almost all algorithms assume a balanced validation dataset for extensive
hyperparameter tuning, as observed in [14]. A key work related to our research is [18, 14], where it is
demonstrated that core features can be decoded from the last layer with state-of-the-art performance
using validation data. This finding suggests that much of the work in this field focuses on optimizing
classifier head weights. Retraining the last layer has also been explored widely and shown to be
highly efficient in other settings, such as long-tail learning [16], probing inner representations of a
model [3], and out-of-distribution learning [33].

Neural Feature Learning for Boolean functions. The problem of learning Boolean functions has
long been a fundamental challenge in computational learning theory. A body of work has focused
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on studying the mechanism of learning the parity function with neural networks in great detail
[24, 7, 9, 6]. Another important class of functions, referred to as "staircase" functions by [1, 2], is
explored in our study and used to construct features that resemble real-world features.

A.2 Boolean Function Analysis Background

See [29] for a comprehensive review for boolean function analysis. We only include the most
important tools here.
Lemma 3. Any boolean function f : {+1,−1}n → R can be decomposed into an orthogonal basis

f(x) =
∏

S∈[n]

f̂(S)χS(x)

where χS(x) =
∏

i∈S xi and note we have E[χS(x)χS′(x)] = 0 for all S′ ̸= S. Thus we have
f̂(S) = E[f(x)χS(x)].

A.3 Properties of Boolean spurious distribution

Lemma 4. Given a spurious boolean distribution defined previously, if either of the feature is
unbiased. Then the distribution is equivalent to a mixture of 2(1− λ)Dunif + (2λ− 1)Dsame.

Proof. This is equivalent to saying that given any boolea6yn vector x, PD(x) = 2(1− λ)Punif(x) +
(1 − 2λ)Psame(x). Note that PD(x) = λPsame(x) + (1 − λ)Pdiff(x) = (2λ − 1)Psame(x) + (1 −
λ)(Pdiff(x) + Psame(x)). Thus we only need to argue that Pdiff(x) + Psame(x) = 2Punif(x) forms a
uniform distribution. And we have

Pdiff(x) + Psame(x)

=
Px∼U (x = x, fs(x) = fc(x))

P (fs(x) = fc(x))
+

Px∼U (x = x, fs(x) ̸= fc(x))

P (fs(x) ̸= fc(x))

=I[fs(x) = fc(x)]
Px∼U (x = x)

P (fs(x) = fc(x))
+ I[fs(x) ̸= fc(x)]

Px∼U (x = x)

P (fs(x) ̸= fc(x))

=I[fs(x) = fc(x)]
Px∼U (x = x)

P (fs(x) = 1)P (fc(x) = 1) + P (fs(x) = −1)P (fc(x) = −1)

+I[fs(x) ̸= fc(x)]
Px∼U (x = x)

P (fs(x) = 1)P (fc(x) = −1) + P (fs(x) = −1)P (fc(x) = 1)

=I[fs(x) = fc(x)]2Px∼U (x = x) + I[fs(x) ̸= fc(x)]2Px∼U (x = x)

=2Px∼U (x = x)

B Calculation of Gradient Gaps

B.1 Setting

Recall the definition of the boolean task we defined in the draft. We define 1. x the concatenation
of three vectors xs, xc, xu. The length of xs is s and the length of xc is c with s << c. xu here
denote a length u random boolean vector which does not have any correlation with the label. Thus
the length of x is n = s+ c+ u Without loss of generality, we additionally require c, s to be even
length and u to be odd length. 2. fs and fc are parity functions defined as χS(xs) =

∏
i∈[s] xi and

χC(xc) =
∏

i∈[c]. So deg(fs) = s,deg(fc) = c. 3. We then form a spurious distribution as defined
in the main paper with confounder strength λ.

B.1.1 Model

We consider a 1 hidden layer ReLU neural network with r neurons

f(x) =

r∑
i=1

aiσ(w
⊤
i x+ bi)
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where ai ∈ R, wi ∈ Rn and bi ∈ R. We use hinge loss

ℓ(y, ŷ) = max(0, 1− yŷ)

where ŷ is the output of the model and y is the true label.

B.1.2 Initialization

Let us consider the following initialization scheme as in [6]

1. For all 1 ≤ i ≤ r/2, randomly initialize

w
(0)
i ∼ Unif(+1,−1n), a

(0)
i ∼ Unif(+1,−1), b

(0)
i ∼ Unif(−1 + 1/k,−1 + 2/k, ..., 1− 1/k)

2. For all r/2 < i ≤ r, initialize

w
(0)
i = w

(0)
i−r/2, a

(0)
i = −a

(0)
i−r/2, b

(0)
i = b

(0)
i−r/2

Key properties of this initialization scheme are: (1) It is unbiased, since the model output is 0 on all
inputs at initialization, and (2) Biases b are set such that they enable computing parity linearly once
we have the correct coordinates identified. For the informal lemma in the main paper, we assume wi

is the all 1s vector.

We will first analyze the gradients at initialization, then after spurious feature is learned.

B.2 Population Gradient Gap at Initialization

Notice that our initalization makes the model output 0 on all x. Thus l(y, ŷ) = 0 and then we have
∇ŷl

′(y, ŷ) = −y .

We can now formulate the population gradient at initialization. Without loss of generality, we will
assume λ > 0.5, then Dλ is a mixture such that w.p 2(1− λ) we draw a sample x from the uniform
distribution Unif({+1,−1}n). And with 2λ− 1, we draw a sample from Dsame where we first draw
xc ∼ Unif({+1,−1}c) and then draw a xs ∼ Unif{xs|χS(xs) = χC(xc)}.

Then the population gradient for weight wi,j is

EDλ
[∇wi,j l(f(x; θ0), y)]

= EDλ
[−y∇wi,j

f(x; θ0)]

= EDλ
[−yai1{w⊤

i x+ bi > 0}xj ]

= 2(1− λ)EDunif
[−yai1{w⊤

i x+ bi > 0}xj ] + (2λ− 1)EDs
[−yai1{w⊤

i x+ bi > 0}xj ]
(1)

We will study the two terms separately.

Population Gradient on uniform distribution. Set gi,j = EDunif
[−yai1{w⊤

i x + bi > 0}xj ]. As
long as wi ∈ {−1, 1}n, from [6], we have

1. For j ∈ [c]:

gi,j = −1

2
aiξc−1 · χ[c]\{j}(wi)

2. For j ∈ [s] ∪ [u] :

gi,j = −1

2
aiξc+1 · χ[c]∪{j}(wi)

where ξk = M̂aj(S) with |S| = k. Thus we have for the first term gui,j = 2(1 −
λ)EDunif

[−yai1{w⊤
i x+ bi > 0}xj ]

1. For j ∈ [c]:
gui,j = −(1− λ)aiξc−1 · χ[c]\{j}(wi)

2. For j ∈ [s] ∪ [u]:
gui,j = −(1− λ)aiξc+1 · χ[c]∪{j}(wi)
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Population Gradient on label aligned distribution Dsame. Note for the second term of 1,

(2λ− 1)Exc,xs∼Ds
[−yai1{w⊤

i x+ bi > 0}xj ]

= (2λ− 1)([Pxc∼u[χ(xc) = −1]Exc,xs∼u[−yai1{w⊤
i x+ bi > 0}xj |χ(xc) = −1, χ(xs) = −1]

+ Pxc∼u[χ(xc) = 1]Exc,xs∼u[−yai1{w⊤
i x+ bi > 0}xj |χ(xc) = 1, χ(xs) = 1])

= (2λ− 1)(
1

2
· 4 · Exc,xs∼u[−yai1{w⊤

i x+ bi > 0}xj1{χ(xc) = 1, χ(xs) = 1}]

+
1

2
· 4 · Exc,xs∼u[−yai1{w⊤

i x+ bi > 0}xj1{χ(xc) = 1, χ(xs) = 1})

= −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}] (2)

By the initialization scheme, we have w⊤
i x as an integer and |b| < 1. Thus

1{w⊤
i x+ bi > 0} = 1{w⊤

i x > 0}
We will first ignore the yxj component inside the expectation and study the boolean function
q(x) = 1{w⊤

i x > 0}1{χ(xc) = χ(xs)}. Observe that

1{χ(xc) = χ(xs)} = 1{χ(xc)χ(xs) = 1} = 1{χ[c]∪[s](x) = 1}.
This gives us

q(x) = 1{w⊤
i x > 0}1{χ[c]∪[s](x) = 1}

=
1 +Majn(wi ⊙ x)

2
·
1 + χ[c]∪[s](x)

2

=
1

4
·
(
1 + χ[c]∪[s](x) +Majn(wi ⊙ x) + χ[c]∪[s](x)Majn(wi ⊙ x)

)
(3)

We can study the fourier spectrum of each of the term in 3 to construct the fourier spectrum of q.

1. For q1(x) = χ[c]∪[s](x), notice that q̂(S) = 0 for all S ⊂ [n] except when S = [c] ∪ [s]
where q̂(S) = 1.

2. For q2(x) = Maj(w ⊙ x), notice that Maj(x) can be written in its fourier expansion as
Maj(x) =

∑
S⊆[n] M̂ajn(S)χS(x). This gives us

q2(x) = Maj(wi ⊙ x) =
∑
S⊆[n]

M̂ajn(S)χS(wi ⊙ x) =
∑
S⊆[n]

M̂ajn(S)χS(x)χS(wi).

Thus we have q̂2(S) = χS(wi)M̂ajn(S).
3. For q3(x) = χ[c]∪[s](x)Majn(wi ⊙ x), we have

q̂3(S) = E[Majn(wi ⊙ x)χS(x)χ[c]∪[s](x)]

= Ex[Majn(wi ⊙ x)χ([s]∪[c])∆S(x)]

− q̂2(([c] ∪ [s])∆S)

= χ([c]∪[s])∆S(wi)M̂ajn(([c] ∪ [s])∆S)

By the orthogonality and linearity of the fourier basis, we thus have

q̂(S) =
1

4
(χS(wi)M̂ajn(S) + χ([c]∪[s])∆S(wi)M̂ajn(([c] ∪ [s])∆S))

for |S| > 0 and S ̸= [s] ∪ [c]. Now let us put it back in 2.

1. For random index j ∈ [u],

gsi,j = −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}]

= −2ai(2λ− 1) · Ex∼u[χ[c]∪j(x)q(x)]

= −2ai(2λ− 1) · q̂([c] ∪ j)

= −1

2
ai(2λ− 1) · (χ[c]∪{j}(wi)ξc+1 + χ[s]∪{j}(wi)ξs+1)
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2. For core index j ∈ [c], in a similar manner, we have

gsi,j

= −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}]

= −2ai(2λ− 1) · Ex∼u[χ[c]\j(x)q(x)]

= −2ai(2λ− 1) · q̂([c] \ j)

= −1

2
ai(2λ− 1) · (χ[c]\{j}(wi)ξc−1 + χ[s]∪{j}(wi)ξs+1)

3. For spurious index j ∈ [s], in a similar manner, we have

gsi,j = −2ai(2λ− 1) · Exc,xs∼u[yxj1{w⊤
i x+ bi > 0}1{χ(xc) = χ(xs)}]

= −2ai(2λ− 1) · Ex∼u[χ[s]\j(x)q(x)]

= −2ai(2λ− 1) · q̂([s] \ j)

= −1

2
ai(2λ− 1) · (χ[s]\{j}(wi)ξs−1 + χ[c]∪{j}(wi)ξc+1)

Putting it together. We summarize the final population gradient on each type of index.

1. For random index j ∈ [u],

gi,j = gui,j + gsi,j

= −(1− λ)aiξc+1 · χ[c]∪{j}(wi)−
1

2
ai(2λ− 1) · (χ[c]∪{j}(wi)ξc+1 + χ[s]∪{j}(wi)ξs+1)

= −ai

(
1

2
ξc+1 · χ[c]∪{j}(wi) +

(
λ− 1

2

)
χ[s]∪{j}(wi)ξs+1

)
2. For core index j ∈ [c], in a similar manner, we have

gi,j = gui,j + gsi,j

= −(1− λ)aiξc−1 · χ[c]\{j}(wi)−
1

2
ai(2λ− 1) · (χ[c]\{j}(wi)ξc−1 + χ[s]∪{j}(wi)ξs+1)

= −ai

(
1

2
ξc−1 · χ[c]\{j}(wi) +

(
λ− 1

2

)
χ[s]∪{j}(wi)ξs+1

)
3. For spurious index j ∈ [s], in a similar manner, we have

gi,j = gui,j + gsi,j

= −(1− λ)aiξc+1 · χ[c]∪{j}(wi)−
1

2
ai(2λ− 1) · (χ[s]\{j}(wi)ξs−1 + χ[c]∪{j}(wi)ξc+1)

= −ai

(
1

2
ξc+1 · χ[c]∪{j}(wi) +

(
λ− 1

2

)
χ[s]\{j}(wi)ξs−1

)
B.3 Population Gradient after spurious feature is learned

Proof. Following the same procedure we have

q(x) = 1{w⊤
i x > 0}1{χ[c]∪[s](x) ̸= 1}

=
1 +Majn(wi ⊙ x)

2
·
1− χ[c]∪[s](x)

2

=
1

4
·
(
1− χ[c]∪[s](x) +Majn(wi ⊙ x)− χ[c]∪[s](x)Majn(wi ⊙ x)

)
Thus

q̂(S) =
1

4
(χS(wi)M̂ajn(S)− χ([c]∪[s])∆S(wi)M̂ajn(([c] ∪ [s])∆S))

for |S| > 0 and S ̸= [s] ∪ [c].

Now following the same procedure as B.2, we have
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1. For random index j ∈ [u],

gsi,j = −1

2
ai(1− λ) · (χ[c]∪{j}(wi)ξc+1 − χ[s]∪{j}(wi)ξs+1)

2. For core index j ∈ [c], in a similar manner, we have

gsi,j = −1

2
ai(1− λ) · (χ[c]\{j}(wi)ξc−1 − χ[s]∪{j}(wi)ξs+1)

3. For spurious index j ∈ [s], in a similar manner, we have

gsi,j = −1

2
ai(1− λ) · (χ[c]∪{j}(wi)ξc+1 − χ[s]\{j}(wi)ξs−1)

B.4 Limitations of the Justification

Towards getting an end-to-end result, we would need to address several challenges beyond the Fourier
gap. Firstly, we did not discuss The magnitude of Gradient gap between spurious and core. In
particular, the weights will go down faster for the spurious coordinates compared to how fast they
will increase in the core coordinates. This would lead to an interesting dynamic of when the spurious
coordinates are starting to be forgotten, there is an opposite effect to remember them due to the errors
we will make on the spuriously correlated example. Understanding this balancing will be paramount
to explaining why the spurious features magnitude does not decrease. Secondly, we do not understand
why the spurious and core sub-networks remain separate. Our techniques treat different neurons very
similarly, so it is not clear how to separate them to specialize for one type of features. We believe
these directions are very interesting to prove, and would give additional insight into feature learning
in neural networks which has garnered significant interest in the last few years.

C Experiments

C.1 Experiments Settings

Dataset Description. In addition to the Parity and Staircase datasets, we utilized the Domino
dataset, which incorporates Binary CIFAR-10 as the core feature and Binary MNIST01, Binary
MNIST79, and Binary FASHION as spurious features. The specific datasets and their objectives are:

• Binary MNIST01: Differentiate between images representing numbers 0 and 1.
• Binary MNIST79: Differentiate between images representing numbers 7 and 9.
• Binary CIFAR-10: Distinguish between images representing a truck or an automobile.
• Binary Fashion MNIST: Distinguish between images representing a dress or a coat.

Furthermore, we incorporated the Waterbird dataset to capture real-world scenarios. Waterbirds
encompasses a binary image classification challenge wherein the class represents the bird type (either
landbird or waterbird). Notably, the background exhibits a spurious correlation with the class.

Model Details. Our observations remained consistent across a variety of architectures and hyperpa-
rameter combinations. For the Parity and Staircase datasets, we utilized a 1-layer MLP with ReLU
activations and 100 neurons.

For the Domino and Waterbird datasets, we employed a ResNet-50-based architecture tailored for
binary classification. The model was trained both from scratch and using IMAGENET1K_V1 pre-trained
weights.

Training Procedure. Neural networks were initialized using a uniform distribution. Throughout
our experiments, we opted for vanilla SGD with a momentum of 0.5, devoid of regularization. Both
the MLPs and ResNets were trained with a batch size of 64. The learning rates were set to 0.0001 for
MLPs and 0.001 for ResNets.
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(a) λ = 0.9

(b) λ = 0.99

(c) λ = 0.99

Figure 6: Online Parity Learning: (a), (b) repeated experiments. (c) single experiment

C.2 Additional Experiments

We divide this section into two sections to provide a comprehensive review of the influence of the
two factors, complexity and confounder strength on learning either on a online setting learning or a
finite dataset.

C.2.1 Complexity

Parity Refer to Figures 6, 7. These figures illustrate the dynamic behavior of learning parity,
showcasing considerable variability, especially when both λ and the complexity of the spurious
function (deg(fs)) are elevated. In the context of learning parity with finite datasets, this phenomenon
becomes even more pronounced, with numerous runs converging to a low core correlation value. For
learning under finite dataset, it is worth highlighting that the ultimate performance of the network is
heavily influenced by the randomness of initialization. Note here the total length of the feature vector
is fixed to 20 so the computational complexity in learning core parity function stay fixed if λ = 0.5
for each case.

Staircase Refer to Figures 8 and 9. In the case of the staircase task, the influence of simpler
spurious features on convergence slowdown becomes more obvious. The learning dynamics remain
consistently stable across repeated runs in the staircase task. Therefore, our focus shifts to analyzing
the dynamics of a single experiment, as it offers more informative insights.

Domino See Figure 10. We adhere to the convention of employing three image datasets as spurious
features: MNIST-01, MNIST-79, and Fashion dress-coat, arranged in ascending order of difficulty.
Meanwhile, our core feature is CIFAR-truck-automobile. It is crucial to note that the semi-real
datasets utilized in spurious correlation research are inherently noisy, meaning that the model cannot
learn the core feature perfectly or achieve 0 generalization error, as highlighted in [18]. Furthermore,
these datasets are limited in size, with only 10,000 images available for CIFAR-truck-automobile.
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(a) λ = 0.90

(b) λ = 0.90

Figure 7: Finite Parity Learning with 20000 Sampled Points: (a) repeated experiments. (b) single
experiment

(a) λ = 0.90

(b) λ = 0.90

Figure 8: Online Staircase: (a) repeated experiments. (b) single experiment

Figure 9: Finite Staircase with 60000 Sampled Points: λ = 0.90
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Figure 10: Domino Dataset

(a) deg(fs) = 4

(b) deg(fs) = 4

Figure 11: Online Parity: (a) repeated experiments. (b) single experiment

Previous studies have primarily focused on utilizing pretrained models to learn the spurious task.
However, such an approach can obscure our understanding of feature learning dynamics, as pretrained
models often achieve exceptionally high decoded core correlations from the outset as noted in [15].
Therefore, in our analysis, we present the learning dynamics for both pretrained and randomly
initialized weights to provide a comprehensive perspective.

We see a interesting fact here is that pretrained model is robust to spurious feature as the end
performance of the pretrained model is more insensitive to the presence of simpler spurious feature at
higher λ.

C.2.2 Confounder Strength

The impact of confounder strength on learning is more straight forward than the complexity. As
confounder strength increases, the number of epochs needed for convergence also rises significantly.
Notably, learning remains relatively insensitive to confounder strength until it reaches a threshold
of 0.8, at which point we observe a notable increase in training epochs.The information of spurious
feature i.e how well the spurious feature is memorized depends heavily on the confounder strength.

Parity For parity functions (see Figure 11), we see when confounder strength surpass 0.9, it
converge much slower after the phase transition when compared to the experiment with lower λ. The
slower convergence reflect on learning under finite dataset where the end performance of the model is
impaired (see Figure 12).

(a) deg(fs) = 4

(b) deg(fs) = 4

Figure 12: Finite Parity with 40000 Sampled Points: (a)repeated experiments. (b) single experiment
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(a) Online: deg(fs) = 4

(b) Finite 120000 Sampled Points: deg(fs) = 4

Figure 13: Staircase

(a) Domino-Image: Pretrained Weights

(b) Domino-Image: Random Weights

Figure 14: Domino-Image

Staircase At higher confounder strength, the model has higher correlation to the spurious, simpler
staircase function at the early stage of learning, which would also imply the spurious staircase
function is memorized better by the model. We see higher λ cause harm to the end performance
under finite dataset just as parity (see Figure 13).

Spurious Staircase can break algorithms that depends on early learning. Spurious Staircase can
disrupt algorithms [20, 21, 39, 28, 46] reliant on early learning. In our finite staircase experiment,
instances emerge where the model maintains nearly equal correlations with both spurious and core
features throughout the learning process. Remarkably, even in these scenarios, spurious correlations
have a detrimental impact on the final performance, as depicted in Figure 9. Algorithms that rely
on early spurious feature learning assume a training phase where spurious correlations significantly
outweigh core correlations. However, this assumption may not hold in many cases, posing a challenge
for these algorithms in distinguishing samples influenced by the spurious feature from the majority
or minority groups. Consequently, we address a critical question raised in [20]: when do these
algorithms succeed, and when do they fail? We suspect that these algorithms may only perform
well when the spurious feature is considerably simpler than the core feature or when the spurious
correlation is exceptionally high.

Domino-Image, WaterBirds Refer to Figure 14. Surprisingly, our observations indicate that the
pretrained model exhibits not only insensitivity to spurious features across a spectrum of complexities
but also a remarkable resistance to higher λ values. Additionally, when compared to the initialization
with random weights, models with pretrained weights consistently maintain low spurious correlations
throughout the training process.

Regarding the waterbirds dataset, it is noteworthy that initialization with random weights fails to learn
the core feature entirely, as reported in [18, 15]. Due to the absence of a controlled experiment for
direct comparison, we leave the interpretation of the experimental results open to further investigation.
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Figure 15: Waterbirds: Pretrained Weights

C.3 Core and Spurious Neurons

Refer to 16, 17. We show the dynamics of a random batch of spurious neurons and core neurons for
both the parity and staircase spurious learning task. It can be seen that spurious neurons have higher
weights on spurious coordinates throughout training. And core neurons which has significant weights
on the core coordinates are specifically the neurons which does not have spurious weight spike at the
start when the spurious feature is learned. We have also observed that the number of spurious neurons
(see table 2) seems to be correlated with the convergence rate of core feature learning as shown in 1.

C.4 Quantitative evaluation of popular debiasing algorithms

We provide an overview of two algorithms, JTT [20] and SPARE [47]. Both operate under the
assumption that the spurious or group attribute is not provided. They start by training a neural
network on the dataset and apply early stopping. The goal is to use this model to identify the minority
group that is induced by the spurious feature through exploiting simplicity bias of the model by doing
early stopping. In the second stage, they treat the problem as one of class imbalance, employing
strategies such as reweighting or resampling. The key difference between JTT and SPARE lies in
their methods for identifying the minority group: JTT considers instances that the model predicts
incorrectly as the minority, whereas SPARE uses clustering on the model’s output representations.

These algorithms share a couple of significant drawbacks. The first is the challenge of identifying the
optimal moment for early stopping of the model in the initial stage. The second is their reliance on
the assumption that there is a distinct separation between the learning processes of spurious and core
features, which is not always a given.

Our experiments employed the SpuCo library [15]. At each epoch, we paused the initial model’s
training to perform group inference, following which we calculated the Jaccard score to measure the
accuracy of the inferred minority group against the actual minority group.

λ
# of Spurious Neurons

Parity Staircase

0.5 0 0
0.6 0 0
0.7 8 2
0.8 10 10
0.9 20 16
0.94 14 16
0.98 18 27

1 24 26

deg(fs)
# of Spurious Neurons

Parity Staircase

1 8 4
3 15 8
5 21 15
7 15 19
9 0 32
11 0 27
13 0 18
15 0 18

Table 2: Number of Spurious Neurons: The default setting is Parity:deg(fs) = 4, deg(fc) = 10, λ =
0.9 Staircase:deg(fs) = 7, deg(fc) = 14, λ = 0.9. We vary one of the parameters with other
parameter fixed for each experiment.

C.5 Implementation, Hardware, and Computation Time

All training experiments were conducted using PyTorch[30]. While the majority of networks evaluated
in our primary empirical findings are relatively compact, we trained a substantial number of models
to validate the breadth of the "robust space" outcomes. These experiments utilized NVIDIA T4 and
Quadro RTX 8000 GPUs, cumulatively consuming around 2,500 GPU hours.
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(a) Parity: Core Neurons at λ = 0.95

(b) Parity: Spurious Neurons at λ = 0.95

(c) Parity: All first layer neurons at λ = 0.95

Figure 16: Dynamics of neurons on Parity task
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(a) Staircase: Core Neurons at λ = 0.90

(b) Staircase: Spurious Neurons at λ = 0.90

(c) Staircase: All neurons at λ = 0.90

Figure 17: Dynamics of neurons on Staircase task
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