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Abstract001

Voice Conversion research in recent times has002
increasingly focused on improving the zero-003
shot capabilities of existing methods. De-004
spite remarkable advancements, current archi-005
tectures still tend to struggle in zero-shot cross-006
lingual settings. They are also often unable007
to generalize for speakers of unseen languages008
and accents. In this paper, we adopt a simple009
yet effective approach that combines discrete010
speech representations from self-supervised011
models with a non-autoregressive Diffusion-012
Transformer based conditional flow matching013
speech decoder. We show that this architecture014
allows us to train a voice-conversion model in015
a purely textless, self-supervised fashion. Our016
technique works without requiring multiple en-017
coders to disentangle speech features. Our018
model also manages to excel in zero-shot cross-019
lingual settings even for unseen languages. We020
provide demo samples for our model here:021
https://ez-vc.github.io/EZ-VC-Demo/022

1 Introduction023

Zero-shot Voice Conversion (VC) is the task of024

transforming a source speaker’s voice characteris-025

tics into that of a target speaker while preserving026

linguistic content and prosodic attributes, even for027

speakers unseen during training. Over the years028

with the advancement of modern deep learning029

techniques and substantial improvements in speech030

encoders and speech generation systems, numerous031

and vastly different approaches have been proposed032

to address this challenge.033

Textless VC architectures have become the pri-034

mary area of research in this domain since cascaded035

ASR+TTS systems are known to lose the non-036

verbal characteristics of the source speech such as037

laughs, whispers and other filler sounds. They also038

lead to cascaded errors. To overcome this, many039

textless VC systems these days employ either self-040

supervised speech encoders (SSL) or neural audio041

codecs (NAC) to extract speaker features or linguis- 042

tic content before feeding them to a speech gen- 043

eration decoder. These speech representations are 044

also often disentangled to obtain certain composite 045

characteristics such as timbre or style. Sometimes 046

quantized speech representations are used which 047

form as the input for a speech generation or lan- 048

guage model. Speech synthesis systems, which 049

are a key component of VC architectures, have of 050

late greatly benefited from the advancements in 051

diffusion and continuous normalizing flow (CNF) 052

based techniques. Voicebox(Le et al., 2023) and 053

its successors that use these methods are able to 054

produce high quality audio outputs that are almost 055

undistinguishable from real speech. These models 056

thus show great promise for zero-shot VC tasks and 057

yet architectures based on these methods remain 058

under-explored. 059

In this work we contribute the following, 060

• We propose EZ-VC, a simple self-supervised 061

any-to-any zero-shot voice conversion archi- 062

tecture that generalizes for unseen speakers, 063

accents and languages while still producing 064

highly natural and fluent speech. 065

• We demonstrate that zero-shot VC is possible 066

without requiring multiple encoders for fea- 067

ture disentanglement of speaker and speech 068

attributes. 069

• We show that combining quantized features 070

from a self-supervised speech encoder and a 071

flow matching speech generation decoder is 072

sufficient to achieve state-of-the-art results. 073

2 Related Work 074

Early research in VC focused on disentangling 075

speaker and content information. Works like 076

YourTTS(Casanova et al., 2023) focused on us- 077

ing speaker embeddings to extract speaker features 078

from target speech but usually required reference 079
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text to be provided as well. Recent works like SEF-080

VC(Li et al., 2024) now prefer textless, speaker-081

embedding free VC which is also able to perform082

better. Since the advent of SSL speech models like083

Hubert(Hsu et al., 2021) and WavLM(Chen et al.,084

2022), VC research has quickly learned to leverage085

them for their high correlation with both acous-086

tic and linguistic content. kNN-VC(Baas et al.,087

2023) works by replacing representations of source088

speech with the nearest neighbour from the refer-089

ence speech. Vec2wav 2.0 on the other hand, uses090

a combination of discrete representations from vq-091

wav2vec for source content and WavLM features092

for capturing the timbre of the target speaker. At093

the same time, another school of approach has094

emerged that utilizes neural audio encoders and095

combines them with language models for high qual-096

ity VC. Unfortunately, these systems suffer from097

slow inference speeds due to their auto-regressive098

nature. Diffusion based techniques also have been099

explored by DiffVC(Popov et al., 2022) and similar100

works. These models are able to demonstrate natu-101

ral and robust outputs. Conditional flow-matching102

based speech generation methods have also begun103

to appear in voice conversion literature. Latest104

works such as AdaptVC(Kim et al., 2025), Sta-105

bleVC(Yao et al., 2024), Seed-VC(Liu, 2024) and106

PFlow-VC(Zuo et al., 2025) employ this technique107

for their speech decoders and generally couple108

them with SSL encoders.109

AdaptVC uses speaker and content encoder110

adapters on top of Hubert while StableVC includes111

three feature extractors for style, linguistic con-112

tent, and mel-spectrograms. Seed-VC on the other113

hand requires a timber shifter module and speaker-114

embeddings besides a semantic feature extractor.115

PFlow-VC proposes a slightly different approach116

by using a timbre encoder for target speaker and117

semantic encoder for source speech. In contrast,118

with our architecture we wish to eliminate the need119

for multiple encoders or adapters for voice conver-120

sion while still being able to achieve state-of-the-art121

results for any-to-any VC.122

3 EZ-VC123

EZ-VC is a simple architecture that only requires124

one pre-trained speech encoder and a trainable125

speech decoder. Unlike most other works, we do126

not need multiple encoders for disentanglement127

of speech features. Our architecture also benefits128

from using an off-the-shelf encoder. Other than129

training a simple k-means model, we do not train 130

our speech encoding module. This helps reduce the 131

compute and training time requirements compared 132

to existing methods that usually ask for training 133

both the encoder and decoder modules. 134

Figure 1 provides a description of our model’s 135

architecture for both training and inference. At the 136

time of training, our model does not require any 137

supervised or labeled data. To prepare our training 138

set, we extract the mel-spectogram for every speech 139

sample. These are then passed through the speech 140

encoder first and then the resultant speech features 141

from the 14th layer are taken and quantized using 142

a k-means clustering model. The features are ex- 143

tracted at 75% of the model depth consistent with 144

previous works(Maiti et al., 2024; Communication 145

et al., 2023). We also de-duplicate adjacent discrete 146

units for all samples. The mel and the correspond- 147

ing discrete units become the input for our speech 148

decoder training. With this, the model is able to 149

learn to produce mel-spectogram from these given 150

discrete representations and is also able to condi- 151

tion them based on the provided speech prompt. 152

During inference, we pass both the source and tar- 153

get speech through our speech encoder system. The 154

mel-spectogram of the target speech and its discrete 155

units form the reference for our CFM model and 156

the source discrete units form the prompt to gener- 157

ate the corresponding mel. The target and source 158

units are concatenated and given as input to the 159

model. The target mel is then discarded upon in- 160

ference. This generated mel inherits the speaker 161

attributes from the reference target mel while the 162

content and style is obtained from the source units. 163

3.1 Speech-to-Units 164

To extract high-quality speech representations, we 165

employ Xeus (Chen et al., 2024a), a self-supervised 166

learning (SSL) encoder trained on an extensive mul- 167

tilingual dataset encompassing 4,000 languages. 168

Given its exposure to such linguistic diversity, we 169

expect Xeus to provide robust, language-agnostic 170

representations, enabling our model to generalize 171

effectively to unseen languages. 172

Similar to WavLM, Xeus processes speech by 173

generating frame-level embeddings. Each output 174

embedding corresponds to a 25ms window size 175

with a 20ms stride, effectively producing 50 em- 176

beddings per second of speech. 177

For the purpose of enabling speech reconstruc- 178

tion, we apply a quantization step using k-means 179

clustering. Specifically, we train a 500-cluster k- 180
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(a) Training (b) Inference

Figure 1: An overview of EZ-VC

means model using embeddings extracted from the181

14th layer of Xeus. This clustering process pro-182

vides us discrete speech units that can be used to183

train a units-to-speech model for resynthesis. Our184

k-means training dataset comprises 100 hours of185

English speech and 50 hours each from five Indian186

languages, ensuring a balanced and representative187

distribution of phonetic variations. This dataset is188

a subset of the one used for training EZ-VC.189

3.2 Units-to-Speech190

We choose the F5-TTS(Chen et al., 2024b) archi-191

tecture for our speech generation system. Building192

upon the work of E2-TTS(Eskimez et al., 2024)193

and Voicebox, F5-TTS manages to alleviate several194

of their shortcomings such as duration modelling,195

phoneme alignment and slow convergence. We196

train our model for speech generation with discrete197

units as input. The model learns to reconstruct198

speech from these condensed speech representa-199

tions via an infilling task. The speaker attributes200

are derived from the unmasked mel-spectogram201

and the speech content comes from the input units.202

This disentangles the speaker and speech, allowing203

us to achieve zero-shot voice conversion.204

4 Experiment205

4.1 Datasets206

We select a wide variety of publicly available207

datasets for English and 5 Indian languages com-208

prising of a total 12840 hours of speech. We hope209

that using a diverse set of languages and accents210

will help the model to generalize in unseen settings.211

For English, we use 3060 hours of speech which212

includes a range of American, European and Indian213

accents. American accents come from Librispeech214

while European accents appear in Vox Populi(Wang 215

et al., 2021) dataset. For Indian English accent we 216

use 1100 of speech from NPTEL1 lectures. 217

We also select 5 Indian languages, namely Ben- 218

gali, Hindi, Tamil, Telugu and Kannada to intro- 219

duce diversity to our training set. We obtain in 220

total 9780 hours of data from these languages. 221

We procure unlabeled speech from several sources 222

including Vaani(Bhogale et al., 2022), Common- 223

voice(Ardila et al., 2020) and datasets from IIIT-H 224

and IIT-M. Table 5 contains a full breakdown. 225

We downsample all data, wherever neccessary 226

to 16KHz. We further pass this data through our 227

speech decoder combination of Xeus and k-means 228

model to obtain discrete speech representations of 229

each audio sample. 230

4.2 Training setup 231

We adopt the original implementation of F5-TTS 232

for training our model. We use the base model con- 233

figuration(300M params) which consists of 22 lay- 234

ers, 16 attention heads. For the audio samples we 235

set sampling rate to 16KHz and use 80-dimensional 236

log mel-filterbank features with hop length of 160. 237

We also train a base BigVGAN(gil Lee et al., 2023) 238

model on Libri-TTS(Zen et al., 2019) with the same 239

configuration for a million steps. For our tokenizer, 240

we use character level tokens with a vocabulary 241

which includes all the 500 different discrete units. 242

We train this F5-TTS model from scratch with a 243

batch size of 64 samples for 1.35 million updates 244

on 4 NVIDIA RTX 6000 ADA GPUs. We use a 245

peak learning rate of 5e-5 with 100k warmup steps. 246

The rest remains the same as the original F5-TTS 247

configuration. 248

1https://nptel.ac.in/
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SSIM ↑ NMOS ↑ SMOS ↑ UTMOS ↑
Seed-VC 0.69 3.55 3.78 3.02
kNN-VC 0.59 1.94 2.05 2.42

Vec2Wav2.0 0.61 3.67 3.55 3.55
Diff-HierVC 0.44 3.30 3.33 3.16

EZ-VC (Ours) 0.71 3.91 3.90 3.56

Table 1: Performance metrics comparison of different VC baselines

5 Evaluation249

Subjective and objective measures are equally im-250

portant for evaluating voice conversion systems.251

In our test we use Naturalness Mean Opinion252

Score (NMOS) and Similarity Mean Opinion Score253

(SMOS) as our subjective evaluations. For objec-254

tivity, we utilize Speaker Similarity (SSim) and255

UTMOS(Saeki et al., 2022) scores for comparing256

our models. We measure speaker similarity by257

using cosine similarity scores between our target258

speech and that of our output speech by using em-259

beddings from a speaker verification model called260

ECAPA-TDNN(Desplanques et al., 2020).261

For our baselines, we select few of the most262

recent and best performing open-source voice con-263

version models. This makes sure that we evaluate264

our model against the current state-of-the-art archi-265

tectures available. We select SeedVC, vec2wav 2.0,266

Diff-HierVC(Choi et al., 2023) and kNN-VC as267

our baselines. Vec2wav and kNN-VC use primar-268

ily units-to-speech vocoders, while Diff-HierVC269

employs diffusion based methods. SeedVC and our270

work meanwhile uses CFM based speech models.271

We choose 10 samples for our evaluations.272

These samples are selected from various languages273

and accents. We prepare a variety of source and274

target speech combinations based on gender, inter-275

lingual and cross-lingual speech. We also include276

combinations of seen and unseen languages to test277

the robustness and generalization capabilities of278

these models. All audios are resasmpled to 16KHz279

to ensure fair comparison.280

For our subjective evaluation, we provided these281

10 samples to 20 student volunteers for comparison.282

Each volunteer was asked to evaluate each sample283

based on it’s naturalness which evaluates for mainly284

intelligibility, style preservence, and sound quality285

of the output speech in comparison to the source286

speech. In contrast, the similarity mean opinion287

score judges the similarity of the speaker in the288

output speech to that of the target speaker. We289

take the average of all the samples from all the290

volunteers which becomes the results of our NMOS 291

and SMOS scores. 292

We further objectively compare our model with 293

Seed-VC on a seen language(English) and 2 un- 294

seen languages(German and Spanish). The re- 295

sults, as shown in Table 4, demonstrate that EZ-VC 296

provides better naturalness according to UTMOS, 297

while having comparable or better speaker similar- 298

ity scores. 299

Analyzing the naturalness and similarity MOS 300

scores from Table 1, we see that EZ-VC convinc- 301

ingly beats the latest state-of-the-art approaches 302

for voice conversion. We find that Vec2wav 2.0, 303

which uses discrete units coupled with a vocoder 304

competes very well for naturalness but lags behind 305

when it comes to imitating the target speaker. This 306

shows that having a CFM based speech decoder is a 307

major benefit for voice conversion systems as they 308

are better able to capture speech styles. They also 309

seem to generalize very well for unseen languages 310

and accents. 311

6 Conclusion 312

EZ-VC hopes to make a substantial advancement 313

in the field of zero-shot voice conversion, demon- 314

strating that high-quality voice transformation can 315

be achieved with a minimal architecture. By lever- 316

aging discrete speech representations from self- 317

supervised models and a non-autoregressive speech 318

decoder, EZ-VC balances both naturalness and 319

speaker similarity without the need for complex 320

feature disentanglement or multiple encoders. 321

The model’s ability to generalize across diverse 322

linguistic settings highlights its robustness in cross- 323

lingual contexts. Our findings may also suggest 324

that discrete representations capture deeper, more 325

universal representations of speech. 326

Our comprehensive evaluations show that EZ- 327

VC achieves significantly improved capabilities for 328

zero-shot voice conversion. We hope that our work 329

inspires further efforts to simplify voice conversion 330

techniques. 331
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7 Potential Risks332

Given the highly realistic quality of voice synthe-333

sis and the ability to achieve cross-lingual voice334

conversion for even unseen languages, our model335

carries the risk of enabling dangerous deepfakes.336

Limitations337

Despite the benifits of our approach, it has a few338

limitations,339

• The EZ-VC architecture is reliant on the qual-340

ity of the pretrained speech encoder. It is341

likely that using an encoder trained on only342

one language may not achieve the level of343

generalization that our model does.344

• Although our approach introduces a much345

simpler architecture than previous works, the346

computational requirements are still compara-347

ble or higher.348
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Appendix476

Dataset Hours
Librispeech 960
Vox Populi 1000

NPTEL 1100
Total 3060

Table 2: English Datasets

SSIM UTMOS
English(EZ-VC) 87.3 3.76

English(Seed-VC) 83.9 3.51

Table 3: EZ-VC Vs Seed-VC on seen languages

SSIM UTMOS
German(EZ-VC) 91.4 3.71

German(Seed-VC) 90.8 2.83
Spanish(EZ-VC) 84.2 3.49

Spanish(Seed-VC) 84.2 3.24

Table 4: EZ-VC Vs Seed-VC on unseen languages
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https://arxiv.org/abs/2101.00390
https://arxiv.org/abs/2101.00390
https://arxiv.org/abs/2101.00390
https://arxiv.org/abs/2101.00390
https://arxiv.org/abs/2101.00390
https://arxiv.org/abs/2101.00390
https://arxiv.org/abs/2412.04724
https://arxiv.org/abs/2412.04724
https://arxiv.org/abs/2412.04724
https://arxiv.org/abs/2412.04724
https://arxiv.org/abs/2412.04724
https://arxiv.org/abs/1904.02882
https://arxiv.org/abs/1904.02882
https://arxiv.org/abs/1904.02882
https://arxiv.org/abs/2502.05471
https://arxiv.org/abs/2502.05471
https://arxiv.org/abs/2502.05471


Bengali Hindi Tamil Telugu Kannada Total
Vaani 1420 - - 980 1390 3790

Common Voice - - 420 - - 420
Shrutilipi 620 - 950 - - 1570

IIIT-H - - - 2600 - 2600
IITM - 1400 - - - 1400
Total 2040 1400 1370 3580 1390 9780

Table 5: Indian Language Datasets

7


	Introduction
	Related Work
	EZ-VC
	Speech-to-Units
	Units-to-Speech

	Experiment
	Datasets
	Training setup

	Evaluation
	Conclusion
	Potential Risks

