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ABSTRACT

In natural language processing (NLP), the focus has shifted from
encoder-only models like BERT to decoder-only large language mod-
els (LLMs) such as GPT-3. However, LLMs’ practical application
in the financial sector has reveals three limitations: (1) LLMs often
perform worse than fine-tuned BERT on discriminative tasks, such
as market sentiment analysis in financial reports; (2) Application
on generative tasks heavily relies on retrieval augmented genera-
tion (RAG) method to provide current and specialized information,
which requires high retrieval performance; (3) There are additional
inadequacies in other feature-based scenarios, such as topic model-
ing. We introduce FinBERT?2, a specialized bidirectional encoder
that has been pretrained on a high-quality, financial-specific corpus
of 32b tokens. This represents the largest known Chinese financial
pretraining corpus for models of this parameter size. As a better back-
bone, FinBERT?2 can bridge the gap in financial-specific deployment
of LLMs through the following achievements: (1) Discriminative
fine-tuned models (Fin-Labelers) outperform other (Fin)BERT vari-
ants by 0.4%-3.3% and leading LLMs by 9.7%-12.3% on average
across five financial classification tasks. (2) Contrastive fine-tuned
models (Fin-Retrievers) outperform both open-source (e.g., +6.8%
avg improvement over BGE-base-zh) and proprietary (e.g., +4.2%
avg improvement over OpenAl’s text-embedding-3-large) embed-
ders across five financial retrieval tasks; (3) Building on FinBERT2
variants, we construct the Fin-TopicModel, which enables superior
clustering and topic representation for financial titles, yielding +0.07
and +0.04 improvements in coherence and informativeness scores
compared to BGE-base-zh. Our work highlights the unique value
of encoder-only LMs in the era dominated by decoder-only LLMs,
particularly for specialized financial applications. !
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1 INTRODUCTION

Early large language models (LLMs) primarily relied on encoder-
only architectures with masked language modeling (MLM), such
as BERT [8], RoBERTa [21], and XILLM [18]. However, between
2018 and 2021, the field shifted from single-task fine-tuning to large-
scale multi-task learning. GPT-3 [4] demonstrated that scaling [42]

'0ur code, models and datasets will be accessible at https://github.com/valuesimplex/
FinBERT2

could significantly narrow the performance gap between autoregres-
sive and other architectures. Moreover, autoregressive models offer
advantages such as greater task adaptability, a unified modeling
paradigm [36], and reduced engineering complexity. Consequently,
decoder-only models have become the dominant paradigm in LLM
development.

Similarly, the financial domain has witnessed a shift from early
FinBERT ([2, 7, 12] to large-scale FinLLMs ranging from billions to
trillions of parameters, such as FinGPT [35], BloombergGPT [39],
and FinLlama [17]. These models leverage domain-specific data
and undergo post-training on financial text corpora, enhancing their
understanding and generation capabilities in financial applications.
However, LLMs, including fin-adapted versions, do not fully replace
BERT. They still face limitations in real-world deployment.2

Firstly, while LLMs exhibit strong generalization and robust-
ness as large-scale multi-task models, they are not always optimal
for specific NLU tasks. In certain single-task scenarios, fine-tuned
BERT-base models often outperform them. For instance, latex Kocori
et al. [16] evaluated ChatGPT on 25 analytical NLP tasks and found
that, compared to state-of-the-art (SOTA) methods, its zero-shot and
few-shot performance dropped by approximately 25% on average.
The decline was even more pronounced for complex tasks. Simi-
larly, Hu et al. [11] reported that in fake news detection, GPT-3.5
underperformed compared to specialized smaller models like BERT.
Moreover, LLMs are costly and slow for data-intensive tasks like
labeling financial reports, while smaller BERT-like models (0.1B
parameters) are more efficient.

Secondly, in generative scenarios requiring external financial
knowledge, such as real-time question answering (QA) on financial
reports, LLMs rely on embedding-based retrieval [13] to ensure ac-
curacy and timeliness. This approach, known as retrieval-augmented
generation (RAG) [20], necessitates efficient offline retrieval. Con-
sequently, dense retrievers (DRs) built on dual-encoder BERT archi-
tectures, such as M3E [37], BGE [41], and BCE [28], have become
mainstream. These DRs achieve high retrieval accuracy on general
benchmarks [25] through in-batch negative learning on large-scale
weakly supervised sentence pairs and contrastive fine-tuning with
mined hard negatives. However, despite extensive training, they often
underperform in specialized domains such as finance and law.

Thirdly, beyond retrieval, LLMs are less effective in feature-based
tasks such as clustering and topic modeling [1], text-to-image guid-
ance [30], and measuring earnings surprises and market reactions
[24]. Generative models are often impractical for these applica-
tions, as they require compact and efficient feature encoding [26]
and flexible fine-tuning for task-specific adaptations. For instance,
topic modeling prioritizes industry-specific features, while stock

2(lassical BERT was once considered an LLM, but BERT less than 1 billion parameters
is now seen as a Tiny LM and no longer meets the criteria of an LLM
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Figure 1: Illustration of how FinBERT?2 bridges the gap in finance-specific deployment. The comparison presents two solution: (1) A
deployable AI system combining FinBERT?2 (serve as domain specialist after fine-tuning) with LLM (serve as general-purpose model
with in-context learning capabilities), and (2) A conventional (Fin)LLM-only system.

return prediction relies on sentiment features. However, decoder-
only LLMs struggle to meet these requirements due to their inherent
architectural constraints.

The above challenges hinder the applications in small and medium-
sized financial enterprises, where scenarios are often specialized and
diverse. To address this, we re-evaluate the value of lightweight,
localized, and customizable FinBERT models and propose a hybrid
architecture that integrates FinBERTSs (as domain experts mitigating
these limitations) with LLMs (as general-purpose generative mod-
els with in-context learning capabilities). Specifically, we pre-train
FinBERT?2, an enhanced version of its predecessor FinBERT1 [10].
FinBERT?2 is trained on a carefully curated Chinese financial corpus
comprising 32B tokens and further optimized for downstream tasks
such as labeling, retrieval, and topic representation. In these tasks,
FinBERT?2 can effectively replace, assist, or complement LLMs,
respectively, offering a more efficient and deployable NLP system
for financial applications.Our contributions can be summarized as
follows:

1) We pre-trained FinBERT?2 on a 32B token Chinese financial
corpus to inject domain knowledge. To the best of our knowledge,
this is the largest pre-training corpus for a BERT-like language
model in the Chinese finance domain, and it is trained with a finance-
customized tokenizer.

2) As a more efficient and high-performance alternative to label-
ing, Fin-Labelers outperform other (Fin)BERT variants by 0.4%-3.3%
and leading LLMs (e.g., GPT-4-turbo, Claude 3.5 Sonnet, Qwen2)
by 9.7%-12.3% on average across five financial classification tasks.

3) As an enhanced RAG assistant, Fin-Retrievers surpass both
open-source and proprietary embedding models. They achieve an

3The term "Labeler” highlights its role in the LLM era—fine-tuning BERT for task-
specific, large-scale, real-time text processing.

average improvement of +6.8% over BGE-base-zh and +4.2% over
OpenAlT’s text-embedding-3-large across five financial retrieval tasks.

4) In feature-based applications such as topic modeling, Fin-
TopicModel, built on FinBERT? variants, enables superior cluster-
ing and topic representation for financial titles. It achieves +0.07
and +0.04 improvements in coherence and informativeness scores,
respectively, compared to BGE-base-zh.

To promote community research and the wider application of
FinBERT?2, we open-source the datasets and the weights of the
FinBERT?2 series of models.

2 METHODS
2.1 Overview of FInBERT?2

As shown in Figure 2,our work starts from the data layer consisting
of Fin-Corpus and Fin-downstream datasets, through the foundation
layer where produces Fin-Tokenizer and FinBERT2-base/large , to
the downstream application layer featuring three main components:
(1) Fin-Labeler, fine-tuned for five downstream financial tasks in-
cluding market sentiment classification, industry classification, and
named entity recognition (NER); (2) Fin-Retriever, trained via con-
trastive learning for five financial retrieval tasks; (3) Fin-TopicModel,
an enhanced version of TopicModel, integrating key components
and improvements derived from other FinBERT?2 variants.

2.2 Pre-training of FinBERT?2

2.2.1 Fin-Corpus for Pre-training. The FinBERT2 model has
seen a significant expansion in its pre-training corpus, with the total
token count increasing to 32B (99 G).
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Figure 2: Overview of our FinBERT2 work.

1) Analyst Reports Corpus (16B tokens, 53G): We have com-
piled a collection of 2.6 million financial analysis reports, encom-
passing over twenty types of reports such as stock information,
futures research, industry analysis and institutional commentaries.
The dataset spans from the past 15 years and has undergone detailed
data cleansing.

2) Company Announcements Courpus (6.4B tokens, 19G):
Sourced from web-scraped announcements on the official websites
of domestic listed companies, this dataset includes a wide array of
corporate disclosures from various industries, such as financial re-
ports, significant event statements, notices of shareholders’ meetings,
stock repurchase plans, and executive changes. It spans a period of
20 years and has been standardized in format to align with the report
data format.

3) Duxiaoman [43] Open-Source News FinCorpus (9.6B to-
kens, 27G): Comprising articles and information aggregated from
multiple sources including major financial news websites and social
media, this dataset offers a comprehensive collection of financial
news and insights.It spans a period of 20 years and has been stan-
dardized in format to align with the report data format.

2.2.2 Filtering Low-quality Fin-Corpus. Our 32B financial cor-
pus contains noisy data, including URLs, verbose content, and inco-
herent or repetitive text. Due to the high cost of using LLMs for full
dataset filter, we distill LLM’s ability to judge quality into a light-
weight BERT. We use Qwen2.5-72B-Instruct to rate a 100K-token
subset on a 1-10 scale, labeling data above 8 as high-quality and
below 4 as low-quality. This yields a 4K-instance training set (2K
per class, 90%—10% train-test split). Fine-tuning ROBERTa-wwm-
Chinese on this dataset produces a classifier with over 99% accuracy,
which we use to filter the full corpus, removing 15% of low-quality
data.

2.2.3 Pre-training Details. chinese-roberta-wwm-ext [6] was
used as the initial backbone for FinBERT?2 pre-training. Specifically,
the training corpus is sliced into the longest contiguous segments of
no more than 512 tokens. Strategies [21] such as Dynamic masking,
pre-training using Whole Word Masking without Next Sentence Pre-
diction (NSP) are also employed, which help minimize training loss
and achieve lower bits-per-character (BPC) on the held-out financial

corpus . We train with mixed-precision and AdamW [22] weight
decay optimizer on 8 Nvidia A100 40G GPU machines, with the
training code implementated by huggingface’s transformer library.

2.2.4 Expanded Vocabulary for Fin-Tokenizer. Using the Word-
Piece algorithm [31], we extract domain-specific vocabulary from
our 32B-token financial corpus and the C4 dataset, the latter being
part of the original pre-training data for Chinese-RoBERTa. This
process expands the model’s vocabulary by 14,000 words, incorpo-
rating a substantial number of high-frequency financial terms and
company names (e.g., BYD). Building on Fin-Tokenizer, we con-
duct post-pre-training on our financial corpus, yielding FinBERT2,
a model better adapted to domain-specific tasks.

2.3 Task-specific Fine-tuning of Fin-Laberers

2.3.1 Five Downsteam Datasets for Fin-Labelers. Due to the
disparity between existing public Chinese financial datasets and real-
world business practices, we constructed five financial classification
datasets by directly extracting and annotating data from financial ter-
minal systems. This dataset encompasses three financial application
scenarios, including:

1) Report-related industry classification (IC): Classify Report-
related passage according to the China International Trust and Invest-
ment Corporation (CITIC) Level 1 industry classification, covering
28 industry categories.

2) Market Sentiment Classification (MSC): This task aims to
classify the sentiment of textual commentary related to financial
events or assets, facilitating market sentiment analysis and stock
correlation studies. The first type of sentiment classification, applied
to reports, includes four categories that represent varying levels of
sentiment polarity and intensity. The second type, focused on news
sentiment classification, consists of two categories: positive and
negative.

3) Named Entity Recognition (NER) in Finance: Recognize
and extract entities (e.g., company or personal names) appearing in
the financial reports.

2.3.2 Fine-tuning Details. Fine-tuning in BERT usually opti-
mizes all parameters to maximize classification probability. For
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Task Labels  Train/Test Samples  Lr(e-5) Bs  Epochs Metric Test Dataset Name  Query count  Doc count  Avg Query Words  Avg Doc Words
IC 28 40007400 5 5 1 weighted-f1 Sin-Doc-FinQA 114 1626 29.2 1656.3
MSC(4 labels) 4 1280/400 5 5 1 weighted-f1 Multi-Docs-FinQA 54 9384 16.6 589.8
MSC(2 labels) 2 4000/400 5 5 1 weighted-f1 Research Reports 228 1975 28.7 1405.7
NER(person) 3 664/140 5 4 5 recall Announcements 67 77429 40.2 1311.3
NER(company) 3 2883/300 5 4 5 recall Indicators 200 182695 279 31.8

Table 1: Details of five classification tasks for Fin-Labelers .

sequence classification tasks like MSC and IC, the [CLS] token’s
embedding (h) is fed into a fully connected layer to predict class label
probabilities. For token classification tasks like NER, each token’s
corresponding vector is used for prediction. In our experiments, we
employed a fine-tuning configuration as detailed in Table 1. We fine-
tuned on 5 Downsteam Datasets for Fin-Labelers with an AdamW
weight decay optimizer on a NVIDIA A100 40GB GPU to ensure
consistency and comparability of the experiments. For the sequence
classification task, we set the following parameters: epoch of 1, batch
size of 5, learning rate of 5e-5. For the token classification task, the
same learning rate are maintained, the epoch is increased to 5.

2.4 Contrastive Learning for Fin-Retriever

We fine-tune FinBERT?2 using contrastive learning on 64k financial
QA samples and 150k retrieval data, carefully curated with balanced
positive and negative examples for optimal performance. Evaluation
covers five financial datasets and the C-MTEB benchmark, assessed
using recall and nDCG@10.

2.4.1 Constructing a High-Quality Training Dataset. To en-
hance both financial and general capability of our model, we fine-
tune the pre-trained FinBERT?2 on a combination of general-purpose
and finance-specific datasets. The training data consists of 64k fi-
nancial QA data, 100k T2Retrieval data, 40k MMarcoRetrieval data,
and 10k DuRetrieval data.Additionally, We have also optimized the
setup and enhanced the quality of positive and negative examples in
the training dataset.

1) Generating High-Quality Negative Samples: Since the origi-
nal datasets lack negative samples, we employ the pre-trained model
to mine 50 hard-negative samples for each query. To ensure these
negative samples do not contain information that could potentially
answer the query, we utilize the LLM (Qwen2.5-72b-Instruct) for
further filtering. Additionally, financial data is incorporated into the
negative sample pool to enhance the model’s generalization ability
and enrich dataset diversity.

2) Balancing Positive and Negative Samples: Achieving a bal-
ance between positive and negative samples is critical for optimal
performance. After extensive experimentation, we found that a ra-
tio of 2 positive instances to 8 negative instances delivers the best
results. Increasing the number of negatives to 15 maintains compa-
rable performance, while reducing it to 5 results in a performance
decline. For the RoBERTa-large model, which has greater capacity
than the RoBERTa-base model, the negative sample size per query
is increased from 10 to 15 to better utilize its capacity.

3) Improving Positive Sample Quality and Dataset Integra-
tion: In the T2Retrieval, MMarcoRetrieval, and DuRetrieval datasets,
positive instances may not always directly answer the query. To ad-
dress this, we use the LLM (Qwen2.5-72b-Instruct) to filter and

Table 2: statistics of FIR-Bench used to evaluate Fin-Retriever.

ensure that positive instances contain sufficient information to ad-
equately respond to the query. This step improves the quality of
positive samples. By combining high-quality positive and negative
samples across datasets, we create a robust and effective training
dataset.

2.4.2 Contrastive Learning Details. We train Fin-Retriever based
on FinBERT?2 using the widely adopted InfoNCE loss [29]. We set

the following fine-tuning parameters: epoch of 3, batch size of 512,
learning rate of Se-5, temperature of 0.1, warm up ratio of 0.1 and

weight decay of 0.01. We train the model on 4 NVIDIA A100 40GB

GPU. For long document retrieval, we utilize a sliding window

approach, where each window produces an embedding vector per
sliding step, with a slight overlap between adjacent windows to

maintain semantic coherence. A window size of approximately 400

words and an overlap of 20 words deliver optimal performance.

2.4.3 Financial Information Retrieval Benchmark (FIR-Bench).
To comprehensively assess its domain-specific ability, we curated
five financial retrieval test datasets (FIR-Bench) derived from our
business data, ensuring a thorough evaluation of its performance
in the financial domain. The statistics of these five test datasets are
presented in Table 2.

1) Single-Document Financial Question-Answer Test Dataset
(Sin-Doc FinQA): This dataset consists of queries linked to both
positive and negative document instances. For each query, the can-
didate documents originate from the same article, with the number
of positive documents ranging from a minimum of 1 to a maximum
of 10. On average, each query is associated with 8.4 documents, of
which 2.6 are positive.

2) Multi-Documents Financial Question-Answer Test Dataset
(Multi-Docs FinQA): Unlike Sin-Doc FinQA, the Multi-Docs FinQA
has document instances that come from different articles, thus it con-
tains a much larger number of both positive and negative documents.
The maximum number of positive documents is limited to 50. In
the corpus, each question is associated with an average of 9,384
documents, of which 14 are labeled as positive on average.

3) Financial Retrieval Datasets from Three Sources: This in-
cludes three datasets—financial research reports, indicators, and
announcements. We use the cosine similarity metric to calculate the
recall rate of positive instances for each dataset.

2.4.4 General-domain Retrieval Test. Besides domain-specific
retrieval evaluation, We also evaluate general-purpose retrieval ca-
pabilities of the models. We utilized the subset of C-TMEB [41]
to evaluate the model’s capability in general-domain. Specifically,
our models are evaluated on the following representative and influ-
ential datasets: T2Retrieval, CovidRetrieval, MMarcoRetrieval and
DuRetrieval datasets. We also used nDCG@10 as the evaluation
metric.
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Backbone IC MSC(4 labels) MSC(2 labels) NER(person) NER(company) Avg
Qwen2-72b-Instruct 0.9250 0.4880 0.8850 0.9669 0.8995 0.8329
LLMs GPT-4-turbo 0.8600 0.4750 0.8880 0.9315 0.8787 0.8066
Claude-3.5-Sonnet 0.9030 0.5230 0.8650 0.9957 0.8683 0.8310
BERT-base-chinese 0.9166 0.8676 0.8840 0.9901 0.8269 0.8970
General BERTs  Chinese-MacBERT-base 0.9128 0.8616 0.9422 0.9854 0.8324 0.9069
Chinese-RoBERTa-wwm-ext 0.9196 0.8841 0.9424 0.9901 0.8158 0.9104
FinBERT1-base 0.9294 0.9147 0.9453 0.9901 0.8481 0.9255
FinBERTS Mengzi-BERT-base-fin 0.9083 0.8657 0.9498 0.9902 0.8324 0.9093
FinBERT2-base (ours) 0.9398 0.9249 0.9546 0.9901 0.8378 0.9295
FinBERT2-large (ours) 0.9432 0.9131 0.9573 0.9804 0.8514 0.9291

Table 3: Performance of FinBERT2 and baselines on fin-classification tasks.

2.5 Constructing a Pipeline for Fin-TopicModel

2.5.1 Overview of Fin-TopicModel. We implemented the Fin-
TopicModel on top of Fin-Retriever and other FinBERT2-related
components. It performs unsupervised clustering on the Fin-Retriever
embeddings using the HDBSCAN algorithm to obtain multiple clus-
ters (topics). For each cluster, it uses c-TF-IDF (Class-Based Term
Frequency-Inverse Document Frequency) to measure the importance
of words within the cluster. By analyzing the high-frequency vocab-
ulary in each cluster, it automatically generates topic descriptions.A
visual presentation of results can be found in the Appendix F.

2.5.2 Large-scale Unsupervised Title Dataset with Label-free
Evaluation. A dataset of 56,540 titles of reports was created from
59,014 articles (2022-2024) with an average length of 27 characters.
It supports label-free topic modeling. A comprehensive evaluation
is composed of subjective scoring (e.g., coherence, conciseness,
informativeness) using LLM, clustering metrics like Silhouette Co-
efficient and Calinski-Harabasz Index, additional metrics, including
topic diversity and outlier rate, provide further insights. This frame-
work enables robust, unsupervised exploration of topic modeling
without labeled data.

2.5.3 Encoding from FinBERTZ2 Variants. In conventional prac-
tice, retrieval models are commonly used to extract embedding vec-
tors from texts to support topic modeling tasks. For this purpose,
we selected FinRetriever to encode document embeddings. At the
same time, we intuitively believe that FinLabeler-IC (a fine-tuned in-
dustry classification model) enables BERT to further learn semantic
information related to specific industry classification tasks during
training. These fine-tuned embeddings capture fine-grained semantic
features in Identify the industry, making them highly suitable for
topic modeling tasks. Subsequent experiments confirmed that the
two chosen models indeed demonstrated significant advantages in
topic modeling.

2.5.4 Precise Words Cutting. We used Fin-Labeler-NER to ex-
tract 3,290 company-related named entities from titles, which were
added to Jieba’s custom dictionary to enhance segmentation. To
compare Fin-Tokenizer’s financial vocabulary with Jieba’s default
segmentation, we tested Jieba on 13,804 custom financial terms from
Fin-Tokenizer, revealing 1,724 segmentation inconsistencies. Analy-
sis showed 545 were two-character terms (mostly auxiliary words

or adverbs), and 1,179 were four-character terms (mainly company
names).

Unlike pre-trained models like Fin-Labeler-NER (e.g., BERT),
Fin-Tokenizer uses WordPiece subword segmentation based on sta-
tistical methods. To combine the strengths of both, we created a
merge tokenizer, which uses a greedy strategy to select the segmen-
tation with the longest coverage, improving NER-based tokenization
accuracy and coverage.

2.5.5 Pipeline Details. we implemented the Fin-TopicModel
based on the BERTopic library [9], which is an unsupervised topic
modeling library for short texts. First, a pre-trained embedding model
from SentenceTransformer was used to generate semantic vectors
of size (56,540, 768) for the dataset titles. These embeddings were
then reduced to 32 dimensions using UMAP, with parameters set
to n_neighbors=15 and min_dist=0.0. Next, HDBSCAN was ap-
plied for density-based clustering, with min_cluster_size=2 and
min_samples=1 to minimize outliers. A custom stopwords list based
on the stopwords_cn.txt and the NERcom-Enhanced Tokenizer were
used to instantiate a CountVectorizer for text vectorization. This fa-
cilitated the use of c-TF-IDF (Class-based Term Frequency-Inverse
Document Frequency) to generate a list of keywords for each topic,
ranked by their importance, as a descriptive representation of the
topics.

3 EVALUATIONS AND ANALYSIS

3.1 Fin-Labelers

We benchmarked FinBERT?2 against general-domain BERT mod-
els (e.g., BERT-base-Chinese, MacBERT, RoBERTa) and financial-
domain pre-trained models (e.g., FinBERT1 and Mengzi-Fin). Ta-
ble 1 provides a detailed summary of the number of labels, the sizes
of training/testing samples, fine-tuning hyperparameters (learning
rate, batch size, and number of epochs), and evaluation metrics
for each task. A portion of downstream task datasets was reserved
for evaluating Fin-Labelers, with testing conducted during training,
and the best test results were recorded. All BERT models are same
fine-tuned.

We also benchmark leading Large Language Model (LLM) APIs,
including Qwen2-72b-Instruct, GPT-4-turbo, and Claude-3.5-Sonnet,
against our suite of financial classification tasks. For each task, we
meticulously crafted prompts, employing popular techniques such
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DR Model Sin-Doc-FinQA Multi-Docs-FinQA  Research Reports ~ Announcements Indicators
R@1 R@3 R@5 R@20 R@50 R@10 R@20 R@10 R@20 R@5 R@10
BGE-base-zh 0.479 0.815 0.906 0.238 0.318 0.921 0.960 0.387 0.482 0.910 0.930
BCE-embedding-base 0.513 0.824 0.902 0.227 0.309 0.967 0.978 0.318 0.421 0.803 0.915
text-embedding-3-small 0.511 0.823 0.906 0.197 0.234 0.864 0.872 0.473 0.509 0.863 0.928
text-embedding-3-large 0.560 0.845 0.920 0.215 0.257 0.951 0.960 0.492 0.526 0.940 0.965
Fin-Retriever-base (Ours) 0.520 0.846 0.916 0.307 0.398 0.987 0.991 0.566 0.642 0.950 0.975
Fin-Retriever-large (Ours) 0.554  0.867 0.937 0.315 0.402 0.983 0.987 0.571 0.664 0.960 0.970

Table 4: Performance comparison of Fin-Retriever with other dense retrievers (DRs) on 5 financial retrieval tasks.

DRmodel T2Retrieval  CovidRetrieval =~ MMarcoRetrieval = DuRetrieval  Avg

BGE-base-zh 0.832 0.799 0.634 0.829 0.774
BCE-embedding-base 0.846 0.756 0.634 0.810 0.762
text-embedding-3-small 0.825 0.706 0.603 0.769 0.726
text-embedding-3-large 0.906 0.760 0.636 0.822 0.781
Fin-Retriever-base 0.847 0.779 0.603 0.776 0.751
Fin-Retriever-large 0.848 0.772 0.603 0.783 0.752

Table 5: Performance comparison of Fin-Retriever with other dense retrievers (DRs) on 4 general retrieval benchmark datasets from

C-MTEB We use NDCG @10 as the evaluation metric.

as role specification, few-shot learning, and chain-of-thought to
optimize LLM performance. To ensure fairness and accuracy in the
evaluation, we applied identical prompts across the three powerful
LLMs and performed three tests for each sample to obtain three
responses. The final predicted label was determined by applying a
majority voting rule to the acquired labels. The specific prompts are
shown in the Appendix B.

3.1.1 Compared with LLMs. As shown in Table 2, the average F1

scores of Qwen2-72b-Instruct (0.8329), GPT-4-turbo (0.8066), and
Claude-3.5-Sonnet (0.8310) are significantly lower than FinBERT2-
base (0.9295) and FinBERT2-large (0.9291). On the challenging
market sentiment classification task, LLMs scored below 0.523, far
behind FinBERT2-base (0.9249). For NER tasks, LLMs showed
superiority—e.g., Claude-3.5-Sonnet excelled in company names
(0.868). These findings highlight the limitations of LLMs on domain-
specific tasks without fine-tuning and reinforce FinBERT2’s superi-
ority in both effectiveness and efficiency for financial applications.

3.1.2 Compared with Other BERTS. General-purpose BERT
models achieve average scores of 0.8970-0.9104 across five tasks,
while FinBERT2-base and FinBERT?2-large outperform them with
scores of 0.9295 and 0.9291. For the complex four-class market sen-
timent classification (MSC) task, FinBERT2-base achieves 0.9249,
compared to 0.8841 from general-purpose models, highlighting its
ability to capture domain-specific nuances. Compared to financial-
domain models like FinBERT-Chinese and Mengzi-BERT-base-
fin, FinBERT?2 also performs better. For example, in the IC task,
FinBERT2-base scores 0.9398, surpassing FinBERT-Chinese (0.9294)
and Mengzi-BERT-base-fin (0.9083). While simpler tasks show com-
parable performance, FinBERT2 demonstrates clear superiority in
complex tasks such as four-class MSC, underscoring its domain-
specific advantages.

3.1.3 Analysis about Tasks and Architecture. The performance
of LLMs and BERT-based models varies significantly depending
on the complexity of the NER task. In the context of simple NER
tasks, such as person name recognition, some large language models
(LLMs) may exhibit entity omission issues, resulting in performance
inferior to that of fine-tuned BERT models. However, in complex
NER tasks, such as company name recognition, LLMs are better able
to demonstrate stronger generalization capabilities. Furthermore,
BERT-Large models outperform BERT-Base models on complex
NER tasks. This indicates that increased model scale contributes to
improved generalization for complex NER tasks, potentially due to
the capture of richer contextual information and semantic relation-
ships.

Sentiment classification presents a distinct challenge for LLMs
due to its reliance on industry-specific annotation criteria. The la-
beling criteria are typically determined by professional analysts
and exhibit significant industry-specific characteristics. For instance,
in traditional industries, 10% growth might be considered highly
positive, whereas in another industry, it might only be viewed as
moderately positive. The in-context learning capabilities of LLMs
are often limited to surface-level semantics and numerical values,
which hinders their adaptation to tasks with such nuanced, industry-
specific criteria,which is difficult to be expressed by prompts.

3.2 Fin-Retriever

‘We compare our Fin-Retriever with popular open-source models of
similar parameter sizes (BAAI General Embedding (BGE), Bidirec-
tional Contrastive Embedding (BCE)) as well as OpenAlI’s propri-
etary models®.

3.2.1 Performance on FIR-Bench. As shown in Table 4 both
Fin-Retriever-base and Fin-Retriever-large outperform general-purpose

“https:/platform.openai.com/docs/guides/embeddings
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Embedder in pipeline LLM-score(0-3) Cluster Qulity Metrics
Coherence  Conciseness  Informativity | Silhouette Coefficient  Calinski Harabasz Score =~ Davies Bouldin Score

BGE-base-zh 1.765 1.550 1.865 0.141 11.394 1.254
BCE-embedding-base 1.790 1.460 1.870 0.171 12.483 1.158
text-embedding-3-small 1.744 1.533 1.809 0.106 11.204 1.274
text-embedding-3-large 1.795 1.445 1.825 0.182 12.934 1.155
Fin-Labeler-IC 1.830 1.500 1.845 0.170 11.108 1.108
Fin-Retriever-base 1.835 1.515 1.905 0.192 13.296 1.077
Fin-Retriever-large 1.760 1.570 1.860 0.174 12.690 1.070

Table 6: Performance comparison of different embedding models on the topic modeling task. The LLM scores reflect the semantic
quality of the topics, while the clustering quality metrics measure the compactness and separation of the topics.

Embedder in pipeline D Outliers Rate  Topic Count  Avg Docs/ Topic  SD Docs/Topic
BGE-base-zh 0.211 0.230 11872 3.563 3.125
BCE-embedding-base 0.217 0.253 12129 3.667 3.281
text-embedding-3-small  0.209 0.246 12260 3.477 2.962
text-embedding-3-large  0.218 0.224 11820 3.712 3.353
Fin-labeler-IC 0.196 0.222 13417 3.280 2.144
Fin-Retriever-base 0.218 0.222 11796 3.728 3.211
Fin-Retriever-large 0.213 0.227 12008 3.637 3.178

Table 7: Summarization of the statistical properties of the topics
generated in the topic modeling task.

retrievers in FIR-Bench, demonstrating their strong domain special-
ization. Fin-Retriever-large consistently achieves the highest recall
scores, with an average R@k of 0.746, while Fin-Retriever-base also
surpasses most baselines, achieving 0.730 on average. Compared to
the best-performing general model text-embedding-ada-002-large
(0.723 avg), both Fin-Retriever variants exhibit superior financial
retrieval capabilities. Particularly in Research Reports (R@10 =
0.987 for Fin-Retriever-large vs. 0.951 for text-embedding-ada-002-
large) and Announcements (R@10 =0.571 for Fin-Retriever-large vs.
0.492 for text-embedding-ada-002-large), the Fin-Retriever models
demonstrate a significant advantage. This suggests that in finan-
cial domains where precision is critical, Fin-Retriever provides a
substantial improvement over general-purpose dense retrievers.

3.2.2 Performance on General Retrieval Datasets. Despite

being optimized for financial retrieval, Fin-Retriever-base and Fin-
Retriever-large remain competitive in general retrieval tasks, as re-
flected in Table 5. Fin-Retriever-large achieves an average NDCG@ 10
score of 0.752, while Fin-Retriever-base follows closely with 0.751,

both outperforming text-embedding-3-small (0.726) and approach-
ing the performance of text-embedding-3-large (0.781), an advanced

model from OpenAI’s text-embedding series, with a parameter count

significantly exceeding that of BERT.

3.3 Fin-TopicModel

3.3.1 Metrics. Evaluating topic models is a complex and evolving
challenge. We introduce a suite of unsupervised evaluation metrics
for Fin-TopicModel, thus circumventing the need for labeled data.
The metrics fall into three broad categories. First, subjective scoring
leverages LLMs to evaluate aspects such as coherence, conciseness,
and informativeness. Second, clustering-based measures, including
the Silhouette Coefficient and Calinski-Harabasz Index, are em-
ployed. Third, supplementary metrics like topic diversity and outlier

rate are incorporated to provide a more nuanced understanding. For
a comprehensive description of the metrics, refer to Appendix D.

3.3.2 Analysis of Fin-TopicModel based on Fin-Retrievers.
Topic model based on Fin-Retriever-base demonstrates all-around
superior performance across both subjective scoring (coherence,
conciseness, and informativeness) and clustering quality metrics. It
achieves the highest coherence score (1.835) and excels in clustering
compactness and separation, as reflected by the highest Calinski-
Harabasz Index (13.296) and a low Davies-Bouldin Score (1.077).
These results highlight the robust and balanced capabilities of Fin-
Retriever-base in topic modeling tasks, where it effectively captures
semantic quality while maintaining well-formed clusters. In addition,
it achieves a high topic diversity score (0.218) while maintaining
the lowest outlier rate (0.222), By contrast, Fin-Retriever-large also
performs well but falls slightly short of Fin-Retriever-base. This per-
formance gap may be attributed to the increased model complexity
of Fin-Retriever-large, which could require more hyper-parameter
optimization to fully leverage its potential.

3.3.3 Analysis of TopicModel based on Fin-Labeler-IC. Topic
model based on Fin-Labeler-IC showcases unique strengths and
trade-offs in topic modeling. It generates the highest number of top-
ics (13,417), significantly more than other models, which suggests
its potential to capture granular distinctions in the data. Additionally,
it achieves competitive semantic quality and clustering quality, with
coherence (1.830) and informativeness (1.845) scores. However, this
granularity comes at the cost of lower topic diversity (0.196), indicat-
ing potential redundancy or over-segmentation of the topics. Despite
its simpler fine-tuning approach, Fin-Labeler-IC is competent for
Topic modeling by leveraging its industry-specific training objective,
which is inherently aligned with topic relevance. This trade-off high-
lights the value of task-specific embeddings for applications where
topic relevance is paramount.

3.4 Ablations and Discussions

We conducted a detailed ablation study to verify the impact of pre-
training corpus size and vocabulary expansion on the final results.
All ablation experiment results are presented in the Appendix C.

3.4.1 Ablations of Domain Pre-trained Data Volume. To demon-
strate that increasing the volume of the domain pre-training corpus
can enhance model capability, we trained the 7.3B/10.3B Finbert
models with the same configuration on a subset of the corpus. We
then evaluate these models on both classification and retrieval tasks.



Table 8 demonstrates the impact of pre-training data volume on
classification tasks. The results indicate a clear performance improve-
ment as the pre-training data size increases. Without domain-specific
pre-training, the average F1 score is 0.9104. With 7.3B tokens, the
score increases to 0.9189, and with 32B tokens (FinBERT2-base), it
reaches 0.9295, achieving the best results. Tasks like MSC and IC
benefit significantly from larger pre-training datasets, showing no-
table performance gains. This highlights the crucial role of extensive
pre-training in capturing domain-specific features and improving
generalization in classification tasks.

Table 9 presents the effect of pre-training data size on retrieval
tasks, evaluated using Recall@k. The results show that larger pre-
training datasets lead to substantial performance improvements.
Without domain-specific pre-training, the average Recall is 0.621.
Pre-training on 16B and 32B tokens improves the average Recall
to 0.659 and 0.686, respectively. Tasks such as "Announcements"
and "Research Reports" benefit the most, with Recall increasing
from 0.325 to 0.566 and 0.943 to 0.987, respectively. These results
demonstrate that larger pre-training datasets enable the model to
better understand domain-specific information and enhance retrieval
performance.

3.4.2 Abalation of Vocabulary Expansion on Retrieval Perfor-
mance. Table 10 presents a comparison of pre-training FinBERT?2-
base with and without vocabulary expansion. The results show that
adding a domain-specific vocabulary (Fin-Tokenizer) significantly
improves performance across retrieval tasks. For instance, the model
with Fin-Tokenizer achieves R@50 of 0.397 on Multi-Docs-FinQA
and R@20 of 0.642 on Announcements, representing increases of
0.034 and 0.155 compared to the model without Fin-Tokenizer.
This highlights that vocabulary expansion effectively enhances the
model’s ability to understand and retrieve financial domain-specific
terminology.

3.4.3 Is Advantage in Retrieval Tasks Attributable to Fine-
Tuning Rather than the FinBERT2 Backbone? Although our
model outperforms others on multiple financial retrieval tasks, this
advantage may be partly attributed to the lack of fine-tuning of other
models on the same financial data. To ensure a fair comparison, we
fine-tuned the BGE-base-zh using the same dataset. As shown in
Table 11, BGE-base-zh, which shares the same architecture as our
Fin-Retriever-base, was fine-tuned with the same data and hyper-
parameters employed in the second stage of contrastive learning
for Fin-Retriever. We subsequently evaluated both models on FIR-
Bench. These results suggest that FinBERT2-base is well-suited for
retrieval tasks, especially the Research Reports and Announcements
retrieval tasks.

3.4.4 Is BERT-large a Better Backbone Than BERT-base?
We conducted scale-based fine-tuning experiments on the ROBERTa
model, utilizing both the RoOBERTa-chinese-base and RoBERTa-
chinese-large variants, and systematically compared their perfor-
mance. While the results demonstrate that the RoOBERTa-chinese-
large model generally outperforms its base counterpart in both label
tasks and retrieval tasks, the performance gains are not significant.
Furthermore, training and fine-tuning the large model require ex-
tensive hyperparameter optimization and computational resources,
posing a considerable challenge. Due to these factors, we did not

Anon.

dedicate substantial effort to further optimizing the large model. De-
spite the slight advantage shown by the large variant, the base model
remains highly competitive and efficient, making it a strong choice
for practical applications.

4 FUTURE WORK

The future-oriented work is as follows:

1) In pre-training task, we will perform domain adaptation based
on optimized architecture BERT such as ModernBERT [38], or
larger parameter BERT such as MegatronBert-1.3B [14].

2) In retrieval tasks, our training remains insufficient, as we have
only utilized 200,000 data points so far. If more data were used for
training, the model’s performance could be further improved.

3) In topic modeling tasks, we have not explored many additional
optimization techniques to enhance the modeling performance, such
as strategies for reducing outliers and employing more diverse repre-
sentations. If further optimizations were applied, the model might
achieve better results.

4) In addition to topic modeling task, we aim to apply FinBERT2
in quantitative investment.The Fin-Labeler-MSC, fine-tuned on the
market sentiment dataset, demonstrates exceptional proficiency in
understanding complex financial market sentiment, making it a pos-
itively correlated factor with excess stock returns. The factor can
be integrated into softprob multi-classification XGBoost models
to establish a robust mapping between embedded vectors and real
market behaviors.The approach has potential for selecting the topK
stocks as a effective quantitative investment strategy.

S CONCLUSION

In this work, we introduced FinBERT?2, a specialized bidirectional
encoder pre-trained on the largest known Chinese financial corpus
(32B tokens). Our results demonstrate that encoder-only models still
play a crucial role in financial NLP, complementing the strengths
of decoder-only LLMs. Specifically, FinBERT?2 achieves: (1) su-
perior performance on discriminative financial classification tasks,
outperforming existing (Fin)BERT variants and leading LLMs; (2)
enhanced retrieval capabilities through Fin-Retrievers, surpassing
both open-source and proprietary embedding models; and (3) im-
proved topic modeling with Fin-TopicModel, yielding better cluster-
ing and topic representation. These findings highlight the continued
relevance of encoder-based architectures in financial Al, particularly
in scenarios requiring high precision and domain-specific under-
standing.
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A RELATED WORKS
A.1 FinLMs

Since 2019, specialised models have emerged to tackle the complexities of financial text. FinBERTS (Araci [2], Desola [7], and Huang
[12]), have demonstrated proficiency respectively in financial sentiment analysis and document processing and information extraction from
financial texts. In the Chinese community, Hou et al. [10]’s FinBERT was open-sourced, and its F1 scores in different financial tasks were
significantly improved compared to the vanilla BERT. Another influential work Mengzi-fin (Zhang et al. [44]) further enriching the field of
Chinese FinBERTS. In parallel, Larger LMs have ventured into the financial domain, tailoring their capabilities to specific financial tasks.
BloombergGPT (Wu et al. [39]) are characterised by 50B-parameter model trained on a 363B token financial corpus The FinTral suite
by Bhatia et al. [3], based on Mistral-7b and multimodal data, outperformed GPT-4 on several tasks including Sentiment Analysis (SA),
Named Entity Recognition (NER) etc. FinLlama (Konstantinidis et al. [17]), derived from Llama-2-7b, improved sentiment classification
accuracy and quantified sentiment strength. Both FinBERTSs and FinLLMs highlight the advantages of in-domain pre-training. In these works,
although FinLLMs has greater potential and application scenarios, relatively small specialized model trained on more financial corpus are more
parameter-efficient that either match or outperform much larger language models.

A.2 Dense Retrievers

Dense retrievers (DRs), also called text embedders typically use a BERT-based dual encoder architecture that learns by minimizing the
similarity between documents and queries. This independence of document representation from query representation accommodates the offline
computational demands of large corpora. pre-training tasks designed specifically for retrieval (passage ranking), such as ICT [19], BFS [5] and
RetroMAE [40] are proved effective, but it has also been shown that carefully fine-tuning a vanilla BERT model can also outperforms these
approaches [15, 23] Recent studies have explored the construction of generalized text representation models through large-scale contrastive
learning [27, 32, 34]. These works mostly follow a multi-stage training approach: i.e., pre-training on large-scale weakly supervised text pairs
on a in-batch-negative manner, and supervised fine-tuning on triplets with hard hegatives to further fit to popular benchmarks [25, 33, 41].
Despite extensive training, out-of-domain generalization remains limited. These DRs even fail to reach BM25 level without further fine-tuning
on labeled datasets. As far as we know, no one tried to customize an Fin-DR based on a FinBERT pre-trained sufficiently on large scale
financial corpus.

B PROMPTS OF DOWNSTREAM TASKS USING LLMS(CHINESE TO ENGLISH ALREADY)
B.1 IC Prompt

Role: Senior Industry Researcher. Task: According to the CITIC industry classification definition, classify short financial texts into primary
CITIC industry categories.

The industry list and classification descriptions are as follows: Building Materials: Involves the production and sale of construction materials
such as cement, glass, ceramics, and new building materials. Food and Beverages: Includes food manufacturing and beverage production,
such as liquor, dairy products, and meat processing. Media: Covers industries such as broadcasting, television, publishing, internet media, and
advertising. Non-Ferrous Metals: Includes mining, smelting, and processing of non-ferrous metals such as aluminum, copper, lead, and zinc.
Computers: Involves the development, production, and sale of computer hardware and software. Non-Banking Finance: Includes non-banking
financial institutions such as securities, insurance, and trusts. Pharmaceuticals: Covers pharmaceutical manufacturing, biotechnology, and
medical devices. Commercial and Retail: Includes retail formats such as department stores, supermarkets, and specialty retail. Electricity and
Utilities: Involves electricity production and supply, as well as public utilities such as water and gas. Steel: Includes steel smelting and rolling.
Real Estate: Involves real estate development, sales, and rental. Machinery: Includes the manufacturing of various machinery and equipment,
such as engineering machinery and general equipment. Agriculture, Forestry, Animal Husbandry, and Fishery: Covers industries such as
agricultural planting, forestry, animal husbandry, and fishery. Basic Chemicals: Includes petrochemicals, fertilizers, pesticides, and coatings.
National Defense and Military Industry: Covers the R&D and production of defense technology and military equipment. Banking: Includes
financial institutions such as commercial banks and policy banks. Transportation: Includes transportation services such as road, rail, aviation,
and waterway transport. Home Appliances: Involves the production and sale of household appliances such as refrigerators, washing machines,
and air conditioners. Catering and Tourism: Includes catering services and tourism services. Construction: Involves construction, renovation,
and decoration. Light Industry Manufacturing: Includes light industry products such as papermaking, packaging, and furniture manufacturing.
Automobiles: Covers the production and sale of vehicles and auto parts. Textiles and Apparel: Includes the production and sale of textiles
and clothing. Electronic Components: Involves electronic components, semiconductors, and optoelectronic products. Telecommunications:
Includes telecommunications equipment and service provisioning. Power Equipment: Covers power generation equipment and transmission
and transformation equipment. Petroleum and Petrochemicals: Includes oil exploration, refining, and petrochemical products. Coal: Covers
coal mining, processing, and sales.

Input: text: Financial news brief

Result Format: Rationale: { CoT, no more than 100 words} Result: {Industry Name }
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B.2 MSC(2 labels) Prompt

Role: Senior Financial Data Analyst, Senior Industry Researcher. Task: Financial sentiment classification: Aim to classify evaluative texts on
financial events or items into sentiments to observe market sentiment.

The sentiment classification task includes two categories: 0: Negative 1: Positive

Result Format: Rationale: { CoT, no more than 100 words} Result:{Sentiment label, O or 1}

B.3 MSC4 labels) Prompt

Role: Senior Financial Data Analyst, Senior Industry Researcher. Task: Financial sentiment classification: Aim to classify evaluative texts on
financial events or items into sentiments to observe market sentiment.

The sentiment classification task includes four categories: Positive Sentiment (Label: 3): Texts typically include positive evaluations of
company performance, stock recommendations, or optimistic industry outlooks. Examples include terms such as "recommend," "exceeds
expectations,” "significant growth," "strongly recommend," "high-quality," "leader," and "performance surge," indicating positive evaluations
and optimistic expectations of companies or industries. Neutral-Positive Sentiment (Label: 2): Texts may include affirmations of company
performance but also concerns or uncertainties about certain factors. Such texts often use terms like "in line with expectations," "stable,"
"neutral-positive," "slight growth," and "maintain," reflecting confidence in companies or industries but with some reservations. Neutral
Sentiment (Label: 1): Texts provide objective descriptions of companies or industries without obvious positive or negative sentiment tendencies.
Terms like "neutral," "stable," "flat," and "basically in line with expectations" indicate neutral views on companies or industries. Negative
Sentiment (Label: 0): Texts typically contain concerns about company performance, non-recommendations of stocks, or pessimistic industry
outlooks. Examples include terms like "decline," "losses," "risks," "below expectations," "reduction,” and "negative growth," reflecting negative
evaluations and pessimistic expectations of companies or industries.

Result Format: Rationale:{ CoT, no more than 100 words} Result:{Sentiment label, one of 0-3}

B.4 NER(company) Prompt

Role: Senior Data Annotation Engineer. Task: NER (Named Entity Recognition): Identify and extract company entities mentioned in financial
texts.

Example: Question: Text to extract company entities from: Everbright Pharmaceutical and Fuxiang Co., Ltd. Analysis: Antibiotic Upgrades
by “Water Sellers,” Simultaneous Growth of Volume and Profit. The company significantly benefits from stable demand growth and industry
supply contraction, with performance approaching a turning point. We predict earnings for 1921 to be 1.20, 1.52, and 1.86 yuan, respectively,
with year-on-year growth rates of 67%, 27%, and 22%. The current price corresponds to 15x, 12x, and 10x P/E for 1921. Health is essential for
the heart and mind. Answer: Rationale: ... Result:[’Everbright Pharmaceutical’,’Fuxiang Co., Ltd.’]

Result Format: Rationale:{ CoT, no more than 100 words} Result:{List of company entities }

B.5 NER(person) Prompt

Role: Senior Data Annotation Engineer, Entity Extraction Engineer. Task: NER (Named Entity Recognition): Identify and extract name entities
mentioned in financial texts.

Example: Question: Text to extract name entities from: 2019 Q3 Report Analysis: Overall Slight Improvement, Significant Recovery
in Small and Mid-Cap Stocks. Marginal improvement in profitability for electronics, media, and telecommunications, as well as enhanced
profitability in finance, home appliances, construction, and public utilities. Food and beverages remain stable. Wang Yang is a key contributor.
Dongwu Strategy, Dongwu Machinery: Chen Xianfan 18616532999. Answer: Rationale: ... Result:["Wang Yang’,’Chen Xianfan’]

Result Format: Rationale:{ CoT, no more than 100 words} Result:{List of name entities }

C ABLATIONS TABLES

Backbone for task-specific fine-tuning IC MSC(4 labels) MSC(2labels) NER(person) NER(company) Avg

w/o domain-pre-trained (Chinese-RoBERTa) 0.9196 0.8841 0.9424 0.9901 0.8158 0.9104
w/ 7.3B domain-pre-trained 0.9241 0.9044 0.9424 0.9902 0.8333 0.9189
w/ 10.3B domain-pre-trained 0.9252 0.8975 0.9499 0.9902 0.8278 0.9181
w/ 16B domain-pre-trained 0.9437 0.9176 0.9525 0.9902 0.8333 0.9275
w/ 32B domain-pre-trained (our FinBERT2-base) 0.9398 0.9249 0.9546 0.9901 0.8378 0.9295

Table 8: Ablation experiments about pre-training strategy and data volume on different backbones following the same task-specific
fine-tuning procedure. w * means with *,w/o * means without *.
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Sin-Doc-FinQA Multi-Docs-FinQA  Research Reports Announcements

Backbone for contrast fine-tuning R@1 R@3 R@5 R@20 R@50 R@10 R@20 R@10 R@20 '8
w/o domain-pre-trained (Chinese-RoBERTa) 0.534 0837 0911 0291 0376 0943 0956 0325 0417 0.621
w/ 7.3B domain-pre-trained 0507 0.838 0915 0292 0384 0934 0947 0412 0445 0.630
w/ 10.3B domain-pre-trained 0522 0819 0920 0296 0388 0965 0969 0390 0448 0.635
w/ 16B domain-pre-trained 0514 0844 0916 0305 0392 0965 0982 0462 0549  0.659

w/ 32B domain-pre-trained (our FinBERT2-base) 0.520 0.846 0.916 0.307 0.398 0.987 0.991 0.566 0.642 0.686

Table 9: Ablation experiments about data volume of domain-pre-train on different backbones after contrast fine-tuning. w * means
with *,w/o * means without *. We use Recall @k as the metric.

Sin-Doc-FinQA Multi-Docs-FinQA  Research Reports Announcements
R@1 R@3 R@5 R@20 R@50 R@10 R@20 R@10 R@20

w/o vocabulary expansion 0.521 0.843 0917 0.279 0.363 0.896 0.938 0.408  0.487
w/ vocabulary expansion (Fin-Tokenizer) 0.520 0.846 0916 0.307 0.398 0.987 0.991 0.566  0.642

FinBERT2-base pre-trained Configuration

Table 10: Ablation experiments about tokenizer w/wo vocabulary expansion

Backbone for contrast fine-tuning Sin-Doc-FinQA Multi-Docs-FinQA  Research Reports Announcements
R@1 R@3 R@5 R@20 R@50 R@10 R@20 R@10 R@20

BGE-base-zh 0.519 0.843 0920 0.320 0.389 0.965 0.978 0378  0.442

FinBERT2-base 0.520 0.846 0916 0.307 0.398 0.987 0.991 0.566  0.642

Table 11: Performance of BGE-base-zh and FinBERT2-base after fin-retrieval fine-tuned by the same training dataset and fine-tuning
processes. We use Recall @k as the metric.

D METRICS OF FIN-TOPICMODEL

e Subjective Evaluation: We leverage a large language model (Qwen-max) to subjectively evaluate the topic descriptor lists. First, 200
topic descriptor lists are randomly sampled, and Qwen-max is prompted to score them on three aspects: Coherence, Conciseness, and
Informativity (on a scale of 1 to 3). The average score across these three dimensions is calculated and used as the final metric.

o Clustering Quality Evaluation: We adopt three widely used metrics—Silhouette Coefficient, Calinski-Harabasz Index, and Davies-
Bouldin Index—to evaluate the quality of the embeddings used for clustering. These metrics measure the compactness of data within
clusters and the separation between clusters, providing a quantitative assessment of the clustering algorithm’s effectiveness.

o Topic Diversity (TD): This metric calculates the proportion of unique words across topics. TD values range from 0 to 1, where higher
values indicate greater topic diversity and more varied topics generated by the model.

o Outlier Rate: We also calculate the proportion of outliers (documents assigned a label of -1) relative to the total dataset size as an
additional measure of embedding quality. By the way, the number of outliers can be reduced through post-prediction strategies or
parameter adjustments.

o Other statistics: In addition, we summarize other statistical properties of the topics generated by different embedding models in the
topic modeling task. These include the outlier rate, total number of topics, average document count per topic, and the standard
deviation of document counts per topic, which provide further insights into the characteristics of the generated topics.

E PROMPTS FOR ASSESSING TOPIC DESCRIPTIVE WORDS (TRANSLATED FROM CHINESE)

Please evaluate the given topic keyword list based on the following standards for topic quality assessment. For each criterion, provide a score
ranging from 1 to 3, along with a brief explanation of the score.

Topic Quality Assessment Criteria: 1. Coherence Definition: The keywords within a topic should be semantically related and collectively
describe a topic or multiple closely related topics.

2. Conciseness Definition: A topic should not contain irrelevant or meaningless words, such as noise words or semantically redundant terms.

3. Informativity Definition: A topic should provide sufficient, specific, meaningful, or valuable information, covering different aspects of the
same topic.

Evaluation Instructions: For the provided topic keyword list, rate each criterion on a scale of 1 to 3: 1 point: Poor performance, does not
meet the standard. 2 points: Average performance, partially meets the standard. 3 points: Excellent performance, fully meets the standard. For
each rating, provide a brief explanation to justify the score. Input: { Topic Keywords List}
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Example Response Format: { "Topic Keyword List": ["strategy", "market", "investment", "risk", "return"], "Evaluation": {

"Coherence": { "Score": 3, "Explanation": "Keywords are closely related, all relevant to the field of financial investment, and collectively
describe the theme of investment strategies." },

"Conciseness": { "Score": 3, "Explanation": "Keywords are clear, with no stopwords or meaningless terms, and no redundancy detected." },

"Informativity": { "Score": 2, "Explanation": "The topic only covers the main aspects of financial investment but lacks detailed descriptions
of specific markets or investment tools." } } }

F VISUALIZATION OF FIN-TOPICMODEL
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Figure 3: This figure illustrates the hierarchical structure of topic clustering in a tree diagram, where each node represents a topic or
subtopic, and the branches reflect the hierarchical relationships between topics. The top-level nodes represent broader topics, while the
child nodes provide further subdivisions of the parent topics, progressively narrowing down into more specific semantic domains. Each
leaf node in the diagram corresponds to a unique topic identifier (Topic ID), which is used to identify specific topics.
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