
From State Spaces to Semigroups: Leveraging Algebraic Formalism for
Automated Planning

Alice Petrov, Christian Muise
Queen’s University, Canada

17ap87@queensu.ca, christian.muise@queensu.ca

Abstract

This paper introduces an algebraic formalism linking trans-
formation semigroups and the state transition systems in-
duced by classical planning problems. We investigate some
basic planning problems with interesting properties and
establish fundamental characteristics of the corresponding
semigroups, such as their ideals and Green’s relations. Fur-
thermore, we leverage semigroup theory to propose new ap-
proaches to existing concepts in automated planning, includ-
ing the identification of landmark actions and the study of
dead ends. We demonstrate that algebraic results can be ap-
plied to facilitate an understanding of a planning problem’s
state space and explore its solutions, thus verifying the rele-
vance and effectiveness of such formal modeling.

1 Introduction
According to the majority of analysts, Moore’s law will
come to an end by 2025 (Waldrop 2016). To meet grow-
ing technological demands, rather than relying on the ex-
ponential growth of computational power, we must restrict
resources and analyze what can be computed within those
limitations. Thus, it is important to study the solution spaces
of classical planning problems.

A semigroup is a closed, associative algebraic structure;
anything with states, inputs, and outputs can be studied in
semigroup terms. Semigroups are a useful framework for
understanding complex systems because they allow us to
identify substructures and their interactions. In fact, semi-
groups have been argued to be the underlying mathematical
structures of computers (Egri-Nagy 2017), and they have
been used to prove a number of classical results related
to automata theory (Colcombet 2011). However, despite its
close correspondence to automata theory, this application
has yet to be extended to the transition systems induced by
automated planning.

In this work we develop an algebraic model of classical
planning problems, where a transformation semigroup can
be used to represent actions and sequences of actions. The
binary operation of the semigroup represents action compo-
sition, where, when viewed as a transformation, the output
of one action is the input to another. Using semigroups to
model planning problems provides several benefits, includ-
ing:

1. Formalism: Semigroups provide a formal mathematical
structure that can be used to reason about planning prob-
lems and develop algorithms for solving them.

2. Abstraction: Semigroups allow for the abstraction of spe-
cific details of a planning problem, which can make it
easier to develop general-purpose algorithms that can be
applied to a wide range of problems.

With respect to computer science systems, algebraic tech-
niques have already been applied to the formal study of
state transition systems in other areas (Letichevsky 2005;
Cain 2009). Using semigroup theory takes mathematical ef-
fort. However, the results are easily applied. Low-level opti-
mizations benefit from knowing the fewest number of states
needed to perform an algorithm, and mathematical formal-
ism can turn the problem of asking for all conceivable solu-
tions, rather than a single solution, into a well-defined com-
binatorial question (Egri-Nagy 2017). The payoff could be
that we find solutions we had never thought of.

When studying finite structures, such as the solution space
induced by a planning problem, it is often beneficial to gen-
erate small instances, which can then be used to create new
hypotheses and disprove conjectures. The size of the in-
stances we can explore is determined by the available pro-
cessing power and latest mathematical techniques. However,
the basic presumption is that one can see well enough within
the given limitations to enable extrapolation using theoreti-
cal reasoning, i.e., there is sufficient observational data to
develop reliable theories (East et al. 2015). Semigroups are
particularly amenable to studying solution spaces of small
planning problems, and structural analysis can provide in-
sight into bigger problems for which computing the entire
solution space is not feasible.

2 Background
2.1 Classical Planning
The model underlying classical planning is typically de-
scribed as

Π = ⟨S, s0, SG, A, f⟩
Where

• S is a finite and discrete set of states
• s0 ∈ S is the initial state

• SG ⊆ S is the nonempty set of goal states
• A is a set of actions
• A(s) ⊆ A represents the set of actions applicable in state
s ∈ S

• f(a, s) = s′ is the deterministic state transition function,
which maps state s to state s′ for a ∈ A(s)

A classical planning model Π induces a directed graph G,
which is called the state transition graph. From this point of
view, the structure of a planning problem has two important
mathematical properties:

1. Closure: The set of states S is closed under the set of
actions A, which means ∀s ∈ S and a ∈ A(s) we have
f(a, s) ∈ S.

2. Associativity: Actions are associative, which means if
the actions a1, a2, a3 ∈ A can be performed sequentially
we have (a1 ◦ a2) ◦ a3 = a1 ◦ (a2 ◦ a3)

In an intuitive sense, these are closed systems that respect
time and thus can be modeled as a semigroup, which is an
algebraic structure that is closed and whose operation is as-
sociative.

2.2 Semigroups
Let Σ be a set and ◦ be a binary operation, where a binary
operation ◦ on a set Σ is a map ◦ : Σ × Σ → Σ. Formally,
a semigroup is an algebraic structure (Σ, ◦) which satisfies
the following properties:
1. Closure : ∀a, b,∈ Σ : a ◦ b ∈ Σ

2. Associativity : ∀a, b, c ∈ Σ : a ◦ (b ◦ c) = (a ◦ b) ◦ c
A transformation semigroup consists of a set of states S

and a semigroup of transformations (Σ, ◦), where Σ is a
set of functions from S to S and the binary operation ◦ is
the concatenation of these functions. A transformation semi-
group can be thought of as a generalization of permutation
groups (which demand reversible transformations) (Morris
et al. 2013).

In a set Σ, if there exists an element e such that ex =
xe = x hold for all x ∈ Σ, then e is called an identity. A
semigroup that includes an identity element is referred to as
a monoid. For a semigroup Σ, we define

Σ1 =

{
Σ if Σ has an identity
Σ ∪ {1} otherwise

where 1 is the identity. We call Σ1 the monoid obtained by
adjoining an identity to Σ if necessary (Cain 2013).

2.3 Instantiating a Planning Problem as a
Transformation Semigroup

A transformation semigroup associated with a planning
problem is composed of a set of states S (which is identi-
cal to the set of states in a classical planning model) and a
semigroup of transformations (Σ, ◦). Here, Σ represents all
possible finite sequences of actions in A (known as traces),
and ◦ denotes the concatenation operation.

A generating set of a semigroup is a subset of the semi-
group set such that every element of the semigroup can be

expressed as a combination (under the semigroup operation)
of finitely many elements of the subset. In the context of
planning problems, the generating set is A, since any trace
can be expressed as a combination of actions in A.

For each action a ∈ A, there is a corresponding transfor-
mation σa in the set Σ. To complete an automaton, it is com-
mon practice to add a sink state and direct all previously un-
defined transitions to this new state (D’Angeli, Rodaro, and
Wächter 2020). Similarly, to account for partial transforma-
tions, we introduce a sink state, denoted s0. This effectively
adds a zero element to the semigroup. Thus, the transforma-
tion σa can be defined as follows:

σa(s) =

{
f(a, s) a ∈ A(s)

s0 otherwise

An example of such a transformation can be found in the
following section.

The subset of transformations {σa | a ∈ A} ⊆ Σ forms
the generating set for the entire semigroup (Σ, ◦). Thus, the
elements of Σ are precisely the transformations which cor-
respond to all of the possible traces induced by the planning
problem.

In this abstract framework, semigroups provide a means
of studying the solution space of a planning problem, where
the solution space consists of traces. This allows us to inves-
tigate how traces are related and how they interact.

While semigroups offer an abstract perspective on plan-
ning problems, they do not inherently distinguish a start state
or a set of goal states. Therefore, it is possible to introduce
“start” and “end” actions to identify them explicitly.

3 Running Examples
3.1 Drive Domain
As our first running example, we use the very simple atomic
transition system defined in “Graph-Based Factorization of
Classical Planning Problems” (Wehrle, Sievers, and Helmert
2016). In this domain, a truck is supposed to drive from the
initial location 1 to the goal location 4, where the goal loca-
tion can be reached via intermediate locations 2 or 3. After
adding “start”, “end”, and “skip” (do nothing) actions, as
well as a sink state, we have the state transition graph seen
in Figure 1 (note that we have omitted the self loop at each
node in the graph induced by the “skip” action for clarity).

We define our set of states as
{start, at-1, at-2, at-3, at-4, goal, sink}

and label them with numbers from 1 to 7. We define our set
of actions as
A = {begin, drive-1-2, drive-1-3, drive-2-4, drive-3-4, end, skip}

Let us now redefine this state transition system as a trans-
formation semigroup (Σ, ◦). Our set of states S corresponds
to those defined in the planning model, numbered 1 to 7 and
illustrated in Figure 1. Our set of transformations Σ is gen-
erated by the set of transformations corresponding to the set
of actions A, listed in Table 1. In total, Σ consists of 16
transformations, corresponding to all possible traces in this
domain. As a more detailed example, let us take the action
“drive-3-4” and illustrate the corresponding transformation

Figure 1: “Drive” state transition graph

Action Transformation

begin
[
1 2 3 4 5 6 7
7 7 7 7 1 7 7

]
drive-1-2

[
1 2 3 4 5 6 7
2 7 7 7 7 7 7

]
drive-1-3

[
1 2 3 4 5 6 7
3 7 7 7 7 7 7

]
drive-2-4

[
1 2 3 4 5 6 7
7 4 7 7 7 7 7

]
drive-3-4

[
1 2 3 4 5 6 7
7 7 4 7 7 7 7

]
end

[
1 2 3 4 5 6 7
7 7 7 6 7 7 7

]
skip

[
1 2 3 4 5 6 7
1 2 3 4 5 6 7

]

Table 1: “Drive” generators

Figure 2: The transformation corresponding to the action
“drive-3-4”

[7, 7, 4, 7, 7, 7, 7], seen in Figure 2. Here, we see that the
action “drive-3-4” sends state 3 to state 4, and is not appli-
cable in any other state. Thus states 1, 2, 4, 5, 6, and 7 are
sent to state 7 (the sink state).

3.2 Elevators Domain
Our next running example is the classic elevators domain.
The situation is as follows: There are n+1 floors in a build-
ing numbered from 0 to n. For a given number of passen-
gers, their current location (i.e., the floor they are on) and
destination are specified. The planning problem is to devise
a strategy for transporting passengers to their destinations.
As a simple instance of this domain, we have one passenger
p0 and two floors, f0 and f1. In our initial state, our passen-
ger is at floor f1 and wants to go to floor f0, and our lift is at
floor f0. We label our states from 1 to 14 and define our set
of actions as follows.

A = {begin, up(f0, f1), depart(f0, p0), board(f1, p0), down(f1,
f0), end, skip}

We redefine this transition system in the same manner as
above. For example, after relabeling states with numbers,
the grounded action up(f0, f1) corresponds to the transfor-
mation

[2, 14, 14, 3, 6, 14, 14, 7, 14, 14, 14, 14, 14, 14]

Thus we have that the action “up(f0, f1)” sends state 1 to
state 2, state 4 to state 3, state 5 to state 7, and state 8 to
state 7. The action is inapplicable in the remaining states,
and therefore sends them to state 14 (the sink state).

4 Landmark Heuristics
Action landmarks are a specific type of landmark that repre-
sent key actions or events that must occur in order to achieve
a goal (Karpas and Domshlak 2009). Once identified, action
landmarks can be used in combination with other landmark-
based heuristics, such as critical path and additive heuristics,
to find an optimal solution (Helmert and Domshlak 2009).

A semigroup can be used to decide if a goal state in a
planning problem is reachable by examining the structure of
the semigroup and checking whether the goal state belongs
to the set of reachable states. The set of reachable states can
be generated by applying the semigroup operation (action
concatenation) repeatedly, starting from the initial state and
applying all possible sequences of actions. This reachability
problem has been addressed in semigroup literature. More
specifically, the Cayley semigroup membership problem is a
decision problem that asks whether a given element belongs
to a particular semigroup. Given a finite semigroup Σ and
an element x of Σ, the problem is to determine whether x
can be expressed as a product of elements from a subset of
Σ, where the product is taken using the semigroup operation
(Fleischer 2022). The Cayley semigroup membership prob-
lem is NL-complete in general for finite semigroups (Fleis-
cher 2018a). For groups, the problem can be solved in deter-
ministic log-space (Fleischer 2018b).

In the case of automated planning, we are most interested
in finding a transformation from the initial state to a goal
state, as the existence of such an element is equivalent to

solvability in the problem we are modelling. In order to test
whether a given action is a landmark, we can remove the
generator corresponding to the action of interest and test if a
transformation from the initial state to a goal state is still an
element of the semigroup. If a transformation from the initial
state to the goal state is no longer present, we have identified
an action landmark. This demonstrates that there exist links
between theoretical concepts in semigroup theory and auto-
mated planning. Furthermore, by inspecting ideals and D-
classes, semigroups can not only identify action landmarks,
but also tell us about the structure of an action landmark and
how its removal affects our solution space globally. We de-
fine ideals in the following section, and discuss D-classes in
Section 6.

4.1 Ideals
Intuitively, an ideal is a subset of transformations in our
transformation semigroup which “absorbs” the elements that
it comes into contact with. In other words, any time an ele-
ment in our semigroup Σ comes into contact with an element
of the ideal, it becomes part of the ideal.

Formally, let I be a nonempty subset of a semigroup Σ.
ΣI denotes the set {σ ◦ i | σ ∈ Σ and i ∈ I}. Likewise,
IΣ = {i ◦ σ | σ ∈ Σ and i ∈ I}.

If I is closed under left multiplication by any element in
Σ, meaning ΣI ⊆ I , then we call I a left ideal of Σ. If
I is closed under right multiplication by any element in Σ,
meaning IΣ ⊆ I , then we call I a right ideal of Σ. If I is
both a left and right ideal in Σ, meaning ΣI ∪ IΣ ⊆ I , then
I is simply an ideal of Σ (Cain 2013).

We define an ideal generated by an element as follows.
Let x ∈ Σ be arbitrary.

L(x) = Σ1x = {x} ∪ Σx is the left ideal generated by x

R(x) = xΣ1 = {x} ∪ xΣ is the right ideal generated by x

J(x) = Σ1xΣ1 = {x} ∪ Σx ∪ xΣ ∪ ΣxΣ

is the principal ideal generated by x

Ideals generated by actions in planning problems can be
thought of as sets of traces which contain that action and
have a specific structure.

Suppose a ∈ A. The left ideal generated by a is the set of
all possible traces that end with a. The right ideal generated
by a is the set of all traces that start with a. The principal
ideal generated by a is the set of all traces which include
a. We can further define ideals generated by sets of actions
by taking the union of their individually generated ideals.
We can also define ideals generated by traces, rather than a
single action.

Example: Generating an Ideal Let us implement and il-
lustrate the ideals generated by an action in the “Drive” do-
main. Suppose we choose the transformation [7, 7, 4, 7, 7,
7, 7], which corresponds to drive-3-4 in our action set. The
left ideal of drive-3-4 (the set of all possible traces that end
with drive-3-4) is illustrated in Table 2.

If we attempt to append drive-3-4 to any sequence of ac-
tions other than {drive-1-3} or {begin, drive-1-3} we are

Trace Transformation

{drive-3-4}
[
1 2 3 4 5 6 7
7 7 4 7 7 7 7

]
{drive-1-3, drive-3-4}

[
1 2 3 4 5 6 7
4 7 7 7 7 7 7

]
{begin, drive-1-3, drive-3-4}

[
1 2 3 4 5 6 7
7 7 7 7 4 7 7

]
{..., drive-3-4}

[
1 2 3 4 5 6 7
7 7 7 7 7 7 7

]

Table 2: The left ideal generated by “drive-3-4”

sent to the sink state, which corresponds to the transfor-
mation [7, 7, 7, 7, 7, 7, 7] in the bottom row. This is because
drive-3-4 is only applicable in state at-3. Similarly, the right
ideal of drive-3-4 is the set { [7, 7, 4, 7, 7, 7, 7], [7, 7, 6, 7,
7, 7, 7], [7, 7, 7, 7, 7, 7, 7] }. We have {drive-3-4} itself,
and the transformation corresponding to the trace {drive-3-
4, end}. The two-sided, or principal, ideal includes the union
of the left and right ideals, as well as the additional transfor-
mations [6, 7, 7, 7, 7, 7, 7] and [7, 7, 7, 7, 6, 7, 7] induced
by the traces {drive-1-3, drive-3-4, end} and {begin, drive-
1-3, drive-3-4, end} respectively.

4.2 Identifying Action Landmarks using Ideals
Let us now investigate how ideals can be used to identify ac-
tion landmarks. Take, for example, the elevators domain pre-
viously defined and consider the grounded action depart(f0,
p0).

One way of using semigroup theory to determine whether
this is a landmark action is by investigating the two-sided
ideal of the “end” action. A benefit of using ideals, rather
than inspecting the entire semigroup, is their size. Ideals are
subsets of the semigroup; if we can identify an action which
must occur in the plan (such as the “end” action), we can
reduce the number of traces we inspect.

If there exists a transformation in this ideal that sends the
start state to one of the goal states, we have a transforma-
tion that corresponds to a solution in our planning prob-
lem. More specifically, the factorization of this transforma-
tion corresponds to a sequence of actions that forms a valid
plan. In this case, it would be even more beneficial to inspect
the left ideal generated by “end”, since we know it must be
the final action in the solution. However, due to the limita-
tions of Groups, Algorithms, Programming (GAP), a system
for computational discrete algebra, we check the two-sided
ideal instead.

Let us first implement the original planning problem and
include all specified actions. We then check if there exists a
transformation that sends the start state 9 to one of the goal
states.

gap> Elements(I);

[Transformation([10, 14, 14, 10, 10, 14, 14, 10,

14, 14, 14, 14, 14, 14]),

...

Transformation([14, 14, 14, 14, 14, 14, 14, 14,

10, 14, 14, 14, 14, 14]),

Transformation([14, 14, 14, 14, 14, 14, 14, 14,

11, 14, 14, 14, 14, 14]),

...)]

Listing 1: Existence of solution before removing action
depart(f0, p0) in the elevators domain

Since such a transformation exists (i.e, [14, 14, 14, 14, 14,
14, 14, 14, 10, 14, 14, 14, 14, 14] sends state 9 to state 10,
which is a goal state), we conclude our problem is solvable.
In order to identify depart(f0, p0) as a landmark action, we
can remove it from our set of generators and repeat the pre-
vious method.

gap> Elements(I);

[Transformation([14, 14, 14, 14, 10, 11, 12, 13,

14, 14, 14, 14, 14, 14]),

...

Transformation([14, 14, 14, 14, 14, 13, 13, 14,

14, 14, 14, 14, 14, 14]),

Transformation([14, 14, 14, 14, 14, 14, 14, 14,

14, 14, 14, 14, 14, 14])]

Listing 2: Existence of solution after removing action
depart(f0, p0) in the elevators domain

Inspecting the images of these transformations restricted to
state 9, which corresponds to our start state, we see that their
union is {14}, which corresponds to our sink state. Since
there no longer exists a transformation from our start to a
goal state, our problem has become unsolvable and we con-
clude that this is a landmark action. This process can be
repeated iteratively to determine the complete set of action
landmarks in a planning problem.

5 Dead Ends
A dead-end is a state from which it is impossible to reach
the goal state by executing a sequence of actions (Ghallab,
Nau, and Traverso 2016). Semigroups can be used to study
dead ends in planning problems by analyzing the structure
of the semigroup and identifying elements that correspond
to transformations from which it is not possible to reach the
goal state. The L relation, an equivalence relation which we
define in the following section, partitions our semigroup into
sets of transformations with the same image. Thus, if you
have an action that sends you to a dead end, or set of dead
ends, the L-Class of that action will consist of traces which
do the same.

Formally, an action a will lead to a dead end if, in the
ideal generated by a, our goal state is not in the union of the
images of the transformations restricted to the start state. Es-
sentially, this means no sequence of transformations which
include a and begin at the start state will result in our goal
state, and thus a is an action that leads to a set of dead end
states. These correspond to transformations we can “throw
away”. Additionally, one can analyze sequences of actions,
rather than a single action, and identify arbitrary traces that

result in dead ends.
One benefit of studying dead-ends with this technique is

that it allows for more general reasoning, rather than just
identification. For example, suppose that the ideal generated
by an action does not include a transformation from the start
state to the goal state. This implies that no solution to the
given planning problem includes this action. However, if a
goal state is in the image of some transformation in the ideal
(not necessarily restricted to the start state), then there exist
traces including this action in which our goal is still reach-
able. If we want a solution that includes this action, this im-
plies that we may want to consider choosing a different start
state. We provide an example of this in Section 5.2

5.1 Green’s Relations
Green’s relations are considered by many to be the most fun-
damental tool in understanding a semigroup (Howie 2002).
They give information on the structure of a semigroup and
how the elements interact based on the ideals they generate.

The L, R, J, D, and H Relations Let S be a set, Σ1 be
a transformation semigroup with adjoined identity, and sup-
pose x, y ∈ Σ1 are arbitrary transformations. We define the
relations L, R, and J as follows:

x L y ⇐⇒ Σ1x = Σ1y

x R y ⇐⇒ xΣ1 = yΣ1

x J y ⇐⇒ Σ1xΣ1 = Σ1yΣ1

This implies x L y if they generate the same left ideal and
x R y if they generate the same right ideal. Note that x and
y could be a single action or a sequence of actions.

We define the kernel of a transformation α : S → S as
ker(α) = {(x, y) ∈ S × S | α(x) = α(y)}. That is, the
kernel of α partitions S into sets of elements having the same
image under α. The L and R relations are closely related to
the kernel and image of a transformation:

x R y =⇒ ker x = ker y
x L y =⇒ Im x = Im y

The R relation partitions our semigroup into sets of trans-
formations with the same kernel. From a planning perspec-
tive, this is equivalent to sequences of actions that are ap-
plicable to the same set of states. Likewise, the L relation
partitions our semigroup into sets of transformations with
the same image. From a planning perspective, this is equiv-
alent to sequences of actions that send us to the same set
of states. These relations are equivalence relations and the
corresponding equivalence classes are called L-classes, R-
classes, and J -classes (Cain 2013).

By the definition of the composition of two binary rela-
tions, we have that

L◦R = {(x, y) ∈ Σ1×Σ1 : (∃s ∈ Σ1) such that xR sL y}

Note that L and R commute, that is, L◦R = R◦L. Thus, L◦
R is the smallest equivalence relation L∨R containing both
L and R. The interested reader is referred to the proof of
Lemma 2.1 in (Clifford and Preston 1964). Furthermore, it is
a well known result that the intersection of two equivalence

Trace Transformation

{drive-1-3, drive-3-4}
[
1 2 3 4 5 6 7
4 7 7 7 7 7 7

]
{drive-2-4}

[
1 2 3 4 5 6 7
7 4 7 7 7 7 7

]
{drive-3-4}

[
1 2 3 4 5 6 7
7 7 4 7 7 7 7

]
{drive-4-3, drive-3-4}

[
1 2 3 4 5 6 7
7 7 7 4 7 7 7

]

Table 3: The Green’s L-class of “drive-3-4”

Trace Transformation

{drive-3-1}
[
1 2 3 4 5 6 7
7 7 1 7 7 7 7

]
{drive-3-4, drive-4-2}

[
1 2 3 4 5 6 7
7 7 2 7 7 7 7

]
{drive-3-4, drive-4-3}

[
1 2 3 4 5 6 7
7 7 3 7 7 7 7

]
{drive-3-4}

[
1 2 3 4 5 6 7
7 7 4 7 7 7 7

]

Table 4: The Green’s R-class of “drive-3-4”

relations is also an equivalence relation. Consequently, we
have that the relations L◦R and L∩R are both equivalence
relations.

Indeed, the aforementioned relations are widely studied
and have their own names. We define D and H as D = L◦R
and H = L ∩R. More formally:

x D y ⇐⇒ ∃s ∈ Σ1 such that (x R s) ∧ (s L y)

x H y ⇐⇒ (x R y) ∧ (x L y)

The D relation partitions our semigroup into sets of transfor-
mations having the same rank, where the rank is defined as
the number of possible output values of the transformation
(Dolinka and East 2015).

Example: The Green’s Relations of a Planning Problem
Suppose we take the “Drive” example outlined above, add
invertible drive actions, and once again choose the transfor-
mation corresponding to the action drive-3-4.

The L-class of drive-3-4 consists of the transformations in
Table 3. We observe that the image of all these transforma-
tions is the same. Thus, we have a set of traces that ensure
we end in one of {4, 7}. Note that traces are determined by
factoring the induced action in terms of its generators, and
thus are not necessarily unique. Conversely, the R-class of
drive-3-4 consists of the transformations in Table 4. We ob-
serve that the kernel of all these transformations is the same,
having the classes {3}, {1, 2, 4, 5, 6, 7}. Thus, we have a set

Figure 3: “Drive” state transition graph with a dead end

of traces that are applicable in state 3, and send the remain-
ing class to the sink state.

5.2 Reasoning about Dead Ends using Green’s
Relations

Let us take the same drive domain with invertible actions
used above, update our start state, and add an action drive-
west. If we drive west from state 3, we end up at a new dead-
end state which we call state 8. To make the structure of
the problem more interesting, suppose we also add actions
drive-1-8 and drive-4-8. The new state transition diagram is
illustrated in Figure 3. We certainly want to avoid state 8, as
it ensures we will never reach our goal. However, suppose
we want to see the sunset, so we want to perform the action
drive-west at some point. Let us use semigroup theory to
drive west and still reach our goal.

We implement the planning problem, and then inspect the
ideal of drive-1-8 using our previous methods to see if there
exists a plan which includes this transformation and takes us
to our goal state. Our goal state, which corresponds to state
6, is not in the image of any of these transformations. In fact,
all sequences of actions that include drive-1-8 can only take
us to states 8 or 7 (which is our sink state).

gap> Elements(I);

[Transformation([8, 7, 7, 7, 7, 7, 7, 7]),

...

Transformation([7, 7, 7, 7, 7, 7, 7, 7])]

Listing 3: Two-sided ideal of drive-1-4

Thus, we conclude that drive-1-8 will result in a dead end,
no matter what our initial state is. The L-class of drive-1-
8 will consist of traces which behave in the same manner
since they generate the same left ideal, and so we can freely
eliminate any actions and traces present in that class because
they also result in a dead end.

gap> Elements(GreensLClassOfElement(S,

Transformation([8, 7, 7, 7, 7, 7, 7, 7]))

);

[Transformation([8, 7, 7, 7, 7, 7, 7, 7])

...

Transformation([7, 7, 7, 8, 7, 7, 7, 7])]

Listing 4: L-Class of drive-1-8

Inspecting the left ideal, we note the presence of and elimi-
nate the action drive-4-8.

Now, let us consider the action drive-west.

gap> Elements(I);

[Transformation([1, 7, 7, 7, 7, 7, 7, 7]),

...

Transformation([6, 7, 7, 7, 7, 7, 7, 7]),

Transformation([7, 1, 7, 7, 7, 7, 7, 7]),

...

Transformation([7, 7, 7, 7, 7, 7, 7, 7])]

Listing 5: Two-sided ideal of drive-west

Inspecting the ideal of drive-west using our previous meth-
ods, we note that there is no transformation which takes us
from state 3 to state 6. Thus, as it stands, our problem is un-
solvable. However, we note that there exists a transformation
which takes us from state 1 to state 6. This implies that if we
choose state 1 instead of state 3 as our starting state, there
exists a sequence of actions which includes drive-west and
takes us to our goal.

6 Invertibility
Identifying invertible subsets of traces in planning is useful
because it allows us to simplify the state space we consider.

6.1 D-class Structure
Green’s relations are useful in investigating both the local
and global structure of a semigroup. We first note that in a fi-
nite semigroup, the J and D classes coincide. The interested
reader is referred to a proof in (Pin 2010). We now introduce
egg-box diagrams, which allow us to visualize D-classes and
how elements within a D-class interact, thus telling us about
the local structure of the semigroup. Additionally, the par-
tial ordering of D-classes tells us about the global structure
of the semigroup.

6.2 Egg-box Diagrams
Recall D = L ◦ R, which implies every D-class is a union
of L-classes and R-classes. On the other hand, if an L-class
Lx and R-class Ry intersect, then there exists some element
z ∈ Lx ∩ Ry . This implies xLzRy and so xDy, and so Lx

and Ry are both contained within the same D-class. As a

result, an L-class and an R-class only intersect when they
both belong to the same D-class (Cain 2013).

Thus, we can visualize D-classes by using so called “egg-
box diagrams”. We arrange the elements of a D-class in a
grid, where each column is an L-class and each row is an
R-class. Every cell in the grid is the intersection of the L-
class and R-class containing that cell (Howie 1995).

The arrangement of L-classes and R-classes within an in-
dividual D-class correspond to how elements relate to one
another. Specifically, multiplying an element from the left
side corresponds to moving down the column of the associ-
ated L-class, and multiplying an element from the right side
corresponds to moving to the right in the row of the associ-
ated R-class.

If there exists an element y ∈ Σ such that xyx = x, then
we call x a regular element. If a D-class in a semigroup Σ
contains a regular element, then every element of D is reg-
ular. Regular D-classes are of great interest in semigroup
theory and have been studied extensively because they cap-
ture some notion of invertibility. In planning problems, they
correspond to an equivalence class of invertible traces. The
D-classes of a semigroup are highly useful in locating the in-
verse of an element, in the sense that x = xyx and y = yxy.
In fact, if α is an element of a semigroup, then every inverse
α−1 must lie in the same D-class as α (Howie 1995).

The quasiorders which correspond to Green’s relations
induce a partial ordering of the corresponding classes (Pin
2010). As we “climb down” our lattice of D-classes, the
rank of our class goes down. From a planning perspective,
this means that the number of possible states we can end
up in by executing a given trace of actions goes down. In
a finite monoid, invertible elements form the top D-class,
which is a group, and zero always forms a one-element bot-
tom D-class. Every semigroup has at most one minimal D-
class (Pin 2010).

In the context of planning problems, the D-class of an el-
ement consists of all transformations which share either the
same image or kernel. On the other hand, the H-class of an
element consists of all transformations which share exactly
the same image and kernel. Thus, the traces which make up
an H-class are, in some sense, equivalent since each trace is
applicable in the same set of states and will ensure we end
in the same set of states. In fact, these transformations may
form a group (Clifford and Preston 1964).

Example: Locating Inverses “egg-box diagrams” allow
one to easily identify the regular D-classes of a semigroup.
Let us illustrate the D-class structure of the “Drive” domain
with added invertible drive actions. By replacing traces with
their corresponding transformations, one may more easily
identify a regular D-class, as seen in Figure 4. Note that the
“ ” character is used to represent the sink state. Each element
in the regular D-class has an inverse, which we can identify
by looking at the element opposite the diagonal. For exam-
ple, the inverse of the transformation [, , , 2, ,] (row 4,
column 2) is [, 4, , , ,] (row 2, column 4). The elements
along the diagonal, marked with an asterisk, are their own
inverses.

Figure 4: “Drive” D-classes with corresponding transforma-
tions

7 Related Work
We begin with a survey of semigroup methods in com-
puter science, starting with the question of why we look at
computational models from an algebraic perspective in the
first place. In Finite Computational Structures and Imple-
mentations: Semigroups and Morphic Relations (Egri-Nagy
2017), Dr. Attila Egri-Nagy suggests that generalizing ex-
isting models of computation to semigroup theory will help
solve open problems in software and hardware engineering.
In turn, the mathematical investigation relies on the tools of
high-performance computing, forming a positive feedback
loop between computer science and abstract algebra. Egri-
Nagy argues that semigroups are the underlying mathemati-
cal structures of computers.

Semigroup theory has deep connections to automata the-
ory and has been used to prove a variety of results. For ex-
ample, see Green’s Relations and their Use in Automata
Theory (Colcombet 2011), in which Dr. Thomas Colcom-
bet uses Green’s relations to prove four classical results re-
lated to automata theory: the result of Schützenberger char-
acterizing star-free languages, the theorem of factorization
forests of Simon, the characterization of infinite words of
decidable monadic theory due to Semenov, and the result
of determinization of automata over infinite words of Mc-
Naughton.

In an Algebraic Analysis of Simple Computer Science Sys-
tems (Morris et al. 2013), researchers apply semigroup the-
ory to the 3-Queens Puzzle; a problem in computer science
close to the nature of planning problems. Their work focuses
on holonomy decomposition (which is a more efficient ex-
tension of the Krohn-Rhodes decomposition) and what in-
sights it can provide. The Krohn-Rhodes decomposition the-
ory is based on the idea that any finite-state automaton can
be broken down into a series of “atomic” machines that de-
pend on each other in a certain way. Since these atomic
machines can’t be broken down any further, they are like
the prime factors in the process of breaking down an inte-
ger. There are two types of irreducible components: primes,
whose semigroup of transformations is a simple group, and

units, whose semigroup is contained in the identity-reset
flip-flop with two states. Holonomy decomposition gives us
the formal and cognitive tools to analyze and understand a
finite deterministic automaton’s global static and dynamic
computational structure. More specifically, in their investi-
gation of the 3-Queen’s puzzle, they find that holonomy de-
composition provides an interpretable hierarchical coordi-
nate system.

8 Future Work
It remains to be determined how the invariants and equiva-
lence classes induced by algebraic structures can provide a
means of formulating equivalent problems through projec-
tion operations and classifications. Semigroups have been
used in edge representation in machine vision models, and
there exists a sound basis for recognition schemes that can
be used in projection operations to obtain coarser or finer
classifications depending on the parameters chosen (Hading-
ham 1990). Analogously, Green’s relations have been used
to break down problems in automata theory (Fleischer and
Kufleitner 2019). However, a similar approach to classifying
planning tasks remains an open and important problem.

Furthermore, one may investigate the use of hierarchical
decompositions to exploit the hierarchical nature of plan-
ning problems. Information can only move in one direc-
tion along a partial order, so functional abstraction is pos-
sible. In a computational setting, semigroup theory has been
used to decompose systems in the fields of biology, physics,
psychology, philosophy, and games (Rhodes, Nehaniv, and
Hirsch 2009; Egri-Nagy and Nehaniv 2008). Furthermore,
understanding the algebraic structure underlying a model
can inform algorithms for solving it. For example, by apply-
ing semigroup theory to the 3-Queens Puzzle, which can be
modelled as a planning problem, holonomy decomposition
can provide an interpretable hierarchical coordinate system
(Morris et al. 2013). The idea of coarse-graining, which is
throwing away information selectively to make models that
are easier to understand, is yet another potential applica-
tion to looking at these hierarchical breakdowns of planning
problems.

Finally, there exist numerous algorithms for computing
the structure of finite transformation semigroups (Linton
et al. 2002). A number of approaches have been developed
in computational semigroup theory in order to calculate fun-
damental properties of semigroups without enumerating all
elements (East et al. 2019). These methods provide for local
computations (concerning single equivalence classes) with-
out computing the whole semigroup, as well as for comput-
ing the global structure of the semigroup. With respect to
classical planning, such approaches can be used to compute
the local structure of a single action, and the global structure
of the planning problem and its solution space.

9 Conclusion
Algebraic modeling allows us to reveal insights into the hid-
den structures and symmetries of computational systems.
Huge state transition tables are like quark-level descriptions
for biological creatures (Egri-Nagy 2017). The semigroup

formalism offers a crucial framework for comprehending
such systems, as it is necessary to recognize substructures
and how they interact. Advantages of such an approach may
include the potential for novel methods of task reformula-
tion, analysis of traces and approaches to bisimulation, im-
provement of heuristics, and novel decompositions and fac-
torizations.

In this work, we outline a rigorous algebraic formal-
ism connecting planning problems and transformation semi-
groups. We demonstrate the correspondence between the al-
gebraic model and the solution space of a planning problem.
More specifically, we demonstrate the correspondence be-
tween elements of the transformation semigroup and traces
induced by a planning problem. We compute some ele-
mentary examples with interesting properties and perform
some visualizations to determine some basic properties of
the semigroup induced by these planning problems, such as
their Green’s structure and inverses.

The goal of this work mainly lies in understanding, that
is, establishing a sound, complete, and meaningful connec-
tion between the state transition models induced by planning
problems and transformation semigroups. We are able to ap-
ply algebraic results to help understand the state space of
a planning problem and study its solutions, and so we es-
tablish that such formal modeling is relevant and effective.
We hope that future work will expand on the foundation es-
tablished here, and explore further possibilities with deeper
connections between semigroups and classical planning.

References
Cain, A. J. 2009. Automaton semigroups. Theoretical Com-
puter Science, 410(47): 5022–5038.
Cain, A. J. 2013. Nine Chapters on the Semi-
group Art. http://www-groups.mcs.st-andrews.ac.uk/
∼alanc/teaching/m431/.
Clifford, A. H.; and Preston, G. B. 1964. The Algebraic
Theory of Semigroups. American Mathematical Society.
Colcombet, T. 2011. Green’s Relations and Their Use in
Automata Theory. In Dediu, A.-H.; Inenaga, S.; and Martı́n-
Vide, C., eds., Language and Automata Theory and Applica-
tions, 1–21. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-642-21254-3.
D’Angeli, D.; Rodaro, E.; and Wächter, J. P. 2020. On the
structure theory of partial automaton semigroups. Semi-
group Forum, 101(1): 51–76.
Dolinka, I.; and East, J. 2015. Variants of finite full transfor-
mation semigroups. International Journal of Algebra and
Computation, 25(08): 1187–1222.
East, J.; Egri-Nagy, A.; Francis, A. R.; and Mitchell, J. D.
2015. Finite diagram semigroups: Extending the computa-
tional horizon.
East, J.; Egri-Nagy, A.; Mitchell, J. D.; and Péresse, Y. 2019.
Computing finite semigroups. Journal of Symbolic Compu-
tation, 92: 110–155.
Egri-Nagy, A. 2017. Finite Computational Structures and
Implementations: Semigroups and Morphic Relations. In-

ternational Journal of Networking and Computing, 7(2):
318–335.
Egri-Nagy, A.; and Nehaniv, C. 2008. Hierarchical Coor-
dinate Systems for Understanding Complexity and its Evo-
lution, with Applications to Genetic Regulatory Networks.
Artificial life, 14: 299–312.
Fleischer, L. 2018a. On The Complexity of the Cayley Semi-
group Membership Problem. In Cybersecurity and Cyber-
forensics Conference.
Fleischer, L. 2018b. On The Complexity of the Cayley
Semigroup Membership Problem. CoRR, abs/1802.00659.
Fleischer, L. 2022. The Cayley Semigroup Membership
Problem. Theory of Computing, 18(1): 1–18.
Fleischer, L.; and Kufleitner, M. 2019. Green’s Relations in
Deterministic Finite Automata. Theory of Computing Sys-
tems, 63(4): 666–687.
GAP. 2022. GAP – Groups, Algorithms, and Programming,
Version 4.12.2. The GAP Group.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Hadingham, P. T. 1990. Formal systems in Artificial Intel-
ligence: an illustration using semigroup, automata and lan-
guage theory. Artificial intelligence review, 4(1): 3–19.
Helmert, M.; and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 19, 162–169.
Howie, J. 1995. Fundamentals of Semigroup Theory. LMS
monographs. Clarendon Press. ISBN 9780198511946.
Howie, J. M. 2002. Semigroups, past, present and future.
In Proceedings of the International Conference on Algebra
and its Applications, 6–20.
Karpas, E.; and Domshlak, C. 2009. Cost-Optimal Planning
with Landmarks. In IJCAI, 1728–1733. Pasadena, CA.
Letichevsky, A. 2005. Algebra of behavior transformations
and its applications. In Kudryavtsev, V. B.; Rosenberg, I. G.;
and Goldstein, M., eds., Structural Theory of Automata,
Semigroups, and Universal Algebra, 241–272. Dordrecht:
Springer Netherlands. ISBN 978-1-4020-3817-4.
Linton, S.; Pfeiffer, G.; Robertson, E. F.; and Ruškuc, N.
2002. Computing transformation semigroups. Journal of
Symbolic Computation, 33(2): 145–162.
Morris, E. R.; Dini, P.; Nehaniv, C. L.; Schreckling, D.; and
Egri-Nagy, A. 2013. Algebraic Analysis of Simple Com-
puter Science Systems.
Pin, J.-É. 2010. Mathematical foundations of automata the-
ory. Lecture notes LIAFA, Université Paris, 7: 73.
Rhodes, J.; Nehaniv, C.; and Hirsch, M. 2009. Applica-
tions of Automata Theory and Algebra: Via the Mathemat-
ical Theory of Complexity to Biology, Physics, Psychology,
Philosophy, and Games. ISBN 978-981-283-696-0.
Waldrop, M. M. 2016. The chips are down for Moore’s law.
Wehrle, M.; Sievers, S.; and Helmert, M. 2016. Graph-
Based Factorization of Classical Planning Problems. In In-
ternational Joint Conference on Artificial Intelligence.

