
Evaluating Trustworthiness in Reactive Web Architectures: A
Structured Framework and Comparative Analysis

Abstract
Reactive web architectures form the foundation of interactive web
applications, but issues concerning trustworthiness arise with re-
spect to maintaining application state, handling errors, and devel-
oper control. This paper describes a structured assessment frame-
work that can be used to evaluate trustworthiness in different reac-
tive approaches, whether it is based on signals, observables, or a
combination of both. The notion of trustworthiness is abstracted
using six different aspects, namely predictability, transparency,
debuggability, failure isolation, user experience consistency, and
developer oversight, and is demonstrated using scenario-based as-
sessments of standardized interaction scenarios like asynchronous
updates and concurrent user interactions, yielding a comparative
study that reveals different architectural trade-offs, like better trans-
parency in observable-based systems or better locality in signal-
based systems.

CCS Concepts
• Software and its engineering→ Software verification and
validation.

Keywords
reactive programming, trustworthiness, evaluation framework, soft-
ware architecture, scenario-based evaluation, web systems

1 Introduction
Modern web applications have increasingly used reactive web archi-
tecture to enable responsive user interfaces, propagating changes
in state automatically upon every user interaction or asynchronous
flow of data [2]. Applications in the lines of social media platforms,
e-commerce systems, and data-intensive dashboards all rely heavily
on real-time updates and handling complex dependency logic [7].

As these systems are increasingly employed in high-stakes and
user-facing contexts, trustworthiness has emerged as a critical con-
cern [1]. In addition to functional correctness, reactive web architec-
tures need to support predictable state transitions, transparent data
flows, effective debugging, and robust handling of partial failures
[6]. Opaque mechanisms for updating state, unintentional state
propagation, and limited observability can undermine developer
confidence and user trust as systems grow in complexity.

Despite the considerable interest in reactive programming mod-
els and architectural patterns, the current state of evaluation of
reactive web architectures remains piecemeal [2], [4]. Many pre-
vious works focus on performance-related metrics like latency or
throughput, and few provide guidance regarding how architectural
decisions affect more general properties of trustworthiness [4]. The
lack of organized frameworks for evaluation inhibits the princi-
pled comparison between paradigms and limits transferring best
practices across application domains [5].

The proposed paper will address this gap by suggesting a struc-
tured evaluation framework in assessing the trustworthiness of

reactive web architectures. We decompose the notion of trustwor-
thiness into six operational dimensions: predictability, transparency,
debuggability, failure isolation, UX consistency, and human over-
sight. Further, we introduce a scenario-based methodology for com-
parative assessment. By applying this framework to signal-based,
observable-based, and hybrid reactive architectures, actionable in-
sights are obtained on architectural trade-offs and cross-domain
implications for responsible web system design.

This work presents a framework-based qualitative evaluation of
signal-based, observable-based, and hybrid reactive architectures,
focusing on architectural trade-offs rather than empirical perfor-
mance benchmarking.

1.1 Contributions
The contributions of this paper are as follows:

• We are proposing a multi-dimensional assessment frame-
work that can operationalize trustworthiness in the context
of reactive web architectures using six well-defined dimen-
sions.

• We introduce a scenario-based comparative methodology
that allows the reproducible assessment of signal-based,
observable-based, and hybrid reactive paradigms.

• We derive key cross-domain insights that inform responsible
and trustworthy design practices for modern web systems.

2 Related Work
Reactive programming has also received extensive attention in the
literature as a paradigm for handling asynchronous data flows as
well as dynamic changes in the state in modern software systems.
A thorough survey on reactive programming is offered by Baino-
mugisha et al. [2], which classifies different methods of reactive
programming on the basis of data flow dependencies, event han-
dling strategies, as well as semantics, while also pointing out the
challenges in each approach in regard to compositionality, expres-
siveness, as well as execution order. Later studies have tackled the
manner in which principles of reactive programming are imple-
mented in software engineering. Salvaneschi et al. [7] describe an
overview of reactive programming principles and how these are
important in structuring asynchronous computations and manag-
ing the evolution of state in complex applications. This discussion
demonstrates that there are clear advantages in declarative data
flow abstractions and how it becomes hard to deal with the control
flow structures when developing applications.

Reactive architectural design patterns are also studied in domain-
specific environments. Curasma and Estrella [4] present a survey on
reactive software architecture in Internet-of-Things environments,
specifically concerning real-time data, coordination, performance,
etc. Their workmight seem to concentrate on the Internet-of-Things
domain, yet some common architect patterns in their study, such as
event coordination, are common to reactive Web design patterns.



TIME 2026, April 13–14, 2026, Dubai, United Arab Emirates

In addition to reactivity itself, trustworthiness has also been an
area of long-standing interest within dependable and secure com-
puting. Avizienis et al. [1] describe a basic categorization frame-
work for dependability; they define properties such as reliability,
availability, safety, and maintainability. These properties form the
basic foundation for any forms of system trustworthiness beyond
correctness.

The role of developer knowledge and debugging is also a very
essential aspect in designing a trustworthy system. Ko et al. [6]
examine developer mental models in program behavior using "why"
and "why-not" queries, highlighting that reduced observability and
complex state interactions present substantial barriers to effective
subsequent debugging efforts, a consideration that is especially
prominent in reactive systems, in which asynchronous processing
and hidden dependencies can make it difficult to identify cause-
and-effect relationships.

Recent work has explored signal-first architectural approaches
for reactive systems, emphasizing fine-grained state propagation
and improved developer reasoning about reactivity [3].

Finally, structured methods for the assessment of software ar-
chitecture have been proposed to enable well-founded decision-
making. Ref. [5] describe theArchitecture TradeoffAnalysisMethod
(ATAM) to assess architecture decisions against orthogonal quality
attributes such as performance, modifiability, or reliability. How-
ever, ATAM offers a general methodology to assess architecture
designs but fails to address the specific characteristics of the Reac-
tive Web architecture paradigm at hand, such as the propagation
of fine-grained state transitions.

Beyond reactive programming and architectural evaluation, re-
lated work in program comprehensionmotivates the human-centric
dimensions used in this paper. In particular, prior studies empha-
size that observability, traceability, and mental-model alignment
strongly shape developer effectiveness when diagnosing faults and
understanding system behavior [8]. These insights support treating
debuggability and human oversight as first-class concerns when
evaluating reactive web architectures.

In summary, while current literature provides a strong start-
ing point for reactive programming, dependability, debugging, and
architectural evaluation, these topics have not been significantly
integrated for reactive web architectures yet. Current surveys have
concentrated on generalized principles or performance-related is-
sues [2, 4], while architectural evaluation approaches [5] have not
addressed trustworthiness issues in reactive systems. Thus, there
is a need for a comprehensive evaluation approach to tackle trust-
worthiness in reactive web architectures.

3 Trustworthiness Dimensions and Evaluation
Framework

Software trustworthiness can be considered to involve not only
functional correctness properties, which make a system work cor-
rectly, but other properties like observability, controllability, and
fault-tolerant properties, which make a system act in a predictable
way, be understandable for developers, and work well even if its
surroundings change [1]. It is even more important in reactive Web

applications because their programming models include asynchro-
nous computations, implicit control flow, and fine-grained control
flow dependencies, making control flow properties hard to predict.

To facilitate the evaluation of trustworthiness in the context of
reactive web architectures in a principled manner, we introduce
a formal evaluation framework using six dimensions of trustwor-
thiness. Our evaluation framework draws upon well-established
principles of dependable software engineering and evaluation of
software architectures [1, 5] to provide a formal means of compari-
son in the context of reactive architectural styles.

Today’s reactive systems showcase various architectural pat-
terns and failure behaviors that are hard to assess with single point
measures. We therefore introduce a structured evaluation frame-
work that logically relates reactive architectural styles with realistic
system scenarios and trustworthiness dimensions. Figure 1 depicts
the end-to-end flow of the proposed framework.

Reactive Architectures. We consider three representative reactive
paradigms: signal-based architectures, observable-based architec-
tures, and hybrid architectures. Signal-based architectures model
application state as a dependency graph of signals with determin-
istic propagation. Observable-based architectures rely on event
streams and subscriptions to propagate changes asynchronously.
Hybrid architectures combine these approaches by using signals for
core state representation while employing observable streams for
side effects, asynchronous coordination, or external event handling
(e.g., signal-driven state with observable-based effects).

In practice, this pattern appears in modern reactive web stacks
where fine-grained signal graphs manage UI state, while observ-
able streams orchestrate asynchronous workflows such as network
requests, user event batching, or cross-component coordination.

Evaluation Scenarios. Architectures are tested for these represen-
tative stress conditions, such as asynchronous updates, concurrent
interactions, partial failures, and cross-device latency, that can be
incurred when the architecture is scaled and deployed.

Trustworthiness Dimensions. The system behavior is gauged through
six parameters associated with trust levels: predictability, trans-
parency, debuggability, failure isolation, UX consistency, and hu-
man oversight. All these parameters of system behavior are associ-
ated both with system reliability and human factors.

Comparative Insights. Through the correlation of architecture
patterns and the behaviors exhibited based on various levels of
trustworthiness, it is now possible to have comparative analysis
capabilities within the architecture.

3.1 Trustworthiness Dimensions
Predictability can be described as the level at which programmers
can foresee when and why changes to a system’s state happen.
Predictability in a reactive system architecture is based on the
clarity of resolved dependencies and the predictability of updates.
System architectures that have low side effects and allow localized
reasoning make it easier for programmers to have a clear mental
model of system behavior [6].

Transparency: This reflects the visibility of the data flow and
dependency relations between components. In transparent systems,



Evaluating Trustworthiness in Reactive Web Architectures: A Structured Framework and Comparative Analysis TIME 2026, April 13–14, 2026, Dubai, United Arab Emirates

Figure 1: Framework for evaluating reactive architectures
across trustworthiness dimensions under realistic system
scenarios.

it becomes possible for developers to monitor the path of the inputs
and events in the system and their effects on the system’s observable
behavior. Previous research on the topic of reactive programming
states that the representation of the data flow can improve the

transparency properties of the system but might also add more
complexity as the system evolves [7].

Debuggability systematically measures the ability to detect, iso-
late, and fix issues. Debugging in reactive system remains complex
because of the asynchronous processing and non-linear control
flow. Software debugging studies show a system enabling the de-
bugging of execution traces and localized state analysis facilitates
debugging process efficiency and successfully fixes issues [6].

Failure Isolation deals with the capacity for architectural con-
tainment of errors, inhibiting the spread of localized errors through-
out unrelated system components. Within the realm of reactive
systems, failure isolation is directly affected by the structure of state
dependencies and error handling semantic definitions. Unfavorable
isolation results in situations such as cascading failures that spread
inconsistencies throughout the whole system, thus affecting system
trustworthiness [1]. From a security perspective, effective failure
isolation also limits the propagation of malicious or malformed
events within reactive execution flows.

UX Consistency specifies the level of consistency in user ex-
perience despite network latency and other conditions such as
simultaneous interactions. Reactive systems may exhibit UX incon-
sistencies even when application logic is correct if update ordering
becomes nondeterministic under concurrency.

Human Oversight: This pertains to the ability of programmers
to monitor, control, and change certain operations by systems, if
needed. Trustworthy systems must enable adequate control by
humans, especially in complex systems or safety applications. The
design architecture may reduce oversight in control flow or coupled
automated responses, which may increase risks in operations [1].

To distinguish worst-case stress behavior from typical usage,
we report both scenario-specific assessments and an aggregated
summary. Scenario-specific results (e.g., concurrent interactions)
highlight conditions where architectural limitations are most pro-
nounced, while the aggregated table summarizes expected behavior
across a representative set of scenarios.

𝑆𝑐𝑜𝑟𝑒 (𝐴,𝑑) =
∑︁
𝑠∈S

𝑤𝑠 · 𝑠𝑐𝑜𝑟𝑒 (𝐴,𝑑, 𝑠) (1)

Here, 𝐴 denotes an architecture, 𝑑 a trustworthiness dimension,
𝑠 an evaluation scenario, and𝑤𝑠 a scenario weight.

This explains why Hybrid can score lower in the concurrent
interaction scenario (Table 2) while still scoring higher overall
(Table 1) when considering the full set of representative scenarios.

3.2 Evaluation Framework Overview
The proposed evaluation framework applies a set of trustworthiness
criteria outlined above to the standardized interaction scenarios
to evaluate the reactive web architectures. Instead of empirical
benchmarks and implementations, the framework uses structured
reasoning and comparative analysis. This follows the approach
used to perform scenario-based architectural system evaluations
as presented in [5]. The framework assesses how effectively the
system, represented by each architectural paradigm being evaluated,
provides for each dimension of trustworthiness when being exposed
to an identical scenario. In turn, this provides a comparative view
of the trustworthiness characteristics of the paradigms, showing



TIME 2026, April 13–14, 2026, Dubai, United Arab Emirates

benefits, drawbacks, and trade-offs in an impartial fashion that does
not favor any paradigm in the comparative analysis to be presented
in the subsequent section.

The following tables distinguish between scenario-specific stress
evaluations and aggregated trustworthiness assessments to provide
complementary perspectives on architectural behavior.

Table 1 highlights systematic differences across architectural
paradigms. Signal-based systems exhibit strong predictability and
debuggability due to explicit dependency graphs, while observable-
based ones prioritize transparency and failure isolation through
subscription models. Hybrids balance most dimensions but may
introduce overhead in real-world scaling.

In particular, concurrency stress scenarios can expose semantic
interaction costs in Hybrid designs, even when Hybrid performs
strongly in non-concurrent or well-structured interaction patterns.

3.2.1 Qualitative Scoring Criteria. To reduce ambiguity and im-
prove reproducibility, qualitative scores used throughout the evalu-
ation are assigned according to the following criteria:

• High: The architectural property is enforced by design and
consistently holds across all evaluated scenarios.

• Medium: The property holds under typical conditions but
may degrade under stress scenarios such as high concurrency
or partial failures.

• Low: The property is not consistently enforced and relies
on external mechanisms or developer discipline to maintain.

These criteria are applied uniformly across architectures and
scenarios to ensure consistent interpretation of the comparative
assessments.

4 Scenario-Based Comparative Evaluation
The proposed trustworthiness assessment approach is then demon-
strated on three main web-reactive architecture styles: signal-based
architectures that focus on fine and detailed state updates [2];
observable-based architectures that are based on subscription-based
models of change distribution [7]; and finally, the third category
that consists of the combination of both styles that look to enhance
flexibility [4]. The assessment is qualitative and based on proper-
ties and reasoning related to scenarios that are common in other
approaches related to architectural tradeoff studies [5].

4.1 Evaluation Scenarios
The scoring examples are to be architecture-independent and cover
typical issues found in reactive web systems:

• Asynchronous Data Update: A web query updates com-
mon application data, causing related computations and up-
dates to be triggered.

• Concurrent User Interaction: There are simultaneous
events triggered by the user, and they compete to change
the state.

• Partial Failure: A fault occurs in one of the components
in the state propagation that tests the ability to contain the
error.

• Cross-Device Latency: Update states are received in a re-
ordered manner because of differences in network latency.

These scenarios are designed to reflect common sources of com-
plexity in reactive systems, such as asynchrony, concurrency, partial
failure, and nondeterminism in update order.

4.2 Assessment and Results
In each of the scenarios, we evaluate the level to which each of
the architectural paradigms supports the six trustworthiness di-
mensions introduced in section 3. Table 2 illustrates the results
obtained in the Concurrent User Interaction scenario. These results
follow a similar trend across the remaining evaluation scenarios,
with concurrency-driven interactions most strongly exposing ar-
chitectural trade-offs in predictability and failure isolation.

For Hybrid architectures, the coexistence of signal-based prop-
agation and observable-based event streams introduces semantic
heterogeneity. Under concurrent interaction scenarios, this hetero-
geneity can complicate reasoning about update ordering and failure
containment, which explains the lower predictability and failure
isolation scores observed in Table 2.

Signal-based systems show high predictability based on their
dependencies on the state and update functions, while being fully
deterministic. Observable-based systems offer better transparency
and debug properties, since flow dependencies are described in
detail using data flow chains [6, 7]. A hybrid approach has better
flexibility, while in some cases, it may show lower predictability
and weaker isolation in case of failures [5].

In signal-based approaches, failures can often be containedwithin
localized dependency regions or effect boundaries, which improves
isolation under many conditions. However, isolation depends on
how effects are implemented and how error boundaries are defined,
especially under concurrent updates.

Observable-based approaches typically expose explicit error
channels and recovery operators (e.g., catch/retry patterns), which
can support containment but may also propagate failures broadly
if stream composition crosses unrelated concerns.

Hybrid approaches must reconcile failure semantics across signal
graphs and observable streams. Under concurrency, this boundary
can complicate containment and recovery, which helps explain
lower failure-isolation scores in stress scenarios.

UX consistency follows related trends: architectures that ensure
deterministic update ordering and stable state snapshots under
concurrency are less likely to surface inconsistent intermediate UI
states.

4.3 Illustrative Case Study: Applying the
Framework to a Concrete Signal-First
Architecture

To make the proposed framework more concrete and reduce per-
ceived subjectivity, we provide an illustrative case study demonstrat-
ing how the trustworthiness dimensions and qualitative scoring
criteria can be applied to a specific reactive architecture artifact.

Artifact. We use the Signal-First reactive architecture described
in [3] as the concrete reference system. Signal-First models applica-
tion reactivity as a directed acyclic dependency graph with explicit
primitives (Signals, Computed, Effects) and schedules effects only



Evaluating Trustworthiness in Reactive Web Architectures: A Structured Framework and Comparative Analysis TIME 2026, April 13–14, 2026, Dubai, United Arab Emirates

Table 1: Overall trustworthiness assessment across reactive architectures. Ratings (High / Medium / Low) follow the qualitative
scoring criteria defined in Section 3.2.1. This table presents an aggregated view across representative interaction scenarios,
reflecting typical system usage rather than worst-case behavior.

Architecture Type Predictability Transparency Debuggability Failure Isolation UX Consistency Human Oversight
Signal-based High Medium High Medium High Medium
Observable-based Medium High Medium High Medium Medium
Hybrid Medium High Medium Medium High Medium

Table 2: Scenario-specific trustworthiness assessment under
concurrent and stress interaction patterns. Ratings are as-
signed using the qualitative criteria in Section 3.2.1 and em-
phasize worst-case or diagnostic scenarios (e.g., concurrent
updates and asynchronous interactions) where architectural
limitations are most pronounced.

Dimension Signal-based Observable-based Hybrid
Predictability High Medium Low
Transparency Medium High Medium
Debuggability Medium High Low
Failure Isolation High Medium Low
UX Consistency Medium High Medium
Human Oversight Medium Medium High

after graph stabilization, yielding deterministic propagation and
consistent state snapshots.

Scenario instantiation. We instantiate the paper’s Concurrent
User Interaction scenario (Section 4.1) as overlapping state updates
driven by rapid UI events and asynchronous effect completions. In
Signal-First, concurrent updates are reconciled through ordered
propagation over the dependency graph and deferred effect execu-
tion after stabilization.

Dimension-by-dimension scoring (illustrative). Using the qual-
itative criteria in Section 3.2.1, we illustrate the mapping from
architectural mechanisms to trustworthiness scores.

Predictability: Signal-First emphasizes deterministic propaga-
tion over the dependency graph and stable snapshots before effects
run, supporting a High predictability assessment.

Failure Isolation: Separating pure computations (Computed)
from impure side effects (Effects) localizes error surfaces and sup-
ports containment; recovery mechanisms remain implementation-
specific, motivating a Medium-to-High score depending on the ap-
plication’s error-boundary strategy.

Debuggability / Human Oversight: Explicit reactive primi-
tives and stabilized execution phases enable clearer mental models
and improved traceability of state propagation compared to implicit
subscription-based chains.

Lightweight empirical anchor. Although this paper does not in-
troduce new benchmarking, the Signal-First artifact reports stress-
condition measurements that serve as an external empirical anchor
for scalability-related discussion, such as reduced update latency
and lower memory usage at large reactive graph sizes. These values
are used only to ground scalability and runtime-cost discussion
and do not redefine the qualitative scoring procedure. This case

study is intended as an illustrative application of the framework
rather than a validation of architectural superiority, and is used to
demonstrate how qualitative assessments can be grounded in a real
system artifact.

Table 3: External empirical anchor from the Signal-First ar-
chitecture artifact. Reported values are used solely to ground
runtime and scalability discussion and do not replace the
qualitative scoring procedure.

Reported indicator Value
Mean update latency (stress) 71.8 ms
Memory usage (stress baseline) < 1 MB vs. 8.4 MB
Stress-condition speedup 5.7×

4.4 Synthesis of Insights
Regardless of the scenarios, a set of trade-offs still hold. Whereas
signal-based architectures prioritize locality and error containment,
but possibly lack global visibility of dependencies [1], observable-
based paradigms encourage transparency and debuggability in
dependency-intensive applications and are therefore appropriate
in the context of complex interactive systems [6], while hybrid ar-
chitectures represent a compromise with the potential of trustwor-
thiness problems related to semantic heterogeneity and increased
architectural complexity [5]. On the whole, the assessment points
out that trustworthiness in responsive web architectures is deter-
mined by trade-offs within the architectures rather than by either
paradigm. The developed framework facilitates the discussion of
trade-offs to make informed architectural decisions.

5 Discussion and Implications
By using the scenario-based evaluation, it is shown that no archi-
tectural paradigm reaction optimizes all the dimensions of trust-
worthiness. Rather, the different dimensions of trustworthiness in
the reaction architectural paradigm work in web applications by
means of architectural trade-off, especially in localized control and
global observability.

5.1 Tooling and Ecosystem Effects
Although the proposed framework primarily addresses architec-
tural properties, there are scenarios where the tooling offered by the
developers can make some aspects of trustworthiness dimensions
more relevant than others. Tooling doesn’t remove architectural
trade-offs but provides a degree of relief from them.

For instance, debugging aids that provide information regarding
dependency graphs, execution traces, or state transition history



TIME 2026, April 13–14, 2026, Dubai, United Arab Emirates

may enhance transparency or debuggability in systems that are not
automatically transparent or debuggable.

Likewise, static analyzers as well as code lints can assist in spot-
ting any unwanted graphs of dependencies or side effects. However,
such tooling is implemented on top of the architecture. Architec-
tures which are more transparent in how the state or data flow
can more easily be made the focus of tool-oriented mitigation tech-
niques. Architectures which have less transparent control flow
could potentially reduce the efficacy of tool-oriented mitigation.
Consequently, it is important for tooling to be considered a com-
plement rather than a substitute for architectural trustworthiness.

Table 4: Illustrative mapping between trustworthiness di-
mensions and common classes of developer tooling.

Dimension Example Tooling Support
Predictability Invariant checks, dependency analyzers
Transparency Dependency graph visualizers, trace inspectors
Debuggability Execution tracing, time-travel debugging
Failure Isolation Fault injection tools, error boundary analysis
Human Oversight Monitoring dashboards, intervention hooks

5.2 Runtime Costs, State Management, and
Recovery Mechanisms

Beyond architectural reasoning, trustworthiness is influenced by
runtime costs, state management strategies, and recovery mech-
anisms that emerge during real-world deployment. While these
factors do not redefine architectural guarantees, they shape how
trustworthiness dimensions manifest at scale.

Runtime costs. Observable-based architectures may incur ad-
ditional runtime overhead due to long-lived subscription chains,
event buffering, and intermediate stream objects, which can in-
crease memory usage and garbage collection pressure as application
complexity grows. Signal-based architectures typically emphasize
direct dependency propagation, which can reduce intermediate
allocations but may introduce overhead when large dependency
graphs require frequent invalidation and recomputation. Hybrid ar-
chitectures combine both cost profiles and therefore require careful
coordination to prevent compounded overhead at semantic bound-
aries.

State management libraries. State management libraries play a
mediating role between architectural paradigms and developer-
facing behavior. Libraries such as RxJS enhance observable-based
systems by offering structured operators and error-handling primi-
tives, improving transparency and debuggability while potentially
increasing runtime overhead. Signal-oriented libraries and frame-
works integrate state propagationmore directly, supporting stronger
predictability and failure containment at the cost of reduced global
visibility in large graphs.

Recovery mechanisms. Failure isolation in reactive architectures
depends not only on error containment but also on recovery strate-
gies such as retries, fallback state restoration, or compensating
updates. Observable-based systems often support explicit recovery

through retry and catch operators, whereas signal-based systems
rely on error boundaries and effect-level guards to prevent cascad-
ing failures. Hybrid architectures must reconcile these approaches,
making recovery behavior more complex and emphasizing the im-
portance of explicit architectural governance.

Table 5: Illustrative relationship between reactive architec-
tures, runtime costs, and recovery characteristics.

Architecture Runtime cost tendency Typical recovery style
Signal-based Graph recomputation over-

head
Error boundaries, guarded ef-
fects

Observable-
based

Subscription and buffering
overhead

Retry, catch, stream restart

Hybrid Combined overhead profiles Mixed recovery semantics

5.3 Granularity Versus Observability
Signal-driven architectures are designed to focus on state manage-
ment at a much finer granularity, supporting effective isolation
and predictability for failures. Unfortunately, while such a level of
granularity might hide global dependency relationships, making
it harder to debug paths through which system state changes, at
scale, designers will need to use discipline to compensate for lack
of visibility.

In contrast, the architecture based on observables implies a
higher degree of expressiveness for dependencies. This is well
aligned with previous work that has noted that knowledge of ex-
ecution paths improves the understanding of software [6, 7]. The
trade-off is that this incurs higher cognitive complexity because of
the need for understanding asynchronous streams.

Table 6: Examples of observable proxies and tooling support
for trustworthiness dimensions.

Dimension Observable Proxy Typical Tooling Class
Predictability Update ordering consis-

tency
Static analysis, invariant
checks

Transparency Dependency visibility Dependency graphs, tracing
tools

Debuggability Time to isolate faults Execution traces, step debug-
ging

Failure Isola-
tion

Error containment scope Fault injection, recovery
monitors

Human Over-
sight

Intervention visibility Monitoring dashboards, logs

5.3.1 Security as a Cross-Cutting Trustworthiness Concern. Secu-
rity concerns in reactive web systems are closely intertwined with
architectural trustworthiness rather than isolated properties. Vul-
nerabilities such as unintended event injection, improper propa-
gation of untrusted inputs, or manipulation of reactive flows can
directly undermine predictability, failure isolation, transparency,
and human oversight.

For example, reactive architectures that allow uncontrolled prop-
agation of externally triggered events may increase the risk of
cascading failures or inconsistent state updates. Similarly, limited



Evaluating Trustworthiness in Reactive Web Architectures: A Structured Framework and Comparative Analysis TIME 2026, April 13–14, 2026, Dubai, United Arab Emirates

visibility into reactive execution paths can hinder detection and
mitigation of security-relevant anomalies.

Rather than introducing security as a separate dimension, the
proposed framework evaluates security-relevant concerns through
their impact on existing trustworthiness dimensions. This perspec-
tive aligns with architectural reasoning practices in dependable
system design, where security, safety, and reliability are evaluated
in relation to containment, observability, and control mechanisms.

5.4 Scalability and Complexity Effects
With increased size and complexity of reactive systems, dimensions
of trustworthiness could deteriorate in varied manners depending
on the architectural paradigm. Moreover, an increase in the number
of state dependencies, interaction paths, and asynchronous coordi-
nation points can potentially increase the complexity of reasoning.

Scalability issues could arise in signal-processing architectures
when there are large graphs of dependencies, in which case global
transparency could be compromised even when local predictability
is high. Observable-based architectures may see the cognitive over-
head increase due to the number of events and subscriptions being
handled. This might result in issues related to the predictability and
debuggability of the application.

Hybrid architectures could also have their difficulties compounded
because of interaction effects from more than one reactive seman-
tics. The problem of failure isolation could also become more diffi-
cult. These serve to point out that trustworthiness is not fixed; it is
scalable. The framework, consequently, enables reasoning about
architectural decisions both independently and in terms of their
behavior as applications evolve.

5.5 Architectural trade-offs in High-Stakes
Contexts

For applications where human evaluation and predictability are
important, architectural consistency is an important factor for trust-
worthiness too. The hybrid architecture intends to capitalize on
the strengths of more than one reactive paradigm, while it appears
that combining reactive semantic models will bring in ambiguity
in execution order and error propagation, since semantic variabil-
ity might enhance complexity levels for reasoning and undermine
isolated failure, thus reflecting architectural evaluation concerns
on complexity [5].

In relation to dependability, more explicit architectures concern-
ing control flow and error propagation are more amenable to rea-
soning about system behavior in exceptional circumstances [1]. It is
not being suggested that a hybrid strategy is not a good fit, merely
that it is a strategy for which trust governance is essential.

5.6 Implications for UX Consistency
Consistency in UX in reactive web applications is related to pre-
dictability in the ordering and propagation of updates. Architectures
that can easily enable reasoning in a deterministic manner in the
face of concurrent inputs are better equipped to handle consistent
UX. More observable-centric models of programming can offer bet-
ter abstractions for dealing with concurrency, but they also require
greater programmer diligence to ensure they don’t create unex-
pected interactions. More straightforward reactive models may

help to curb the overhead in simpler use cases, but they may not
scale to complex UX easily.

5.7 Implications for Responsible Design
This framework treats trustworthiness as an architecturally signifi-
cant concern that must be addressed explicitly during system design
rather than emerging incidentally from performance optimization.

Instead of prescribing one particular architecture and prescrib-
ing what aspects of trustworthiness must be pursued, the frame-
work helps make well-informed decisions about which aspects of
trustworthiness are given importance. This also corresponds with
traditional notions within software engineering that dependabil-
ity, transparency, and human factors must be incorporated within
architecture design [1, 5].

Although the evaluation focuses on reactive web architectures,
the framework is applicable to other event-driven and reactive sys-
tems, including data-intensive dashboards, monitoring interfaces,
and human-in-the-loop systems.

5.8 Limitations
The current work takes a qualitative viewpoint based on the archi-
tecture level and does not incorporate framework-specific optimi-
sation, tool ecosystems, or empirical performance characteristics.
Although this abstraction facilitates generality, it might be useful in
extending the framework to incorporate empirical validation anal-
ysis in order to improve the estimation of trustworthiness in the
future. Future work could extend the framework to more explicitly
operationalize security-related threats and adversarial behaviors
within reactive architectures. In particular, large-scale systems may
exhibit non-linear degradation of certain trustworthiness dimen-
sions, which motivates future empirical and tool-assisted studies.

6 Conclusion and Future Work
This paper presented a structured framework for evaluating trust-
worthiness in reactive web architectures. By decomposing trust-
worthiness into six operational dimensions—predictability, trans-
parency, debuggability, failure isolation, UX consistency, and hu-
man oversight—we provided a systematic lens for analyzing how
architectural choices influence trustworthy system behavior. Ap-
plying the framework through scenario-based comparative evalu-
ation, including an illustrative case study grounded in a concrete
signal-first architecture (Section 4.3), we highlighted recurring
trade-offs across signal-based, observable-based, and hybrid re-
active paradigms.

The evaluation demonstrates that trustworthiness is not an in-
herent property of any single reactive architecture but rather an
emergent outcome of design decisions and contextual priorities.
Signal-based architectures emphasize locality and fault contain-
ment, observable-based approaches favor transparency and de-
buggability, and hybrid architectures balance expressiveness with
increased reasoning complexity. The proposed framework enables
these trade-offs to be articulated explicitly, supporting informed
architectural decision-making without relying on empirical bench-
marks.



TIME 2026, April 13–14, 2026, Dubai, United Arab Emirates

From a broader perspective, this work aligns with the goals of
multifaceted evaluation emphasized by the TIME workshop. By
focusing on architectural reasoning and scenario-based assessment,
the framework supports responsible design practices across appli-
cation domains where reactive systems are increasingly deployed.

Future work may extend this framework in several directions.
Empirical studies could validate and refine the qualitative assess-
ments presented here by examining real-world systems and de-
veloper experiences. Tool-assisted analyses could automate parts
of the evaluation process, enabling scalable assessment of trust-
worthiness properties. Finally, the framework could be adapted to
emerging paradigms, such as reactive systems integrated with AI-
driven components, to further explore trustworthiness challenges
in evolving web architectures. By emphasizing transparency, de-
buggability, and human oversight, the framework supports broader
Responsible AI and trustworthy web system design goals.

References
[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. 2004.

Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Transactions on Dependable and Secure Computing 1, 1 (2004), 11–33. doi:10.1109/

TDSC.2004.2
[2] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn

Mostinckx, and Wolfgang De Meuter. 2013. A Survey on Reactive Program-
ming. Comput. Surveys 45, 4, Article 52 (Aug. 2013), 34 pages. doi:10.1145/2501654.
2501666

[3] S. A. Balasubramanian. 2025. Signal-First Architectures: Rethinking Front-End
Reactivity. arXiv preprint arXiv:2506.13815 (2025). https://arxiv.org/abs/2506.
13815

[4] Herminio Paucar Curasma and Júlio Cézar Estrella. 2023. Reactive Software
Architectures in IoT: A Literature Review. In Proceedings of the 2023 International
Conference on Research in Adaptive and Convergent Systems (RACS ’23). ACM,
Article 25, 8 pages. doi:10.1145/3599957.3606212

[5] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere. 1998.
The architecture tradeoff analysis method. In Proceedings. Fourth IEEE International
Conference on Engineering of Complex Computer Systems (Cat. No.98EX193). 68–78.
doi:10.1109/ICECCS.1998.706657

[6] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2008.
Debugging Reinvented: Asking and Answering Why and Why Not Questions. In
Proceedings of the 30th International Conference on Software Engineering (ICSE ’08).
301–310. doi:10.1145/1368088.1368124

[7] Guido Salvaneschi, Alessandro Margara, and Giordano Tamburrelli. 2015. Re-
active Programming: A Walkthrough. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, Volume 2 (ICSE ’15). IEEE, 953–954.
doi:10.1109/ICSE.2015.303

[8] M.-A. Storey. 2005. Theories, methods and tools in program comprehension: past,
present and future. In 13th International Workshop on Program Comprehension
(IWPC’05). 181–191. doi:10.1109/WPC.2005.38

https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://arxiv.org/abs/2506.13815
https://arxiv.org/abs/2506.13815
https://doi.org/10.1145/3599957.3606212
https://doi.org/10.1109/ICECCS.1998.706657
https://doi.org/10.1145/1368088.1368124
https://doi.org/10.1109/ICSE.2015.303
https://doi.org/10.1109/WPC.2005.38

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Trustworthiness Dimensions and Evaluation Framework
	3.1 Trustworthiness Dimensions
	3.2 Evaluation Framework Overview

	4 Scenario-Based Comparative Evaluation
	4.1 Evaluation Scenarios
	4.2 Assessment and Results
	4.3 Illustrative Case Study: Applying the Framework to a Concrete Signal-First Architecture
	4.4 Synthesis of Insights

	5 Discussion and Implications
	5.1 Tooling and Ecosystem Effects
	5.2 Runtime Costs, State Management, and Recovery Mechanisms
	5.3 Granularity Versus Observability
	5.4 Scalability and Complexity Effects
	5.5 Architectural trade-offs in High-Stakes Contexts
	5.6 Implications for UX Consistency
	5.7 Implications for Responsible Design
	5.8 Limitations

	6 Conclusion and Future Work
	References

